
(g) MOTOROLA Desi«n Concept

Semiconductor Products Inc. DC-001

Virtual Memory Using the
MC68000 and the MC68451 MMU

This paper is a Design Concept. It is meant to present useful ideas in design. As such, it represents a

thorough discussion of a possible design. However, the system discussed herein has not been built

and tested.

Prepared by

Hunter Scales

Systems Applications Engineer

Advanced Microcomputer Components

INTRODUCTION
Early in the history of computers, programmers found

that their programs were increasing in size until they were

literally larger than the addressing range of the computer. To
solve this problem, a technique called virtual memory was in-

vented. This technique allows the programmer to use a larger

address space for his programs than the physical address

space of the main memory by automatically storing and

retrieving parts of the program in secondary memory (usually

a disk).

The original virtual memory technique, as implemented by

IBM, used a main memory addressing scheme which

referenced a page table to get a pointer into a block table. In

turn, this pointer was used to form the physical address. This

meant that every memory reference required three main

memory references. The use of a cache of addresses in an
associative memory can cut this time significantly.

This paper presents a design for a virtual memory machine

using the currently available MC68000 microprocessor

(MPU) and the MC68451 memory management unit

(MMU). The presentation includes a discussion on some

problems inherent to virtual memory design and the methods

used to resolve these problems.

DESIGN GOALS
In this design, the user program (called a task) is allowed

to request and receive from the operating system more
memory than is physically available. The operating system

then allocates some minimum amount of memory to the task

and constructs a segment or segments in the MMU to

describe the page allocated. If the task then tries to access

memory which has not been physically allocated, an undefin-

ed segment access error is generated by the MMU. The MMU
then asserts the FAULT signal to indicate that a page fault

has occurred.

Once a page fault has occurred, some mechanism must be

available to locate and fix the fault. This consists of deter-

mining if the present page has been modified and, if it has, to

save it on the disk. The new page containing the location

whose address caused the page fault must then be loaded

from the disk into memory. The segment descriptor(s) which

describe the page in the MMU must then be modified to

reflect the new memory configuration.

Two approaches toward the achievement of these goals are

presented. These are the bus cycle rerun method and the bus

cycle suspension method.

BUS CYCLE RERUN METHOD
The obvious candidate to fix the page fault is the MPU, as

it has access to both the MMU and the DMAC. Unfortunate-

ly, the bus cycle which caused the fault must be rerun after

the fault has been fixed in order to continue executing the

program. The MC68000 can rerun bus cycles by using the bus

error (BERR) and halt (HALT) signals. However, the MPU
is in the halt state between the aborted cycle and the rerun cy-

cle and cannot fix a page fault while it is halted. Therefore,

another bus master must perform this function and, since

this bus master and the main MPU can share memory
management routines, this could be an MC68000 MPU as

well.

A block diagram of a bus rerun type of system is shown in

Figure 1 . The MPU labeled Executor serves as the main pro-

cessor, executing the operating system and the user tasks.

The Fixer is responsible for fixing page faults. Since both

MPUs share a common bus, the bus request (BR) and bus

grant (BG) control signals are used by the control logic to

allow only one MPU at a time to use the bus.

When a page fault occurs, the BERR, HALT, and BR
lines on the Executor are asserted. This causes the current

bus cycle to be terminated and the Executor to be halted. As
soon as the cycle terminates, the MPU relinquishes the bus.

The control logic then releases the Fixer by negating its BR
line and the Fixer takes control of the bus and fixes the page

fault. After resolving the page fault, the Fixer writes to a

special location to toggle a flip-flop which causes the swap to

occur. The BR line on the Fixerjs^ asserted and it is removed
from the bus. The HALT and BR lines on the Executor are

then negated and the Executor performs the bus rerun and

then continues executing the user task.

©MOTOROLA INC., 1982

1

While this method is relatively conservative of hardware, it

does have one major drawback. In order to preserve the inte-

grity of semaphores useful in multi-processor applications,

read-modify-write bus cycles cannot be rerun. In practice,

this means that user applications programs may not use the

test and set (TAS) instructions in the bus cycle rerun method.
Since it may not be possible to apply this restriction, par-

ticularly on vendor-supplied software, another method is

proposed.

