
The Definitive Guides

to the X Window System

Volume Three

X Window System

User's Guide

for XII R.*anJR4

By Valeric Qiicrciu

and Tim O'Reilly

O'Reilly & Associates, Inc.

X Window System

User's Guide

Books That Help People Get More Out of Computers

X Protocol Reference Manual, p-4 Release, soo pages

Describes the X Network Protocol which underlies all software for Version 11 of the X Window System.

Xlib Programming Manual, R-4 Release, 672 pages

Xlib Reference Manual, R-4 Release, 792 pages

Complete programming and reference guides to the X library (Xlib), the lowest level of programming

interface to X.

X Window System User's Guide, R-4 Release

Orients the new user to window system concepts, provides detailed tutorials for many client programs, and

explains how to customize the X environment

Standard Edition, 752 pages

Motif Edition, 734 pages

X Toolkit Intrinsics Programming Manual, R-4 Release

Complete guide to programming with Xt Intrinsics, the library of C language routines that facilitate the design

of user interfaces, with reusable components called widgets.

Standard Edition, 624 pages

Motif Edition, 666 pages

X Toolkit Intrinsics Reference Manual, R-4 Release, 775 pages

Complete programmer's reference for the X Toolkit.

Motif Programming Manual, Motif 1.1,1032 pages

Complete guide to programming for the Motif graphical user interface.

XView Programming Manual, xview version3.0,768pages

XView Reference Manual, 266pages

Complete information on programming with XView, an easy-to-use toolkit that is widely available.

The X Window System in a Nutshell, R-3 and R-4 Release, 380pages

A single-volume quick reference that is an indispensable companion to the series.

Contact us for a catalog of our nooks, for orders, or for more Information.

O'Reilly & Associates, Inc.
632 Petaluma Avenue, Sebastopol CA 95472

(800) 338-6887 US/Canada 707-829-0515 overseas/local 707-829-0104 Fax

Volume Three

X Window System

User's Guide

forXll R3 andR4 of the

X Window System

by Valerie Quercia and Tim O'Reilly

O'Reilly & Associates, Inc.

Copyright © 1990 O'Reilly & Associates, Inc.

All Rights Reserved

Ardent is a trademark ofStardent Computer Inc.

Charter is a registered trademark ofBitstream, Inc.

DEC is a registered trademark of Digital Equipment Corporation.

Gumby is a copyright ofPrema Toy Company, Inc.

Lucida is a registered trademark ofBigelow & Holmes.

Macintosh is a registered trademark of Apple Computer, Inc.

MacWrite is a registered trademark of CLARIS Corporation.

Motif, OSF, and OSF/Motif are trademarks of the Open Software Foundation, Inc.

NEWS is a trademark of the Sony Corporation.

NCD16 is a trademark of Network Computing Devices, Inc.

OPEN LOOK is a trademark of AT&T.

PostScript is a registered trademark of Adobe Systems Inc.

Sun-3, SunView, and XJI/NeWS are trademarks of Sun Microsystems, Inc.

Tektronix is a registered trademark ofTektronix Inc.

Tetris is a trademark ofAcademySoft-ELORG.

Times, Helvetica, and New Century Schoolbook are registered trademarks of Linotype.

UNIX is a registered trademark of AT&T.

X Display Station is a trademark of Visual Technology Incorporated.

The X Window System is a trademark of the Massachusetts Institute of Technology.

The systemjnwmrc file in Appendix C is reprinted with permission from

Open Software Foundation.

Printing and Revision History

Sept. 1988: First Edition

July 1989: Second Edition. Revised to reflect Release 3.

Oct. 1989: Minor corrections.

May 1990: Third Edition. Revised to reflect Release 4.

Small Print

Portions of this manual, especially the reference pages in Part Three, are based on reference materials provided on

the XI1 R4 tape, which are copyright © 1985, 1986, 1987, 1988, 1989,1990 the Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, and Digital Equipment Corporation, Maynard, Massachusetts.

We've used this material under the terms of its copyright, which grants free use, subject to the following conditions:

"Permission to use, copy, modify and distribute this documentation (i.e., the original MIT

and Digital material) for any purpose and without fee is hereby granted, provided that the

above copyright notice appears in all copies and that both that copyright notice and this per-
mission notice appear in supporting documentation, and that the name of MIT or Digital not

be used in advertising or publicity pertaining to distribution of the software without specific,

written prior permission. MTT and Digital make no representations about the suitability of

the software described herein for any purpose. It is provided 'as is1 without expressed or

implied warranty."

Note, however, that those portions of this document that are based on the original XI1 documentation and other

source material have been significantly revised, and that all such revisions are copyright © 1987, 1988, 1989, 1990

O'Reilly & Associates, Inc. Inasmuch as the proprietary revisions can't be separated from the freely copyable MTT

source material, the net result is that copying of this document is not allowed. Sorry for the doublespeak!

While every precaution has been taken in the preparation of this book, we assume no responsibility for errors or

omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein.

ISBN 0-937175-14-5

[10/91]

Table of Contents

Page

Preface xxi

Assumptions xxi

Organization xxii

Bulk Sales Information xxiv

xshowfonts.c xxiv

Acknowlegements xxiv

Font and Character Conventions xxv

PART ONE: Using X l

1 An Introduction to the X Window System 5

Anatomy of an X Display 5

X Architecture Overview 10

The X Display Server 11

Clients 12

The Window Manager 13

The xterm Terminal Emulator 14

The Display Manager 14

Other X Clients 14

Customizing Clients 15

2 Getting Started 19

If X is Being Started Automatically 19

Starting X Manually 22

Starting the First xterm Window 22

Bringing Up the Window Manager 23

Starting a Second xterm Window 23

Exiting from an xterm Window 25

Special Keys 26

How a Client Looks and Behaves: Application Defaults 26

Starting Other Clients 27

Running a Client on Another Machine 28

Where to Go From Here .. 30

3 Using the twm Window Manager 33

Starting the Window Manager 34

Titlebars 34

The Twm Menu 35

Displaying Windows as Icons 36

Resizing Windows 38

Moving Windows and Icons 39

Shuffling the Window Stack: Raise and Lower 40

Raising Windows (bringing in front of others) 41

Lowering Windows (sending behind others) 42

Changing Keyboard Focus 43

Removing a Window: Delete and Kill 43

Restarting the Window Manager 44

Exiting the Window Manager 44

Button Control of Window Manager Functions 45

Using twm to Place Other Clients 45

Customizing twm 46

Some of My Keystrokes are Missing 46

4 The xterm Terminal Emulator 49

The Release 4 xterm Menus 50

The xterm Menus at a Glance 50

The Main Options Menu 52

VT Options Menu 55

VT Fonts Menu 57

Tek Options Menu 58

Using the Scrollbar 59

Copying and Pasting Text Selections 61

Selecting Text to Copy 62

Pasting Text Selections 64

Manipulating Text Selections 65

Copying and Pasting between Release 2 and 3 Clients: xcutsel 66

Saving Multiple Selections: xclipboard (Release 4 Version) 68

Problems with Large Selections 71

Editing Text Saved in the xclipboard 71

Release 3 xclipboard 72

Terminal Emulation and the xterm Terminal Type 73

Resizing an xterm Window 74

Running a Program in a Temporary xterm Window 75

5 Font Specification 79

Font Naming Conventions 80

Font Families ... 81

VI

Stroke Weight and Slant 84

Font Sizes 84

Other Information in the Font Name 87

Font Name Wildcarding 88

The Font Search Path 90

The fonts.dir Files 91

Font Name Aliasing 93

Making the Server Aware of Aliases 95

Utilities for Displaying Information about Fonts 95

The Font Displayer: xfd 95

Release 3 xfd 97

Previewing and Selecting Fonts: xfontsel 98

Previewing Fonts with the xfontsel Menus 98

Selecting a Font Name 102

Changing Fonts in xterm Windows 102

The Great Escape 102

The Selection Menu Item 104

Release 2 versus Subsequent Release Fonts 104

Font Specification in Release 2 104

6 Graphics Utilities 109

Creating Icons and Other Bitmaps 109

Bitmap Editing Commands 111

Pointer Commands 112

Bitmap Command Boxes 112

Acting on the Entire Grid: Clear All, Set All, Invert All 112

Acting on an Area: Clear Area, Set Area, Invert Area 114

Copy Area, Move Area, Overlay Area 115

Drawing: Line, Circle, Filled Circle 116

Filling in a Shape: Rood Fill 117

Hot Spots: Set Hot Spot, Clear Hot Spot 117

Saving and Quitting: Write Output, Quit 117

Creating a Bitmap from a Cursor 119

Magnifying Portions of the Screen: xmag 122

Quitting xmag 123

What xmag Shows You 123

Dynamically Choosing a Different Source Area 125

7 Other Clients 129

Desk Accessories 129

Clock Programs: xclock and oclock 130

A Scientific Calculator: xcalc 132

Terminating the calculator 133

Mail Notification Client: xbiff 133

vn

Monitoring System Load Average: xload 134

Browsing Reference Pages: xman 135

Release 3 xman 138

Printing Utilities: xwd, xpr, xdpr 140

Killing a Client Window with xkill 141

Problems with Killing a Client 142

Window and Display Information Clients 144

Displaying Information about a Window: xwininfo 144

Listing the Window Tree: xlswins 146

Listing the Currently Running Clients: xlsclients 148

Generating Information about the Display: xdpyinfo 149

User-contributed Clients 150

X Toolkit Applications 150

Dialog Boxes and Command Buttons 151

Scrollbars 152

Selecting Information for Copying and Pasting 152

Vertical Panes 153

Viewports 154

Text Editing Widget 154

PART TWO: Customizing X 159

8 Command Line Options 163

Which Display to Run On 164

Title and Name 165

Window Geometry 166

Border Width 168

Color Specification 169

The rgb.txt File 169

Release 4 Color Names 170

Release 3 Color Names 172

Alternative Release 4 Color Databases 172

Hexadecimal Color Specification 172

The RGB Color Model 173

How Many Colors are Available? 174

Starting a Client Window as an Icon 176

Specifying Fonts on the Command Line 176

Reverse Video177

9 Setting Resources 181

Resource Naming Syntax 182

Syntax of Toolkit Client Resources 183

Tight Bindings and Loose Bindings 184

Instances and Classes .. 184

VIII

Precedence Rules for Resource Specification 185

Some Common Resources 187

Event Translations 188

The Syntax of Event Translations 189

xterm Translations to Use xclipboard 191

How to Set Resources 192

A Sample Resources File 193

Specifying Resources from the Command Line 194

The-xrm Option 194

The-name Option 194

Setting Resources with xrdb 195

Querying the Resource Database 196

Loading New Values into the Resource Database 196

Saving Active Resource Definitions in a File 197

Removing Resource Definitions 197

Listing the Current Resources for a Client: appres 198

Other Sources of Resource Definition 199

10 Customizing the twm Window Manager 203

Setting .twmrc Variables 205

Button/Key Bindings 206

Pointer Buttons 206

Keys 207

Context 207

Function Names 208

Action 208

Defining Menus 209

Submenus 210

Executing System Commands from a Menu 211

Color Menus 212

A Complete Revamp of twm 213

11 Setup Clients 219

xset: Setting Display and Keyboard Preferences 219

Keyboard Bell 219

Bug Compatibility Mode 220

Keyclick Volume 220

Enabling or Disabling Auto-repeat 221

Changing or Rehashing the Font Path 221

Keyboard LEDs 221

Pointer Acceleration 222

Screen Saver 222

Color Definition 223

Help with xset Options 223

IX

xsetroot: Setting Root Window Characteristics 224

Setting Root Window Patterns 224

Foreground, Background Color and Reverse Video 225

Changing the Root Window Pointer 226

xmodmap: Modifier Key and Pointer Customization 227

Keycodes and Keysyms 229

Procedure to Map Modifier Keys 230

Displaying the Current Modifier Key Map 230

Determining the Default Key Mappings 231

Matching Keysyms with Physical Keys Using xev 232

Changing the Map with xmodmap 233

Expressions to Change the Key Map 234

Key Mapping Examples 235

Displaying and Changing the Pointer Map 236

PART THREE: Client Reference Pages 239

PART FOUR: Appendices 521

A System Management 525

Including X in Your Search Path 526

Setting the Terminal Type 526

A Startup Shell Script 527

What Should Go in the Script 527

Starting X 531

Starting X with the Display Manager, xdm (Release 4) 531

Getting Started with xdm on a Single Display 532

Setting Up the Configuration File and Other Special Files 532

The Standard Login Session 535

Customizing xdm 536

The Xservers File 537

The Xsession File and .xsession Scripts 538

The Xresources File 538

The Error Log File 539

The xdm-pid File (Release 4 Only) 539

Xstartup and Xreset 539

Security and the authorize Resource (Release 4 Only) 539

Stopping xdm and the Server 540

X Terminals and the XDM Control Protocol (Release 4) 540

Release 3 xdm 541

Release 3 Special Files and the Config File 541

Customizing the Release 3 xdm 542

Managing Multiple Displays: the Release 3 Xservers File 543

Release 3 .xsession Scripts 544

Release 3 Xresources File 544

Release 3 Xstartup and Xreset 544

Starting X with xinit 545

An Older Method of Starting X: /etc/ttys 545

Server Access Control 547

Host-based Access and the xhost Client 547

User-based Access: xdm and the .Xauthority File (Release 4) 548

Font Management 549

Console Messages 550

Log Files 550

Changing the Color Name Database 550

B The uwm Window Manager 555

Starting the Window Manager 556

The WindowOps Menu 556

Creating New Terminal Windows 558

C The OSF/Motif Window Manager 591

Getting Started with mwm 591

Starting mwm 592

Selecting the Window to Receive Input 592

Manipulating Windows with the mwm Window Frame 594

Moving a Window: The Title Area 594

Minimizing (Iconifying) and Maximizing a Window 596

The Minimize Button 596

The Maximize Button 597

Raising a Window 598

Resizing a Window 599

The Window Menu Button: Display a Menu or Close the Window 602

Manipulating Windows Using the Window Menu 602

Changing the Window Location: Move 604

Resizing the Window: Size 605

Iconifying the Window: Minimize 605

Changing to the Maximum Size: Maximize 606

Moving a Window to the Bottom of the Stack: Lower 606

Removing a Window: Close 606

Restoring a Maximized Window or an Icon: Restore 607

Manipulating Icons 607

Manipulating Icons Using the Window Menu 607

The Root Menu 608

Customizing mwm 610

Activating Changes to the Window Manager 611

The system.mwmrc File 612

mwm Functions ... 614

XI

Menu Specifications 615

Key Bindings 616

Button Bindings 617

Customizing the Root Menu 619

Creating New Menus 620

Cascading Menus 620

Setting mwm Resources 622

Component Appearance Resources 623

mwm-Specific Appearance and Behavior Resources 624

Client-Specific Resources 624

Setting the Focus Policy 625

Using an Icon Box 626

D Standard Cursors 633

E Release 3 and 4 Standard Fonts 639

F xterm Control Sequences 681

xterm Control Sequences 681

Definitions 681

VT102Mode 681

Tektronix 4014 Mode 688

G Standard Bitmaps 693

H Translation Table Syntax 697

Event Types and Modifiers 697

Detail Field 699

Modifiers 700

Complex Translation Examples 700

Glossary 705

Index.. ...711

XII

Figures

Page

1-1 X display with five windows and an icon 6

1-2 Some standard cursors 8

1-3 Focus on an xterm window 9

1-4 Twm menu on the root window 10

1-5 A display made up of two physical screens 11

1-6 A sample X Window System configuration 12

2-1 Workstation with login xterm window on the root window 20

2-2 xdm login window 21

2-3 xterm window with login prompt 21

2-4 Placing a second xterm window 24

2-5 Two xterm windows 24

2-6 The oclock display 28

2-7 Monitoring activity on two systems with xload 29

3-1 Anatomy of a twm titlebar 35

3-2 Twm menu 36

3-3 The login window is about to become an icon 37

3-4 The login window is about to be deiconified 37

3-5 Resizing a window 39

3-6 Moving windows or icons 40

3-7 One xterm window overlapping another 41

3-8 Raising a window 42

4-1 The Release 4 xterm menus 51

4-2 The Main Options menu 52

4-3 Reverse video is enabled when the keyboard is secure 54

4-4 The VT Options menu 56

4-5 VT Fonts menu 57

4-6 The Tek Options menu 59

4-7 An xterm window with a scrollbar 60

4-8 Highlighted text saved as the PRIMARY selection 63

4-9 Pasting text into an open file 64

4-10 An xcutsel window 67

4-11 The xclipboard window 68

4-12 Selected text appears automatically in the xclipboard window 69

4-13 xclipboard with scrollbars to view large text selection 71

4-14 The Release 3 xclipboard window 72

5-1 Font name, Releases 3 and 4 81

5-2 The major commercial font families available in the standard X distribution 82

5-3 Miscellaneous fonts for xterm text 83

5-4 The same fonts in different weights and slants 85

5-5 The same font in six different point sizes 85

5-6 The 100-dpi version of a 24-point font appears larger on a 75-dpi monitor 86

5-7 Fixed font, 6x13 pixels 96

5-8 xfontsel window displaying 7x13 bold font 99

XIII

5-9 xfontsel window with foundry menu displayed 100

5-10 xfontsel after choosing Adobe from the foundry menu 100

5-11 Default font, fixed 106

6-1 Bitmap window 110

6-2 Gumby bitmap Ill

6-3 Clearing all 112

6-4 Setting all 113

6-5 Inverting all 113

6-6 Selecting an area to clear, set, or invert 114

6-7 Selecting an area to copy, move, or overlay 115

6-8 Selecting center and radius of circle 116

6-9 Bitmap window with quit dialog box 118

6-10 ASCII array representing the pound sign 119

6-11 /tmp/gumby.array 120

6-12 Bitmap of the Gumby cursor 121

6-13 gumby.array padded by hyphens 121

6-14 xmag window displaying magnified screen area 123

6-15 Displaying pixel statistics with xmag 124

7-1 Two xclock displays: analog clock above digital clock 130

7-2 oclock display 131

7-3 Oblong oclock display 131

7-4 The default xcalc (TI-30 mode) on the screen 132

7-5 xbiff before and after mail is received 134

7-6 A sample xload window 134

7-7 Initial xman window 135

7-8 Xman Options menu 136

7-9 cd reference page displayed in xman window 137

7-10 Xman Sections menu 138

7-11 Release 3 Xman Options menu 139

7-12 Selecting the window to be removed 142

7-13 Window information displayed by xwininfo 145

7-14 Window tree displayed by xlswins 147

7-15 Window tree with geometry specifications 147

7-16 Long xlsclients listing 149

7-17 A dialog box with Yes, No, and Cancel command buttons 151

7-18 An xterm window with scrollbar 153

7-19 Vertical panes and grips in the xmh client 154

7-20 xman uses a viewport widget 155

8-1 Window offsets 167

8-2 Multiple planes used to index a colormap 175

9-1 Selected text appears automatically in the xclipboard window 192

9-2 A sample resources file 193

11-1 Partial keymap table 232

11-2 xev window 233

11-3 Pointer map 237

A-l Display after running sample script 530

A-2 Default xdm-config file, Release 4 533

A-3 Default xdm-config file, Release 3 542

XIV

A-4 Typical Xservers file for a workstation, Release 3 542

B-l WindowOps menu 557

B-2 A default-size xterm window 558

B-3 A custom-size xterm window 559

B-4 A maximum-height xterm window 560

B-5 Moving windows or icons 561

B-6 Resizing a window 562

B-7 One xterm window overlapping another 563

B-8 Raising a window 564

B-9 The login window is about to become an icon 566

B-10 The login window is about to be deiconified 567

B-ll Preferences menu 571

C-l mwm is running on the display 593

C-2 An xterm window running with the OSF/Motif window manager 594

C-3 Moving a window by dragging the title area 595

C-4 Converting a window to an icon with the Minimize button 596

C-5 xterm window icon under mwm 597

C-6 Maximizing a window 598

C-7 The outer frame is divided into four long borders and four corners 599

C-8 Window with resizing pointer 600

C-9 Resizing pointer symbols 600

C-10 Dragging the corner to make a window larger 601

C-ll The Window Menu 603

C-12 The mwm Root Menu 609

C-13 An arrow pointing to the right indicates a submenu 621

C-14 Utilities submenu of the Root Menu 622

C-15 An icon box 626

C-16 In the resized icon box, only three icons are visible 628

C-17 Packlcons menu item rearranges icons in resized box 628

D-l The Standard Cursors 635

G-l The Standard Bitmaps 694

Examples

Page

5-1 Subsection of the Release 4 fonts.dir file in /usr/lib/Xl 1/fonts/l00dpi 92

5-2 Sample fonts.alias file entries 93

9-1 Sample resources 187

10-1 The system.twmrc file from the MIT distribution 203

10-2 The Utilities menu 209

10-3 The Preferences menu 210

10-4 Window operations divided into three menus 210

10-5 A Useful Commands menu 211

10-6 A menu with color definitions 212

10-7 Modified .twmrc file 214

A-l Startup Bourne shell script 528

C-l The system.mwmrc file, Release 1.0 612

E-l xshowfont source listing 674

XVI

Tables

Page

3-1. Keyboard Shortcuts for Window Manager Functions 45

4-1. VT Fonts Menu Defaults 58

4-2. Button Combinations to Select Text for Copying 62

4-3. Command Buttons and Functions 69

5-1. Fixed Font Aliases and Font Names 83

5-2. Essential Elements of a Font Name 90

5-3. Standard Font Directories, Releases 3 and 4 91

5-4. Fonts in the Standard Distribution, Release 2 105

8-1. Standard Options 163

8-2. Geometry specification x and y offsets 166

9-1. Core Toolkit Resources 187

A-l. xdm Special Files 533

C-l. Window Menu Actions on an Icon 608

C-2. Resource Names Corresponding to mwm Components 623

D-l. Standard Cursor Symbols 634

E-l. Fonts in the misc Directory, Release 4 640

E-2. Fonts in the 75dpi Directory, Release 4 641

E-3. Fonts in the 100dpi Directory, Release 4 646

E-4. Fonts in the misc Directory, Release 3 651

E-5. Fonts in the 75dpi Directory, Release 3 651

E-6. Fonts in the 100dpi Directory, Release 3 654

G-l. Standard Bitmaps Available as of Release 4 693

H-l. Event Types and Their Abbreviations 697

H-2. Key Modifiers 699

H-3. Event Modifiers and their Meanings 700

XVII

Preface

By convention, a preface introduces the book itself, while the introduction

starts in on the subject matter. You should read through the preface to get

an idea of how the book is organized, the conventions it follows, and so on.

In The Preface:

Assumptions xxi

Organization xxii

Bulk Sales Information xxiv

xshowfonts.c xxiv

Acknowledgements xxiv

Font and Character Conventions xxv

Preface

The X Window System" is a network-based graphics windowing system for workstations. It

was developed by MIT, and has been adopted as an industry standard. The X Window System

User's Guide describes window system concepts and the application programs (clients) com-
monly distributed with Version 11, Release 4 of X. Because some commercial X systems

still reflect XI1, Release 3, we highlight important differences between the two.

Assumptions

This book assumes that X has already been installed on your system, and that all standard

MIT clients are available. In addition, although X runs on many different types of systems,

this book assumes that you are running it on a UNIX® system, and that you have basic famil-
iarity with UNIX. If you are not using UNIX, you will still find the book useful-UNIX

dependencies are not that widespread-but you may occasionally need to translate a com-
mand example into its equivalent on your system. The book also assumes that you are using

a 3-button pointer, and that the operation of the twm window manager is controlled by the

system.twmrc file from the MIT XI1 distribution (if this is not the case, the book provides

information that will allow you to understand how twm is configured on your system).

This book has been written for both first time and experienced users of the X Window Sys-
tem. First-time users should read the book in order, starting with Chapter 1.

Experienced users can use this book as a reference for the client programs detailed here.

Since there is great flexibility with X, even frequent users need to check on the syntax and

availability of options. Reference pages for each client detail command-line options, cus-
tomization database (resource database) variables, and other detailed information.

Preface

Organization

The book contains the following parts:

Part One: Using X

Preface

Describes the book's assumptions, audience, organization, and conventions.

Chapter 1: An Introduction to the X Window System

Describes the basic terminology associated with the X Window System: server,

client, window, etc. The most important X clients are described.

Chapter 2: Getting Started

Shows the basics of using X: starting the server and creating the first terminal

window; starting the window manager; adding additional windows; exiting.

This chapter is tutorial in nature: you can follow along at a workstation as you

read.

Chapter 3: Using the twin Window Manager

Describes how to use the twm window manager. This client is used to manipu-
late windows on the screen.

Chapter 4: The xterm Terminal Emulator

Describes how to use the xterm terminal emulator, the most frequently-used cli-
ent. Certain aspects of xterm operation described in this chapter, such as scrol-
ling and "copy and paste," are common to other applications as well.

Chapter 5: Font Specification

Describes the somewhat complicated font naming conventions and ways to sim-
plify font specification, including wildcarding and aliasing. Describes how to

use the xlsfonts, xfd, and xfontsel clients to list, display, and select available dis-
play fonts. Since the available fonts and font naming conventions changed radi-
cally from Release 2 to Release 3, this chapter also reviews these changes.

Chapter 6: Graphics Utilities

Explains how to use the major graphics clients included with X, notably the bit-
map editor.

Chapter?: Other Clients

Gives an overview of other clients available with X, including window and dis-
play information clients, the xkill program, and several "desk accessories."

Part Two: Customizing X

Chapter 8: Command Line Options

Discusses some of the command line options that are common to most clients.

xxii X Window System User's Guide

Chapter 9: Setting Resources

Tells how to use create an Xresources file, or other file, to set resources for client

applications. This chapter also describes how to use xrdb, which saves you hav-
ing to maintain multiple Xresources files if you run clients on multiple

machines.

Chapter 10: Customizing the twm Window Manager

Describes the .twmrc file by showing the default file shipped by MIT, and then

examining the purpose and syntax of entries. Explains various techniques for

revising the .twmrc file to modify existing menus and create new ones. A

revised .twmrc file is also offered for users to copy.

Chapter 11: Setup Clients

Describes how to set display and keyboard preferences using xset and how to set

root window preferences using xsetroot. Demonstrates how to redefine the logi-
cal keynames and pointer commands recognized by X using xmodmap.

Part Three: Client Reference Pages

Extended reference pages for all clients.

Part Four: Appendices

Appendix A: System Management

Appendix B: The uwm Window Manager

Appendix C: The OSF/Motif Window Manager

Appendix D: Standard Cursors

Appendix E: Release 3 and 4 Standard Fonts

Appendix F: xterm Control Sequences

Appendix G: Standard Bitmaps

Appendix H: Translation Table Syntax

Glossary

Index

Preface xxiii

Bulk Sales Information

This guide is being resold by many workstation manufacturers as their official X Window

System documentation. For information on volume discounts for bulk purchases, call

O'Reilly & Associates, Inc., at 800-338-6887 (in California, 800-533-6887), or send e-mail

to linda@ora.com (uunet!ora!linda).

For companies requiring extensive customization of the guide, source licensing terms are

also available.

xshowfonts.c

The source to xshowfonts.c, which is printed in Appendix E, is also available free from

UUNET (that is, free except for UUNET's usual connect-time charges). If you have access

to UUNET, you can retrieve the source code using uucp or ftp. For uucp, find a machine with

direct access to UUNET, and type the following command:

uucp uunet\! ~uucp/nutshell/Xuser/xshowf onts . c . Z yourhosW'/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file

should appear some time later (up to a day or more) in the directory lusrlspoolluucppub-

liclyour name,

To ustftp,ftp to uunet.uu.net and use anonymous as your user name and guest as your pass-
word. Then type the following:

cd nutshell/Xuser

binary (you must specify binary transfer for compressed files)

get xshowfonts.c.Z

bye

The file is a compressed C program.

Acknowlegements

This guide is based in part on three previous X Window System user's guides, one from

Masscomp, which was written by Jeff Graber, one from Sequent Computer Systems, Inc., and

one from Graphic Software Systems, Inc., both of which were written by Candis Condo (sup-
ported by the UNIX development group). Some of Jeffs and Candis's material in turn was

based on material developed under the auspices of Project Athena at MIT.

Most of the reference pages in Part Three have been adapted from reference pages copyright

© 1988, 1989 the Massachusetts Institute of Technology, or from reference pages produced

by Graphic Software Systems. Refer to the "Authors" section at the end of each reference

page for details. Other copyrights are listed on the relevant reference pages.

Permission to use these materials is gratefully acknowledged.

This guide was primarily developed using the MIT sample server on a Sun-3" Workstation,

with additional testing done on a Sony NEWS" workstation running Sony's X implementa-
tion, a Visual 640 X Display Station", and an NCD16" Network Display Station.

xxiv X Window System User's Guide

We are grateful to Sony Microsystems for the loan of a Sony NEWS workstation and to Visual

Technology Incorporated for the loan of a Visual 640 X Display Station. We appreciate the

support of these manufacturers in helping us develop complete and accurate X Window Sys-
tem documentation.

We'd also like to thank the Open Software Foundation for permission to reprint the sys-

tem.mwmrc file in Appendix C, The OSF/Motif Window Manager. Special thanks to Eliza-
beth Connelly of OSF for arranging this.

Special thanks is given to Dave Curry for his expert technical and editorial support.

We'd also like to thank others on the staff at O'Reilly & Associates who helped significantly

with the book. Jean Marie Diaz wrote the chapters discussing twm, tested examples through-
out the book, and provided extensive technical support. Sue Willing coordinated the produc-
tion effort and the design of illustrations. Donna Woonteiler and Peter Mui indexed the book.

Linda Mui, Adrian Nye, and Dan Heller provided valuable technical support. Chris Reilley

created the illustrations, many of which were adapted from illustrations done by Laurel Katz

and Linda Lamb for previous editions of this guide. Sue Willing, Donna Woonteiler, Colleen

Urban, and Chris Reilley prepared the camera-ready copy. Edie Freedman designed the

cover for the X Window System series and directed the design of illustrations for this guide.

We'd also like to thank Jim Fulton and Keith Packard of the MIT X Consortium for their

technical support and review comments on the book.

Despite the efforts of these people, the standard authors' disclaimer applies: any errors that

remain are our own.

Font and Character Conventions

The following typographic conventions are used in this book.

Italics are used for:

" new terms where they are defined.

" file and directory names, and command and client names when

they appear in the body of a paragraph.

Courier is used within the body of the text to show:

" command lines or options that should be typed verbatim on the

screen.

is used within examples to show:

" computer-generated output.

" the contents of files.

Courier bold is used within examples to show command lines and options that

should be typed verbatim on the screen.

Preface xxv

Courier italics are used within examples or explanations of command syntax to

show a parameter to a command that requres context-dependent

substitution (such as a variable). For example, filename means

to use some appropriate filename; option (s) means to use some

appropriate option(s) to the command.

Helvetica is used to show menu titles and options.

The following symbols are used within the X Window System User's Guide:

[] surround an optional field in a command line or file entry.

$ is the standard prompt from the Bourne shell, j/z(l).

% is the standard prompt from the C shell, csh(l).

name(V) is a reference to a command called name in Section 1 of the UNIX

Reference Manual (which may have a different name depending on

the version of UNIX you use).

xxvi X Window System User's Guide

Part One:

Using X

Part One provides an overview of the X Window System and concepts, and

describes how to use the most important programs available in the X

environment.

An Introduction to the X Window System

Getting Started

Using the twm Window Manager

The xterm Terminal Emulator

Font Specification

Graphics Utilities

Other Clients

1

An Introduction to the

X Window System

777/s chapter describes the features of a typical X display, while introducing

some basic window system concepts. It also provides an overview of the X

Window System's client-server architecture and briefly describes the most

commonly used clients.

In This Chapter:

Anatomy of an X Display 5

X Architecture Overview 10

The X Display Server 11

Clients 12

The Window Manager 13

The xterm Terminal Emulator 14

The Display Manager 14

Other X Clients 14

Customizing Clients 15

1

An Introduction

to the X Window System

The X Window System, called X for short, is a network-based graphics window system that

was developed at MIT in 1984. Several versions of X have been developed, the most recent

of which is X Version 11 (XI1), first released in 1987.

XI1 has been adopted as an industry-standard windowing system. X is supported by a con-
sortium of industry leaders such as DEC, Hewlett-Packard, Sun, IBM, and AT&T that have

united to direct, contribute to, and fund its continuing development. In addition to the system

software development directed by the X Consortium, many independent developers are pro-
ducing application software specifically for use with X. Because XI1 is a relatively new

standard, much of this application software has yet to be released.

First, we'll take a look at a typical X display and consider some general system features.

Then we'll discuss what distinguishes the X Window System from other window systems.

We'll also briefly consider some of the more important programs included in the standard

distribution of X.

Anatomy of an X Display

X is typically run on a workstation with a large screen (although it also runs on PCs and spe-
cial X terminals, as well as on many larger systems). X allows you to work with multiple

programs simultaneously, each in a separate window. The display in Figure 1-1 includes five

windows.

The operations performed within a window can vary greatly, depending on the type of pro-
gram running it. Certain windows accept input from the user, they may function as termi-
nals, allow you to create graphics, etc. Other windows simply display information, such as

the time of day or a picture of the characters in a particular font, etc.

The windows you will probably use most frequently are terminal emulators, windows that

function as standard terminals. The terminal emulator included with the standard release of

X is called xterm. Figure 1-1 depicts three xterm windows. In an xterm window, you can do

anything you might do in a regular terminal: enter commands, run editing sessions, compile

programs, etc.

An Introduction to the X Window System

IS xterm

Dear Mr Hoffman:

,LP odock

You called yesterday tor window

information about X.D

iconified

xterm xterm

window window

(typical of 3} :term|

The X window system is a xcalc

network based graphic window window

system that was developed at MIT

in 1984 Several versions of X

root
 have been developed, the most

window recent of which is X Version 11

(X11). first released in 1987. X11

Figure 1-1. X display with five windows and an icon

The display in Figure 1-1 also includes two other application windows: a clock (called

xclock) and a calculator (xcalc).

The shaded area that fills the entire screen is called the root (or background) window. One of

the strengths of a window system such as X is that you can have several processes going on at

once in several different windows (perhaps on different machines). For example, in Figure

1-1, the user is logging in to a remote system in one xterm window and is editing a text file in

each of the two other xterm windows. (As we'll see in Chapter 4, The xterm Terminal Emula-
tor, you can also cut and paste text between two windows.) Be aware, however, that you can

only input to one window at a time.

Windows often overlap each other much like sheets of paper on your desk or a stack of cards.

Note that overlapping docs not interfere with the process run in each window.

One of the main features of X is a type of program called a window manager. The window

manager controls the general operation of the window system, allowing you to change the

size and position of windows on the display. You can reshuffle windows in a window stack,

make windows larger or smaller, move them to other locations on the screen, etc. In short, it

is the window manager that controls the "look and feel" of the X Window System.

X Window System User's Guide

In Release 4, the X Consortium provides a window manager called twm. (twm originally

stood for 'Tom's window manager," in honor of its developer, Tom LaStrange. However, it

has since been renamed the "tab window manager." Earlier releases supported a window

manager called u\vm, "universal window manager.") Notice that each window on our typical

display has a horizontal bar that spans its top edge. This feature is known as a titlebar,

mainly because it contains a text description of the window. (Generally, this is the applica-
tion name, but as we'll see later, you can often specify an alternate title.) The titlebar is pro-
vided by twm and is one of this window manager's hallmarks.

In addition to displaying title text, the titlebar provides some of the functionality of the twm

window manager. Using the mouse or other pointer device, you can click on various parts of

the titlebar to manipulate the window. Manipulating a window with the titlebar is described

in detail in Chapter 3, Using the twm Window Manager.

If you are using another window manager, the X display may have a different look and feel.

(Though you can run a window system such as X without a window manager, this severely

limits the system's power and flexibility, since there is no easy way to change the size and

position of windows on the display.)

Also pictured in Figure 1-1 is an icon. An icon is a small symbol that represents a window in

an inactive state. The window manager allows you to convert windows to icons and icons

back to windows. You may want to convert a window to an icon to save space on the display

or to prevent input to that window. Each icon has a label, generally the name of the program

that created the window. The icon in Figure 1-1 represents a fourth xterm window on the

display. Icons can be moved around on the display, just like regular windows.

The contents of a window are not visible when the window has been converted to an icon, but

they are not lost In fact, a client continues to run when its window has been iconified; if you

iconify a terminal emulator client, such as xterm, any programs running in the shell will also

continue.

All X displays require you to have some sort of pointer, often a three-button mouse, with

which you communicate information to the system. As you slide the pointer around on your

desktop, a cursor symbol on the display follows the pointer's movement. For our purposes,

we will refer to both the pointer device (e.g., a mouse) and the symbol that represents its

location on the screen as pointers. Depending on where the pointer is on the screen (in an

xterm window, in another ̂ plication window, on the root window, etc.), it is represented by

a variety of cursor symbols. If the pointer is positioned on the root window, it is generally

represented by an X-shaped cursor, as in Figure 1-1. If the pointer is in an xterm window, it

looks like an "I" and is commonly called an I-beam cursor*

A complete list of cursors is shown in Appendix D, Standard Cursors. Some of the most

common cursor shapes are shown in Figure 1-2. As we'll see later, some applications allow

you to select the cursor to use.

*Even though the actual image on the screen is called a cursor, throughout this guide we refer to "moving the point-
er" to avoid confusion with the standard text cursor that can appear in an xterm window.

An Introduction to the X Window System

X cursor which appears in the root window.

I-beam cursor, which appears within xterm

windows.

Menu arrow cursor, which points at menu items

currently selected.

Upper left and lower right corner cursors,

which allow interactive placement of client

windows when using twm.

Filled circle, which allows targeting of window to

be acted on by twm for certain functions (setting

focus, raising, lowering, etc.)

Cross cursor, which is used to resize and move

windows via twm.

Skull and crossbones cursor, which is used to

select the window to be removed with the Delete

and Kill commands on the Twm menu.

Figure 1-2. Some standard cursors

You use the pointer to manipulate windows and icons, to make selections in menus, and to

select the window in which you want to input. You can't type in an xterm window unless you

place the pointer in that window, as in Figure 1-3.

Directing input to a particular window is called focusing. You must be sure that the pointer

rests in the desired window before you begin typing. The window border (if present) and text

cursor are also highlighted when the pointer is in that window. The highlighting is a charac-
teristic of xterm: other applications may not highlight display features.

The fact that input focus automatically follows the pointer is a default characteristic of the

twm window manager. Other window managers require you to click on a window to focus

input on that window. These two window manager focusing styles are commonly referred to

as "real-estate-driven" (or "pointer focus") and "click-to-type."

The most important thing to recognize is that the position of the pointer is very important to a

real-estate-driven window manager like twm. If something doesn't work the way you expect,

make sure that the pointer is in the right place. After you use X for a while, awareness of

pointer position will come naturally.

Be aware that it may take a moment for the input focus to catch up with the pointer, espe-
cially on slower machines. If you type right away, some keystrokes may end up in the win-
dow you left rather than in the new window. This is really a bug and happens because of the

additional overhead involved in complex window managers like twm or mwm. It doesn't

happen if you are using a simpler window manager like uwm.

X Window System User's Guide

Figure 1-3. Focus on an xterm window

The pointer is also often used to display menus. Some X programs, notably twm and xterm,

have menus that are displayed by keystrokes and/or pointer button motions. Unlike some

window systems, which allow you to "pull down" menus from a menu bar that is always

displayed, twm (and most X clients) support "pop-up" menus, which are displayed at the cur-
rent pointer position. In addition to keyboard keys and pointer button motions, the location

of the pointer also plays a role in displaying menus. For example, xterm menus can only be

displayed when the pointer is within an xterm window. Figure 1-4 shows a twm menu called

Twm, which is displayed by placing the pointer on the root window and holding down the

first pointer button.

You generally display this menu by moving the pointer to the root window and pressing and

holding down the first pointer button. In Figure 1-4, the arrow next to the menu title repre-
sents the pointer. As you drag the pointer down the menu, each of the menu selections is

highlighted. Regardless of the program, you generally select a menu item by dragging the

pointer down the menu, highlighting the item you want, and releasing the pointer button.

With other programs, particularly several oilier window managers, you can display a menu

simply by placing the pointer on a particular part of the window, e.g., a horizontal bar across

the top.

A final note about the X display: in X, the terms display and screen are not equivalent. A

display may consist of more than one screen. This feature might be implemented in several

ways. There might be two physical monitors, linked to form a single display, as shown in

Figure 1-5. Alternatively, two screens might be defined as different ways of using the same

An Introduction to the X Window System

Figure 1-4. Twm menu on the root window

display. For example, on the Sun-3/110 color workstation, screen 0 is black and white, and

screen 1 is color. By default, windows are always placed on screen 0, but you can "scroll"

between the two screens with the mouse, or place a client window on screen 1 by specifying

the screen number in the -display option when starting the client. (See Chapter 8, Com-
mand Line Options, for more information on the -display option.)

X Architecture Overview

Most window systems are kernel-based: that is, they are closely tied to the operating system

itself and can only run on a discrete system, such as a single workstation. The X Window

System is not part of any operating system but is instead comprised entirely of "user-level"

programs.

The architecture of the X Window System is based on what is known as a client-server

model. The system is divided into two distinct parts: display servers that provide display

capabilities and keep track of user input, and clients, application programs that perform spe-
cific tasks. On a more basic level, the server acts as an intermediary between client applica-
tion programs and the local display hardware. The client programs make requests (for infor-
mation, processes, etc.) that are communicated to the hardware display by the server.

10 X Window System User's Guide

Figure 1-5. A display made up of two physical screens

This division within the X architecture allows the clients and the display server cither to

work together on the same machine or to reside on different machines (possibly of different

types, with different operating systems, etc.) that arc connected by a network. For example,

you might use a relatively low-powered PC or workstation as a display server to interact with

clients that arc running on a more powerful remote system. Even though the client program

is actually running on the more powerful system, all user input and displayed output occur on

the PC or workstation server and are communicated across the network using the X protocol.

Figure 1-6 shows a diagram of such a network.

There is another less obvious advantage to the client-server model: since the server is

entirely responsible for interacting with the hardware, only the server program must be

machine-specific. X client application programs can be ported easily from system to system.

The X Display Server

The X display server is a program that keeps track of all input coming from input devices,

such as the keyboard and mouse, and input from any other clients that arc running. As ilk-

display server receives information from a client, it updates the appropriate window on your

display. The display server may run on the same computer as a client or on an entirely differ-
ent machine.

Servers arc available for PCs, workstations, and even for special terminals, which may have

the server downloaded from another machine or stored in ROM.

An Introduction to the X Window System

Figure 1-6. A sample X Window System configuration

Clients

X allows you to run many clients simultaneously. For example, you could be editing a text

file in one window, compiling a program source file in a second window, reading your mail in

a third, all the while displaying the system load average in a fourth window.

While X clients may display their results and take input from a single display server, they

may each be running on a different computer on the network. It is important to note that the

same programs may not look and act the same on different servers since there is no standard

user interface, since users can customize X clients differently on each server, and since the

display hardware on each server may be different.

Several of the more frequently used client programs are discussed in the following

paragraphs.

12 X Window System User's Guide

The Window Manager

The way a kernel-based window system operates is inherent in the window system itself. By

contrast, the X Window System concentrates control in a window manager, several of which

are available. The window manager you use largely determines the look and feel of X on a

particular system.

The window manager shipped with the standard release of X from MIT is called twm. As

we've discussed, twm allows you to move and resize windows, rearrange the order of win-
dows in the window stack, create additional windows, and convert windows into icons, etc.

These functions are discussed more fully in Chapter 2, Getting Started, and Chapter 3, Using

the twm Window Manager.

Prior to Release 4, the standard window manager shipped with X was uwm, the universal

window manager, uwm has been superceded by twm because the latter has been made com-
pliant with the X Consortium's Inter-Client Communication Conventions Manual (ICCCM),

introduced at Release 3.

The ICCCM contains standards for interaction with window managers and other clients. It

defines basic policy intentionally omitted from X itself, such as the rules for transferring data

between applications, for transferring keyboard focus, for installing colormaps, and so on.

As long as applications and window managers follow the conventions outlined in the

ICCCM, applications created with different toolkits will be able to coexist and work together

on the same server.

Because uwm does not comply with the standards outlined in the ICCCM, it has been moved

to a directory of user-contributed clients in Release 4, where it is still available for those who

wish to use it. However, uwm is no longer officially supported by the X Consortium, and it

should probably not be the window manager of choice. If you are still using uwm, Appendix

B, The uwm Window Manager, discusses getting started with and customizing this window

manager.

In this guide, we assume you are using twm. Several other window managers, such as mwm

(the Motif" window manager), awm (Ardent" window manager), rtl (tiled window man-
ager, developed at Siemens Research and Technology Laboratories, RTL), and olwm (the

OPENLOOK" window manager) are also widely used.

mwm is discussed in greater detail in Appendix C, The OSF/Motif Window Manager.

If the twm window manager has been customized at your site or you are using a different

window manager, many of the concepts should still be the same. However, the actual proce-
dures shown may well differ. See Chapter 10, Customizing the twm Window Manager, for a

discussion of how to customize twm.

An Introduction to the X Window System 13

The xterm Terminal Emulator

XI1 itself is designed to support only bitmapped graphics displays. For this reason, one of

the most important clients is a terminal emulator. The terminal emulator brings up a window

that allows you to log in to a multiuser system and to run applications designed for use on a

standard alphanumeric terminal. Anything you can do on a terminal, you can do in this win-
dow.

xterm is the most widely available terminal emulator, xterm emulates a DEC® VT102 termi-
nal or a Tektronix® 4014 terminal. You can display both types of windows at the same time,

but only one is active at a time.

Since you can bring up more than one xterm window at a time, you can run several programs

at once. For example, you can have the system transfer files or process information while

you focus your attention on a text-editing session. Multiple xterm processes allow you to dis-
play interactions in separate windows on your screen. See Chapter 2, Getting Started, and

Chapter 4, The xterm Terminal Emulator, for additional information.

The Display Manager

The display manager, xdm, is a client that is designed to start the X server automatically

(from the UNIX /etc/re system startup file) and to keep it running. (X can also be started

manually, as described in Chapter 2.) In its most basic implementation, the display manager

emulates the getty and login programs, which put up the login prompt on a standard terminal,

keeping the server running, prompting for a user's name and password, and managing a stan-
dard login session.

However, xdm has far more powerful and versatile capabilities. Users can design their own

sessions, running several clients and setting personal resources (such as keyboard, pointer,

and display characteristics). You can also customize special xdm files to manage several con-
nected displays (both local and remote) and to set system-wide X resources (for example, cli-
ent default features). Resources are discussed in Chapter 9, Setting Resources. See Appen-
dix A, System Management, for a discussion of how to set up and customize the display man-
ager.

Other X Clients

The following is a brief list of some other clients commonly included with X.

xclock Displays the time of day continuously either in digital or in analog form.

bitmap Allows you to change your pointers, icons, and background window pattern.

xcalc Provides a scientific calculator on your display.

xset Allows you to set various display and keyboard preferences, such as bell vol-
ume, cursor acceleration, screen saver operation, and so on.

xwd Dumps the contents of a window into a file.

14 X Window System User's Guide

xpr Translates an image file produced by xwd to PostScript® or other formats,

suitable for printing on a variety of printers.

yfd Displays the contents of a font on the screen.

For additional information on these and other clients, refer to Chapter 5, Font Specification,

Chapter 6, Graphics Utilities, Chapter 7, Other Clients, Chapter 11, Setup Clients, and to the

reference page for each client in Part Three of this guide. As more commercial and user-

contributed software is developed, many more specialized programs will become available.

Customizing Clients

Most X clients are designed to be customized by the user. A multitude of command line

options can be used to affect the operation of these clients. More conveniently, default val-
ues for each option can be stored in a file (generally called ̂ resources or ^defaults) in your

home directory. If you are running clients on multiple machines, a program called xrdb (X

resource database manager) should be used to store your defaults in the server so that you

don't need to maintain an Xdefaults file on each machine.

There is a separate customization file for the twm window manager, called .twmrc, which is

also kept in your home directory.

Client customization is described in Part Two of this guide.

An Introduction to the X Window System 15

2

Getting Started

This chapter shows you how to begin working if X is already running on your

system and how to start the X server manually if X is not running. It also pro-
vides preliminary instructions for starting the window manager, twm, and the

xterm terminal emulator.

In This Chapter:

If X is Being Started Automatically 19

Starting X Manually 22

Starting the First xterm Window 22

Bringing Up the Window Manager 23

Starting a Second xterm Window 23

Exiting from an xterm Window 25

Special Keys 26

How a Client Looks and Behaves: Application Defaults 26

Starting Other Clients 27

Running a Client on Another Machine 28

Where to Go From Here . .. 30

2

Getting Started

This chapter introduces the basics of using X: starting the server and creating the first termi-
nal window; starting the window manager; adding additional windows; exiting. While it is

written as a tutorial, you do not necessarily have to follow along at a workstation.

Before you can begin using the X Window System, you must do three things:

" Start the X server.

" Start at least one instance of the xterm terminal emulator.

" Start a window manager. (Though you can run X without a window manager, this is fair-
ly limiting.)

Depending on how X is configured on your system, some or all of these steps may be per-
formed for you automatically. First, this chapter explains how you can tell if X is being start-
ed automatically and how to begin working if it is. Then this chapter describes how to start

X manually. Later sections show you how to exit from an xterm window and how to start ad-
ditional client programs.

If X is Being Started Automatically

Depending on how X is being run on your system, the initial screens you see and the way you

log in will be slightly different.

If you log in at a prompt displayed on the full screen, your workstation may automatically

start the server and open up the first xterm window. If this is the case, your screen should

then look something like Figure 2-1.

Getting Started 19

X

Figure 2-1. Workstation with login xterm window on the root window

If the display manager, xdm, is running X on your system, you may see a window similar to

Figure 2-2 when you turn on your terminal.

Log in just as if you were using a standard alphanumeric terminal. The screen should then

display the first xterm window, as in Figure 2-1.

Without any user customization, the display manager executes a standard login "session,"

providing the first xterm window and starting the window manager. If the window manager

is running, you will see a titlebar on your window, displaying the name of the window

("xterm").

If the twm window manager is running, skip to the section "Starting a Second xterm Win-
dow" later in this chapter for information on starting additional windows and other clients. If

the window manager is not running, skip to the section "Bringing Up the Window Manager"

later in this chapter for instruction on how to start it.

On BSD 4.3 systems, there is another method to bring up X automatically (from the letclttys

system file). This method has been phased out in Release 4. However, if your system is set

up to use this method, when the power is turned on, your workstation should automatically

start the server and open up an xterm window in which you can log in. If this is the case,

your screen should look something like Figure 2-3.

20 X Window System User's Guide

Welcome to the X Window System

Login: |

Password:

Figure 2-2. xdm login window

login:

Figure 2-3. xterm window with login prompt

Getting Started 21

Log in by typing your name and password at the prompts in the xterm window, just as if you

were using a standard alphanumeric terminal. Skip to the section "Bringing Up the Window

Manager" later in this chapter.

Starting X Manually

If no windows are displayed on the workstation screen (i.e., if your login prompt appears on

the full screen), log in, and read on. If another windowing system (such as SunView") is

running, first kill it, and then read on.

To start X manually (using the standard X distribution from MIT), you must run two separate

programs to perform the three steps listed at the beginning of the chapter:

% xinit To start the X server and create the first (login) xterm window.

% twm & To start the window manager.

In the following discussion, we'll assume that you are bringing up the X Window System

manually. In Appendix A, System Management, we'll show you how to set things up so that

X comes up automatically.

X is very easy to customize. There are countless command options as well as startup files

that control the way the screen looks or even what menus a program displays. If you are "try-
ing out" X using someone else's system or login account, things may not work as described

here. (See Chapters 8 through 11 for information on customizing the X environment.)

Starting the First xterm Window

First, make sure that the XI1 directory containing executable programs is in your search

path.* If not, add the pathname fusr/bin/Xll to the path set in your .profile or .login file.

Then at the prompt, type:

% xinit

xinit starts the X server and creates the first xterm window in the upper-left corner of your

display.!

*For more information on how to set your search path, see Appendix A. Note that the appropriate pathname to add

may be different in vendor distributions.

flf xinit produces a blank background, with no terminal window, software installation was not completed correctly.

Reboot your workstation and try again. Before invoking xinit, look in the directory lusrlbin/Xll for a file whose

name begins with a capital X but otherwise has a similar name to your workstation (e.g., Xsun). When you find one

that seems a likely possibility, try the following command:

% xinit -- "Xjiame

If that works, link Xname to X, and xinit will thereafter work correctly. For example:

% cd /usr/bin/Xll

% In Xsun X

22 X Window System User's Guide

Bringing Up the Window Manager

Make sure that the pointer is in the xterm window, so that the I-beam cursor is displayed.

Start the twm window manager by typing:

% twm &

The screen will momentarily go blank; then the window will be redisplayed, this time with a

titlebar. The titlebar provides a quick and easy way to move, resize, and otherwise manipu-
late windows on the screen. The window manager also allows you to position client win-
dows on the screen, as illustrated by the placement of the xterm window described in the next

section.

Note that it is important to run twm in the background by placing an ampersand (&) at the

end of the command line, so that you can continue to enter additional commands into the

xterm window. If you neglected to do this on a system that supports job control, type

Control-Z to suspend twm, then use the bg command (see csh(l)) to place it in the back-
ground.

If the system you're on does not support job control, interrupt the process with Delete or

Control-C and start over.

Starting a Second xterm Window

If you want to open a second xterm window, type the following command at the prompt in

the first xterm window:

% xterm &

After a few moments, the pointer becomes an upper-left-corner cursor, as shown in Figure

2-4.

This corner cursor represents the upper-left corner of the window you want to place. The

cursor tracks pointer movement as you move the pointer across your screen and allows you to

position the xterm window.

Move the corner cursor to the desired position on your screen and click the left mouse button.

(A click is defined as pressing the mouse button down and releasing it.) A new xterm win-
dow appears on your screen, with a prompt from whatever shell you are using. Figure 2-5

shows how your screen might look now.

Getting Started 23

Figure 2-4. Placing a second xterm window

xterm

% twm&

% xterm£

Figure 2-5. Two xterm windows

24 X Window System User's Guide

You can switch back and forth between windows simply by moving the pointer from one to

the other.

If you have inadvertently positioned the second xterm window in front of the first one, don't

be concerned. Just use the front window for now. Chapter 3, Using the twm Window Manag-
er, provides information on resizing and moving windows.

Notice how the text cursor, titlebar, and border in each xterm window are highlighted when

you move the pointer into that window. Whatever you type will appear in the window with

the highlighted titlebar. Try starting a command in both windows. For example, start up vi or

another text editor in the second xterm window. Notice how you can switch back to the first

window to type a new command, simply by moving the pointer-even if you leave vi in in-
sert mode or some other command in the process of sending output to the screen. Whatever

process was running in the window you left will continue to run. If it needs input from you to

continue, it will wait.

Exiting from an xterm Window

When you are through using an xterm window, you can remove it by typing whatever com-
mand you usually use to log off your system. Typically, this might be exit or Control-D.

You can also terminate an xterm window by selecting Hangup, Terminate, Kill, or Quit from

the xterm menu. (These menu options send different signals to the xterm process. Depending

on what signals your operating system recognizes, some of the options may not work as in-
tended. See Chapter 4, The xterm Terminal Emulator, for more information.)

Be aware that terminating the login xterm window (the first xterm to appear) kills the X

server and all associated clients. (If xdm is running X, the server will be reset, but only after

all client processes have been killed.) Be sure to terminate all other xterm windows before

terminating the xterm login window. Also, be sure that if you are in an editor such as vi that

you save your data before you terminate the window

In fact, it may be wise to iconify the login window (shrink it into a small symbol, or icon, on

the screen) and use other xterm windows instead, so that you don't inadvertently terminate it.

See Chapter 3, Using the twm Window Manager, for a discussion of how to do this.

Alternatively, you can enter:

% set ignoreeof

in the login window. Then typing exit becomes the only way you can terminate the win-
dow. Note that some C shell implementations have an autologout variable, which will auto-
matically terminate the shell if there is no activity for a given period of time.

If your C shell supports this feature, be sure to disable it in the login xterm window using the

following command:

% unset autologout

Getting Started 25

Special Keys

Most workstations have a number of "modifier" keys, so called because they modify the ac-
tion of other keys.

Three of these modifier keys should be familiar to any user of a standard ASCII terminal or

personal computer-Shift, Caps Lock, and Control. However, many workstations have addi-
tional modifier keys as well. A PC has an "Alt" key, a Macintosh" has a "fan" key, a Sony

workstation has keys named "Nfer" and "Xfer," and a Sun workstation has no less than three

additional modifier keys, labeled "Left," "Right," and "Alternate."

Because X clients are designed to run on many different workstations, with different key-
boards, it is difficult to assign functions to special keys on the keyboard. A developer can't

count on the same key always being present!

For this reason, many X clients make use of "logical" modifier keynames, which can be

mapped by the user to any actual key on the keyboard.

Up to eight separate modifier keys can be defined. The most commonly used (after Shift,

Caps Lock, and Control) has the logical keyname "Meta."

We'll talk at length about this subject in Chapter 11, Setup Clients, but we wanted to warn

you here. When we talk later in this book about pressing the "Meta" key, you should be

aware that there is not likely to be a physical key on the keyboard with that name. For ex-
ample, on one workstation, the Meta key might be labeled "Alt" and, on another, "Funct."

And as we'll show in Chapter 11, you can choose any key you want to act as the Meta key.

Unfortunately, X provides no easy way to find out which key on your keyboard has been as-
signed to be the Meta key. You don't need to know this right away... but when you do,

please turn to the discussion of key mapping in Chapter 11, Setup Clients, for information on

how you can find out.

How a Client Looks and Behaves: Application Defaults

The way the xterm client looks (and, to some extent, behaves) is partially determined by a

system-wide file of application defaults. Several clients have application defaults files that

determine certain of the client's features. Applications defaults files generally reside in the

directory /usr/lib/Xll/app-defaults and are named for the client application. For xterm, the

application defaults specify such things as the labels for menu items, the fonts used to display

menu items, and the shape of the pointer when it's in an xterm window.

In describing the appearance and behavior of clients in this guide, we assume all of the stan-
dard application defaults file are present on your system and accessible by the client pro-
grams. If, by some chance, a client's application defaults file has been edited or removed

from your system, the client may not look or behave exactly as we describe it. If a client ap-
plication appears substantially different than it is depicted in this guide, you may be using a

different version of the program or the application defaults may be different. Consult your

system administrator.

26 X Window System User's Guide

Within an application defaults file, defaults are set using variables called resources. Almost

every feature of every client program can be controlled by a resource variable. The resource

variables specified in a client's application defaults files are usually just a subset of a greater

number of resources that can be set

As we'll see in Chapter 9, Setting Resources, you can override the system-wide defaults and

control additional features of a client by specifying your own resources in a file in your home

directory.

Starting Other Clients

You can start other X clients just like you can start another instance of xterm. At the com-
mand line prompt in any xterm window, type the name of the client followed by an amper-
sand to make the client run in the background. For example, by typing:

% oclock &

you can cause a window displaying a clock to be placed on the screen. (The oclock client is

available as of Release 4. If you are running an earlier release of X, the only clock program

available is xclock.) First an upper-left corner cursor will appear, just as it did when you

created a second xterm window. Move the corner cursor to the position you would like the

clock to appear, and then click the left mouse button. Figure 2-6 shows the oclock display,

placed in the upper-right corner of the screen.