DMAC

BR

BG

BGACK

Executor

D0-D15

A1-A23

AS

BR

BG BERR

BGACK.
HALT

M
U
X

BR
D0-D15

BGACK

BG
A1-A23

Fixer

AS

BR

Data

Logical Address

Control Lines

MMU

FAULT

Control

Logic

Phv
Addi

A
y

o
Memory
and

I/O

AS

FIGURE 1 — Bus Cycle Rerun System Block Diagram

BUS CYCLE SUSPENSION METHOD
The MC68000 has an asynchronous bus interface. The

MPU asserts address strobe (AS) to indicate a valid address

on the address bus and one of the upper or lower data strobes

(UDS) or (LDS) to indicate valid data during a write cycle.

The MPU then expects a data transfer acknowledge

(DTACK) response signal to be asserted, indicating that the

data has been accepted (write) or is valid (read). If DTACK
has not been asserted by the falling edge of state four (S4) of

the system clock, the MPU idles, inserting wait states until

DTACK is asserted. The bus cycle is therefore suspended

until DTACK is asserted and this delay can be used by the

Fixer to fix the page fault.

A block diagram of a system using this method is shown in

Figure 2. Since the Executor is driving the address, control

and, possibly, the data buses during the "suspension," three-

state buffers are needed to isolate these signals from the

system bus while the Fixer is active. The Fixer is held off the

bus while the Executor is active with the BR signal. This

signal causes all buses and control signals on the Fixer to

enter the high-impedance state and to halt.

When the Executor executes a bus cycle wherein a page

fault occurs, the MMU withholds the mapped address strobe

(MAS) and asserts the FAULT signal. This action disables

the three-state buffers and removes the Executor from the

system bus . Since the data transfer acknowledge line on the

Executor (DTACK(E)) is held negated by a pullup resistor,

the Executor idles in the wait state. Asserted FAULT also

negates the BR line to the Fixer and releases the Fixer to con-

trol the bus. After performing the fix, the Fixer writes to a

selected location to cause a swap. Signal BR(F) is again

asserted, removing the Fixer from the bus and allowing the

suspended bus access of the Executor to be completed. Signal

DTACK(E) is then asserted by the addressed memory block

or peripheral and the cycle wherein the page fault occurred

terminates. The Executor then continues with the user task.

The tradeoff in this method is the amount of hardware re-

quired versus a versatile instruction handling capability.

Although the control logic is less complex, three-state buffers

are required for the address, data, and control buses of the

Executor. Also, multiplexers are needed for the address and

bus request lines. However, all instructions, including TAS,
can be used on this system. Thus, this method is preferred as

it results in a more powerful and versatile system. A design

incorporating this method is described in detail in the follow-

ing paragraphs.

2

r

Control

Logic

FIGURE 2 — Suspended Bus Cycle System Block Diagram

A DESIGN USING THE CYCLE
SUSPENSION METHOD

Figure 3 shows a schematic diagram of a virtual memory
machine using two MC680OOL8 microprocessors. The Ex-

ecutor is isolated from the system bus_by three-state buffers.

These buffers are controlled by the E/F signal generated by

control logic flip-flops Ul and U2. When E/F is low, the

buffersjire enabled and the Executor is in control of the bus.

When E/F is high, the buffers are in the high-impendance

state and the Executor is removed from the bus. The control

logic uses the SWAP-BR signal to remove the Fixer from the

bus while the Executor is processing.

The system address strobe, AS(S), is derived from the

multiplexed address strobes of the Executor (AS(E)) and the

Fixer (AS(F)) . The address control logic flip-flops U3 and U4
use the ASE/ASF signal to select either AS(E) or AS(F) as

the system address strobe AS(S). When ASE/ASF is low,

AS(S) is AS(E) and when it is high, AS(S) is AS(F). This

signal is asserted one clock cycle after E/F to allow for

address setup time to the MMU.

The bus request handshake lines, BR, BG, and BGACK
are similarly multiplexed with gates U18 through U26 to

allow the DMAC to request the bus from the current_pro-

cessor in control. The select line of this multiplexer is E/F.

The MMU can assert FAULT for an undefined segment

access (USA) and a write violation (WV). This creates a

problem in that in this system, a USA may or may not be an

error. If the task is attempting to access memory granted to it

by the operating system but not physically allocated (virtual

memory) then this constitutes a page fault and the Fixer can

resolve it. If the access is to a location not requested by the

task, the USA is an error and an exception must be forced on

the Executor. Similarly, a write violation is an attempt by a

user task to write a write-protected segment. This is also an

error and must be terminated. The write violation error

(WVERR) signal is used to resolve this problem.

The Fixer can assert the WVERR signal by performing a

read at a specified location. In turn, WVERR asserts the Ex-

ecutor BERR line, forcing the Executor to abort the access

and take the bus error exception when it regains the bus.