Unfortunately, the developers of oclock neglected to provide an easy way to remove it. One

way to remove the oclock display is to identify and kill the process using the standard UNIX

process control mechanisms. To find the process ID for oclock, go to an xterm window and

type:

% pa -aux | grep oclock

at a system prompt. Under System V, type:

% ps -a | grep oclock

at a system prompt. The resulting display should look something like this:

128 pO 0:00 oclock

142 pO 0:00 grep oclock

The number in the first column is the process ID. Type:

% kill process_ld

The oclock display will be removed, and you will get the message:

Terminated oclock

You can also remove the oclock display using other methods intended to "kill" the client pro-
cess. These methods and their liabilities are discussed in Chapter 7, Other Clients.

If you are running Release 2 or 3 of X, the xclock client must also be removed using the

UNIX kill command (or another method of killing a client, as described in Chapter 7). As of

Release 4, xclock can also be removed by a gentler method, namely, the Delete item of the

Getting Started 27

Figure 2-6. The oclock display

Twm menu. See Chapter 3, Using the t\vm Window Manager, for more information about De-
lete.

Running a Client on Another Machine

Remember that X also allows you to run a client on another machine, while displaying the

client's window on the local machine. A client you may wish to run on another machine is

xload, which is used to keep track of the system load average. By default, xload polls the

system for the load average at five-second intervals and displays the results in a simple histo-
gram.

If you are running processes on more than one machine, it's useful to gauge the level of ac-
tivity on the systems in question. This information should help you judge when to start

processes and monitor how your processes are impacting system resources.

Say you're running clients both on the local machine (let's call it hostl) and on another

machine (host2). On the local display, you can have two xload windows, one showing activ-
ity on hostl and one showing activity on host2.

To create an xload window monitoring activity on hostl, use the command:

% xload &

28 X Window System User's Guide

The cursor changes to an upper-left corner cursor, allowing you to place the window.

Then run an xload process on host2 using a remote shell (rsh), and display the results in a

window on hostl:

% rsh host2 'xload -display hostl:0' &

Again, you place the window using the pointer.

The -display option tells xload to create its window on the local display (hostl). The

syntax and use of this option is discussed more fully in Chapter 8, Command Line Options.

Figure 2-7 shows the resulting hostl display: two xload windows, the top window monitor-
ing activity on the local system and the bottom one monitoring activity on the remote system.

/* S

H xterm @]

H oclock m \ :

% xtermS

% fC)

xterm

, oclockS

i xload &

, rsh host2 'xload -display hostl :0'&

Figure 2-7. Monitoring activity on two systems with xload

If you frequently need to access a remote system, you may want to run an xterm on that sys-
tem using a remote shell and display the window on the local system. For instance, the fol-
lowing command runs an xterm on a remote Sony NEWS workstation (with the hostname

sony) and displays on the local Sun-3 (with the hostname sun):

% rsh sony 'xterm -display sun:0' &

Getting Started 29

Where to Go From Here

There are many useful client programs supplied with the X Window System. Details of how

to use the two most important of these clients, the twm window manager and the xterm termi-
nal emulator are provided in the next two chapters. Clients to list and display fonts are de-
scribed in Chapter 5. Chapter 6 describes several graphics utilities available with X. An

overview and tutorial for other clients is provided in Chapter 7. All clients are described in

detail in a reference page format in Part Three of this guide.

You should read at least the chapter on twm before starting up any other clients. You can

then go on to read more about xterm in Chapter 4 or about other clients in Chapters 5 through

7.

30 X Window System User's Guide

3

Using the twm Window Manager

This chapter describes twm, the standard window manager distributed with

X. Additional information on customizing the operation oHwrn is provided in

Chapter 10.

In This Chapter:

Starting the Window Manager 34

Titlebars 34

The Twm Menu 35

Displaying Windows as Icons 36

Resizing Windows 38

Moving Windows and Icons 39

Shuffling the Window Stack: Raise and Lower 40

Raising Windows (bringing in front of others) 41

Lowering Windows (sending behind others) 42

Changing Keyboard Focus 43

Removing a Window: Delete and Kill 43

Restarting the Window Manager 44

Exiting the Window Manager 44

Button Control of Window Manager Functions 45

Using twm to Place Other Clients 45

Customizing twm 46

Some of My Keystrokes are Missing 46

3

Using the twm Window Manager

The twm window manager is primarily a window manipulation tool. It allows you to:

Size and position client windows on the screen interactively.

" Move windows around the screen.

" Change the size of windows.

" Lower windows (send them to the back of others).

" Raise windows (bring them to the front of others).

" Convert windows to icons and icons to windows.

" Remove windows.

The twm window manipulation functions can be invoked in four ways:

" Using the titlebar.

" Using the Twm menu.

" By combinations of keyboard keys and pointer buttons.

" Automatically, when a client is started (to allow you to size and place the client window

on the screen).

This chapter discusses each of these subjects in detail, but first we'll take a look at starting

twm.

Using the twm Window Manager 33

Starting the Window Manager

As described in Chapter 2, Getting Started, you start twm from the command line by typing:

% twm &

in an xterm window. If xdm (the display manager) is starting X on your system, the twm

window manager is probably started automatically when you log on. It may also be started

automatically from an jcinitrc file. (See Appendix A, System Management, for details.)

When twm is started, you will see it add a titlebar to each window. Titlebars are useful; we'll

say more about them in the next section.

Note also that you can run xterm or other X clients without running a window manager, twm

allows you to size and place client windows on the screen, but you can also use command

line options to do this. However, there is no easy way to change the size or location of win-
dows on the screen without a window manager.

Titlebars

When twm starts up, it places a titlebar on every window on the screen. This titlebar contains

the name of the window ("xterm," for example), two buttons, and a region that is highlighted

when the input focus is in the associated window.

The titlebar provides convenient access to the most commonly used window manager func-
tions: iconify, resize, raise, and lower. Iconify allows you to shrink an unneeded window so

that it's out of your way. Resize allows you to change the size of a window. Raise and lower

change the window's position with respect to other windows that may be partially or com-
pletely covering it. All this without having to bring up a menu or type modifier keys! (See

Figure 3-1 for a closer look at the titlebar.)

From the titlebar, you can:

" Iconify the window, by clicking the first pointer button (usually the leftmost) in the left-

hand command button in the titlebar (it's marked with an X).

" Resize the window, by pressing the first pointer button in the right-hand command button

in the titlebar (which contains a group of nested squares). Then, while holding down the

first pointer button, move the pointer across the border you want to move. Drag the

pointer to move the border the desired amount and then release the pointer button.

" Raise the window to the top of the stack, by clicking the first pointer button on the

titlebar.

" Lower the window to the bottom of the stack, by clicking the middle pointer button on

the titlebar.

" Move the window, by pressing and holding down the left pointer button on the titlebar,

dragging the window to a new location, and releasing the pointer button.

34 X Window System User's Guide

application

title

iconify resize

button button

Figure 3-1. Anatomy of a twm titlebar

These functions can also be invoked from a menu and will be discussed more thoroughly in

the next section.

The Twm Menu

rwm's Twm menu gives you access to many of the most frequently used window manipulation

functions. In the standard version of twm shipped by MIT, you bring up this menu by moving

the pointer to the root window and holding down the left pointer button. The Twm menu and

the menu pointer appear as shown in Figure 3-2.

The following pages explain the functions of the Twm menu. Remember that all of the win-
dow manager functions are customizable. Items can be added to or deleted from this menu,

and new menus can be defined by modifying the .twmrc window manager startup file, as

described in Chapter 10, Customizing the twm Window Manager. The current chapter

describes the window manager as it is shipped with the standard release of the X Window

System from the MIT X Consortium.

To bring up the Twm menu, move the pointer to the root window and hold down the left but-
ton on the pointer. To select a menu item, continue to hold down the left button and move the

pointer to the desired menu item. A horizontal band, or highlighting bar, follows the pointer.

When you've highlighted the desired menu item, release the button. The selected function

will be executed.

Using the twm Window Manager 35

H xterm gJ]

: H oclock ID |

% oclock&
 Twm ^^

Iconify
Resize ©

" 1 Move ^~~^*^

Raise

Lower

Focus

Unfocus

Show Iconmgr

Hide Iconmgr

Kill

Delete

Restart

Exit

Figure 3-2. Twm menu

Some of the functions on the menus can be invoked simply by pressing a combination of

pointer buttons and keyboard keys. We discuss these "keyboard shortcuts" as appropriate

when discussing each menu function, and summarize them in Table 3-1 later in this Chapter.

Some of these shortcuts make use of the "Meta" modifier key. See Chapter II, Setup Clients,

for a discussion of how to determine which key on your keyboard serves as the Meta key.

(For the Sun-3 keyboard, for example, Meta is either of the keys labeled "Left" or "Right.")

Displaying Windows as Icons

If you want to make more space available on your screen, you can convert a window into an

icon. An icon is a small symbol that represents the application window. You can also con-
vert the icon back into a window, as shown in Figure 3-3 and Figure 3-4.

To convert a window to an icon:

1. Bring up the Twm menu.

2. Select Iconify with the menu pointer. The pointer changes to the target pointer.

3. Move the target pointer to the desired window.

4. Click the left button. The window is converted to an icon.

36 X Window System User's Guide

H oclock

Focus

Unfocus

Show Iconmgr

Hide Iconmgr

Figure 3-3. The login window is about to become an icon

Focus

E xterm Unfocus

xterm& Show Iconmgr

Hide Iconmq'

Restart

Exit

Figure 3-4. The login window is about to be deiconified

Using the twm Window Manager 37

To display an icon as its original window, simply click the left button on the icon, twm has a

couple of advanced techniques for managing icons. One, the Icon Manager, will be dis-
cussed in the next section. The other, the Icon Region, is documented in the twm man page.

The Icon Manager

The Show Iconmgr and Hide Iconmgr menu items control a twm feature called the Icon Man-
ager. The Icon Manager is a small, menu-like window that contains one entry for each win-
dow on the screen. An iconified window will have a small X before it; a window can be

iconified and deiconified just by clicking on its entry in the Icon Manager. The Icon Manager

also highlights the window with the current input focus.

By using the Icon Manager in conjunction with the variable Iconif yByUnmapping, you

can keep all your icons conveniently in one place, and avoid searching for icons that have

been hidden under other windows. See Chapter 10, Customizing the twm Window Manager,

for information on setting variables in twm.

Resizing Windows

The Resize menu item resizes an existing window. See Figure 3-5. To resize a window:

1. Bring up the Twm menu.

2. Select Resize with the menu pointer. The pointer changes to the cross pointer.

3. Move the cross pointer to the window you want to resize. Place it near the border you

want to move. The opposite border remains in its current position.

4. Hold down any button.

5. Move the pointer across the border you want to change, then move the window's border

to obtain the desired window size. As you resize the window, a digital readout appears

opposite the pointer showing the window size in pixels. (For the xterm client, size is in

characters and lines.) Release the button.

Resizing an xterm window will not change the dimensions of the text currently in the win-
dow. (If you make the window smaller, for instance, some of the text may be obscured.)

However, if the operating system supports terminal resizing capabilities (for example, the

SIGWINCH signal in systems derived from BSD 4.3), xterm will use these facilities to notify

programs running in the window whenever it is resized. As you continue to work, perhaps

starting an editing session, the program will use the entire window. If you resize during an

editing session, the text editing program may not know about the new size, and may operate

incorrectly. Simply quitting out of the editor and starting another session should solve this

problem.

If your resized xterm window does not seem to know its new size, you may be working with

an operating system that does not support terminal resizing capabilities. Refer to the discus-
sion of the resize client in Chapter 4, The xterm Terminal Emulator, (and to the resize refer-
ence page in Part Three of this guide) for alternative solutions.

38 X Window System User's Guide

100x35

Figure 3-5. Resizing a window

Moving Windows and Icons

The Move menu item moves a window or an icon to a new location. When you use this func-
tion, an outline, not the entire window or icon, tracks the pointer movement to the new loca-
tion. See Figure 3-6. To move a window:

1. Bring up the Twm menu.

2. Select Move with the menu pointer. The pointer changes to the cross pointer.

3. Move the cross pointer to the desired window or icon. Hold down any button. Move the

pointer and a window outline appears. This outline tracks the pointer movement.

4. Move the cross pointer with the window outline to the desired location on your screen.

5. Release the button. The window will move to the new location.

Using the twm Window Manager 39

Figure 3-6. Moving windows or icons

You can also move a window or icon simply by moving the pointer to the window or icon

you want to move, then pressing the right pointer button while holding down the Meta key.

The pointer at first changes to a small image of an icon. You can now let go of the Meta key.

Then, as you drag the pointer while holding down the button, the pointer changes to a cross,

while the window or icon changes to outline form. Drag the outline to the new location, and

let go of the right button. The window will be redrawn in the new location.

Shuffling the Window Stack: Raise and Lower

Under the X Window System, windows can overlap each other. When windows overlap, one

or more windows may be fully or partially hidden behind other windows (see Figure 3-7).

You can think of these windows as being stacked on top of each other much the way papers

are stacked on a desk, twm can control the stacking order of the windows by lowering a par-
ticular window to the bottom of the stack or raising it to the top.

40 X Window System User's Guide

i

% twm&

% oclockS

Ell

Figure 3-7. One xterm window overlapping another

Raising Windows (bringing in front of others)

The Raise menu item places a window at the top of a window stack. See Figure 3-8. To

bring a window to the front:

1. Bring up the Twm menu.

2. Select Raise with the menu pointer. The pointer changes to the target pointer.

3. Move the target pointer to the desired window.

4. Click any button. The window is raised to the top of the stack.

Using the twm Window Manager 41

S xterm

Figure 3-8. Raising a window

Lowering Windows (sending behind others)

The Lower menu item places a window at the bottom of a window stack. To place a window

at the bottom:

1. Bring up the Twm menu.

2. Select Lower with the menu pointer. The pointer changes to the target pointer.

3. Move the target pointer to the appropriate window.

4. Click any button. The desired window is placed behind all windows except the root win-
dow.

To raise or lower a window without using the menu:

" To raise a window, move the pointer so that the cursor is within the titlebar of the window

you want to raise, then click the left pointer button. The window is raised.

" To lower a window, move the pointer so that the cursor is within the titlebar of the win-
dow you want to lower, then click the middle pointer button. The window is lowered.

42 X Window System User's Guide

Changing Keyboard Focus

Normally, keyboard input goes to whichever window the pointer is currently in. The Focus

option causes keyboard input to go only to a selected window (the focus window) regardless

of the position of the pointer.

Focusing can be useful if you are working in one window for an extended period of time, and

want to move the pointer out of the way. It also prevents the annoying situation in which you

inadvertently knock the pointer out of the window while typing. (This can be very important

for touch typists who look infrequently at the screen while typing!)

To choose a focus window:

1. Bring up the Twm menu.

2. Select Focus with the menu pointer. The pointer changes to the target pointer.

3. Move the target pointer to the window you want to choose as the focus window.

4. Click any button to choose the window.

The titlebar of the focus window will remain highlighted, no matter where you move the

pointer.

In order to take the focus away from the selected window (and reactivate "pointer focus"),

select Unfocus. The keyboard focus will once again follow the pointer into any window.

Removing a Window: Delete and Kill

The Delete and Kill menu items provide two different ways of terminating a client window.

Most windows can be removed in ways that do not harm relevant processes. Delete is one of

these ways. It simply requests that the client close itself down gracefully.

Like other methods of "killing" a program (such as the xkill client), the Kill menu item can

adversely affect underlying processes. Kill is intended to be used primarily after more con-
ventional methods of removing a window have failed.

To remove a window:

1. Bring up the Twm menu.

2. Select Delete with the menu pointer. The pointer changes to the skull and crossbones

pointer.

3. Move the pointer into the window you want to terminate.

4. Click any pointer button.

The window should go away. It may, instead, beep and remain on your screen. You have a

stubborn window, which can be killed in the following way:

Using the twm Window Manager 43

1. Bring up the Twm menu.

2. Select Kill with the menu pointer. The pointer changes to the skull and crossbones pointer.

3. Move the pointer into the window you want to terminate.

4. Click any pointer button.

The window will go away.

Refer to the section on xkill in Chapter 7, Other Clients, for a more complete discussion of

the hazards of killing a client and a summary of alternatives.

Restarting the Window Manager

The Restart menu item restarts the window manager. This may occasionally become neces-
sary if the window manager functions improperly. To stop and restart the window manager

1. Bring up the Twm menu.

2. Select Restart with the menu pointer.

You may also want to restart the window manager if you edit your .twmrc configuration file

to change the functionality of twm. See Chapter 10, Customizing the twm Window Manager,

for more information.

Note that when the window manager is stopped, all icons revert to windows. This happens

because the window manager is what allows windows to be iconified. When the window

manager is restarted, you can iconify the windows again.

Exiting the Window Manager

The Exit menu item stops the window manager. You may want to stop twm in order to start

another window manager. To stop twm:

1. Bring up the Twm menu.

2. Select Exit with the menu pointer.

The window manager is stopped. All icons revert to windows.

44 X Window System User's Guide

Button Control of Window Manager Functions

Table 3-1 summarizes the keyboard and titlebar shortcuts for window management functions.

The first column lists the desired function; the second, the required location for the pointer;

and the third, the button-key combination. In this column, "click" means to press and imme-
diately release the specified pointer button; "down" means to press and hold the pointer but-
ton, and "drag" means to move the pointer while holding down the pointer button. In all

cases, you can let go of the keyboard key as soon as you have pressed the appropriate pointer

button.

Note that these key "bindings" can be changed in your .twmrc file, as described in Chapter

10. The combinations described in the table work for the system.twmrc file.

Table 3-1. Keyboard Shortcuts for Window Manager Functions

Function Pointer Location Keyboard Shortcut

move titlebar First pointer button down and drag

move window or icon Meta key, right pointer button down

and drag

resize "nested squares" titlebutton Any pointer button down, cross

desired border, and drag

raise titlebar First pointer button click

raise window or icon Meta key, third pointer button click

lower titlebar Second (middle) pointer button click

lower window or icon Meta key, first pointer button click

iconify "X" titlebutton Any pointer button click

iconify window Meta key, second pointer button click

deiconify icon Second pointer button click

Twm menu root First pointer button down

Customizing twm

The twm window manager is a powerful tool that can perform many more functions than are

described in this chapter. You can customize twm using the .twmrc file in your home direc-
tory. Customizing this file, you can:

" Define your own twm menus.

" Bind functions to keyboard key/pointer button combinations.

" Issue command strings to the shell.

For details on customizing, and an example of a modified .twmrc file, see Chapter 10, Cus-
tomizing the twm Manager.

Using the twm Window Manager 45

Some of My Keystrokes are Missing

If you are running Release 4, especially if you are running on a small or slow system, you

may notice that the system can't keep up with the movement of the pointer. You may move

from one window to another and begin typing, only to find that your first few characters were

entered into the original window, or dropped into intervening windows.

This annoying problem is caused by a subtle interaction between the operating system, the X

server, and the window manager. It is unlikely to be fixed in the near future, but twm pro-
vides a workaround: setting the variable NoTitleFocus in your .twmrc file should keep

the bug from popping up. See Chapter 10 for information on creating a .twmrc file and set-
ting variables.

46 X Window System User's Guide

4

The xterm Terminal Emulator

This chapter describes how to use xterm, the terminal emulator. You use this

client to create multiple terminal windows, each of which can run any pro-
grams available on the underlying operating system.

In This Chapter:

The Release 4 xterm Menus 50

The xterm Menus at a Glance 50

The Main Options Menu 52

VT Options Menu 55

VT Fonts Menu 57

Tek Options Menu 58

Using the Scrollbar 59

Copying and Pasting Text Selections 61

Selecting Text to Copy 62

Pasting Text Selections 64

Manipulating Text Selections 65

Copying and Pasting between Release 2 and 3 Clients: xcutsel 66

Saving Multiple Selections: xclipboard (Release 4 Version) 68

Problems with Large Selections 71

Editing Text Saved in the xclipboard 71

Release 3 xclipboard 72

Terminal Emulation and the xterm Terminal Type 73

Resizing an xterm Window 74

Running a Program in a Temporary xterm Window 75

4

The xterm Terminal Emulator

xterm provides you with a terminal within a window. Anything you can do using a standard

terminal, you can do in an xterm window. Once you have an xterm window on your screen,

you can use it to run other clients.

You can bring up more than one xterm window at a time. For example, you might want to list

the contents of a directory in one window while you edit a file in another window. Although

you can display output simultaneously in several windows, you can type into only one win-
dow at a time.

Basic operation of xterm should be obvious to anyone familiar with a terminal. You should

be able to work productively immediately.

Among the less obvious features of xterm is a dual functionality. By default, xterm emulates

a DEC VT102 terminal, a common alphanumeric terminal type. However, xterm can also

emulate a Tektronix 4014 terminal, which is used to display graphics. For each xterm pro-
cess, you can switch between these two types of terminal windows. You can display both a

VT102 and a Tektronix window at the same time, but only one of them can be the "active"

window, i.e., the window receiving input and output. Hypothetically, you could be editing in

the VT102 window while looking at graphics in the Tektronix window.

You switch between the VT102 window and the Tektronix window using items from certain

xterm menus. The xterm client has four menus that can be used to manipulate the VT102 and

Tek windows, to select many terminal settings, and to run other commands that affect the

xterm process. We'll take a look at some of the more useful items on each menu as well as

some alternatives to menu items. For more complete information about menus, see the xterm

reference page in Part Three of this guide.

We'll also discuss two of xterm's more important features: a scrollbar, which allows you to

review text in the window, and a "copy and paste" facility.

Finally, we'll consider problems involved in resizing an xterm window and how to run a pro-
gram in a temporary xterm window.

7776 xterm Terminal Emulator 49

The Release 4 xterm Menus

The Release 4 version of xterm has four different menus:

" Main Options menu (formerly called xterm menu).

" VT Options menu (formerly called Modes menu).

" VT Fonts menu (available as of Release 4).

" Tek Options menu (formerly called Tektronix menu).

The VT Fonts menu, which allows you to dynamically change the xterm display font, was

introduced in Release 4. The other three menus are updated versions of menus available in

Release 3. As is indicated above, these three menus have been renamed in Release 4. Most

of the items available on these menus have not changed in functionality since Release 3,

though many have been renamed and some have been reorganized.

For instance, the R3 xterm menu offered an item called Redraw; the R4 Main Options menu

offers the same item, renamed Redraw Window. The Visual Bell item available on the R3

xterm menu in R4 has been renamed Enable Visual Bell and moved to the VT Options menu, a

more logical location.

A few menu items are entirely new as of Release 4. This chapter describes the R4 xterm

menus. For those who are still running Release 3, we've tried to point out the differences:

the equivalent R3 menu and item names, what items have been moved within a menu or to

another menu, and what items are only available in R4.

The xterm Menus at a Glance

As shown in Figure 4-1, three of the four xterm menus arc divided into sections, separated by

horizontal lines. The top portion of each divided menu contains various modes that can be

toggled. (The one exception is the Redraw Window item (formerly Redraw) on the Main

Options menu, which is a command.) A check mark appears next to a mode that is currently

active. Selecting one of these modes toggles its slate.

The items on the VT Fonts menu change the font in which text is displayed in the xterm win-
dow. Only one of these fonts can be active at a time. To toggle one off, you must activate

another.

Most mode entries can also be set by command line options when invoking xterm, or by

entries in a resource startup file (such as Xdefaults or ^resources) as described in Chapter 9,

Setting Resources. (See the xterm reference page in Part Three of this guide for a complete

list of command options and resource variables.) The various modes on the menus are very

helpful if you've set (or failed to set) a particular mode on the command line and then decide

you want the opposite characteristic.

The sections below the modes portion of each menu contain various commands. Selecting

one of these commands performs the indicated function. Many of these functions can only be

50 X Window System User's Guide

VT Options

Enable Scrollbar

Enable Jump Scroll

Enable Reverse Video

Enable Auto Wraparound

Enable Reverse Wraparound

Enable Auto Linefeed

Enable Application Cursor Keys

Enable Application Keypad

Scroll to Bottom on Key Press

Scroll to Bottom on Tty Output

Allow 80/132 Column Switching

Enable Curses Emulation

Enable Visual Bell

Enable Margin Bell

Show Alternate Screen

Do Soft Reset

Do Full Reset

Show Tek Window

Switch to Tek Mode

Hide VT Window

Figure 4-1. The Release 4 xterm menus

invoked from the xterm menus. However, some functions can be invoked in other ways:

from a twm menu, on the command line, by a sequence of keystrokes (such as Control-C).

This chapter includes alternatives to some of the menu items, alternatives which in certain

cases may be more convenient. Of course, the xterm menus can be very helpful when other

methods to invoke a function fail.

Menus are displayed by pressing a combination of keyboard keys and pointer buttons. (The

exact combination of keys and buttons is described below with each menu.) When you dis-
play an xterm menu, the pointer becomes the arrow pointer and initially appears in the

menu's title. Once the menu appears, you can release any keyboard key. The menu will

remain visible so long as you continue to hold down the appropriate pointer button.

If you decide not to select a menu item after the menu has appeared, move the pointer off the

menu and release the button. The menu disappears and no action is taken.

In the following discussions of the four xterm menus, we'll consider some of the more useful

items as well as some alternatives to menu items. For more complete information about each

menu, see the xterm reference page in Part Three of this guide.

The xterm Terminal Emulator 51

The Main Options Menu

The Main Options menu, shown in Figure 4-2, (formerly called the xterm menu) allows you to

set certain modes and to send signals (such as SIGHUP) that affect the xterm process.

To bring up the Main Options menu, move the pointer to the xterm window you wish to effect

changes on, hold down the Control key, and press the first (usually the left) pointer button.*

The pointer changes to the menu pointer, and the following menu of three modes and eight

commands appears. (You can release the Control key but must continue to press the first

pointer button to hold the Main Options menu in the window.)

Note that Main Options menu items apply only to the xterm window the pointer is in when

you display the menu. To effect changes in another xterm, you must move the pointer to that

window, display the menu, and specify the items you want.

Main Options

Secure Keyboard

Allow SendEvents

Log to File

Redraw Window

Send STOP Signal

Send CONT Signal

Send INT Signal

Send HUP Signal

Send TERM Signal

Send KILL Signal

Figure 4-2. The Main Options menu

To select a menu item, move the menu pointer to that item and release the first button. After

you have selected a mode (Secure Keyboard, Allow SendEvents, or Log to File), a check mark

appears before the item to remind you that it is active.t The Log to File mode on the Main

Options menu can also be set by a command line option when invoking xterm. In addition,

both Log to File and Allow SendEvents can be set by entries in a resource startup file like

^resources (see Chapter 9, Setting Resources). The menu selections enable you to change

your mind once xterm is running. (See the xterm reference page in Part Three of this guide

for more information on these modes.)

*The right button can be made to function as the "first" button. This is especially useful if you are left-handed. See

Chapter 11, Setup Clients, for instructions on how to customize the pointer with xmodmap.

tThe Allow SendEvents mode is available as of Release 4. Log to File is available in Release 3 as Logging. The equiv-
alent Release 3 menu (called xterm) also includes a Visual Bell mode toggle. As of Release 4, this item has been

renamed Enable Visual Bell and moved to the VT Options menu.

52 X Window System User's Guide

The Secure Keyboard mode toggle has been added to the menu (in a Release 3 patch) to help

counteract one of the security weaknesses of X. This mode is intended to be activated when

you want to type a password or other important text in an xterm window. Generally, when

you press a keyboard key or move the pointer, the X server generates a packet of information

that is available for other clients to interpret. These packets of information are known as

events. Moving the pointer or pressing a keyboard key causes input events to occur.

There is an inherent security problem in the client-server model. Because events such as the

keys you type in an xterm window are made available via the server to other clients, hypo-

thetically an adept system hacker could access this information. (Naturally, this is not an

issue in every environment.) A fairly serious breach of security could easily occur, for

instance, if someone were able to find out a user's password or the root password. Enabling

Secure Keyboard mode causes all user input to be directed only to the xterm window itself.

Of course, in many environments, this is probably not necessary: if the nature of the work is

in no way sensitive, if the system administrator has taken pains to secure the system in other

ways, etc. If your environment might be vulnerable, you can enable Secure Keyboard mode

before typing passwords and other important information and then disable it again using the

menu.

When you enable Secure Keyboard mode, the foreground and background colors of the xterm

window will be exchanged (as if you had enabled the Reverse Video mode from the VT

Options menu), as shown in Figure 4-3. When you disable Secure Keyboard mode, the colors

will be switched back.

Be aware that only one X client at a time can secure the keyboard. Thus, if you have enabled

Secure Keyboard mode in one xterm, you will not be allowed to enable it in another xterm

until you disable it in the first. If Secure Keyboard mode is not available when you request it,

the colors will not be switched and a bell will sound.

If you request Secure Keyboard mode and are not refused, but the colors are not exchanged,

be careful: you are not in Secure Keyboard mode. If this happens, there's a good chance that

someone has tampered with the system. If the application you're running displays a prompt

before asking for a password, it's a good idea to enable Secure Keyboard mode before the

prompt is displayed and then verify that the prompt is displayed in the proper colors. Before

entering the password, you can also display the Main Options menu again and verify that a

check mark appears next to Secure Keyboard mode.

Be aware that Secure Keyboard will be disabled automatically if you iconify the xterm win-
dow, or start twm or another window manager that provides a titlebar or other window deco-
ration. This limitation is due to the X protocol. When the mode is disabled, the colors will

be switched back and the bell will sound to warn you.

In addition to modes that can be toggled, the Main Options menu includes several commands.

All of the commands (except for Redraw Window) send a signal that is intended to affect the

xterm process: suspend it (Send STOP Signal), terminate it (Send TERM Signal), etc. Given

that your operating system may recognize only certain signals, every menu item may not pro-
duce the intended function.

Note that most of these commands are equivalent to common keystroke commands, which

are generally simpler to invoke. For example, in most terminal setups, Control-C can be used

The xterm Terminal Emulator 53

Figure 4-3. Reverse video is enabled when the keyboard is secure

to interrupt a process. This is generally simpler than using the Send INT Signal menu com-
mand (Interrupt program in prior releases), which performs the same function.

Similarly, if your system supports job control, you can probably suspend a process by typing

Control-Z and start the process again by typing Control-Y, rather than using the Send STOP

Signal and Send CONT Signal menu commands. (These commands were called Suspend pro-
gram and Continue program in Release 3.) If your system does not support job control, nei-
ther the menu commands nor the keystrokes will work.

Four of the commands (Send HUP Signal, Send TERM Signal, Send KILL Signal, and Quit*)

send signals that are intended to terminate the xterm window. Depending on the signals your

system recognizes, these commands may or may not work as intended. Be aware that in most

cases, you can probably end an xterm process simply by typing some sequence (such as

Control-D or exit) in the window. Of course, the menu items may be very helpful if the

more conventional ways of killing the window fail. Also be aware that, in addition to being

recognized only by certain systems, some signals are more gentle to systems than others. See

the xterm reference page in Part Three of this guide for information on the signal sent by

each of the menu commands and the signal(3C) reference page in the UNIX Programmer's

Manual for more information on what each signal does.

*The first three of these commands were called Hangup, Terminate, and Kill in Release 3. Quit has not been renamed.

54 X Window System User's Guide

The Quit command sends the SIGHUP signal to the process group of the process running

under xterm, usually the shell. (The Send HUP Signal command sends the same signal.) This

ends up killing the xterm process, and the window disappears from the screen.

Quit is separated from the earlier commands by a horizontal line, so it's easier to point at.

Sending a SIGHUP signal with Quit is also slightly more gentle to the system than sending a

SIGKILL signal with Send KILL Signal.

The Redraw Window command redraws the contents of the window. As an alternative, you

can redraw the entire screen using the xrefresh client. See the xrefresh reference page in Part

Three of this guide for more information about this client.

If you are still using the uwm window manager, the Redraw and Refresh Screen selections of

the WindowOps menu redraw a selected window and the entire screen, respectively. See

Appendix B, The uwm Window Manager, for more about these uwm menu items.

VT Options Menu

The VT Options menu (formerly the Modes menu) provides many VT102 setup functions.

Some of these mode settings are analogous to those available in a real VT102's setup mode;

others, such as scrollbar, are xterm-on\y modes.

The VT Options menu items allow you to reset several modes at once, to select the Tektronix

window to accept input, and to hide the VT window.

The Release 4 version of this menu is very similar to the Release 3 version. A majority of the

mode toggles have been renamed by adding the first word "Enable." For example, Jump

Scroll has been renamed Enable Jump Scroll, making it more apparent when a check mark

precedes it that the mode is active. The names of a few of the other items have been changed

slightly: Enable Visual Bell has been added from the Main Options menu, and Show Tek Win-
dow has been moved from the mode toggles section of the menu below to the commands

section.

To bring up the VT Options menu, move the pointer to the xterm window, hold down the

Control key, and then press and hold down the middle pointer button. (You can release the

Control key but must continue to press the middle button to keep the VT Options menu in the

window.) The menu shown in Figure 4-4 appears.

Check marks indicate the active modes. For example, Jump Scroll, Auto Wraparound, and

Scroll to Bottom on Tty Output are active in the VT Options menu displayed in Figure 4-4.

(These are the only modes active by default. In Release 3, Scroll to Bottom on Tty Output was

not active by default.*) To turn off one of these modes, move the menu pointer to that mode

and release the middle button.

*In Release 3, if you enable the scrollbar for a particular window, the mode Scroll to Bottom on Tty Output is turned on

automatically. This mode indicates that if you are using the scrollbar and the window receives output (or a key is

pressed, if stty echo is enabled), the window scrolls forward so that the cursor is at the current line. (You can use

the menu to toggle this mode off, but it is generally desirable to have.)

The xterm Terminal Emulator 55

VT Options

Enable Scrollbar

S Enable Jump Scroll

Enable Reverse Video

J Enable Auto Wraparound

Enable Reverse Wraparound

Enable Auto Linefeed

Enable Application Cursor Keys

Enable Application Keypad

Scroll to Bottom on Key Press

S Scroll to Bottom on Tty Output

Allow 80/132 Column Switching

Enable Curses Emulation

Enable Visual Bell

Enable Margin Bell

Show Alternate Screen

Do Soft Reset

Do Full Reset

Show Tek Window

Switch to Tek Mode

Hide VT Window

Figure 4-4. The VT Options menu

Most of these modes can also be set by command line options when invoking xterm, or by

entries in a resource startup file like Xresources (see Chapter 9, Setting Resources). The

menu selections enable you to change your mind once xterm is running.

The toggle Allow 80/132 Column Switching warrants a little more explanation. This mode

allows xterm to recognize the DECCOLM escape sequence, which switches the terminal

between 80- and 132-column mode. The DECCOLM escape sequence can be included in a

program (such as a spreadsheet) to allow the program to display in 132-column format. See

Appendix F, xterm Control Sequences, for more information. This mode is off by default.

The VT Options menu commands (in the second and third partitions of the menu) perform two

sets of functions, neither of which can be performed from the command line or a resource

definition file. The commands Soft Reset and Full Reset reset some of the modes on the

menu to their initial states. See the xterm reference page in Part Three of this guide for more

information.

The Show Tek Window, Switch to Tek Mode, and Hide VT Window menu items allow you to

manipulate the Tektronix and VT102 windows.

The Show Tek Window command displays the Tek window and its contents, without making it

the active window (you can't input to it). Use the Switch to Tek Mode command to display a

Tektronix window and make it the active window. When you select Switch to Tek Mode, the

56 X Window System User's Guide

Show Tek Window command is enabled automatically, since the Tek window is displayed.

(Note that a Tektronix window is not commonly used for general purpose terminal emulation,

but for displaying the output of graphics or typesetting programs.)

Both of these commands are toggles. If Show Tek Window is active and you toggle it off, the

Tek window becomes hidden. (As we'll see, you can also do this with the Hide Tek Window

item on the Tek Options menu.) If both Switch to Tek Mode and Show Tek Window are active

(remember, enabling the former automatically enables the latter), toggling either one of them

off switches the xterm back to VT mode. (This can also be done from the Tek Options menu

with the Switch to VT Mode item.)

The Hide VT Window command hides the VT102 window, but does not destroy it or its con-
tents. It can be restored (and made the active window) by choosing Select VT Mode from the

Tek Options menu.

VT Fonts Menu

The VT Fonts menu is a welcome Release 4 innovation. It allows you to change the display

font of an xterm window while the window is running. To bring up the VT Fonts menu, move

the pointer inside the xterm window. Press the Control key on the keyboard; while holding

down the Control key, press the third (right) pointer button. The VT Fonts menu is shown in

Figure 4-5.

VT Fonts

/ Default

Tiny

Small

Medium

Large

Escape Sequence

Selection

Figure 4-5. VT Fonts menu

If you have not toggled any items on this menu, a check mark will appear before the Default

mode setting. The Default is the font that was specified when the xterm window was run.

This font could have been specified on the xterm command line or in a resource file like

^resources. Whatever the case, this font remains the Default for the duration of the current

xterm process.

The items Default, Tiny, Small, Medium, and Large can be toggled to set the font displayed in

the xterm window. The font can be changed any number of times, to accommodate a variety

of uses. You might choose to use a large font for editing a file (chances are you've chosen a

The xterm Terminal Emulator 57

large enough default font, though). You could then change to a smaller font while a process

is running and you don't need to be reading or typing in that xterm. Changing the font also

changes the size of the window.

There are also default settings for the Tiny, Small, Medium, and Large fonts. They are all con-
stant width fonts from the directory lusrlliblXlllfontslmisc and are listed in Table 4-1.

Table 4-1. VT Fonts Menu Defaults

Menu Item Default Font

Tiny ni!2

Small 6x10

Medium 8x13

Large 9x15

Bring up the VT Fonts menu, and toggle some of these fonts to see what they look like. The

default Tiny font, nil2, is actually too small to be legible. It is not intended to be read. If you

select this font, your xterm window becomes tiny, almost the size of some application icons.

Though you cannot read the actual text in a window this size, the window is still active and

you can observe if additional output, albeit minuscule, is displayed. An xterm window dis-
playing text in such a small font can serve, in effect, as an active icon.

Be aware that you can specify your own Tiny, Small, Medium, and Large fonts using entries in

a resource startup file like ^resources. The corresponding resource names are fontl,

f ont2, font3, and f ont4. See Chapter 5,Font Specification, for more information about

available fonts. See Chapter 9, Setting Resources, for instructions on how to set resource

variables.

In addition to the menu selections we've discussed, the VT Fonts menu offers two other pos-
sible selections: Escape Sequence and Selection. When you first run an xterm window,

these selections appear on the VT Fonts menu, but they are not functional. (They will appear

in a lighter typeface than the other selections, indicating that they are not available.) In order

to enable these selections for use, you must perform certain actions, which are outlined in

Chapter 5, Font Specification, after we discuss font specification in greater detail.

Tek Options Menu

The Tek Options menu (formerly Tektronix) controls certain modes and functions of the Tek-
tronix window. The menu can only be displayed from within the Tektronix window. As pre-
viously described, you can display the Tek window and make it the active window by using

the Switch to Tek Mode command on the VT Options menu.

To display the Tek Options menu, move the pointer inside the Tektronix window. Press the

Control key on the keyboard; while holding down the Control key, press the middle pointer

button. The Tek Options menu appears. With this menu, you set the size of the text in the

Tektronix window and select some commands.

58 X Window System User's Guide

Tek Options

/ Large Characters

#2 Size Characters

#3 Size Characters

Small Characters

PAGE

RESET

COPY

Show VT Window

Switch to VT Mode

Hide Tek Window

Figure 4-6. The Tek Options menu

Note that these modes (above the first line) can only be set from the Tek Options menu. All

of these modes set the point size of the text displaying in the Tektronix window. (Only one

of these four modes can be enabled at any time.)

The most important command on the Tek Options menu, shown in Figure 4-6, is Switch to VT

Mode (formerly Select VT Mode). If the Tek window has been made the active window

(using the Switch to Tek Mode command from the VT Options menu), you can choose Switch

to VT Mode to make the VT window the active window again. (If both windows are showing,

you can also toggle Switch to Tek Mode on the VT Options menu to deactivate it; that is,

switch from Tek mode and back to VT mode.) Switch to VT Mode is also a toggle; if you

deactivate it, xterm will switch back to Tek mode.

Selecting Show VT Window (formerly VT Window Showing), displays the VT window if it has

been hidden (using the Hide VT Window command from the VT Options menu), or hides it if it

is being displayed. (Again, the command is a toggle.) Remember that you cannot input to

the VT window until you make it the active window, using Switch to VT Mode.

Using the Scrollbar

When using xterm, you are not limited to viewing the 24 lines displayed in the window. By

default, xterm actually remembers the last 64 lines that have appeared in the window. If the

window has a scrollbar, you can scroll up and down through the saved text. If the window

was not created with a scrollbar, you can add one using the Enable Scrollbar item on the VT

Options menu.

To create a single xterm window with a scrollbar, use the -sb command line option:

% xterm -sb £

The xterm Terminal Emulator 59

To display all xterm windows with a scrollbar by default, set scrollBar in your

^resources file, as described in Chapter 9, Setting Resources. This is illustrated below:

XTerm*scrollBar: true

Figure 4-7 shows an xterm window with a scrollbar.

Figure 4-7. An xterm window with a scrollbar

The thumb (the highlighted area within the scrollbar) moves within the scroll region. The

thumb displays the position and amount of text currently showing in the window relative to

the amount saved. When an xterm window with a scrollbar is first created, the thumb fills the

entire scrollbar. As more text is saved, the size of the thumb decreases. The number of lines

saved is 64 by default, but an alternative can be specified with either the -si command line

option or the saveLines value in an ̂ resources file.

When the pointer is positioned in the scrollbar, the cursor changes to a two-headed arrow.

Clicking the first (usually the left) pointer button in the scrollbar causes the window to scroll

toward the end of information in the window.

Clicking the third (usually the right) pointer button in the scrollbar causes the window to

scroll toward the beginning of information in the window.

Clicking the second (usually the middle) pointer button moves the display to a position in the

saved text that corresponds to the pointer's position in the scroll region. For example, if you

move the pointer to the very top of the scroll region and click the second (middle) button, the

display is positioned very near the beginning of the saved area.

60 X Window System User's Guide

If you hold down the second button, you can drag the thumb up and down. Text moves as

you move the thumb. If you drag up, the window scrolls back, toward the beginning of infor-
mation in the window. If you drag down, the window scrolls forward, toward the end of

information in the window. When you release the button, the window displays the text at that

location. This makes it easy to get to the top of the data by pressing the second button, drag-
ging it off the top of the scrollbar, and releasing it.

Copying and Pasting Text Selections

Once your xterm window is created, you can select text to copy and paste within the same or

other xterm windows using the pointer. You don't need to be in a text editor to use copy and

paste. You can also copy or paste text to and from the command line.

Text copied into memory using the pointer is saved in a global cut buffer and also becomes

what is known as the PRIMARY text "selection." Both the contents of the cut buffer and the

contents of the PRIMARY text selection are globally available to all clients. When you paste

text into an xterm window, by default the contents of the PRIMARY selection are pasted. If

there is no text in the PRIMARY selection, the contents of the cut buffer (called

CUT_BUFFERO), are pasted. (Thus, in most cases, these will be the same.)

Copying and pasting is one way in which clients exchange information, in this case, text.

Prior to Release 3, many clients exchanged information solely by means of cut buffers. Cut

buffers are only useful for transferring information between clients that interpret data in the

same format. Thus, cut buffers could be used to transfer ASCII text between xterm windows.

In accordance with the newer interclient communication conventions developed since

Release 2, most Release 3 and 4 clients, notably xterm, primarily exchange information via

selections. The advantage of the selection mechanism is that it allows data from one client to

be converted to a different format to be used by another client. Cut buffers do not perform

this type of translation.

As we've said, if you are copying text between xterm windows, the contents of

CUT_BUFFERO and the PRIMARY selection should be the same. However, as we'll see later,

while some applications (notably the current version of xterm) copy to both the cut buffer

and the selection, other applications (generally prior to Release 3) only copy to the cut buffer.

If you are using both types of applications together and trying to transfer text between them,

differences between the contents of the cut buffer and the PRIMARY selection may make

copying and pasting problematic. If you are only copying text between xterm windows

(Release 3 or later), problems of this type will never arise.

For our purposes, we are mainly concerned with ASCII text selections from xterm windows.

First, we'll show you how to copy and paste text between xterm windows. Then we'll dis-
cuss some of the implications of using selections versus cut buffers, and describe two clients,

xcutsel and xclipboard, which allow you to manipulate text saved in memory. The xcutsel

client addresses problems that arise when you're copying text between an application that

uses selections and one that uses cut buffers. The xclipboard allows you to store multiple

text selections.

The xterm Terminal Emulator 61

Selecting Text to Copy

To select text, move the pointer to the beginning of the text you want to select. Hold down

the first button while moving the pointer to the end of the desired text, then release the but-
ton. The text is highlighted, copied into the global cut buffer (called CUT_BUFFERO) and

also made the PRIMARY selection.

Note that with the current implementation of the copy and paste feature, tabs are saved as

spaces.

You can select a single word or line simply by clicking. To select a single word, place the

pointer on the word and double-click the first button.* To select a single line, place the

pointer on the line and triple-click the first button.

If you hold the button down after double- or triple-clicking (rather than releasing it) and

move the pointer, you will select additional text by words or lines at a time.

The following table describes the button combinations and the resulting selection. Begin by

placing the pointer on your desired selection.

Table 4-2. Button Combinations to Select Text for Copying

To select Do this

Word Double-click the first button.

Line Triple-click the first button.

Passage Hold down the first button, move the pointer,

release the button.

Each selection replaces the previous contents of CUT_BUFFERO and the previous PRIMARY

text selection. You can make only one selection at a time.

Once you have made a selection with the first button, you can extend that selection with the

third button. The following example shows how this works:

1. Bring up vi (or any other text editor with which you are familiar) in an xterm window,

and type in this sample sentence:

The X Window System is a network-based graphics window system that

was developed at MIT in 1984.

*To be more precise, double clicking selects all characters of the same class (e.g., alphanumeric characters). By de-
fault, punctuation characters and whitespace are in a different class from letters or digits-hence, the observed be-
havior. However, character classes can be changed. For example, if you wanted to double-click to select e-mail ad-
dresses, you'd want to include the punctuation characters !, %, @, and . in the same class as letters and digits. How-
ever, redefining the character classes is not something you'd do every day. See the xterm reference page in Part

Three for details.

62 X Window System User's Guide

2. Place the pointer on the word graphics in the sample sentence and select it with two

clicks of the first button.

3. Then press and hold the third pointer button. Move the pointer away from the word

graphics, to the left or right. A new selection now extends from the last selection (graph-
ics) to the pointer's location and looks something like the following:

The X Window System is a network-based ^rapfetfes window

de ve 1 oped : at MIT i n;

or:

" S;y s fcem i a: a -ba se<i graphicswindow system that

was developed at MIT in 1984.

Remember that your extension always begins from your last selection. By moving the

pointer up or down, right or left of the last selection, you can use this technique to select part

of one line or add or subtract several lines of text.

(S xtcrm

Dear Mr. Hoffman:

.LP

You called yesterday for

information about X. H

xterm

The X window system is a

network based graphic window

I Several versions of

X have been developed, the most

recent of which is X Version 11

(X11), first released in 1987 X11

has been adopted as an industry-

Figure 4-8. Highlighted text saved as the PRIMARY selection

To clear the highlighting, move the pointer off the selection and click anywhere else in the

window with the first button. Note, however, that the text still remains in memory until you

make another selection.

The xterm Terminal Emulator 63

Pasting Text Selections

The second (middle) button inserts the text from the PRIMARY selection (or CUT_BUFFERO,

if the selection is empty) as if it were keyboard input. You can move data from one xterm

window to another by selecting the data in one window with the first button, moving the

pointer to another window, and clicking the second button.

You can paste text either into an open file or at a command line prompt. To paste text into an

open file, as illustrated in Figure 4-9, click the second button within the window containing

the file. The text from the memory area will be inserted where the text editor cursor is. (Of

course, the file must be in a mode where it is expecting text input, such as the insert mode of

an editor.) You can paste the same text as often as you like. The contents of the PRIMARY

selection remain until you make another selection.

_

i

H xterm £;

f H oclock H fi

Dear Mr. Hoffman:

.LP

You called yesterday for
information about X. ©

I The X window system is a

network-based graphic

window system that was Lz-J

developed at MIT n 1984.1

Kl xterm aj

:? ''iH^H^^^UC^^^V- "~S|^^^^MM

III .:: :; :- H- J

X have been developed, the most

recent of which is X Version 11

(X11), irst released in 1987. X11

has been adopted as an industry-
i - i j

Figure 4-9. Pasting text into an open file

To paste text at a command line prompt, you must first close any open file within the window.

Then click the second button anywhere within the window to place the text on the command

line at the end of text in the window (note that the window will scroll to the bottom on input).

You can make multiple insertions by repeatedly clicking the second button.

The latest text selected replaces the previous text selected.

64 X Window System User's Guide

You can also paste over existing text with the vi change text commands (such as cw, for

change word). For example, you can paste over five words by specifying the vi command

5cw, and then pasting text by clicking the second pointer button. Note that you can paste

over existing text in any editor that has an overwrite mode.

Manipulating Text Selections

Prior to Release 3, text copied into memory using the pointer was saved in the global cut

buffer, in effect, "owned" by the server, and available to all clients. Cut buffers are only use-
ful for copying and pasting information that does not need to be translated to another format,

such as ASCII text between two xterm windows.

Since Release 3, text copied into memory from an xterm window is saved in the cut buffer

and as the PRIMARY selection. The PRIMARY selection takes precedence over the contents

of the cut buffer. When pasting text between xterm windows, if the selection contains text, it

is pasted. If not, the contents of the cut buffer are pasted. Selections can be used to transfer

data that must be translated to a form the receiving client can interpret.

A selection is globally available, but it is not owned by the server. A selection is owned by a

client-initially by the client from which you copy it. Then when the text selection is pasted

to another window, that window becomes the owner of the selection.

Because of the rules of precedence governing cut buffers and selections, and the nature of

selections (particularly the issue of ownership), certain problems can arise in transferring

data:

1. If one client communicates with cut buffers and one with selections, copying and pasting

between them is inherently problematic. By default, the selection takes precedence.

How do you paste the contents of the cut buffer instead?

2. By default, you can save only one selection at a time.

3. For a selection to be transferred to a client, the selection must be owned by a client. If

the client that owns the selection no longer exists, the transfer cannot be made.

The xcutsel and xclipboard clients address the first two of these problems, respectively.

Most users will probably not encounter the third problem. You are probably doing all your

copying and pasting between xterm windows. If you've made a selection from an xterm win-
dow and the window is killed, the selection contents are lost. However, the cut buffer con-
tents remain intact and are pasted instead. (Since all xterm windows interpret ASCII text, the

translation capabilities of the selection mechanism are not needed.)

Problems involving the loss of selections are more likely to happen if you are transferring

information between clients that require information to be in different formats. If you are

having such problems, you can customize the clients involved to copy information to what is

known as the CLIPBOARD selection.

The CLIPBOARD selection is intended to avert problems of selection ownership by providing

centralized ownership. Once the CLIPBOARD owns a selection, the selection can be

transferred (and translated), even if the client that previously owned the selection goes away.

The xterm Terminal Emulator 65

You can customize a client to send data to the CLIPBOARD selection by using event transla-
tions, which are discussed in Chapter 9, Setting Resources. See the client reference pages for

information on the appropriate translations. For more information on selections and transla-
tions, see Volume One, Xlib Programming Manual.

Copying and Pasting between Release 2 and 3 Clients: xcutsel

The xcutsel client is intended to bridge a gap that exists between the ways older and newer

clients allow you to copy text. If all the clients you are using are from Release 3 or later, you

will probably have no use for xcutsel and should skip ahead to the next section.*

Since Release 3, when you select text from an xterm window with the pointer, the text is

copied into the global cut buffer and made the PRIMARY selection. (Thus, generally, the

contents of the cut buffer and the PRIMARY selection are the same.) By default, the PRI-
MARY selection is what gets pasted into a window. If there is no PRIMARY selection, the

contents of the cut buffer are pasted.

Prior to Release 3, clients did not use selections. Text was copied into the cut buffer only

(and was not equated with a PRIMARY selection). Problems can arise if you are running cli-
ents that use cut buffers only (many Release 2 clients and uwm, any release) with clients that

primarily use selections (Release 3 and later) and are trying to paste text between them.

For instance, say you copy text in a Release 3 xterm window using the pointer. The text is

copied into the cut buffer and also becomes the PRIMARY selection. If you paste in any win-
dow, the PRIMARY selection is what you get. Then, say you copy text in a R2 xterm window.

The text is stored in the cut buffer, replacing the text in the cut buffer from the R3 window,

but it does not replace the PRIMARY selection. You can paste the text from the R2 window in

another R2 window because the window only understands cut buffers, but you can't paste it

in an R3 window. If you try to, by default you get the PRIMARY selection (from the other R3

window).

xcutsel enables you to switch the text in the cut buffer and the PRIMARY selection so that you

can cut and paste between clients that use cut buffers and clients that use selections.

To open an xcutsel window, type:

% xcutsel &

and then place the window on your screen. Figure 4-10 shows an xcutsel window.

The window contains three command buttons whose functions are described below:

quit Exits the xcutsel program.

copy PRIMARY to 0 Copies the contents of the PRIMARY selection to CUT.BUFFERO.

copy 0 to PRIMARY Copies the contents of CUT_BUFFERO to the PRIMARY selection.

*If you are using uwm, you may have use for xcutsel. Regardless of the release, uwm uses only cut buffers. See

Appendix B, The uwm Window Manager, of this guide for details.

66 X Window System User's Guide

copy PRIMARY toO

copy 0 to PRIMARY

Figure 4-10. An xcutsel window

Now let's go back to the problem we set up earlier in this section. If you copy text from an

R2 window and want to paste in an R3 window, you merely click on the copy 0 to PRIMARY

button. The contents of the cut buffer (from the R2 client) replace the previous PRIMARY

selection (from the R3 client). When you paste, you get the text you want (from the R2

window).

Now say you have the same situation, but the opposite problem. You made a selection from

an R3 window, which filled the cut buffer and the PRIMARY selection. Then you copied text

from an R2 window, which merely filled the buffer. (The contents of the buffer and the PRI-
MARY selection are different.) But now say you want to paste the text from the PRIMARY

selection (from the R3 window) in an R2 window. If you paste text in an R2 window, you get

the contents of the cut buffer (the text from the other R2 window).

To solve this problem, just click on the copy PRIMARY to 0 button in the xcutsel window.

The contents of the PRIMARY selection (from the R3 window) replace the contents of the cut

buffer (from the R2 window). When you paste in an R2 window, you get still get the con-
tents of the cut buffer, but it is now the text you want.

This business of selections versus cut buffers can be pretty confusing. If you have problems

pasting the text you want, experiment a little with xcutsel.

The xterm Terminal Emulator 67

Saving Multiple Selections: xclipboard (Release 4 Version)

The xclipboard client provides a window in which you can paste multiple text selections and

from which you can copy text selections to other windows. Similar to the clipboard feature

of the Macintosh operating system, the xclipboard is basically a storehouse for text you may

want to paste into other windows, perhaps multiple times. The xclipboard window is shown

in Figure 4-11.

This section and the next two sections describe various features of the Release 4 version of

xclipboard. If you are using the Release 3 version, which has more limited functionality, also

read the section "Release 3 xclipboard" later in this chapter.

Figure 4-11. The xclipboard window

To open an xclipboard, type:

% xclipboard 6

and then place the window interactively with the pointer.

You can paste text into the xclipboard window using the pointer in the manner described

above and then copy and paste it elsewhere, but this is not its intended usage. To use the

xclipboard most effectively, you must do some customization involving a resource file, such

as Xresources. The necessary steps are described in detail in Chapter 9, Setting Resources.

For now, suffice it to say that you want to set up the xclipboard so that you can select text to

be made the CLIPBOARD selection and have that text automatically pasted in the xclip-
board window. This is illustrated in Figure 4-12.

Since the xclipboard client is intended to be coordinated with the CLIPBOARD selection,

the X server allows you to run only one xclipboard at a time.

In order to illustrate how the clipboard works, let's presume it has been set up according to

the guidelines in Chapter 9. According to those guidelines, you make text the CLIPBOARD

selection by selecting it with the first pointer button (as usual) and then, while continuing to

hold the first button, clicking the third button. (You could specify another button combina-
tion or a button and key combination, but we've found this one works pretty well. For more

information about these specifications, see Chapter 9, Setting Resources) The first pointer

action makes the text the PRIMARY selection (and it is available to be pasted in another

68 X Window System User's Guide

window using the pointer); the second pointer action additionally makes the text the CLIP-
BOARD selection (and it is automatically sent to the xdipboard window).

These guidelines still allow you to select text with the first pointer button alone, and that text

will be made the PRIMARY selection; however, the text will not automatically be sent to the

xdipboard. This enables you to make many selections, but to direct to the xdipboard only

those you consider important (perhaps those you might want to paste several times).

text

Figure 4-12. Selected text appears automatically in the xdipboard window

In order to allow you to store muluple text selections, the seemingly tiny xdipboard actually

provides multiple screens, each of which can be thought of as a separate buffer. (However, as

we'll see, a single text selection can span more than one screen.) Each time you use the

pointer to make text the CLIPBOARD selection, the xdipboard advances to a new screen in

which it displays and stores the text.

Once you have saved multiple selections, the client's Next and Previous command buttons

allow you to move forward and backward among these screens of text. The functionality of

the client's command buttons is summarized in Table 4-3. They are all selected by clicking

with the first pointer button.

Table 4-3. Command Buttons and Functions

Button Function

Quit Causes the application to exit.

Delete Deletes the current xdipboard buffer; the current screenful of

text is cleared from the window, and the next screenful (or previ-
ous, if there is no next) is displayed.

New Opens a new buffer into which you can insert text; the window is

cleared.

The xterm Terminal Emulator 69

Table 4-3. Command Buttons and Functions (continued)

Button Function

Next and Previous Once you have sent multiple selections to the xclipboard, Next

and Previous allow you to move from one to another (display

them sequentially). Before two or more CLIPBOARD selections

are made, these buttons are not available for use (their labels will

appear in a lighter typeface to indicate this).

The command buttons you will probably use most frequently are Delete, Next, and Previous.

When you select text using the first and third pointer buttons, the text will automatically be

displayed in the xclipboard window and will in effect be the first screenful of text (or first

buffer) saved in the xclipboard. Subsequent CLIPBOARD selections will be displayed and

saved in subsequent screens.

You select text from the xclipboard and paste it where you want it just as you would any text.

Just display the text you want in the xclipboard window, using Next or Previous as necessary.

Then select the text using the first pointer button and paste it using the second pointer button.

You can remove a screenful of text from the xclipboard by displaying that screenful and then

clicking on the Delete command button. When you delete a screenful of text using this com-
mand button, the next screenful (if any) will be displayed in the window. If there is no next

screenful, the previous screenful will be displayed.