Thus, the Fixer is allowed to deal with true USA and WV
errors.

3

CD

LD

5

g

g

g

g

§

5

g

g

»

CD

§

g

g

g

CO

CN

X

i

15?

CO
CN
<

oQ

CO LU ll.

u o
< < <
H 1

—

Q Q Q

Ilu
CO
<

CO
l<

o.
o

CO
CD

CO

£ C
co>
CO

ffiC 3a
CO o

bus
<
CO

ins

hes
ovid etch -O

cn
CL X>

r5 c
cr "O o o eo

c Die
"O

ect E"5
CD > 0)

xer
CD ssert pap

sys

CD c
CD c

<

to
CO

E
o
CD tec

;|lu S
|
CO CO

I l< CO

: iS c
CO T3

CO
O

5
~

l_ O Q) ~
CD ' *t= CD

O O O

>< lor

llIoo m O LU LU

»— CN CO ID CO

E
o

CD cd £

!
CO

LU
tr
D
a

<D $ O-

2 - X
a>
CD (- O

to
CD

CD Z)
O) Q_

— .* - T= «

CO CJ

Q. C
CD CD

a. .a

s 5

1

a 2 S i r
J)
2 o

co o_ o
CD 3 §
o 2 ^

t— t— CD
CD CD 3z
* x S
LE iT 2om

CJl CD

.

S 2
co

CJ
CD <
CO
CD H
cc fa

— CN CO ID

5

An MC68230 Parallel Interface/Timer (PUT) is provided

as a watchdog timer to terminate any accesses to unpopu-

lated addresses. In addition, the PI/T has a number of

"null" registers which, when accessed, return DTACK with

no other effect. The "null" register at location $1F is used by

the control logic to allow the Fixer to cause an MPU switch.

A write to this location causes SWAP-BR to be asserted,

causing the Fixer to relinquish the bus. A read of the same

location asserts BERR to the Executor. If the PI/T is not in-

cluded, some means of generating DTACK for the switch

register must be used.

OPERATIONAL DESCRIPTION

Resetting the System

The system must be initialized before it can begin opera-

tion. This is accomplished by resetting both processors.

Refer to the schematic in Figure 3 and the timing diagram in

Figure 4 for the following.

First the RESET and HALT lines of both MPUs are

asserted by the external reset signal. This sets flip-flops Ul
and U2 via ANDgate U5. The outputs of these_flip- flops are

SWAP-BR and E/F, respectively. A high on E/F, in turn,

sets flip-flops U3 and U4 forcing ASE/ASF high. In this

state, the buffers from the Executor are disabled and the

Fixer is in control of the system bus. When RESET/HALT is

negated, the Fixer fetches its restart vectors and begins execu-

tion of the boot ROM.
The fixer must first initialize the MMU. Since E/F is ORed

with BGACK from the DMAC, it shares the second set of

eight entries in the address space table. Hence, the Fixer

should load a descriptor which corresponds to the operating

system segment for the Executor. Then, when control is

switched to the Fixer during a fault, its address space allows

it to address and execute the fixup routines.

After setting up the MMU, the Fixer then writes to the

switch location in the PI/T. A write to $1F causes the output

of U7 to go low, asserting SWITCH. This clears flip-flop U2,

asserting SWAP-BR. When this write cycle is finished, MAS
and DTACK(S) are negated and clock flip-flop Ul. The out-

put of Ul, E/F, goes low, enabling the buffers from the Ex-

ecutor. When E/F goes low, flip-flops U3 and U4 are releas-

ed from preset and ASE/ASF goes low after two rising edges

of the system clock. This allows an address setup time before

AS(S) is asserted .

After RESET/HALT is negated, the Executor begins a

read bus cycle to fetch its restart vector and waits for

DTACK(E) to be asserted. However, its buffers are disabled

while the Fixer initializes the MMU. Then, after its buffers

are enabled, a valid address is put on the system address bus

and AS(S) is asserted . The read is completed and the memory
unit asserts DTACK(E). The Executor then begins execution.

First, it initializes the MMU and then loads the operating

system. User tasks are then processed using the loader and

other system utilities.

Page Fault

Refer to the timing diagram in Figure 5 and assume that

the Executor is running in user mode and is executing a user

task. It attempts to read from a logical address not presently

in physical memory. The MMU detects an undefined seg-

ment access and asserts the FAULT line. Signal MAS is not

asserted , so memory does not return DTACK. When
FAULT goesjow, Ul and U2 are preset, negating SWAP-BR
and forcing E/F high. This removes the executor from the

bus and blocks DTACK. The Fixer, with BR released, starts

a bus cycle in approximately 3 clock cycles.

The Fixer then reads the MMU to determine what sort of

fault caused the switch. If it was a bona fide page fault, it

checks the M (modified) bit in the segment status register to

see if the segment had been written to. If so, the DMAC is

programmed to write the page to the disk. The page with the

address of the suspended bus cycle is then loaded into

memory from the disk. Then the page table is updated to

reflect the new logical base address of the segment(s). That

done, the page fault fix cycle is complete.

To accomplish the processor switch, the Fixer then writes

to the switch register and the switch sequence described

above is initiated. The buffers are enabled and the address

strobe multiplexer is switched to allow the asserted AS(E) to

reach the MMU. The MMU does the translation, the

memory unit performs the access and asserts DTACK, and
the suspended cycle is completed.

Undefined Segment Accesses and Write Violations

The last case to be covered is that of a genuine error on the

part of the user program. If the user task attempts a memory
reference outside of its defined address space or attempts to

write to a location that has been defined as read-only by the

operating system, the MMU does not assert MAS but asserts

FAULT. Refer to the timing diagram in Figure 6 and assume

that the Executor is in control of the bus and is attempting to

write to a write-protected segment. The MMU asserts

FAULT causing the switch to the Fixer. The Fixer then reads

the segment status register and finds that the fault was caused

by a WV and the Fixer then executes a test-and-set (TAS) in-

struction on the switch register. The read portion of the TAS
instruction causes WVERR to be asserted. In turn WVERR
generates the WV-BERR signal at the Q output of flip-flop

U27. Signal WV-BERR then assserts BERR on the Executor

via gate U15. The Executor then terminates the suspended

write cycle . When AS(E) is negated, U27 is preset and the

WV-BERR signal is negated. The Executor then begins

stacking for the bus error exception but, since the buffers are

disabled, DTACK(E) is not returned and the MPU waits.

The write portion of the TAS instruction executed by the

Fixer then asserts SWITCH and the Fixer is removed from

the bus. When ASE/ASF goes high, AS(S) is asserted and

the write for the stack operation of the Executor is made.

Signal DTACK(E) is asserted and the bus error handling

routine is taken.

SOFTWARE
The routines to drive this system are not uncommon to

operating systems. Many of the same memory management
routines necessary to a multi-tasking system can be shared

between the Fixer and the Executor. The flow chart for an

example driver routine is given in Figure 7. Although the

Fixer could be used to execute any of the operating system

functions, no advantage would be gained. However, if a

slower, less expensive MPU is used, overhead is minimized if

the code which it has to execute is also minimized.

CAUTIONS
This implementation assumes that the entire machine, in-

cluding the software, is a finite machine. In particular, it has

been assumed that the DMAC is not made active if the

possibility of a page fault occurring exists. If the BR line

from the DMAC is asynchronous with the FAULT line from

the MMU, there exists the possibility of the system hanging.

This depends on the implementation of the DMAC bus arbi-

tration circuits, as it is possible to supply a BG signal without

a BR from the DMAC.

7

MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC,

OMM PRINTED IB USA 3-12 IMPERIAL L1TH0 C04111 20,000

o

^ ^ ^ ^ ^ ^

12
COk COk

ICO

<
Is

CO LO COCM
< 5

6
< D

DTA

LU

u
< <
t- 1—
O Q

CO
<

COk

15
2:.

o

i

>
cd

o
o

c cc ^ o

cd cd o

o tr
< cc
i— LU
Q CD

£ 2

^- , 0)

§ii
C ° £

E1 , CD

E S o

c » ^- -c 2

o £
Q. CD

« w 7;x 13 a>
°

LU 12 O >

CN

<d a.

§ s

-S s

CO
<

CO ^ 3

Hex
% c/i .9 »
™ 2 E £
CD CJ Ci.

S Q. CD

m
SI cc

>- CN CO

CD

e

o o
t c

s
Q.

-D

2 § 1 .2
n -

—

>—

a, ll o

o -
CD EC

CD <2 CD

S - «
-° 5 :

2 - «=

LU l< [CO

<— CN CO ^J" LO

-a
c
a
1=

.2

I
s
I-

I

CD

LU
CC

8

^ Reset ^

Assert

WVERR

Setup

MMU

Switch

to

Executor

Executor

in

Control

Load in New Page

from Disk

FIGURE 7 — System Functional Flow Chart

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability a rising

out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

9