Certain features (and limitations) of the xclipboard become apparent only when you make a

very large CLIPBOARD selection. Say you select a full xterm window of text with the first

and third pointer buttons, as described above. The text extends both horizontally and verti-
cally beyond the bounds of a single xclipboard screen. (As we suggested earlier, a CLIP-
BOARD selection can actually span more than one xclipboard screen. Pressing Delete will

remove all screenfuls comprising the selection.) When you make a selection that extends

beyond the bounds of the xclipboard screen (either horizontally, vertically, or both),

scrollbars will be activated in the window to allow you to view the entire selection.

If the text extends both horizontally and vertically beyond the bounds of the xclipboard

screen, as it does in Figure 4-13, the window will display both horizontal and vertical

scrollbars. If the text extends beyond the screen in only one of these two ways, the window

will display either a horizontal or vertical scrollbar, as needed.* These scrollbars are selec-
tion-specific: they are only displayed so long as the current selection cannot be viewed in its

entirety without them. If you move to a previous or subsequent selection that can be viewed

without scrollbars, the scrollbars will be deactivated.

*An application created using the X Toolkit, which provides horizontal and vertical scrollbars, is described as a

viewport. See Chapter 7, Other Clients, for more information about viewports and other X Toolkit features.

70 X Window System User's Guide

(QU it J (Delete) (New) (:: j ̂ Previous)

The X window system is a netw

based graphic window system t

was developed at MIT in 1984.

Several versions of X have bee

developed, the most recent of v

Figure 4-13. xclipboard with scrollbars to view large text selection

Problems with Large Selections

If you experiment making large selections with xclipboard, you may discover what seems to

be a bug in the program. Though in most circumstances, making a new selection causes the

screen to advance and display the new text, this does not happen reliably after a selection

vertically spanning more than one screenful. In these cases, the new selection is saved in the

xclipboard; however, the xclipboard window does not automatically advance to show you the

new current selection. Instead, the previous long selection is still displayed. This is a bit of

xclipboard sleight-of-hand. The new selection has been successfully made, but the appear-
ance of the window belies this fact. (The Next button will probably add to your confusion; it

will not be available for selection, suggesting that the text in the window is the last selection

saved. This is not the case.)

In order to get around this and display the actual current selection, press the Previous button.

The same long selection (which is, in actuality, the Previous selection) will again be

displayed. Then the Next button will be enabled, and you can click on it to display the actual

current selection.

Editing Text Saved In the xclipboard

You can edit text you send to the xclipboard using the same commands recognized by xedit.

These commands are described in the section "Text Editing Widget" of Chapter 7, Other

Clients. A small caret cursor will be visible in each screenful of text. You can move this cur-

sor by clicking the pointer where you'd like it to appear. Then you can backspace to delete

letters or type to insert them, or use any of the text editing commands described in Chapter 7.

When you edit a screenful of text, the xclipboard continues to store the edited version, until

you delete it or exit the program.

Be aware that, without performing customization, you can still use xclipboard on a very

simple level. You can paste text into and copy text from the xclipboard window just as you

would any other, using the pointer movements described earlier in this chapter. You can also

type in the xclipboard window, and then copy and paste what you've typed. Just move the

The xterm Terminal Emulator 71

pointer into the window and try typing. However, keep in mind that this is not the intended

use of the xclipboard.

If you do choose to use the clipboard in a limited way, it can still be a helpful editing tool.

For example, say you wanted to create a paragraph composed of a few lines of text from each

of two files. You could copy the text from each file using the pointer and paste it into the

xclipboard window. (Each time you paste text into the xclipboard window, the text is

appended to whatever text has already been pasted there.) Again using the pointer, you could

copy the newly formed paragraph from the xclipboard window and paste it into a file in

another window.

Release 3 xclipboard

xclipboard was first shipped as a part of the standard version of X in Release 3. If you are

using the Release 3 xclipboard, shown in Figure 4-14, you'll find that it's functionality is

considerably more limited than the Release 4 version.

Previous

Figure 4-14. The Release 3 xclipboard window

The Release 3 xclipboard can also be customized to receive the CLIPBOARD selection auto-
matically. However, this version of the xclipboard merely inserts each selection on the

line(s) following the previous one. The screen of the xclipboard will scroll forward as you

add more text, but at line intervals, not at full screen intervals as the Release 4 client does.

Thus, while the Release 4 xclipboard allows you to save multiple selections that are recog-
nized as such by commands like Delete, the Release 3 xclipboard only allows you to save

what is, in effect, a single, running selection. This limitation alone makes the Release 3

xclipboard far less useful than the Release 4 xclipboard.

But the Release 3 xclipboard has other serious limitations. It features only one functioning

command button, quit. The erase button in the window is not functional, and unfortunately,

no other key or combination of keys seems to clear the text from the xclipboard.

Unlike the Release 4 version, the Release 3 xclipboard does not recognize all of the text edit-
ing commands recognized by xedit. You can use all of the commands that move the cursor,

but none of the commands that delete text. Your only option to remove text is to select the

72 X Window System User's Guide

quit button, which closes the window without saving its contents, and open a new xclipboard

window.

You also cannot change or add to any text once it is placed in the window. You can type text

in the window, but not within any pre-existing selection. If you type text, the cursor will

automatically advance to the line below the last selection, and the new text will be displayed

there. If the last text in the window is text you typed in, the cursor will advance to the end of

that line and append the new typed text. (Note that since the cursor advances automatically

and you cannot edit any text, the xedit commands to move the cursor are virtually useless.)

Once you type text in, it is treated just like any other selection-it cannot be deleted or

edited in any way. Likewise, if you physically paste text in the window using the pointer

(rather than sending it automatically as the CLIPBOARD selection), it will appear after exist-
ing text and cannot be edited or deleted.

Despite these limitations, you can still use the Release 3 xclipboard on a very simple level as

a text editing tool. Whether you customize it to receive CLIPBOARD selections automati-
cally or not, the xclipboard can still be used as a storehouse for text. You can paste text into

and copy text from the xclipboard. You could use it to gather text from several areas, per-
haps forming a new paragraph to be pasted into one or more files. If you're a good typist

(since you cannot correct your errors), you could also enter text in the window and then copy

and paste what you've typed.

Terminal Emulation and the xterm Terminal Type

Anyone who has used a variety of terminals knows that they don't all work the same way. As

a terminal emulator, an xterm window must be assigned a terminal type, which tells the sys-
tem how the window should operate, that is, what type of terminal it should emulate. When

xterm is assigned an invalid terminal type, the window does not display properly at all times,

particularly when using a text editor, such as vi. If one of your login files (.login, .profile,

.cshrc, etc.) currently specifies a default terminal type, you will need to replace this with a

type valid for xterm. (If none of your login files specifies a terminal type, xterm automati-
cally searches the file of TERMCAP entries for the first valid entry.)

xterm can emulate a variety of terminal types, which are listed on the client reference page in

Part Three of this guide. An xterm window emulates a terminal most successfully when it

has been assigned the terminal type xterm. For the xterm terminal type to be recognized on

your system, the system administrator will have had to add it to the file containing valid

TERMCAP entries. (The xterm TERMCAP entry is supplied with the standard release of X.)

If this has not been done, the system will not recognize the xterm terminal type. In these

cases, try the vtlOO terminal type, which also generally works well, or use one of the other

types listed on the client reference page.

See Appendix A, System Management, and the xterm reference page in Part Three of this

guide for information about customizing the termcap file.

7770 xterm Terminal Emulator 73

Resizing an xterm Window

xterm sets the TERMCAP environment variable for the dimensions of the window you create.

Clients (including xterm) use this TERMCAP information to determine the physical dimen-
sions of input and output to the window.

If you resize an xterm window, programs running within the window must be notified so they

can adjust the dimensions of input and output to the window. If the underlying operating sys-
tem supports terminal resizing capabilities (for example, the SIGWINCH signal in systems

derived from BSD 4.3), xterm will use these facilities to notify programs running in the

window whenever it is resized. However, if your operating system does not support terminal

resizing capabilities, you may need to request explicitly that TERMCAP be updated to reflect

the resized window.

The resize client sends a special escape sequence to the xterm window and xterm sends back

the current size of the window. The results of resize can be redirected to a file that can then

be sourced to update TERMCAP. To update TERMCAP to match a window's changed dimen-
sions, enter:

% resize > filename

and then execute the resulting shell command file:

% source filename C shell syntax

or:

$. filename Bourne shell syntax

TERMCAP will be updated and the dimensions of the text within the window will be adjusted

accordingly.

If your version of UNIX includes the C shell, you can also define the following alias for

resize:

alias rs 'set noglob; eval 'resize'; unset noglob'

Then use rs to update the TERMCAP entry to reflect a window's new dimensions.

Note that even if your operating system supports terminal resizing capabilities, xterm may

have trouble notifying programs running in the window that the window has been resized.

On some older systems (based on BSD 4.2 or earlier), certain programs, notably the vi editor,

cannot interpret this information. If you resize a window during a vi editing session, vi will

not know the new size of the window. If you quit out of the editing session and start another

one, the editor should know the new window size and operate properly. On newer systems

(e.g., BSD 4.3 and later), these problems should not occur.

74 X Window System User's Guide

Running a Program in a Temporary xterm Window

Normally, when you start up an xterm window, it automatically runs another instance of the

UNIX Bourne or C shell (depending on which is set in your Xresources file or the SHELL

environment variable). If you want to create an xterm window that runs some other program,

and goes away when that program terminates, you can do so with the xterm -e option:

% xterm -« command [arguments]

For example, if you wanted to look at the file temp in a window that would disappear when

you quit out of the file, you could use the UNIX more program as follows:

% xterm -a more tamp

If you are using other options to xterm on the command line, the -e option must appear last.

This is because everything after the -e option is read as a command.

The xterm Terminal Emulator 75

5

Font Specification

This chapter describes what you need to know in order to select display fonts

for the various client applications. After acquainting you with some of the

basic characteristics of a font, this chapter describes the rather complex font

naming conventions and how to simplify font specification. This chapter also

describes how to use the xlsfonts, xfd, and xfontsel clients to list, display,

and select available screen fonts.

In This Chapter:

Font Naming Conventions 74

Font Families 75

Stroke Weight and Slant 78

Font Sizes 78

Other Information in the Font Name 81

Font Name Wildcarding 82

The Font Search Path 84

The fonts.dir Files 85

Font Name Aliasing 87

Making the Server Aware of Aliases 89

Utilities for Displaying Information about Fonts 89

The Font Displayer: xfd 89

Releases xfd 91

Previewing and Selecting Fonts: xfontsel 92

Previewing Fonts with the xfontsel Menus 92

Selecting a Font Name 96

Changing Fonts in xterm Windows 96

The Great Escape 96

The Selection menu item 98

Release 2 versus Subsequent Release Fonts 98

Font Specification in Release 2 98

5

Font Specification

Many clients allow you to specify the font used to display text in the window, in menus and

labels, or in any other text fields. For example, you can choose the font used for the text in

twm menus or in xterm windows.

Unfortunately, for the most part, there are no simple "font menus" like there are on systems

such as the Macintosh.* Instead, X has a fairly complex font naming system (which, like

most things about X, is designed for maximum flexibility rather than for simplicity or ease of

use). Of course, there will no doubt soon be many applications such as word processors and

publishing packages that provide a simple interface for selecting fonts. However, for the

clients in the X distribution, you are generally limited to selecting fonts via command line

options or resource specifications.

This wouldn't be so bad if a typical font name wasn't mind-bending at first glance. Imagine

typing this command line to create an xterm window whose text is to be displayed in 14-point

Courier bold:

% xterm -fn -adobe-courier-bold-r-normal-14-140-75-75-m-90-iso8859-l

Fortunately, you can use asterisks as wildcards to simplify this name to a somewhat more rea-
sonable one:

% xterm -fn '*courier-bold-r*140*'

and you can define even simpler aliases, so that you could end up typing a command line like

this:

% xterm -fn courierB14

In this chapter, we're going to try to make sense out of the sometimes bewildering jungle of

information about fonts under X. First, we'll explain the font naming convention in detail.

Along the way, we'll acquaint you with the appearance of some of the basic font families

(groups of related fonts), and the various permutations (such as weight, slant, and point size)

within each family.

*An exception is the VT fonts menu in the R4 xterm. But even then, you need to know a lot about font naming to

change the fonts on the menu.

Font Specification 79

Then, we'll talk about how to use font name wildcards to simplify font specification. We'll

also talk about the font search path (the directories where the font files are stored), and how

to define aliases for font names.

Finally, we'll talk about some of the utilities X provides for dealing with fonts:

" xlsfonts, which lists the names of the fonts available on your server, as well as any aliases.

" xfd (font displayer), which allows you to display the character set for any individual font

you specify on the command line.

" xfontsel (font selector), which allows you to preview fonts and select the name of the one

you want. (This name can then be pasted onto a command line, into a resource file, etc.)

Font Naming Conventions

In Release 2 and earlier, fonts were simply identified by the name of the file in which they

were stored, minus the .snf ("server natural format") extension. For example, the file

8x13.snf contained a font named 8x13.

However, starting with Release 3, a new logical font naming convention was adopted. As

we'll see in a moment, these logical font names allow for complete specification of all of the

characteristics of each font. Unfortunately, this completeness makes them somewhat difficult

to work with, at least until you learn what all the parts of the names mean, and get a handle

on which parts you need to remember, and which you can safely ignore. (By the end of this

chapter, you should have that knowledge.)

The xlsfonts client can be used to display the names of all the fonts available on your server.

When you run xlsfonts, you'll get an intimidating list of names similar to the name in Figure

5-1.

Upon close examination, this rather verbose name contains a great deal of useful informa-
tion: the font's developer, or foundry (Adobe), the font family (Courier), weight (bold), slant

(oblique), set width (normal), size of the font in pixels (10), size of the font in tenths of a

point (100 tenths of a point, thus 10 points), horizontal resolution (75-dpi), vertical resolution

(75-dpi), spacing (m, for monospace), average width (60-measured in tenths of a pixel, thus

6 pixels), and character set (iso8859-l).

As mentioned earlier, font name wildcarding can eliminate a lot of the unnecessary detail. If

you are already familiar with font characteristics, skip ahead to the section "Font Name

Wildcarding" later in this Chapter for some tips and tricks. If you need a refresher on fonts,

read on, as we illustrate and explain each of the elements that make up the font name.

80 X Window System User's Guide

vertical resolution in dpi

points (in tenths average width (in

foundry weight set width of a point) tenths of a pixel)

"adobe-courier-bold-o-normal--10-100-75-75-m-60-iso8859-l

I I

font family slant pixels spacing character set

horizontal resolution in dpi

Figure 5-1. Font name, Releases 3 and 4

Font Families

It has been several years since the advent of desktop publishing, and by now, it is unlikely

that anyone in the computer industry is unaware that text can be displayed on the screen and

printed on the page using different fonts.

However, the term font is used somewhat ambiguously. Does it refer to a family of typefaces

(such as Times® Roman or Helvetica®), which comes in different sizes, weights, and orien-
tations? Or should each distinct set of character glyphs be considered a separate font?

X takes the latter approach. When the documentation says that Release 3 includes 157 fonts,

and Release 4 more than 400, this sounds either intimidating or impressive, depending on

your mood. But, in fact, the R3 X distribution includes only six font families (Courier, Hel-
vetica, New Century Schoolbook®, Symbol, and Times), plus several miscellaneous fonts

that are found only in individual sizes and orientations.* R4 includes two more font families,

Lucida® and the Clean family of fixed width fonts, plus many more special purpose fonts.

When you think about it this way, you can quickly reduce the clutter. Figure 5-2 shows the

major families of commercial fonts that are available under X. To illustrate the fonts, we've

used the simple expedient of printing each font name in the font itself. Font names are trun-
cated to fit on the page.t (For those of you who don't read the Greek alphabet, the fourth line

down reads "-adobe-symbol-medium-r-normal--18 ..." This font is used for mathematical

equations and so forth, rather than for normal display purposes.)

*By contrast, the Macintosh supports dozens of font families, and commercial typesetters support hundreds, and in

some cases, even thousands of families. Many of these fonts will doubtless be made commercially available for X.

tTo generate the figures in this section and in Appendix E, Release 3 and 4 Standard Fonts, we wrote a short pro-
gram called xshowfonts, which displays a series of fonts in a scrollable window. In each case, we used wildcards

(discussed later in this chapter) to select the fonts we wanted, and then did screendumps of the resulting images.

Note that the fonts look better on the screen than they do in the illustration, since the scaling factor used to make the

screen dumps exacerbates the "jaggies" endemic to bitmap fonts.

Source code for xshowfonts is listed in Appendix E, along with the name of every font, printed in the font itself. Ap-
pendix E also includes complete character-set dumps of some of the more unusual fonts.

Font Specification 81

-adobe-courier-medium-r-normal-18-180-75-75-1

-adobe-helvetica-medium-r-normal-18-180-75-75-p-9£

-adobe-new century schoolbook-medium-r-normal-18-1

-a6ope-oY^poX-^EOiu^-p-vop^cd-18-180-75-75-Ti-107-a6

-adobe-times -medium -r -normal-18-180-75-75-p-94-iso88:

-b&h-lucida-medium-r-normal-sans-18-180-75-7

-b&n-lucidabrlght-rnediurn-i^-nornial-18-180-75-75-

-b&h-lucidatypewriter-medium-r-normal-sans-18

-bitstream-charter-medium-r-normal--19-180-75-75-p-106-isoc

Figure 5-2. The major commercial font families available in the standard X distribution

You'll notice that with the exception of Courier and Lucidatypewriter, all of the fonts in the

figure are proportionally-spaced. That is, each character has a separate width. This makes

them look good on a printed page, but makes them less appropriate for screen display in ter-
minal windows (especially for program editing), since text will not line up properly unless all

characters are the same width.

You will most likely use these proportional fonts for labels or menu items, rather than for

running text. (Word processing or publishing programs will, of course, use them to represent

proportional type destined for the printed page.)

Courier and Lucidatyperwriter are monospaced fonts. Every character has the same width.

Monospaced fonts can be used effectively for the text font in xterm windows. There are also

some special monospaced fonts originally designed for computer displays. You can think of

these as character cell fonts. They too are monospaced, but the spacing relates to the size of

a cell that contains each character, rather than (necessarily) to the character itself. Some of

these fonts were originally available in Release 2, and even in R3 they don't have the same

complex names as the proportional fonts. Instead, they have simple names expressing their

size in pixels. For example, in the font named 8x13, each character occupies a box 8 pixels

wide by 13 pixels high.

In R4, they were renamed to use the logical font naming conventions, with a foundry name of

"misc", and a font-family of "fixed." There are also one or two larger fixed fonts donated by

Sony for use with their extra-high resolution monitor, with a foundry name of "sony." Figure

5-3 shows the character cell fonts, using their R3 names, which still exist as aliases in R4.

(Not all of these fonts were available in R3.)

82 X Window System User's Guide

5x8

6x10

6x12

6x13

6xl3bold

6x9

7x13

7xl3bold

7x14

8x13

two aliases for 8xl3bold

the same font 8x16

9x15

9xl5bold

10x20

12x24

L- fixed

Figure 5-3. Miscellaneous fonts for xterm text

Table 5-1 shows the correspondence between these aliases and full font names. Note that the

6x13 font also has an alias called "fixed" defined for it. The "fixed" alias is used as the

default font for xterm windows. (Twelve-point Helvetica bold roman has the alias "variable"

and is used by default for labels such as those in the titlebar twm puts on windows.)

Table 5-1. Fixed Font Aliases and Font Names

Alias Filename

fixed -misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1

5x8 -misc-fixed-medium-r-normal--8-80-75-75-c-50-iso8859-l

6x9 -misc-fixed-medium-r-normal--9-90-75-75-c-60-iso8859-l

6x10 -misc-fi xed-medium-r-normal--10-100-75-75-c-60-iso8859-1

6x12 -misc-fixed-mediurn-r-semicondensed--12-110-75-75-c-60-iso8859-l

6x13 -misc-fixed-medium-r-semicondensed-13-120-75-75-c-60-iso8859-1

6xl3bold -misc-fixed-bold-r-semicondensed-13-120-75-75-c-60-iso8859-1

7x13 -misc-fixed-medium-r-normal--13-120-75-75-c-70-iso8859-l

7xl3bold -misc-fixed-bold-r-normal-13-120-75-75-c-70-iso8859-1

7x14 -misc-fixed-medium-r-normal" 14-130-75-75-c-70-iso8859-1

8x13 -misc-fixed-medium-r-normal--13-120-75-75-c-80-iso8859-l

8xl3bold -misc-fixed-bold-r-normal--13-120-75-75-c-80-iso8859-1

8x16 -sony-fixed-medium-r-normal--16-120-100-100-c-80-iso8859-l

Font Specification 83

Table 5-1. Fixed Font Aliases and Font Names (continued)

Alias Filename

9x15 -misc-fixed-medium-r-normal--15-140-75-75-c-90-iso8859-l

9xl5bold -misc-fixed-bold-r-normal--15- 140-75-75-c-90-iso8859-1

10x20 -misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-l

12x24 -sony-fixed-medium-r-normal--24-170-100-100-c-120-iso8859-1

R4 also includes the Clean family of fixed-width fonts from Schumaker, and DEC's terminal

fonts, both of which are illustrated in Appendix E, Release 3 and 4 Standard Fonts.

There are also many other special purpose fonts, such as the Greek Symbol font that we

already saw, the cursor font, the OPEN LOOK" cursor and glyph fonts, and Kana and Kanji

Japanese fonts. (The Kana and Kanji fonts can only be displayed with special hardware.)

See Appendix E for comprehensive lists of the these fonts, as well as pictures of the character

set in some representative fonts.

Stroke Weight and Slant

The characters in a given font family can be given a radically different appearance by chang-
ing the stroke weight or the slant, or both.

The most common weights are medium and bold. The most common slants are roman

(upright), italic, or oblique. (Both italic and oblique are slanted; however, italic versions of a

font generally have had the character shape changed to make a more pleasing effect when

slanted, while oblique fonts are simply a slanted version of the upright font. In general, serif

fonts (those with little decorations on the ends and corners of the characters) are slanted via

italics, while sans-serif fonts are made oblique.)

Figure 5-4 compares the medium and bold weights, and the roman and italic or oblique slants

in the Charter® and Helvetica font families.

Release 4 also includes one font that has an in-between weight called demibold. Weight

names are somewhat arbitrary, since a demibold weight in one family may be almost as dark

as a bold weight in another.

The font naming convention also defines two counter-clockwise slants, called reverse italic

(ri) and reverse oblique (ro), as well as a catch-all called other (ot).

Font Sizes

Font sizes are often given in a traditional printer's measure known as a point. A point is

approximately one seventy-second of an inch.

Most of the font families are provided in the six point sizes shown in Figure 5-5.

34 X Window System User's Guide

-adobe-helvetica-medium-o-normal-18- 180-75-75-p-98-

-adobe-helvetica-medium-r-normal-18-180-75-75-p-98-

-adobe-helvetica-bold-o-normal--18-180-75-75-p-104-

-adobe-helvetica-bold-r-normal-18-180-75-75-p-103

-bitstream-charter-medium-i-normol-l 9-180-75-75-p-l 03-isoS85

-bitstream-charter-medium-r-normal--19-180-75-75-p-106-iso8c

-bitstream-charter-bold-i-normal-l 9-180-75-75-p-l 1',

-bitstream-charter-bold-r-normal-19-180-75-75-p-ll!

Figure 5-4. The same fonts in different weights and slants

8 point -bit«lrt*m-ch4rttr.ni«<}ium-f-n»rm«l--8.80-75-75-p-45-i<»8$59-1

10 point -bitttream-charter-mediura-r-normal--l 0-100-75-75-p^56-i*o8859-l

12 point -bitstream-charter-medium-r-nonnal--l 2-120-75-75-p-67-iso8859-l

14 point -bitstream-charter-medium-r-normal--15-l 40-75-75-p-84-iso8859-1

is point -bitstream-charter-medium-r-normal--19-180-75-75-p-106

24 point -bitstream-charter-medium-r-normal--25-2^

Figure 5-5. The same font in six different point sizes

However, the size story doesn't end there. Note that some servers (such as Sun's combined

Xll/NeWS" server) support scalable outline fonts, which are device-independent, and thus

true to size regardless of the output device. But the standard X fonts are simply bitmaps.

Because of the different resolution of computer monitors, a font with a given nominal point

size might actually appear larger or smaller on the screen.

Most monitors on the market today have a resolution between 75 dots per inch and 100 dots

per inch (dpi). Accordingly, there are both 75-dpi and 100-dpi versions of a few of the fonts

in R3, and of most of them in R4. These separate versions of each font are stored in different

directories. By setting the font search path so that the appropriate directory comes first, you

can arrange to get the correct versions without having to specify them in the font name.* But

how do you tell which kind of monitor you have?

If you have the manufacturer's specs on your monitor, they might give you this figure. But

more likely, they'll give you the overall resolution in rows and columns. After measuring the

physical screen, you can do some rough calculations to arrive at the equivalent in dots per

*We'll talk about how to set the font search path later in this chapter.

Font Specification 85

inch. For example, the 16-inch monitor on the Sony NEWS workstation has an advertised

resolution of 1280 x 1024 pixels. The actual viewing area is approximately 13 inches wide

by 10 inches high. Dividing the resolution by the size, you come up with a vertical resolution

of 102.4 dpi and a horizontal resolution of 98.5 dpi.

The Sun 19-inch monitor, by contrast, has an advertised resolution of 1152 x 900. The hori-
zontal and vertical dimensions of the viewing area are approximately 13.75 x 10.75 inches.

This yields a resolution of about 84 dpi.

What happens if you select the wrong resolution for your monitor? Given the difference in

the pixel size, the same size font will appear larger or smaller than the nominal point size.

For example, consider the 75- and 100-dpi versions of the 24-point charter medium italic

font:

-bitstream-charter-medium-i-normal-25-240-75-75-p-136-iso8859-l

-bitstream-charter-medium-i-normal-33-240-100-100-p-179-iso8859-l

If you look at the pixel size field, you will notice that the height of the 75-dpi version is 25

pixels, while the height of the 100-dpi version is 33 pixels. If you use the 75-dpi version on

the Sun, you actually get something closer to 21.5 points (75/84*24); on a 100-dpi monitor,

you will actually get something closer to 18 points (75/100*24). We noticed this right away

when we first began using the Sony workstation. Because of its higher resolution, the font

size we had been using on the Sun appeared much smaller.

If you are working on a lower-resolution monitor, you can take advantage of this artifact to

display type as large as 32 points (the size that a 24-point 100-dpi font will appear on a

75-dpi monitor.) Figure 5-6 shows the 75- and 100-dpi versions of the same 24-point font, as

displayed on a Sun workstation with a 19-inch monochrome monitor. As shown, neither is

actually 24 points. The 75-dpi version is actually 21.5 points, as discussed above; the

100-dpi version is about 28.5 points.*

-adobe-new century schoolbook-medium-r-n

-adobe-new century schoolbook-m

Figure 5-6. The 100-dpi version of a 24-point font appears larger on a 75-dpi monitor

Note that the logical font naming convention allows for different horizontal and vertical res-
olution values. This would allow server manufacturers to support fonts that were "tuned" for

their precise screen resolution. However, the fonts that are shipped with the generic XI1 dis-
tribution all use the same horizontal and vertical resolution.

*Note that the differences are exaggerated further in printing the screen dump of this display, xpr lets you select a

scale factor, such that each pixel on the screen appears as scale pixels in the printout. Since the laser printer has a

300-dpi resolution, a scale factor of 4 would produce a true scale screen dump if the resolution on the Sun monitor

were truly 75 dpi by 75 dpi. Since it is actually 84 by 84, the printed image is enlarged by about 10%.

86 X Window System User's Guide

As suggested above, this resolution may not exactly match the actual resolution of any partic-
ular screen, resulting in characters that are not true to their nominal point size. In the case of

the Sony monitors, the actual resolution is quite close to the design of the 100-dpi fonts.

However, on the Sun monitor, neither the 75- nor 100-dpi fonts will be right. (Of course, if

you are using the Xll/NeWS server rather than the MIT sample server, you won't be using

bitmapped fonts at all, but scalable outline fonts, so this isn't a problem.)

Other Information in the Font Name

What we've already shown summarizes the most important information in the font name.

The remaining fields are explained below:

Foundry Font manufacturers are still referred to as foundries, from the days when

type was cast from lead. The X font naming convention specifies that the

foundry is the company that digitized or last modified the font, rather than

its original creator.

For the fonts contained in the standard X distribution, the foundry is not

terribly significant, since there are no cases where the same font family is

available from different foundries. However, there are numerous commer-
cial font families available from more than one foundry. In general, the

appearance of the fonts should be quite similar, since the font family

defines the design of the typeface. However, there may be some small dif-
ferences in the quality of some of the characters, and there may be more

significant differences in the font metrics (the vertical or horizontal mea-
surements of the characters). This might be significant for a publishing

application that was using the bitmapped font for a Wysiwyg screen display

that needed to match the fonts in a particular laser printer or typesetter.

Set width A value describing a font's proportionate width, according to the foundry.

Typical set widths include: normal, condensed, semicondensed, narrow,

double width. All of the Release 3 fonts and most of the Release 4 fonts

have the set width normal. A few of the Release 4 fonts have the set width

semicondensed.

Spacing All standard Release 3 fonts are either m (monospace, i.e., fixed-width) or p

(proportional, i.e., variable-width). In Release 4, fonts may also have the

spacing characteristic c (character cell, a fixed-width font based on the tra-
ditional typewriter model, in which each character can be thought to take

up the space of a "box" of the same height and width). As mentioned ear-
lier, the original R2 fonts were of this type.

Average width Mean width of all characters in the font, measured in tenths of a pixel.

You'll notice, if you look back at Figure 5-2, that two fonts with the same

point size (such as New Century Schoolbook and Times) can have a very

different average character width. This field can sometimes be useful if

you are looking for a font that is especially wide or especially narrow.

Font Specification 87

The Clean family of fonts from Schumacher offers several fonts in the same

point size, but with different average widths.*

Character set In the initial illustration of the font naming convention (Figure 5-1), we

identified the character set as a single field. If you look more closely,

you'll realize it is actually two fields, the first of which identifies the orga-
nization or standard registering the character set, the second of which iden-
tifies the actual character set.

Most fonts in the standard X distribution contain the string "iso8859-l" in

their names, which represents the ISO Latin-1 character set. The ISO

Latin-1 character set is a superset of the standard ASCII character set,

which includes various special characters used in European languages other

than English. See Appendix H of Volume Two, Xlib Reference Manual, for

a complete listing of the characters in the ISO Latin-1 character set.

Note, however, that the symbol font contains the strings "adobe-

fontspecific" in this position. This means that Adobe Systems defined the

character set in this font, and that it is font-specific. You can see from this

example that the usage of these fields is somewhat arbitrary.

Style Not represented in the example or in most R3 or R4 font names. However,

according to the logical font convention, the style of a font may be speci-
fied in the field between set width and pixels. Some of the possible styles

are / (informal), r (roman), serif and sans (serif). Note that the r for roman

may also be used in the slant field.

For a complete technical description of the font naming conventions, see the X Consortium

Standard, X Logical Font Description Conventions. This document is available as part of the

standard MIT X distribution, and is reprinted as Appendix M in the second edition of Volume

0, X Protocol Reference Manual.

Font Name Wildcarding

Prior to Release 3, the use of wildcards within font names was restricted to specifying fonts

to list with xlsfonts. If you are running Release 3 or Release 4, wildcarded font names can

also be used to specify the display font for a client, either on the command line or in a

resource specification.

An asterisk (*) can be used to represent any part of the font name string; a question mark (?)

can be used to represent any single character. You can usually get the font you want by spec-
ifying only the font family, the weight, the slant, and the point size, and wildcarding the rest.

For example, to get Courier bold at 14 points, you could use the command line option:

-fn '*courier-bold-r*140*'

*These fonts all (incorrectly to our minds) have a set width of "normal." They should be distinguished by set widths

such as condensed, semi-condensed, etc. Since they do not, they can be distinguished by the difference in their

average width.

88 X Window System User's Guide

That's starting to seem a little more intuitive!

However, there are a number of "gotchas."

" First, since the UNIX shell also has a special meaning for the * and ? wildcard characters,

wildcarded font names must be quoted. This can be done by enclosing the entire font

name in quotes (as in the previous example), or by "quoting" each wildcard character by

typing a backslash before it (If you don't do this, the shell will try to expand the * to

match any filenames in the current directory, and will give the message "No match.")

Wildcards need not be quoted in resource files.

" Second, if the wildcarded font name matches more than one font, the server will use the

first one that matches. And unfortunately, because the names are sorted in simple alpha-
betical order, the bold weight comes before medium, and italic and oblique slants before

roman. As a result, a specification like:

-fn '*courier*'

will give you Courier bold oblique, rather than the Courier medium roman you might

intuitively expect.

If you aren't sure whether your wildcarded name is specific enough, try using it as an

argument to xlsfonts. If you get more than one font name as output, you may not get what

you want. Try again with a more specific name string.

The exception to this rule has to do with the 75dpi and 100dpi directories. If a wildcard

matches otherwise identical fonts in these two directories, the server will actually use the

one in the directory that comes first in the font path. This means that you should put the

appropriate directory first in the font path. (We'll tell you how to do this in the next sec-
tion.) Thereafter, you can generally wildcard the resolution fields (unless you specifically

want a font from the directory later in the path).*

" Third, the * wildcard expansion is resolved by a simple string comparison. So, for

example, if you were to type:

-fn '*courier-bold*r*140*'

instead of:

-fn '*courier-bold-r*140*'

(the difference being the asterisk instead of the hyphen before the "r" in the slant field),

the "r" would also match the "r" in the string "normal" in the set width field. The result is

that you would select all slants. Since o (oblique) comes before r (roman), and you

always get the first font that matches, you'd end up with Courier oblique.

*Unlike xfonlsel, which displays fonts in the order of wildcard matches, xlsfonts will always list fonts in straight sort

order, with the sort done character-by-character across the line. Since size in pixels comes before point size in the

name, and the size in pixels of the 100-dpi fonts is larger than that of the equivalent 75-dpi font, the 75-dpi font will

always be listed first for a given point size. But when listing more than one point size, the fonts will be jumbled. For

example, the size in pixels of the 8-point charter font at 100-dpi is 11, so it will come after the 10-point charter font at

75-dpi, with a size in pixels of 10. The 8-point charter font at 75-dpi gets sorted to the very end of the list, since to a

character-by-character sort, its size in pixels (8) looks larger to the size in pixels of even the largest 100-dpi font (the

24-point, with a height of 33 pixels).

Font Specification 89

The trick is to be sure to include at least one of the hyphens to set the -r- off as a separate

field rather than as part of another string.

Even though a wildcarded name such as:

*cour*b*r-*140*

should get you 14-point Courier bold roman, we think it is good practice to spell out the

font family and the weight, and to use hyphens between adjacent fields. As usual, there

are exceptions: the Lucida family really has three subfamilies; you can get all three by

specifying the family as "Lucida*" rather than "Lucida-"; and you might certainly want

to abbreviate "New Century Schoolbook" to "New Century*" or "*Schoolbook."

" Font names are case-insensitive. "Courier" is the same as "courier."

Table 5-2 summarizes the values you can use to specify a unique font name (assuming only

the standard fonts are loaded). Choose one element from each column. Don't forget to

include the leading and trailing asterisks, and the hyphen before the slant.

Table 5-2. Essential Elements of a Font Name

* Family *
- Weight - Slant Point Size *

Charter Medium r (roman) 80 (8 pt.)

Courier Bold i (italic) 100(10pt.)

Helvetica Demibold o (oblique) 120(12pt.)

New century ri (reverse italic) 140(14pt.)

schoolbook

Symbol ro (reverse oblique) 180(18pt.)

Times ot (other) 240 (24 pt.)

Fixed (R4)

Clean (R4)

OPEN LOOK (R4)

Lucida (R4)

Terminal (R4)

The Font Search Path

In both Release 3 and Release 4, fonts are stored in three directories, as shown in Table 5-3.

90 X Window System User's Guide

Table 5-3. Standard Font Directories, Releases 3 and 4

Directory Contents

lusrlliblXl 1 Ifontslmisc Release 3: Six fixed-width fonts (also available in

Release 2), plus the cursor font.

Release 4: Sixty fixed-width fonts, including the six

available in Release 3, the cursor font, several Clean

family fonts provided by Schumacher, a Kanji font,

Kana fonts, and OPEN LOOK cursor and glyph

fonts.

lusrlliblXl 1 /fonts/75 dpi Fixed- and variable-width fonts, 75 dots per inch.

/usr/lib/Xll/fonts/100dpi Release 3: The Adobe Charter font family, 100 dots

per inch.

Release 4: Fixed- and variable-width fonts, 100 dots

per inch (all font families).

These three directories (in this order) comprise X's default font path.

Other directories can be added to the font search path, or its order can be rearranged, using

xset with the f p option. To completely replace the font path, simply specify a comma-

separated list of directories. For example, to put the 100dpi directory before the 75dpi direc-
tory, you might enter:

% xset fp= /usr/lib/Xll/fonts/ndsc,/usr/lib/Xll/font8/100dpi,\

/usr/lib/Xll/font8/75dpi

(Note that a space must follow the equal sign, and that the example above is broken onto two

lines escaped with a backslash only so that it can be printed within the page margins.) To

restore the default font path, type:

% xset fp default

Use the f p+ option to add a directory or list of directories to the end of the font path, or +f p

to add them at the start. Use -f p and f p- to delete directories from the beginning or end of

the font path.

For a complete listing of the fonts in each directory and samples of each font, refer to Appen-
dix E, Release 3 and 4 Standard Fonts.

The fonts.dir Files

In addition to font files, each font directory contains a file called fonts.dir. The fonts.dir files

serve, in effect, as databases for the X server. When the X server searches the directories in

the default font path, it uses the, fonts.dir files to locate the font(s) it needs.

Font Specification 91

Each fonts.dir file contains a list of all the font files in the directory with their associated font

names, in two-column form. (The first column lists the font file name and the second column

lists the actual font name associated with the file.) The first line in fonts.dir lists the number

of entries in the file (i.e., the number of fonts in the directory).

Example 5-1 shows a portion of thzfonts.dir file from the Release 4 lusrlliblXllIfontsl 100dpi

directory. As the first line indicates, the directory contains 200 fonts. The first group of fonts

listed below (up to the second ellipse) are available as of Release 4. They are all Courier

family fonts. (These fonts are 100-dpi equivalents of fonts that in Release 3 were only avail-
able in 75-dpi.) The second group of fonts shown in the list below (a few sizes from the

Charter family) are also available in the Release 3 100dpi directory.

Example 5-1. Subsection of the Release 4 fonts.dir file in /usr/lib/X11/fonts/100dpi

200

courBOOS.snf -adobe-courier-bold-o-normal--ll-80-100-100-m-60-iso8859-l

courBOlO.snf -adobe-courier-bold-o-normal-14-100-100-100-m-90-iso8859-l

courBO!2.snf -adobe-courier-bold-o-normal-17-120-100-100-m-100-iso8859-1

courBO14.snf -adobe-courier-bold-o-normal-20-140-100-100-m-110-iso8859-l

courBOlS.snf -adobe-courier-bold-o-normal--25-180-100-100-m-150-iso8859-l

courBO24.snf -adobe-courier-bold-o-normal-34-240-100-100-m-200-iso8859-l

courBOS.snf -adobe-courier-bold-r-normal--ll-80-100-100-m-60-iso8859-l

courBlO.snf -adobe-courier-bold-r-normal--14-100-100-100-m-90-iso8859-l

courB!2.snf -adobe-courier-bold-r-normal--l7-120-100-100-m-100-iso8859-1

courB14.snf -adobe-courier-bold-r-normal--20-140-100-100-m-110-iso8859-1

courBlS.snf -adobe-courier-bold-r-normal-25-180-100-100-m-150-iso8859-1

courB24.snf -adobe-courier-bold-r-normal-34-240-100-100-m-200-iso8859-l

courOOS.snf -adobe-courier-medium-o-normal--l1-80-100-100-m-60-iso8859-1

courOlO.snf -adobe-courier-medium-o-normal-14-100-100-100-m-90-iso8859-1

courO!2.snf -adobe-courier-medium-o-normal-17-120-100-100-m-100-iso8859-1

courO14.snf -adobe-courier-medium-o-normal-20-140-100-100-m-110-iso8859-l

courOlS.snf -adobe-courier-medium-o-normal--25-180-100-100-m-l50-iso8859-1

courO24.snf -adobe-courier-medium-o-normal--34-240-100-100-m-200-iso8859-1

courROS.snf -adobe-courier-medium-r-normal-Il-80-100-100-m-60-iso8859-l

courRlO.snf -adobe-courier-medium-r-normal-14-100-100-100-m-90-iso8859-l

courR12.snf -adobe-courier-medium-r-normal-17-120-100-100-m-l00-iso8859-1

courR!4.snf -adobe-courier-medium-r-normal--20-140-100-100-m-l10-iso8859-1

courRlS.snf -adobe-courier-medium-r-normal-25-180-100-100-m-150-iso8859-1

courR24.snf -adobe-courier-medium-r-normal-34-240-100-100-m-200-iso8859-l

charBIOS.snf -bitstream-charter-bold-i-normal-ll-80-100-100-p-68-iso8859-l

charBHO.snf -bitstream-charter-bold-i-normal-14-100-100-100-p-86-iso8859-1

charBI12.snf -bitstream-charter-bold-i-normal-17-120-100-100-p-105-iso8859-1

charBI14.snf -bitstream-charter-bold-i-normal-19-140-100-100-p-117-iso8859-l

charBI18.snf -bitstream-charter-bold-i-normal-25-180-100-100-p-154-iso8859-l

charBI24.snf -bitstream-charter-bold-i-normal-33-240-100-100-p-203-iso8859-l

92 X Window System User's Guide

The fonts.dir files are created by the mkfontdir client when X is installed, mkfontdir reads the

font files in directories in the font path, extracts the font names, and creates a. fonts.dir file in

each directory. It fonts.dir files are present on your system, you probably won't have to deal

with them, or with mkfontdir at all. If the files are not present, or if you have to load new

fonts or remove existing ones, you will have to create files with mkfontdir. Refer to Appen-
dix A, System Management, for details.

Font Name Aliasing

Another way to abbreviate font names is by aliasing (that is, by associating fonts with alter-
native names of your own choosing). You can edit or create a file called fonts.alias, in any

directory (or multiple directories) in the font search path, to set aliases for existing fonts. The

X server uses both fonts, dir files and fonts.alias files to locate fonts in the font path.

If you are running Release 3, there should already be an alias file in the misc directory.

Release 4 provides a default fonts.alias file for each of the three font directories. Take the

time to look at the contents of each of these files, since many of the existing aliases may be

easier to type than even wildcarded font names. You can also add aliases to the file, change

existing aliases, or even replace the entire file. However, this should be done with caution.

To play it safe, it's probably a good idea merely to add to existing fonts.alias files. If you're

working in a multi-user environment, the system administrator should definitely be consulted

before aliases are added or changed. Note that when you create or edit a. fonts.alias file, the

server does not automatically recognize the aliases in question. You must make the server

aware of newly created or edited alias files by resetting the font path with xset.

The fonts.alias file has a two-column format similar to thefonts.dir file: the first column con-
tains aliases, the second contains the actual font names. If you want to specify an alias that

contains spaces, enclose the alias in double quotes. If you want to include double quotes or

other special characters as part of an alias, precede each special symbol with a backslash.

When you use an alias to specify a font in a command line, the server searches for the font

associated with that alias in every directory in the font path. Therefore, a fonts.alias file in

one directory can set aliases for fonts in other directories as well. You might choose to create

a single aliases file in one directory of the font path to set aliases for the most commonly used

fonts in all the directories. Example 5-2 shows three sample entries that could be added to an

existing fonts.alias file (or comprise a new one).

Example 5-2. Sample fonts.alias file entries

xterm!2 -adobe-courier-medium-r-normal-12-120-75-75-m-70-iso8859-l

xterm!4 -adobe-courier-medium-r-normal-14-140-75-75-m-90-iso8859-l

xtermlS -adobe-courier-medium-r-normal-18-180-75-75-m-110-iso8859-l

As the names of the aliases suggest, these sample entries provide aliases for three fonts (of

different point sizes) that are easily readable in xterm windows. (We also recommend the

fixed-width font stored in the file 9xl5.snf* in the misc directory.) You can also use

*In Release 3, the actual name of this font is 9x75. The Release 4 name is:

-misc-fixed-medium-r-normal-15-140-75-75-c-90-iso8859-l

but is aliascd to 9x15 in the default fonts.alias file in the misc directory.

Font Specification 93

wildcards within the font names in the right-hand column of an alias file. For instance, the

alias file entries above might also be written:

xterm!2 *courier-medium-r-*-120*

xterm!4 *courier-medium-r-*-140*

xtermlS *courier-medium-r-*-180*

In Release 2 of X, a font name is equivalent to the name of the file in which it is stored, with-
out the .snf extension. In the previous edition of this book (which dealt primarily with

Release 3 of X), we recommended a method for emulating this convention. This involved

creating afonts.alias file containing the following line in every directory in the font path:

FILE_NAMES_ALIASES

You could then use a filename (without the .snf extension) to specify a font. Due to changes

implemented in the Release 4 server, X Window System developers are now discouraging

this practice.

If you would still like to emulate Release 2 conventions in Release 3 or Release 4, you must

explicitly assign every font name an alias corresponding to the name of the file in which it is

stored, without the .snf extension. This could actually be done rather easily by editing a copy

of each fonts.dir file and appending the copy to the fonts.alias file in the same directory. (If

you are running Release 3, remember that neither the 75dpi nor the 100dpi directory has a

default fonts.alias file. You may need to create one, rather than append to an existing one.

These aliases could also be appended to the fonts.alias file in the misc directory, since the

server searches all directories in the font path.)

Once the server is made aware of aliases, you can specify an alias on the command line. For

example, you can use a font name alias as an argument to yfd. If you've used an alias file or

files to emulate the Release 2 font naming conventions, you can display the font stored in the

file courR12.snf using the command:

% xfd -fn courR12

A special note about the misc directory: when X was configured for your system, a

fonts.alias file should have been created in this directory. The first two entries in this file are

shown below.

fixed -misc-fixed-medium-r-semicondensed-13-120-75-75-c-60-iso8859-l

variable -*-helvetica-bold-r-normal-*-*-120-*-*-*-*-*-*

The default file contains an additional 56 entries, but the entries pictured above are particu-
larly important. The aliases called "fixed" and "variable" are invoked as the default fonts for

many clients. The "fixed" font can be thought of as a system-wide default. The "variable"

font, described in the right-hand column as a 12-point bold Helvetica font, is used as the

default font by bitmap, as well as by other clients. If this file is removed or replaced, when

you run bitmap, you'll get an error message that the server cannot open the variable font, and

text in the bitmap window will display in the smaller, somewhat less readable "fixed" font.

If you do choose to edit the fonts.alias file in the misc directory, it is important to preserve at

least these two aliases. (As we've said, it's probably a better idea to keep all the default

entries and merely append any new ones.)

94 X Window System User's Guide

If you're running Release 3, the fonts.alias file in the misc directory will be somewhat differ-
ent. The Release 3 version of the fonts.alias file in the misc directory is comprised of only

the following two lines:

fixed 6x13

variable *-helvetica-bold-r-normal-*-*-140-*

Regardless of what edits you make to the file, the line specifying the variable alias must not

be changed.

The variable font is slightly larger in Release 3 (14-point) than in Release 4 (12-point). If

you examine the Release 3 alias file a little more closely, you may notice that the first line

contains an incorrect alias specification. Remember, in Release 3, fixed is actually the name

of the default system font-it is not an alias. The first column should contain aliases and the

second column should contain proper font names. However, 6x13 is not a proper font name.

It is actually the name of the file that contains the font named "fixed." You can specify fixed

as a font on the command line and it will work-but as a font name, not an alias.

Making the Server Aware of Aliases

After you create (or update) an alias file, the server does not automatically recognize the

aliases in question. You must make the server aware of newly created or edited alias files by

"rehashing" the font path with xset. Enter:

% xset fp rehash

on the command line. The xset option f p (font path) with the rehash argument causes the

server to reread the fonts.dir and fonts.alias files in the current font path. You need to do this

every time you edit an alias file. (You also need to use xset if you add or remove fonts. See

Appendix A, System Management, for details.)

Utilities for Displaying Information about Fonts

We've already mentioned xlsfonts, which simply displays the names and aliases of available

fonts. In addition, xfd can be used to display the full character set of a particular font, and

xfontsel can be used to interactively preview and select a font for use in another window.

The Font Displayer: xfd

If you're unfamiliar with general appearance of a particular font, we've included pictures of

some representative fonts in Appendix E, Release 3 and 4 Standard Fonts.

You can also display the characters in a font using the xfd (font displayer) client. Note that

since Release 3, xfd has taken an option, -f n, before the font name. For example, to display

the default system font, a 6x13 pixel fixed-width font known as fixed*, enter:

*In Release 3, fixed is a legitimate font name. In Release 4, it is an alias for a longer font name that follows the con-
ventions outlined above.

Font Specification 95

% xfd -fn fixed &

The xfd window will display the specified font as shown in Figure 5-7.

1 * * 4 'r * y 0 + B V j L
T i r 1

-
 -
 -
 -
 _ J j J.
 T 1 * ^ JT * f

! - ft $ Z 8, ' () * + -
, t /

0 1 2 3 4 5 6 7 8 9 * j < = > ?

i Pi B C D E F G H I J K I M N 0

p Q R S T U V U X Y z [\] A
 _

\

a b c d e f 9 h i j k I m n 0

""

p q r s t u V w X y z -C 1 > i

Figure 5-7. Fixed font, 6x13 pixels

This figure depicts the Release 4 version of xfd, which has been greatly enhanced since

Release 3. The font name is now displayed across the top of the window. (This is the actual

font name, which we specified on the command line by the alias fixed.) Three command but-
tons have also been added to the application in Release 4. They appear in the upper-left of

the window, below the font name. If the font being displayed doesn't fit within a single xfd

screen, Prev Page and Next Page allow you to scroll through multiple screens. (The horizon-
tal and vertical dimensions of the window can vary slightly to accommodate different fonts,

but certain fonts will still require multiple screens.) The Quit button causes the application to

exit, though this can also be done by typing q or Q anywhere within the window.

In addition to displaying a font, xfd also allows you to display certain information about the

individual characters. But before we examine these capabilities, let's take a closer look at

the way the characters in a font are identified and how the xfd window makes use of this

information.

Within a font, each character is considered to be numbered. The xfd client displays a font's

characters in a grid. By default, the first character of the font appears in the upper-left posi-
tion; this is character number 0. The two text lines above the grid identify the upper-left

character and the range of characters in the window, by character number(s) both in hexade-
cimal and in decimal notation (in parentheses following the hex character number).

You can specify a character other than character number 0 to be in the first position in the

window using the -start option. For example, if you enter the following command line:

% xfd -start 15 -fn fixed &

the xfd window begins with character number 15.

96 X Window System User's Guide

Notice the instruction Select a character below the command buttons. To display

information about a particular character, click any pointer button within its grid square.

Statistics about the character's width, left bearing, right bearing, ascent, and descent are

displayed where the line Select a character previously appeared.

If you are running the Release 3 version of xfd, read the section "Release 3 xfd."

The xfd client is most useful when you have an idea what font you might want to display. If

you don't have a particular font in mind or would like to survey the possibities, the xfontsel

client (available as of Release 4) allows you to preview a variety of fonts by specifying each

component of the font name using a different menu. See the section "Previewing and Select-
ing Fonts: xfontsel" later in this chapter.

Release 3 xfd

The Release 3 version of xfd is not as flexible or as self-explanatory as the Release 4 version.

It offers no command buttons, no line identifying the font name, and no obvious scrolling

capabilities. However, it is still very useful for looking at a particular font.

Like the Release 4 version, by default the Release 3 xfd displays character number 0 of the

font at the upper left of the window. To see a character's number, move the pointer to the

desired character and click the middle button. That character's number is displayed both in

decimal and in hexadecimal notation at the bottom of the window, as in the following:

85. (0x55) :

This version of xfd also accepts the -start option, which lets you specify the first character

of the font that appears at the upper left of the window.

Every character in the font may not fit in the window at once. Though this version of the

application does not feature the handy command buttons introduced at Release 4, you can

still view the obscured characters. To see additional characters, move the pointer to the xfd

window and click the third (usually the right) mouse button. The next window full of charac-
ters is displayed. To see the previous window of characters, click the first (usually the left)

mouse button, xfd beeps if an attempt is made to go back past the first (0) character.

The Release 3 xfd also provides statistics about the individual characters in a font, but you

must run the client with the -verbose option to access this information. Then, to see

information about a character's width, left bearing, right bearing, ascent, and descent, move

the pointer to the desired character and click the second (usually the middle) button. The

information is displayed in a portion of the window below the character grid.

To display the minimum or maximum values taken by each of these fields over the entire

font, move the pointer to the desired character and type a less than symbol (<) to display the

minimum values or a greater than symbol (>) to display the maximum. Information similar

to the following is displayed below the grid:

maximum bounds:

left bearing = 2, right bearing = 6

ascent= 10 , descent = 3

width = 6

Font Specification 97

To delete an xfd window that is running in the background, you can move the pointer to the

window and type either q, Q, or Control-C.

Previewing and Selecting Fonts: xfontsel

The xfontsel client, available as of Release 4, provides a font previewer window in which you

select the font to view using 14 menus corresponding to the 14 components of a font name.

By specifying various font name components, you can take a look at a variety of fonts. This

is particularly useful if you are trying to pick good display fonts and you don't have a very

clear idea what type of font would be best. Rather than running several instances of xfd, you

can dynamically change the font displayed in the xfontsel window by changing the font name

components. (Despite the flexibility of xfontsel, it's certainly not practical to preview all of

the available fonts. If you have no idea what particular font families look like, see the dis-
cussion earlier in this chapter, or refer to Appendix E, Release 3 and 4 Standard Fonts, for

complete listings.)*

Once you've displayed the desired font using the menus, you can make the name of that font

the PRIMARY text selection by clicking on the window's select button. (Selecting text is

described in Chapter 4, The xterm Terminal Emulator?) You can then paste the font name

into another window using the pointer: onto a command line, into a resource file, etc. Mak-
ing a font name the PRIMARY selection also enables you to choose that font from the xterm

VT Fonts menu, described in Chapter 4.

Previewing Fonts with the xfontse! Menus

To run xfontsel, enter the following command in an xterm window:

% xfontsel &

If your system is using the standard Release 4 fonts, the xfontsel window initially displays a

bold, constant-width, 7x13 pixel font, from the misc font directory, as shown in Figure 5-8.

This is the first font in the default font search path.

The upper-left corner of the xfontsel window features two command buttons: quit and

select. As we've explained, clicking on select (with the first pointer button) makes the font

displayed in the window the PRIMARY text selection. Obviously, quit causes the applica-
tion to exit.

Below the command buttons is, in effect, a generic font name or font name template. It is

divided into 14 fields corresponding to the 14 parts of a standard font name. Each field is an

abbreviation for one part of a font name. Take a look again at the sample font name in Figure

*To our minds, the major drawback of xfontsel is that it shows you only the first font that matches a given wildcarded

font name. A far better interface would list all of the matching fonts, so that you could compare and choose the one

that most suited your needs. There is no way in the standard X distribution to display the appearance of a group of

fonts. To produce the figures in this book, we had to write such a program, which we called xshowfonts. The pro-
gram has since been posted to compsourcesjc, and a listing appears in Appendix E.

98 X Window System User's Guide

quit select 474 fonts match

-fndry-fmly-wght-siant-sWdth-adstyl-pxls/.-ptSz-resx-resy-spc-avgWdth-rgstry-encdng

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789

Figure 5-8. xfontsel window displaying 7x13 bold font

5-1 to refresh your memory as to the components. Each of the fields in the xfontsel window

is actually the handle to a menu, which lets you specify this part of the font name.

To get a clearer idea of how this works, move the pointer onto the generic font name, specifi-
cally onto the first field, f ndry. (This is an abbreviation for the first part of a font name, the

foundry.) When you place the pointer on f ndry, the field title should be highlighted by a box.

You can then display a menu of foundry names by pressing and holding down the first pointer

button, as in Figure 5-9.

Notice that the first choice is the asterisk (*) wildcard character. This is the first choice on all

of the menus and thus allows you to include wildcards in the font name you specify, rather

than explicitly selecting something from all 14 menus.

To specify a font name component (i.e., make a selection from the menu), continue to hold

down the first pointer button and move the pointer down the menu. As the pointer rests on

each menu item, it is highlighted by reverse video. To select a highlighted menu item,

release the first pointer button.

The line below the font name menus represents the actual font name. When you first run

xfontsel, all of these fields contain wildcard characters because no menu selections have been

made. The number of fonts matched by the font name is displayed in the upper-right corner

of the window. The number of fonts matched initially depends on the number of fonts with

this naming convention available on your system. In this example, 474 fonts match. (Since

this line of wildcards can match any 14 part font name, the server chooses the first font in the

font path that reflects this naming convention.)

Font Specification 99

quit 1 1 select 474 fonts match

"

-fndry-fmly-wght-slant-sWdth-adstyl-pxlsz-ptSz-resx-resy-spc-avgWdth-rgstry-encdng

* ^ W 1 "«

misc

Schumacher

sony

sun

adobe

ABCDEFGHIJKLMNOPQRSTUVWXYZ

b&h

bitstream abcdefghijklmnopqrstuvwxyz
0123456789

dec

Figure 5-9. xfontsel window with foundry menu displayed

When you select a font name component from one of the 14 menus, the component appears

in the actual font name, and the xfontsel window displays the first font that matches this

name. For example, say we select adobe from the f ndry menu, the xfontsel window would

look like Figure 5-10.

quit 1 1 select 204 fonts match
M

"

-fndry-fmly-wght-slant-sWdth-adstyl-pxlsz-ptSz-resx-resy-spc-avgWdth-rgstry-encdng

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcde fghi j klmnopqrs t uvvxyz

0123456789

Figure 5-10. xfontsel after choosing Adobe from the foundry menu

100 X Window System User's Guide

The font name is now:

-adobe~* - * -* -* - *_*_*_* _*_*_*_*_*

and the window displays the first font in the font path to match this wildcarded name. In this

case, the first font to match is a 12-point bold Oblique Courier font, which is stored in the file

courBOlO.snfand has the actual font name:

-adobe-courier-bold-o-normal-*-10-100-75-75-m-60-iso8859-l

Once you make a selection from one menu, the number of possible fonts matched by the

name changes. (Notice the line 204 fonts match in the upper-right corner of the win-
dow.) Choosing one font name component also eliminates certain choices on other menus.

For example, after you select Abobe as the foundry, the possible choices for font family (the

second menu, fmly) are narrowed from 14 to 5 (not counting the asterisk). Again display the

fmly menu using the first pointer button. The available choices for font family appear in a

regular typeface; the items that cannot be selected appear in a lighter typeface. Families such

as Clean, Lucida, and Charter are in a lighter typeface because none of the standard X fonts

provided by Adobe are from these families. Adobe fonts in the standard X distribution are

limited to the five families Courier, Helvetica, New Century Schoolbook, Symbol, and Times,

and these are the items available on the fmly menu.

In order to display a particular font, you'll probably have to make selections from several of

the menus. As described earlier in the section "Font Name Wildcarding," we suggest you

explicitly select at least the following parts of the font name:

" Font family

" Weight

" Slant

" Point size

Thus, you would make selections from the fmly, wght, slant, and ptSz menus.

You can also use the -pattern option with a wildcarded font name to start out with a more

limited range of options. For example, if you typed:

% xfontsel -pattern '*couri«r-bold-o-*'

you'd start out with the pattern you specified in the filename template part of the xfontsel dis-
play. You could then simply select from the ptSz menu to compare the various point sizes of

Courier bold oblique until you found the one you wanted.

Note that if the pattern you specify to xfontsel matches more than one font, the one that is

displayed (the first match found) is the one that the server will use. This is in contrast to

xlsfonts, which sorts the font names. You can always rely on xfontsel to show you the actual

font that will be chosen given any wildcard specification.

Font Specification 101

Selecting a Font Name

Once you compose the name of the font you want by making selections from the menus, the

corresponding font is displayed in the xfontsel window. Then you can select that font name

by clicking on the select command button with the first pointer button. The font name

becomes the PRIMARY text selection and thus can be pasted in another window using the

second (usually the middle) pointer button, as described in Chapter 4, The xterm Terminal

Emulator.

You might paste the font name on a client command line in an xterm window, in order to

specify it as the client's display font. (See Chapter 8, Command Line Options.) You might

paste it into a resource file such as Xresources to specify it as the default font for a client or

some feature of a client (such as a menu). (See Chapter 9, Setting Resources, for more

information.)

Less obviously, once a font name is made the PRIMARY text selection, it can be toggled as

the xterm display font using the Selection item of the xterm VT Fonts menu. The Selection

menu item can only be chosen from the VT Fonts menu when there is a PRIMARY text selec-
tion. (Otherwise, the menu item appears in a lighter typeface, indicating that it is not avail-
able.) If the PRIMARY text selection is a valid font name (as it is when you've pressed the

select button in the xfontsel window), the xterm window displays in that font. (In cases

where the PRIMARY selection is not a valid font name, the xterm display font does not

change.)

By default, xfontsel displays the lower and uppercase letters a through z and the digits 0

through 9. You can specify alternative sample text using the -sample option. For more

information about this and other options, see the xfontsel reference page in Part Three of this

guide.

Changing Fonts in xterm Windows

As discussed in Chapter 4, The xterm Terminal Emulator, xterm includes a VT Fonts menu

that allows you to change fonts on the fly. We discussed most of the menu entries in Chapter

4. However, two of the many items require a greater understanding of font naming than we'd

covered by that point. So we've saved them until now.

The Great Escape

Though it is by no means obvious, xterm allows you to change the display font by sending an

escape sequence, along with the new font name, to the terminal window. Once you change

the font in this way, the Escape Sequence item on the xterm VT Fonts menu becomes avail-
able and choosing it toggles the font you first specified with the escape sequence. (In effect,

whatever font you specify using the escape sequence is stored in memory as the menu's

Escape Sequence font selection.)

You send an escape sequence to the terminal window by using the UNIX echo(\) command.

The escape sequence to change the xterm display font is comprised of the following

keystrokes:

102 X Window System User's Guide

Esc] 50 ; fontname Control-G

To clarify, these keystrokes are: the Escape key, the right bracket (]), the number 50, a semi-
colon (;), a fontname, and the Control-G key combination. We've shown the keystrokes

with spaces between them for readability, but when you type the sequence on the command

line, there should be no spaces. Note also that to supply this sequence as an argument to

echo, you must enclose it in quotes:

% echo "Esc] 50; /bntna/neControl-G"

These are the literal keys you type. However, be aware that when you type these keys as

specified, the command line will not look exactly like this. Certain keys, like Escape, and

key combinations, like Control-G, are represented by other symbols on the command line.

When you type the key sequence above, the command line will actually look like this:

% echo "~[]SO; fontname"G"

Typing the Escape key generates the "[symbol and typing the Control-G key combination

generates "G. You can use a full fontname, an alias, or a wildcarded font specification as the

fontname. You should be aware that if the wildcarded specification matches more than one

font, you will get the first font in the search path that matches. For example:

% echo "*[]50;*courier*"G"

will get you a 10-point courier bold oblique. The advantage of being able to change the dis-
play font with an escape sequence is that it allows you to add another font to your choices on

the fly.* Changing the fonts associated with the Tiny, Small, Medium, and Large menu items

is a more laborious process. It involves specifying other fonts in a resource file, making

those resources available to the server, and then running another xterm process. (See Chapter

9, Setting Resources, for more information.) However, you can change the font specified by

the Escape Sequence menu item as often as you want during the current xterm process, sim-
ply by typing the escape sequence described above.

Now that we've looked at the mechanics of the escape sequence, let's consider its practical

use. Say you want to run a program in an xterm window and you want to be able to read the

output easily, but you would like the window to be moderately small. You discover that tog-
gling the Medium font, the 8x13 font by default, makes the window a good size, but the

typeface is too light to be read easily. (We presume you are using the default menu fonts and

have not customized them using a resource file.) You could dynamically change the display

font to a bold font of the same size by entering the following command line:

% echo "Esc]50;8xl3boldControl-G"

The xterm font becomes the desired 8xl3bold, a good choice; in addition, the Escape

Sequence item of the VT Fonts menu becomes available for selection. This menu item

allows you to toggle the 8xl3bold font at any time during the xterm process. Thus, you

could switch back to any of the other fonts available on the menu (Small, Large, etc.) and

then use Escape Sequence to again select 8xl3bold.

*Specifying a font with an escape sequence affects only the current xterm window and enables only that window's

Escape Sequence menu selection.

Font Specification 103

This font will remain the Escape Sequence font for the duration of the xterm process, unless

you again change the display font with an escape sequence. If you enter another font name

using the escape sequence described above, the window will display in that new font and the

Escape Sequence menu item will toggle it

The Selection Menu Item

The Selection menu item allows you to toggle a font whose name you've previously

"selected." The font name could be selected with the pointer, for example, from xlsfonts out-
put, using the "cut-and-paste" techniques described in Chapter 4, The xterm Terminal Emula-
tor. It is far more likely, though, that you would use this menu item after selecting a font

with xfontsel. This menu item was clearly designed with xfontsel in mind. (If no text is cur-
rently selected, this menu item is "grayed out," indicating that it is unavailable.)

The main limitation of this menu item is that it uses the last text selected as the font name,

regardless of what that text is. If you select a font name, that name is only available through

Selection until you use the pointer to select other text. Since cutting and pasting text is one

of the most useful features of xterm, you will probably be making frequent selections. If the

last selected text was not a valid font name, toggling Selection will not change the display

font, and a beep will inform you that the toggle failed.

Release 2 versus Subsequent Release Fonts

The primary intent of this guide is to describe the features of Release 4 of the standard X

Window System shipped by MIT. However, we assume that many people are still using

Release 3 and that some are still using Release 2. The available display fonts, font naming

conventions, and possible system administration tasks supporting fonts changed radically

from Release 2 to Release 3. For those who have been using Release 2 display fonts, switch-
ing to Release 3 or 4 may take some adjustment. The following two sections will acquaint

you with the differences between Release 2 fonts and the fonts provided in later releases and

show you how to work effectively with the fonts you have.

Font Specification in Release 2

All Release 2 screen fonts are stored in a single directory called lusrlliblXl 11 fonts * If you

do a listing of that directory, you'll see a list of filenames with .snf extensions. These are the

font files. In Release 2, the name of a font is equivalent to the name of the file in which it is

stored, without the .snf extension.

Thus, the file fg-16.snf con tains the font fg-16. To create an xterm window in which text will

be displayed with the font named fg-16, type the command line:

*At Release 3, most Release 2 fonts were moved from the standard distribution of X to the user-contributed

distribution.

104 X Window System User's Guide

% xterm -fn fg-16 6

You can find out which fonts are available by using the xlsfonts client. If you type

xls fonts in an xterm window, you should get a list of the available fonts, which are sum-
marized in Table 5-4.

Table 5-4. Fonts in the Standard Distribution, Release 2

Fixed-width Fonts Variable-width Fonts

6x10 fgbl-25 oldera apl-s25 hbr-s40 vg-25 vr-30

6x12 fgbl-30 rot-si 6 arrow3 krivo vg-31 vr-31

6x13 fgi-20 sans 12 chp-s25 met25 vg-40 vr-40

8x13 fgil-25 sansb!2 chs-s50 mit vgb-25 vrb-25

8xl3bold fgs-22 sansi!2 cursor plunk vgb-31 vrb-30

9x15 fixed seriflO cyr-s25 runlen vgbc-25 vrb-31

crturz fqxb-25 serif 12 cyr-s30 stan vgh-25 vrb-35

dancer fr-25 serifblO cyr-s38 sub vgi-20 vrb-37

fg-13 fr-33 serifb!2 ent subsub vgi-25 vri-25

fg-16 frl-25 serifilO fcor-20 sup vgi-31 vri-30

fg-18 fr2-25 serifi!2 fgb-13 supsup vgl-40 vri-31

fg-20 fr3-25 stempl fgb-25 sym-s25 vgvb-3 1 vri-40

fg-22 frb-32 swd-s30 fri-33 sym-s53 vmic-25 vsg-114

fg-25 ipa-s25 vtbold fril-25 variable vply-36 vsgn-57

fg-30 Iat-s30 vtsingle ger-s35 vbee-36 vr-20 vshd-40

fg-40 micro xif-s25 grk-s25 vctl-25 vr-25 vxms-37

fgl-25 grk-s30 vg-13 vr-27 vxms-43

hbr-s25 vg-20

These fonts are divided into fixed-width fonts (typewriter style) and variable-width

fonts (proportional). Use only fixed-width fonts for text in an xterm window. (Variable-

width fonts would be treated as fixed-width, and would be spaced unevenly.) Use variable-

width fonts only with programs designed to use them, such as a PostScript previewer or

Wysiwyg* editor.

The characters in each font can be displayed using the xfd client. To display the default font,

a 6x13 pixel fixed-width font named fixed, type:

% xfd fixed

The resulting xfd window is shown in Figure 5-11.

When a font is referenced by an X client, the font is taken from the directory

lusrlliblXll I fonts unless an explicit path name to another font directory is provided. You can

specify an alternative font path using the f p option to xset, as described in Chapter 11, Setup

Clients.

*This is an acronym for "what you see is what you get" and describes a type of text editor or word processor that dis-
plays the page exactly as it would appear in print. MacWrite® is a Wysiwyg program.

Font Specification 105

1 * ?: J F % V 0 + V V j L
T i r 1

-
 -
 -
 _ } i 1
T 1 < > TT x f

i 11 # i Z e, ' () * -»- -
r + /

0 i 2 3 4 5 6 7 S 9 * j < - > ?

i A B C n E F G H I J K L M N 0

p Q R s T U V U X Y z [\] ."-".

*

B b c d e f 9 h i j k 1 rn n 0

p q r s t u V w X y z < 1 > M 1

Figure 5-11. Default font, fixed

When a font is referenced by an X client, the font is taken from the directory

lusrlliblXlllfonts unless an explicit path name to another font directory is provided. You can

specify an alternative font path using the f p option to xset, as described in Chapter 11, Setup

Clients.

106 X Window System User's Guide

6

Graphics Utilities

This chapter describes how to use the major graphics clients included with X,

notably the bitmap editor.

In This Chapter:

Creating Icons and Other Bitmaps 109

Bitmap Editing Commands 111

Pointer Commands 112

Bitmap Command Boxes 112

Acting on the Entire Grid: Clear All, Set All, Invert All 112

Acting on an Area: Clear Area, Set Area, Invert Area 114

Copy Area, Move Area, Overlay Area 115

Drawing: Line, Circle, Filled Circle 116

Filling in a Shape: Flood Fill 117

Hot Spots: Set Hot Spot, Clear Hot Spot 117

Saving and Quitting: Write Output, Quit 117

Creating a Bitmap from a Cursor 119

Magnifying Portions of the Screen: xmag 122

Quitting xmag 123

What xmag Shows You 123

Dynamically Choosing a Different Source Area 125

Graphics Utilities

The standard release of X includes four utilities to help you create bitmap images: bitmap,

bmtoa, atobm, and xmag. The most powerful and useful of these clients is bitmap, a program

that lets you create and edit bitmap files. The following sections include detailed instructions

for using the bitmap client.

The bmtoa and atobm clients are programs that convert bitmaps to arrays (of ASCII charac-
ters) and arrays to bitmaps. They are used to facilitate printing and file manipulation and can

help you convert a font character to a bitmap.

In a sense, the xmag client is a desk accessory for graphics programs. This client is used to

magnify a portion of the screen, assisting you in creating images with a graphics editor, such

as bitmap.

Creating Icons and Other Bitmaps

The bitmap program allows you to create and edit small bitmaps. A bitmap is a grid of pix-
els, or picture elements, each of which is white, black, or, in the case of color displays, a

color. You can use bitmap to create backgrounds, icons, and pointers.

At this point in X Window System development, bitmap is primarily a programming tool for

application developers. However, several applications allow you to design your own icon or

background pattern with bitmap, save it in a bitmap file, and specify that filename on the

command line.* For example, xsetroot (described in Chapter 11, Setup Clients) allows you

to specify a bitmap that will be used as the background pattern for the root window.

To invoke bitmap, type:

% bitmap filename &

An upper-left corner cursor appears on the screen for you to interactively place the bitmap

window, shown in Figure 6-1.

*There are many bitmaps included in the X distribution. These can be found in the directory /usr/include/Xl I/bit-
maps. Samples are shown in Appendix G, Standard Bitmaps.

Graphics Utilities 109

Figure 6-1. Bitmap window

The window that bitmap creates has three sections:

1. The largest section is the checkerboard grid, which is a magnified version of the bitmap

you are editing. The default-size grid is 16x16. If this grid isn't large enough for com-
fortable editing, resize the window. Each square on the grid will be enlarged proportion-
ally.

2. On the right-hand side of the window is a list of commands in command boxes that you

can invoke with any mouse button.

3. Beneath the commands is an actual-size picture of the bitmap you are editing; below this

is an inverted version of the same bitmap. Each time the grid changes, the same change

occurs in the actual-size bitmap and its inverse.

If you want to edit in a grid of different proportions than the default-size 16x16 grid, you can

specify wiDTHxHElGHT on the command line, after filename. For example, to create a

grid double the size of the default, enter:

% bitmap filename 32x32 &

Figure 6-2 shows a 40x40 grid with a bitmap we created of Gumby©. We think it makes a

fun root window pattern. (See the discussion of xsetroot in Chapter 11, Setup Clients, for

instructions on specifying a bitmap as your root window pattern.)

110 X Window System User's Guide

Figure 6-2. Gumby bitmap

Figure 6-2 shows our own rendition of Gumby, created using various bitmap editing com-
mands. The standard cursor font also contains a Gumby character. (You can specify the

Gumby cursor as the xterm window pointer, as described in Chapter 9, Setting Resources, or

as the root window pointer using the xsetroot client, as described in Chapter 11, Setup

Clients.) Later in this chapter, we'll show you how to convert the Gumby character of the

cursor font to a bitmap file, using the atobm client.

Bitmap Editing Commands

You can create and edit a bitmap using a combination of pointer commands and commands

that appear in boxes on the right-hand side of the window. The pointer commands work on

one square of the grid at a time, while the command boxes can work on the entire grid or a

specified area.

Graphics Utilities 111

Pointer Commands

When the pointer is in the checkerboard grid, each mouse button has a different effect upon

the single square under the pointer. You can hold down a mouse button and drag the pointer

to effect several squares in a row.

left button Changes a grid square to the foreground color and sets the corresponding

bitmap bit to 1. (On a monochrome display, background color means

white and foreground color means black.)

middle button Inverts a grid square, changing its color and inverting its bitmap bit.

right button Changes a grid square to the background color and sets the corresponding

bitmap bit to 0.

Bitmap Command Boxes

To invoke any bitmap command, move the pointer to the appropriate command box and click

any button, bitmap does not have an Undo command. Once you have made a change, you

cannot retrieve the original.

Acting on the Entire Grid: Clear All, Set All, Invert All

To Clear All, Set All, or Invert All, click on the appropriate command box.

Clear All Changes all the grid squares to the background color and sets all bit-
map bits to 0.

^H3JJ^32HBI

Set All

Clear Area

Qot AroQ

Invert Area

Move Area

f~\ 1 A

Line

Circle

Filled Circle

Figure 6-3. Clearing all

112 X Window System User's Guide

Set All Changes all the grid squares to the foreground color and sets all bit-
map bits to 1.

Clear All

Invert All

Clear Area

Set Area

| Invert Area

Copy Area

| Move Area

Overlay Area

L
I Circle'

Line

| Filled CircleT

Figure 6-4. Setting all

Invert All Inverts all the grid squares and bitmap bits, as if you had pressed the

middle button over each square.

Figure 6-5. Inverting all

Graphics Utilities 113

Acting on an Area: Clear Area, Set Area, Invert Area

Clear Area Clears a rectangular area of the grid, i.e., changes it to the back-
ground color, and sets the corresponding bitmap bits to 0.

Set Area Changes a rectangular area of the grid to the foreground color and

sets the corresponding bitmap bits to 1.

Invert Area Changes a rectangular area of the grid from the background color to

the foreground color or the foreground color to the background

color.

Clear All

Set All

Invert All

Set Area

Invert Area

Copy Area

Move Area

Overlay Area

Line

Circle

Filled Circle

Figure 6-6. Selecting an area to clear, set, or invert

The procedure to act on an area is as follows:

1. Click the pointer over the command (Clear Area, Set Area, or Invert Area). The pointer

turns into an upper-left corner.

2. Move the pointer over the upper-left corner of the area you want to clear, set, or invert.

Press and hold any button. The pointer changes to a lower-right corner.

3. Move the pointer to the lower-right corner of the area you want to act on. X's cover the

rectangular area as you move the pointer. Release the button.

If the pointer has changed to a lower-right corner and you wish to abort the command

without inverting an area, either click another button, move the pointer outside the grid,

or move the pointer above or to the left of the upper-left corner.

114 X Window System User's Guide

Copy Area, Move Area, Overlay Area

Copy Area Copies a rectangular area from one part of the grid to another.

Move Area Moves a rectangular area from one part of the grid to another.

Overlay Area Lays a rectangular area from one part of the grid over a rectangular

area in another part of the grid. Overlay is not a pixel-for-pixel

replacement, but those pixels that are clear (bitmap bits set to 0)

allow those pixels that are set (bitmap bits set to 1) to show through

the overlay.

Clear All

Set All

| Invert All

I Clear Area

Set Area

Invert Area

Copy Area

Overlay Area

L
I Circle'

Line

| Filled Circle

Figure 6-7. Selecting an area to copy, move, or overlay

The procedure to Copy Area, Move Area, or Overlay Area is as follows:

1. Click the pointer over the command (Copy Area, Move Area, or Overlay Area). The

pointer turns into an upper-left corner.

2. Move the pointer over the upper-left corner of the area you want to copy, move, or over-
lay. Press and hold any button. The pointer changes to a lower-right corner.

3. Move the pointer to the lower-right corner of the area you want to act on. X's cover the

rectangular area as you move the pointer. Release the button. The pointer changes to an

upper-left corner.

Graphics Utilities 115

4. Move the pointer to the desired location and click any button.

OR:

Press and hold any button to see the outline of the destination rectangle, move the pointer

to the desired location, then release the button.

5. To cancel an overlay, copy, or move command, move the pointer outside the grid and

release the button.

Drawing: Line, Circle, Filled Circle

When you use a drawing command, the drawing is always done in the foreground color.

Line Draws a line between any two points you select.

Circle Draws a circle. You specify the center and the radius.

Filled Circle Draws a filled circle. You specify the center and the radius.

Clear All

Set All

1 i . .I,

Clear Area

1 0 .

Invert Area

" 1 F A L/opy Area

Move Area

Overlay Area

Line

HEQ59H

Filled Circle

Figure 6-8. Selecting center and radius of circle

To draw a line or circle:

1. Click the pointer over the command Line, Circle, or Filled Circle. The pointer changes to

the dot cursor shape (")"

2. Move the pointer to the first point of the line or to the center of the circle. Click any but-
ton. An X fills the square which is the starting point of the line or center of the circle.

3. Move the pointer to the end point of the line or to the outside circumference of the circle.

Click any button. The graphic is drawn.

116 X Window System User's Guide

Filling in a Shape: Flood Fill

Flood Fill Fills all clear squares in a closed shape.

To fill a shape:

1. Click the pointer over the command Flood Fill. The pointer changes to the dot cursor

shape (")"

2. Move the pointer into the shape you want to fill.

3. Click on any clear square inside the closed shape and all clear squares are filled out to the

shape's border. If the shape is not closed, the entire grid will be filled.

Hot Spots: Set Hot Spot, Clear Hot Spot

Set Hot Spot Designates a point on the bitmap as the hot spot. If a program is

using your bitmap as a pointer, the hot spot indicates which point on

the bitmap will track the actual location of the pointer. For instance,

if your pointer is an arrow, the hot spot should be the tip of the

arrow; if your pointer is a cross, the hot spot should be that point at

which the perpendicular lines intersect.

Clear Hot Spot Removes a hot spot defined on this bitmap.

To set or clear a hot spot:

1. Click the pointer over Set Hot Spot or Clear Hot Spot.

2. Move the pointer to the location of the hot spot. Click any button. When a hot spot is

active a diamond (0) appears in the square.

Saving and Quitting: Write Output, Quit

Write Output Writes the current bitmap value to the file specified in the command

line. If the file already exists, the original file is first renamed to

filename'.

If either the renaming or the writing causes an error (e.g., permission

denied), a dialog box appears, asking if you want to write the file

Itmplfilename instead. If you click Yes, all future Write Output com-
mands in the current bitmap editing session write to Itmplfilename.

See the bitmap reference page in Part Three of this guide for infor-
mation on the format of the output file.

Graphics Utilities 117

Quit Terminates bitmap. If you have edited the bitmap and have not

invoked Write Output, or you have edited it since the last time you

invoked Write Output, a dialog box appears, asking if you want to

save changes before quitting. Yes does a Write Output before ter-
minating; No just terminates, losing the edits; Cancel means you

decided not to terminate after all.

You can also terminate bitmap by typing Control-C or q anywhere

in the window. If you have edited the bitmap and have not invoked

Write Output, a dialog window appears, asking if you want to save

changes before quitting.

Figure 6-9. Bitmap window with quit dialog box

118 X Window System User's Guide

Creating a Bitmap from a Cursor

The atobm and bmtoa clients allow you to convert arrays (of ASCII characters) to bitmap

files and to convert bitmap files to arrays. These clients are commonly used to facilitate

printing: a bitmap file that is converted to ASCII text can be printed more readily and can

also be included in standard ASCII text files. Once converted to ASCII, bitmap files can also

be more quickly copied or mailed to other directories or systems, where they can be used in

ASCII format or converted back to bitmap format.

Among their uses, the bmtoa and atobm utilities make it possible to convert a character from

a font, such as the cursor font, to the bitmap file format. Once converted, the file can be

edited using the bitmap client, and used as you would any other bitmap file: specified as the

root window pattern (with xsetroot), etc.

When a bitmap file is converted to ASCII text, it is in the form of an array consisting of two

types of characters. (An array is a number of elements arranged in rows and columns; it is

sometimes called a matrix.) One character represents set or filled squares of the bitmap (bit-
map bit 1) and the other character represents empty squares (bitmap bit 0). By default, the

number sign character (#) represents filled squares and the hyphen (-) represents empty

squares. Figure 6-10 shows the British pound sign character of the 9x15 font (in the misc

directory) as an array of these ASCII symbols.

-#t#-

-t-#

-t

ttm-

-tttt-

t-t-it

Figure 6-10. ASCII array representing the pound sign

As you can see, the array is a perfect rectangle. In a sense, the array is very similar to the bit-
map grid. (You can edit or create the array using an ASCII text editor, so long as you use the

standard two characters and keep the array rectangular.)

To convert the Gumby character of the cursor font to a bitmap, the first thing you must do is

display the cursor font as ASCII text This can be done with the showsnf client, which allows

you to display the contents of a font file (with a .snf extension). The -g option specifies that

arrays of all the characters in the font be displayed as well.

To display the cursor font with each character represented as an array, use showsnf, with the

font filename as an argument, and redirect output to a file called Itmplcursor.array:

% showsnf -g /usr/lib/Xll/fonts/misc/cursor.snf > /trap/cursor.array

Graphics Utilities 119

The cursor.array file contains information about the font and an array for each character.

Using your ASCII text editing program, edit the file, writing the Gumby array to another file

called I'tmp/gumby.array. The Gumby array is pictured in Figure 6-11.

-Illlll

tt-t #

###-#-#-#-1

-# #

If -t-ftt-f

fffff Illl -

- III ######

1 1 -III

#--###

1-I -l-llll

1-I-I-III

1-I -I

f 1 - #

-I 1 I -

-Illll-lllll -

Figure 6-11. Amp/gumby.array

You can then use the atobm client to convert this array to a bitmap. Use the gumby.array file

as an argument and redirect the output to a bitmap file:

% atobm /tiqp/gumby. array > /tmp/gumby.bitmap

Figure 6-12 shows the Gumby bitmap. As you can see from the bitmap, the Gumby character

of the cursor font is considerably smaller than the Gumby we created (Figure 6-2) with bit-
map.

If you want, you can then edit the gumby.bitmap file using the bitmap client.

If you specify the bitmap as the root window pattern, you'll notice that there is virtually no

space between the Gumby figures. This is because the array file had no extra hyphens (repre-
senting empty bitmap squares) padding it. If you want, you can add some hyphens to the

gumby.array file (keeping the image symmetrical) and then use atobm to create a more pad-
ded version of the bitmap. Figure 6-13 shows the gumby.array file after being padded with

hyphens.

See the bitmap reference page in Part Three of this guide for more information on the atobm

and bmtoa conversion clients.

120 X Window System User's Guide

IZl

tyd/t/ Aq pepped ABJJE'AqujnB "£/ -g

tttlt-tltft

-# # #-

1~#~#

-###-#-#-#

-####-! -1 - #

-### - # 1

-### - # #

-##t### ### -

-#tlt #####-

- #-###-# - ##-

1 #-tt-

#-!-#-#-###-

"# - ##"

-# #-

-######"

Magnifying Portions of the Screen: xmag

The xmag client enables you to magnify a portion of the screen. The close-up look xmag

affords can assist you in creating and editing bitmaps and other graphic images.

xmag is primarily a tool for application developers using sophisticated graphics programs.

But you could also use xmag in concert with the bitmap client. For instance, say you're run-
ning a program that creates a special image on the root window and you'd like to create a bit-
map file of a part of that image. You can display a magnification of the image you want with

xmag, and try to recreate the image by editing in an open bitmap window.

If you invoke xmag without options, you can interactively choose the area to be magnified

(the source area) and position the magnified image on your screen. At the command line,

type:

% xmag &

The pointer changes to a small cross (the crosshair cursor) in the center of a small, hollow

square with a wavering border. (By default, the square is 64 pixels on each side.) Move the

crosshair cursor, placing the square over the area you want to magnify, and click the first

mouse button.

The crosshair changes to an upper-left corner cursor, and the hollow square becomes

enlarged to the size of the magnified image. (By default, the image is magnified five times.)

Move the upper-left corner cursor, positioning the square where you want the magnified

image. Again click the first mouse button and the xmag window containing the magnified

bitmap image is displayed, as shown in Figure 6-14.

If you are using a window manager that provides titlebars, such as twm, the title string "Mag-
nifying Glass" will be displayed in the xmag window titlebar. This is the default title string

of the application.*

The default-size xmag window shows an area 64 pixels square, magnified five times. This

magnification enables you to see the individual pixels, which are represented by squares of

the same color as the corresponding pixels in the source image.

Rather than use the default source area and magnification, you can specify other values on

the command line. See the xmag reference page in Part Three of this guide for a complete

list of options.

*Applications written using the X Toolkit allow you to change the title string. See the section "Title and Name" in

Chapter 8, Command Line Options, for details. The xmag client was not written using the X Toolkit and provides no

method for changing the title string.

122 X Window System User's Guide

Figure 6-14. xmag window displaying magnified screen area

Quitting xmag

To exit the program, type q, Q, or Control-C in the xmag window.

What xmag Shows You

xmag enables you to determine the x and y coordinates, bitmap bit setting, and RGB color

value of every pixel in the xmag window. (See Chapter 8, Command Line Options, for a dis-
cussion of the RGB color model.) If you move the pointer into the xmag window, the cursor

becomes an arrow. Point the arrow at one of the magnified pixels and press and hold down

the first mouse button. Across the top edge of the window, a banner displays information

about the pixel, as shown in Figure 6-15.

Graphics Utilities 123

Figure 6-15. Displaying pixel statistics with xmag

The banner displays the following information about the specified pixel:

" The x and y coordinates relative to the window. The default xmag window is, in effect, a

grid of 64 squares on each side. Therefore, each pixel has x,y coordinates between 0,0

and 63,63.

" The bitmap bit setting. This is either 0, if the pixel is in the background color, or 1, if the

pixel is in the foreground color.

" The RGB value. This is a 16-bit value. The RGB specification is in three parts (of four

hexadecimal digits each), corresponding to the three primaries in the RGB color model.

If you are trying to create a graphic image on a grid (such as the bitmap client provides), the

x and y coordinates of each pixel can be especially useful. Also, the 16-bit RGB value speci-
fies the color of each pixel with incredible precision. Depending on the number of colors

available on your display, you can leam to use RGB values to specify an enormous range of

colors.

xmag provides these pixel statistics dynamically. If you continue to hold down the first

mouse button and drag the pointer across the window, the banner will display values for each

pixel as the pointer indicates it

Note that if you select a pixel near the top edge of the window, the banner will appear across

the bottom edge. Otherwise, the banner would obscure the pixel you are pointing at.

124 X Window System User's Guide

Dynamically Choosing a Different Source Area

If you want to magnify another portion of the screen using the same source area size and

magnification, you do not have to start xmag again. Simply move the pointer into the xmag

window and click the second or third mouse button, or press the space bar. The magnified

image disappears and again the cursor becomes a crosshair surrounded by a hollow square.

Move the crosshair cursor, placing the square over the new source area you want to magnify,

and click any mouse button. The magnified image is immediately displayed in the location

you placed the first image.

You can select any number of source areas during a single xmag session.

125

Graphics Utilities

7

Other Clients

This chapter gives an overview of other clients available with X, including

window and display information clients, printing utilities, the xkill program,

and several "desk accessories."

In This Chapter:

Desk Accessories 129

Clock Programs: xclock and oclock 130

A Scientific Calculator: xcalc 132

Terminating the calculator 133

Mail Notification Client: xbiff 133

Monitoring System Load Average: xload 134

Browsing Reference Pages: xman 135

Release 3 xman 138

Printing Utilities: xwd, xpr, xdpr 140

Killing a Client Window with xkill 141

Problems with Killing a Client 142

Window and Display Information Clients 144

Displaying Information about a Window: xwininfo 144

Listing the Window Tree: xlswins 146

Listing the Currently Running Clients: xlsclients 148

Generating Information about the Display: xdpyinfo 149

User-contributed Clients 150

X Toolkit Applications 150

Dialog Boxes and Command Buttons 151

Scrollbars 152

Selecting Information for Copying and Pasting 152

Vertical Panes 153

Viewports " 154

Text Editing Widget 154

7

Other Clients

In addition to twm and xterm, the MIT distribution includes many other clients. As X

becomes more widely available, there will doubtless be many applications available from

third parties, just as there are in the PC world.

The clients discussed in this chapter are grouped according to basic functionality, as follows:

" Desk accessories: xclock,oclock,xcalc,xbiff,xload,andxman.

" Printing utilities: xwd, xpr, and xdpr.

" Program to remove a client window: xkill.

" Window and display information programs: xwininfo, xlswins, xlsclients, and xdpyinfo.

" Alternative window managers and other user-contributed clients.

In addition, we've included a brief discussion of X Toolkit applications.

Most sections in this chapter are intended to acquaint you with the major features of some of

the available clients. Additional detailed information is provided on the reference pages for

each client in Part Three of this guide.

Desk Accessories

The clients xclock, oclock, xcalc, xload, xbiff, and xman can be thought of as desk acces-
sories. (Desk accessories is a term we've borrowed from the Macintosh environment, mean-
ing small applications available-and useful-at any time.)

You can start these clients from the command line in any xterm window, or, if you like, you

can add them to a twm menu (see Chapter 10, Customizing the twm Window Manager).

Other Clients

Clock Programs: xclock and oclock

The standard release of X includes two clients that display the time: xclock and oclock. The

oclock client has been added to the standard distribution of X in Release 4.

xclock continuously displays the time, either in analog or digital form, in a standard window.

The analog xclock shows a round 12-hour clock face, with lick marks representing the min-
utes. The digital xclock shows the 24-hour time (14:30 would be 2:30 PM) as well as the day,

month, and year. You can run more than one clock at a time. The analog clock is the default.

Figure 7-1 shows two xclock applications being run fan analog clock above a digital clock).

Wed Feb28 13:25:13 1990

Figure 7-1. Two xclock displays: analog clock above digital clock

Usually when you invoke xclock you will leave the clock running. However, if you experi-
ment with xclock to test si/e, location, or color, you will notice that there is no obvious way

to delete an unwanted clock. (Moving the cursor to the clock and pressing Control-C, Con-

trol-D, q, or Q doesn't work with xclock.) Actually, if you are running Release 2 or 3 of X,

the only way to kill the xclock process is as follows. First, display the current X processes

with the command:

% pa -aux | grep xclock

For System V, use the command:

% p» -" | grep xclock

and then kill the process number for the clock as described in Chapter 2, Getting Started.

If you are running Release 4 of X, and thus are using the twm window manager, you can

remove an xclock by using the Delete command of the Twm menu. (See Chapter 3, Using the

twm Window Manager, for more details.)

The oclock client (available as of Release 4) displays the time in analog form, on a round

12-hour clock face without tick marks. The only features of an oclock display are the round

clock outline, hour and minute hands, and the "jewel" marking 12 o'clock.

130 X Window System User's Guide

Figure 7-2. odock

v >--";-';

ore 3: xi ay to resize the

oclock, you'll dis>: -.":v<

Figure 7-3. Oblong oclock displays

Though the default colors for oclock are black and white, it was designed to be run in color.

The minute hand, hour hand, jewel, clock border, and background can all be set to a color.

using either command line options (as described in Chapter 8, Command Line . or by

specifying client resources (as described in Chapter 9, Setting Resourced. See the o

reference page in Part Three of this guide for the necessary command line options and C

suggestions.

As is the case with xclock, there is no simple way to remove an oclock window. Use the

UNIX commands ps, grep, and kill in the sequence described above.

The time displayed by both xclock and oclock is the system time set and displayed with the

UNIX date (I) command.

131

Other Clients

A Scientific Calculator: xcalc

xcalc is a scientific calculator that can emulate a TI-30 or an HP-IOC. Once you place the

pointer within the xcalc window, the calculator can be operated in two ways: with the

pointer, by clicking the first pointer button on the buttons in the calculator window, or with

the keyboard, by typing the same numbers and symbols that are displayed in the calculator

window. When using the first method, notice that the pointer appears as a small hand, ena-
bling you to "press" the buttons. Figure 7-4 shows xcalc on the screen.

DEG

x xA2 SORT CEC AC

(SUM) CO CO CO CO

©CDOGDCZ)

Figure 7-4. The default xcalc (TI-30 mode) on the screen

This is the version of the calculator provided with Release 4 of X. As you can see, it features

oval buttons. If you are running an earlier release, the calculator will have rectangular but-
tons and may also have darker background coloring. These differences do not affect func-
tionality. However, the Release 3 and Release 4 versions of xcalc do work somewhat differ-
ently. We've described some of those differences below. For additional information, see the

xcalc reference page in Part Three of this guide.

The long horizontal window along the top of the calculator is the display in which the values

are punched on the calculator and their results arc displayed. You can enter values either by

clicking on the calculator keys with the pointer, or by pressing equivalent keys on the key-
board. Most of the calculator keys have keyboard equivalents. The non-obvious equivalents

are described on the xcalc reference page in Part Three.

132 X Window System User's Guide

By default, xcalc works like a Texas Instruments TI-30 calculator. To interactively place

xcalc in this mode, type:

% xcalc £

You can also operate the calculator in Reverse Polish Notation (like a Hewlett-Packard

HP-IOC calculator), by typing:

% xcalc -rpn &

In Reverse Polish Notation the operands are entered first, then the operator. For example, 5

* 4 = would be entered as 5 Enter 4 *. This entry sequence is designed to minimize

keystrokes for complex calculations.

As of Release 4, xcalc allows you to select the number in the calculator display using the first

(left) pointer button and paste it in another window using the second (middle) button. See

Chapter 4, The xterm Terminal Emulator, for information about copying and pasting text

selections.

The Release 4 xcalc can also be resized. In prior releases, this was not possible.

Also as of Release 4, xcalc no longer emulates a slide rule.*

For more information on the function of each of the calculator keys, see the xcalc reference

page in Part Three of this guide.

Terminating the calculator

Terminate the calculator by either:

" Clicking the third pointer button (usually the rightmost button) on the TI calculator's AC

key or the HP calculator's ON key, or:

" Positioning the pointer on the calculator and typing q, Q, or Control-C.

Mail Notification Client: xbiff

xbiff is a simple program that notifies you when you have mail. It puts up a window showing

a picture of a mailbox. When you receive new mail, a beep is emitted from the keyboard, the

flag on the mailbox goes up, and the image changes to reverse video. Figure 7-5 shows the

xbiff mailbox before and after mail is received.

After you read your mail, the image changes back to its original state. Or you can click on

the full mailbox icon with any pointer button to change it back to empty. (Regardless of the

number of mail messages when you do this, xbiff remembers the current size of your mail file

to be the empty size.)

*If you are running an earlier release of X, you can operate xcalc as a slide rule by using the -analog option. You

drag the slide using the first pointer button. Be aware that the slide rule mode doesn't work very well. To terminate

the slide rule, use JW/(1), as described above forxclock. The slide rule emulation has been eliminated in Release 4.

Other Clients 133

No mail New mail has arrived

Figure 7-5. xbiff before and after mail is received

Monitoring System Load Average: xload

xload periodically polls the system for the load average, and graphically displays that load

using a simple histogram. By default, xload polls the system every 5 seconds. You can

change this frequency with the -update option. For example, if you type the following

command at an xterm window:

% xload -update 3 &

you can interactively place an xload window polling every 3 seconds.

your system

Figure 7-6. A sample xload window

If you are using both the local machine and remote machines, you can display loads for all

systems and do your processing on the system that is fastest at the time.

134 X Window System User's Guide

Browsing Reference Pages: xman

The xman client allows you to display and browse through formatted versions of manual

pages (reference pages). By default, xman lets you look at the standard UNIX manpages

found in subdirectories of the directory lusr/man. The standard version of X assumes there

are ten subdirectories: manl through man8, corresponding to the eight sections of manpages

in the UNIX documentation set; manl (man local) and mann (man new). You can specify

other directories by setting the MANPATH system variable. (The individual directory names

should be separated by colons.)

This section describes the version of xman provided with Release 4 of X. From a user's

viewpoint, the general operation of the client has not changed much since prior releases, but

the organization of menus and options has changed. If you are running Release 3 of X, read

this section for an idea of how the client works and then take a look at the next section,

"Release 3 xman," for a summary of the differences.

Regardless of the version of X, you run xman by typing:

% xman &

in an xterm window.

The initial xman window, shown in Figure 7-7, is a small window containing only a few com-
mands.

Figure 7-7. Initial xman window

This window is small enough to be displayed for prolonged periods during which you might

have need to examine UNIX manual pages. You select a command by clicking on it with the

first pointer button.

The Manual Page command brings up a larger window in which you can display a formatted

version of any manual page in the MANPATH. By default, the first page displayed contains

general help information about xman. Use this information to acquaint yourself with the cli-
ent's features. (The actual xman reference page in Part Three of this guide primarily

describes how to customize the client.)

135
Other Clients

Once you've opened this larger window, you can display formatted manual pages in it.*

Notice the horizontal bar spanning the top edge of the window. (If you're running twm or a

similar window manager, this bar appears beneath the titlebar provided by the window man-
ager.) The bar is divided into three parts, labeled Options, Sections, and Xman Help. The part

currently labeled Xman Help is merely informational and the text displayed in it will change

depending on the contents of the window. The parts labeled Options and Sections are actu-
ally handles to two xman menus.

If you place the pointer on the Options box and press and hold down the first button, a menu

called Xman Options will be displayed below. The menu is pictured in Figure 7-8.

Xman Options

Display Directory

Display Manual Page

Help

Search

Show Both Screens

Remove This Manpage

Open New Manpage

Show Version

Quit

Figure 7-8. Xman Options menu

The functionality of these options is described in the on-line xman help page. To select an

option, move the pointer down the menu and release the first button on the option you want.

The option you will probably want to use most frequently is the first one, Display Directory.

Display Directory lists the manpages in the current manpage directory (also called a "sec-
tion"). By default, this is manl, the user commands. When you list the contents of manl in

this way, the informational section of the horizontal bar reads Directory of: (1) User Com-
mands. You can then display a formatted version of any command reference page in the list

by clicking on the command's name with the first pointer button. Figure 7-9 shows the for-
matted reference page for the UNIX cd(\) command.

*Selecting the Help command also opens a large window in which the same help information is displayed. The Help

command is something of a dead end, however. You cannot display any other text in this window.

136 X Window System User's Guide

CD(1) USER Commands CD(1)

NAME

cd - change working directory

SYNOPSIS

cd directory

DESCRIPTION

Directory becomes the new working directory. The process must

have execute (search) permission ir. directory.

Because a new orocess is created to execute each cormand, cd

would be ineffective if it were written as a ncrr.al command.

It is a therefore recognized and executed by -he shells. In

csh (1) you .-nay specify a list of directories in which direc-
tory is to be sough- as subdirectory if it is net a sub-
directory of the current directory; see the description of

the cdpath variable in csh (1) .

SEE ALSO

csh(l), sh(l), pwd(l), chdir(2)

To display another manual page from the same directory, display the Xman Options menu

again. Select Display Directory, and the directory listing is again displayed in the window.

Then click on another command name to display its manual page in the window. (If you

decide not to display another manpage, you can remove the directory listing and go back to

the manpage previously displayed by using the second Xman Options menu selection, Display

Manual Page. Display Directory and Display Manual Page are toggles of one another.)

To display a manual page from another directory in the MANPATH, you must first change to

that directory using the second xman menu, Xman Sections. You bring up the menu by plac-
ing the pointer in the Sections box in the application's titlebar and holding down the first but-
ton. The Xman Sections menu lists the default directories of UNIX manual pages, as in

Figure 7-10.

137

Other Clients

Xman Sections

(1) User Commands

(2) System Calls

(3) Subroutines

(4) Devices

(5) File Formats

(6) Games

(7) Miscellaneous

(8) Sys. Administration

(I) Local

(n) New

(o) Old

Figure 7-10. Xman Sections menu

You can select another directory of manpages from which to choose with the first pointer but-
ton. Once you select a directory, the files in that directory are listed in the window. Again,

you display a page by clicking on its name with the first pointer button.

You can display more than one "browsing" window simultaneously by selecting the Open

New Manpage option from the Xman Options menu. An additional manpage window will be

opened, again starting with the help information.

You can remove a browsing window by selecting the Remove This Manpage option from the

Xman Options menu. (Prior to Release 4, selecting this option resulted in an error and caused

the xman program to exit.)

Selecting Quit from the Xman Options menu or from the initial xman window causes the cli-
ent to exit.

Release 3 xman

In the Release 3 version of xman, the horizontal bar spanning the top of the browsing window

merely contains information about the contents of the window. It is not divided and it does

not contain obvious text handles to any menus.

Though it may not be readily apparent, you can access the Xman Options menu simply by

placing the pointer in the horizontal bar. You can then display manpages from the default

directory by following the steps outlined in the previous section. Xman Options is the only

menu directly accessible from the horizontal bar.

The Release 3 Xman Options menu differs slightly in options and organization from the

Release 4 menu. The Release 3 menu is pictured in Figure 7-11.

138 X Window System User's Guide

Xman Options

Change Section

Display Directory

Display Manual Page

Help

Search

Show Both Screens

Remove This Manpage

Open New Manpage

Quit

Figure 7-11. Release 3 Xman Options menu

Again, you can acquaint yourself with the various options by reading the help information

displayed on the initial manual page. Most of the options and functionality are the same as

described above for Release 4.

The most significant difference is the method of changing directories within the MANPATH.

As we've seen in the Release 4 version of xman, this is accomplished through the Xman Sec-
tions menu, which is accessible directly from the horizontal bar. In the Release 3 version, in

order to change directories you must first bring up the Xman Options menu. Then select the

first option, Change Section (which has been removed from the Release 4 menu). A sub-
menu of Xman Options, called Manual Sections, will be displayed. This sub-menu is the R3

equivalent of the R4 Xman Sections menu.

Like Xman Sections, the Manual Sections menu lists the default directories of UNIX manual

pages. You can select an alternate directory by the method described in the previous section.

The Release 3 version of xman has one serious limitation. Selecting the option Remove This

Manpage from the Xman Options menu results in an error and causes the xman program to

exit. (This error has been corrected in Release 4.)

139

Other Clients

Printing Utilities: xwd, xpr, xdpr

xwd stores window images in a formatted window dump file. This file can be read by various

other X utilities for redisplay, printing, editing, formatting, archiving, image processing, etc.

To create a window dump file, type:

% xwd > file

The pointer will change to a small crosshair. Move the crosshair pointer to the desired win-
dow and click any button. The keyboard bell rings once when the dump starts and twice in

rapid succession when the dump is finished.

To make a dump of the entire root window (and all windows on it), use the -root option, as

in the following:

% xwd -root > file

When you select a single window, by default xwd takes an image of the window proper. As

of Release 4, to include a window manager frame or titlebar, use the -frame option.

To redisplay a file created with xwd in a window on the screen, use the xwud client, an

wndumping utility. Specify the dump file to display as an argument to the -in option, as in

the following:

% xwud -in file

Then remove the image be typing Control-C in the xterm from which you started xwud.

xpr takes as input an X Window System dump file produced by xwd and converts it to a

printer-specific format that can be printed on the DEC LN03 or LA 100 printer, a PostScript

printer such as the Apple LaserWriter, the IBM PP3812 page printer, and as of Release 4, the

HP LaserJet (or other PCL printers) or the HP PaintJet. By default, output is formatted for

the DEC LN03 printer. Use the -device option to format for another printer. For example,

to format a window dump file for a PostScript printer, type:

% xpr -device ps file > file.ps

Other options allow you to change the size, add headers or footers, and so on. See the xpr

reference page in Part Three of this guide for details.

You can use xwd and xpr together, using the standard UNIX pipe mechanism. For example:

% xwd | xpr -device ps | Ipr

The xdpr command rolls these three separate commands into one. See the xdpr reference

page in Part Three of this guide for details.

Note that when you start piping together the output of X clients, you run into some ambigui-
ties. For example, if you pipe the output of xwd to xpr, and for some reason, the xpr com-
mand fails, xwd will still be there waiting for pointer input. The original UNIX pipe mecha-
nism doesn't have the concept of data dependent on pointer input! The integration of the

UNIX model of computing (in which standard input and output are always recognized), and

the window model, is not always complete, leading sometimes to unexpected behavior.

140 X Window System User's Guide

As an even more flagrant example, you can create a pipe between two programs the first of

which doesn't produce standard output, and the second of which doesn't recognize standard

input. The shell doesn't know any better, and the programs themselves go on their merry way

with pointer and windows.

However, it is nice to know that you can pipe together output of programs, even when some

of those programs may not produce output until you intervene with the pointer.

Even without pipes, you should start thinking about how these programs could work together.

For example, the pictures of fonts in Appendix E, Release 3 and 4 Standard Fonts, were

created by these steps:

1. Display a font with xfd. (See Chapter 5, Font Specification, for instructions on how to use

tfd.)

2. Resize the window to improve readability, using the twm resize box on the titlebar.

3. Create a window dump file with the command xwd > file.

4. Create a PostScript file from the dump with the command:

xpr -device ps file>file.ps

5. Print the PostScript file on an Apple LaserWriter with the standard print command lpr(l).

Even though the UNIX shell will accept a pipe between xfd, xwd, and xpr, what actually hap-
pens is that xwd starts up faster than xfd, and is ready to dump a window before the xfd win-
dow appears.

Killing a Client Window with xkill

The xkill program allows you to kill a client window, or more specifically, to force the server

to end the connection to the client. The process exits and the associated window is removed.

xkill is a fairly drastic method of terminating a client and should not be used as the method of

preference. In most cases, clients can be terminated in other ways. The possible repercus-
sions of using xkill and some of the alternatives are discussed in the next section.

xkill is intended primarily to be used in cases where more conventional methods of removing

a client window do not work. It is especially useful when programs have displayed undesired

windows on the screen. To remove a stubborn client window, type:

% xkill

on the command line of an xterm window. The pointer changes to a "draped box" pointer

and you are instructed to:

Select the window whose client you wish to kill with button 1 ...

Move the draped box pointer to the window you want to remove, as in Figure 7-12, and click

the first pointer button. The window is removed, (xkill does not allow you to select the root

window.)

Other Clients

Figure 7-12. Selecting the window to be removed

You can also specify the window to be killed by its resource ID. Every window has an iden-
tification number associated with it. The xwininfo client can be used to display a window's

resource ID (see the section "Window and Display Information" later in this chapter).

To remove a window using its ID number, type:

% xkill -id number

The window with the ID number is removed. Killing a window by its ID number is more

cumbersome, but it's somewhat safer than choosing the window to be killed with the pointer.

It's too easy to click in the wrong place. (Of course, it's less treacherous to use the pointer

on an isolated window than a window in a stack.)

Problems with Killing a Client

The most obvious problem with xkill is that it's possible to kill the wrong window inadver-
tently. Perhaps less obvious is a problem inherent in 'killing' a program. As a general rule, a

command that 'kills' a program does not give the program time to save or complete processes

that are still running-in effect, to clean up after itself. The processes that can be adversely

affected may be visible to the user, like an editing session, or they may be underlying system

processes, like writing to or reading from a socket.

142 X Window System User's Guide

Most clients can be terminated in ways that allow them to finish all relevant processes and

then exit cleanly. These methods should be attempted before you use xkill, or some other

program that kills the client.

For example, you can generally remove an xterm window by typing in the window the same

command you use to log off the system. You should also be able to remove an xterm window

with various Main Options menu commands, depending on the signals that can be interpreted

by your system. (Some of these signals, such as SIGHUP and SIGTERM, are more gentle to

the system. See the xterm reference page in Part Three of this guide for a list of menu com-
mands and the signals they send.) An xcalc window can generally be removed by typing q,

Q, or Control-C in the window. A bitmap window has a Quit button box, etc. If you are run-
ning Release 4 of X, the Twm menu also provides an item, Delete, which allows you to safely

remove a client window if the client has been written to comply with standard interclient

communication conventions. (See Chapter 3, Using the twm Window Manager, for details.)

A few clients, such as oclock, cannot be removed except by killing. You must use xkill, or a

similar method, to remove an oclock window.

Generally, however, you should exhaust the safer alternatives before you use xkill and other

commands that kill a client.

When you want to remove a window, depending on the client and what commands it recog-
nizes, try the following methods (roughly) in this order:

1. Methods that cause the client to exit after finishing relevant processes:

a. Special commands (e.g., logout, exit) or key sequences (e.g., Control-D, Con-
trol-C, q, Q) recommended to stop a client.

b. Certain application-specific menu items (e.g., for xterm, the Main Options menu com-
mands Send HUP Signal, Send TERM Signal, and Quit; the bitmap Quit box).

c. The Delete item on the Twm menu. (Whether this works depends on whether the cli-
ent to be removed has been written to comply with the interclient communication

conventions. If other safe methods have failed and Delete doesn't work, you may

need to take more drastic measures.)

2. When these methods don't work, or don't apply (as in the case of oclock}, then use com-
mands or menu items that kill the client:

a. The Send KILL Signal item on the xterm Main Options menu, for removing xterm win-
dows only (see Chapter 4, The xterm Terminal Emulator}.

b. The Kill item on the Twm menu (see Chapter 3, Using the twm Window Manager}. (If

you are running Release 3 of X, you can use the KillWindow item on the uwm Window-

Ops menu. See Appendix B, The uwm Window Manager, for details.)

143

Other Clients

c. The UNIX kill command with the client's process id number, which is determined

using ps. (This method of removing a window is described for xclock in Chapter 2,

Getting Started*)

d. The xkill client.

Be warned that older versions of xkill can have surprising complications. For example, some

older versions of xkill do not seem to work properly with the window manager twm. twm

automatically becomes the parent process of all the top level windows in the window hierar-
chy. (See the discussion of xlswins later in this chapter for more information about the win-
dow hierarchy.) If you use xkill to kill a top level window, twm is killed instead, and the win-
dow remains. Most problems such as these should have been solved as of Release 3.

Window and Display Information Clients

The standard release of X includes four clients that provide information about windows on

the display and about the display itself. Much of the information is probably more relevant

to a programmer than to the typical user. However, these clients also provide certain pieces

of information, such as window geometry, window ID numbers, and the number and nature of

screens on the display, that can assist you in using other clients.

Displaying Information about a Window: xwininfo

The xwininfo client displays information about a particular window. As described in Chapter

8, Command Line Options, much of this information is useful in determining or setting win-
dow geometry, xwininfo also provides you with the window ID (also called the resource ID).

Each window has a unique identification number associated with it. This number can be used

as a command line argument with several clients. Most notably, the window ID can be sup-
plied to the xkill client to specify the window be killed.!

To display information about a window, type the following command in an xterm window:

% xwininfo

The pointer changes to the crosshair pointer, and you are directed to select the window about

which you want information:

*This method is powerful, but in practice has limitations. Many versions of UNIX only allow you to kill a process if

you are the owner of the process or if you are root. Thus, if a client has been started on your display from a remote

system, and you don't know the root password, you may not be in a position to use the UNIX kill command.

fYou can also use the window ID as an argument to the xprop client, which displays various window "properties." A

property is a piece of information associated with a window or a font. Properties facilitate communication between

clients via the server. They are used by clients to store information that other clients might need to know, and to read

that information when it is provided by other clients. See the xprop reference page in Part Three of this guide, and

Volume One, Xlib Programming Manual for more information about properties and the xprop client.

144 X Window System User's Guide

xwininfo ==> Please select the window about which you

==> would like information by clicking the

==> mouse in that window.

You can select any window on the display, including the window in which you've typed the

command and the root window. (Rather than using the pointer, you can specify a window on

the command line by supplying its title, or name, if it has no title, as an argument to

xwininfo''s own -name option. See Chapter 8, Command Line Options, for information

about setting a client's title and name. See the xwininfo reference page in Part Three of this

guide for a list of its options.)

Figure 7-13 shows the statistics the Release 4 version of xwininfo supplies, with some typical

readings.

xwininfo ==> Window id: Ox40000f (xterm)

==> Absolute upper-left X: 0

==> Absolute upper-left Y: 0

==> Relative upper-left X: 0

==> Relative upper-left Y: 21

==> Width: 578

==> Height: 316

==> Depth: 1

==> Border width: 1

==> Window class: InputOutput

==> Colormap: 0x80065

==> Window Bit Gravity State: NorthWestGravity

==> Window Window Gravity State: NorthWestGravity

==> Window Backing Store State: NotUseful

==> Window Save Under State: no

==> Window Map State: IsViewable

==> Window Override Redirect State: no

==> Corners: +0+0 -572+0 -572-582 +0-582

Figure 7-13. Window information displayed by xwininfo

These readings are for a login xterm window displayed using a 12 point Roman Courier font.

All numerical information is in pixels, except depth, which is in bits per pixel. The twm win-
dow manager is also running. The statistics that are most significant for the average user are

listed below:

xwininfo ==> Window id: Ox40000f (xterm)

=-> Absolute upper-left X: 0

==> Absolute upper-left Y: 0

==> Relative upper-left X: 0

==> Relative upper-left Y: 21

Width: 578

Height: 316

Depth: 1

==> Border width: 1

==> Colormap: 0x80065

==> Corners: +0+0 -572+0 -572-582 +0-582

The first piece of information is the window ID, which can be used as an argument to xkill.

Specifying the window to be killed by its ID number is somewhat less risky than choosing it

with the pointer.

Other Clients

The other statistics (with the exception of depth) can be used to gauge the window's geome-
try (size and position). The absolute upper-left X and Y correspond to the positive x and y

offsets of the window from the root window. These figures can be used on the command line

to specify window placement, as described in Chapter 8, Command Line Options.

The relative upper-left X and Y are significant only if you're running a window manager,

such as twm, that provides some sort of frame. The relative upper-left X and Y are the win-
dow's x and y offsets relative to its frame. In this example, the relative upper-left Y of 21

pixels refers to the height of the window's titlebar.

The four corners are listed with the upper left corner first and the other three clockwise

around the window (i.e., upper right, lower right, lower left). The upper left corner always

gives the positive x and y offsets for the window. The width and height in pixels are some-
what less useful, since the geometry option to xterm requires that these figures be specified in

characters and lines. See Chapter 8, Command Line Options, for more information about

window geometry and how to set it based on the results Qi xwininfo.

The values for window depth and colormap relate to how color is specified. See the discus-
sion of color in Chapter 8 for more information.

Be aware that the Release 3 version of xwininfo does not provide relative x and y offsets. It

does provide absolute x and y offsets, though they are labeled simply as:

==> Upper left X: 0

==> Upper left Y: 0

The other statistics provided by xwininfo are listed below:

==> Window class: InputOutput

==> Window Bit Gravity State: NorthWestGravity

==> Window Window Gravity State: NorthWestGravity

==> Window Backing Store State: NotUseful

==> Window Save Under State: no

==> Window Map State: IsViewable

==> Window Override Redirect State: no

These statistics have to do with the underlying mechanics of how a window is resized,

moved, obscured, unobscured, and otherwise manipulated. They are inherent in the client

program and you cannot specify alternatives. For more information on these and other win-
dow attributes, see Chapter 4 in Volume One, Xlib Programming Manual.

You can also use xwininfo with various options to display other window attributes. See the

reference page in Part Three of this guide for details.

Listing the Window Tree: xlswins

Windows are arranged in a hierarchy, much like a family tree, with the root window at the

top. The xlswins client displays the window tree starting with the root window, listing each

window by its resource ID and title (or name), if it has one. (See Chapter 8, Command Line

Options, for a discussion of setting a client's title and name with command line options.)

146 X Window System User's Guide

A resource ID can be supplied to xkill to specify the window to kill. You can also supply a

resource ID to xwininfo to specify the window you want information about, or to xprop to get

the window's properties. Being able to display the ID numbers of all windows on the screen

at once is especially helpful if one or more windows is obscured in the stack. The xwininfo

client is virtually useless in situations in which one window is hidden behind another.

xlswins allows you to determine, by process of elimination, which window is hidden-with-
out having to circulate all the windows on your screen. You can then use xwininfo with the

ID number (displayed by xlswins) to get information about the obscured window.

Figure 7-14 shows the results of xlswins for a simple window arrangement: a single xterm

(login) window on a root window.

Ox8006e ()

Ox30000e (xterm)

0x300015 ()

0x300016 ()

Figure 7-14. Window tree displayed by xlswins

The xterm window is easily identified. Any client that displays a window, such as xterm,

xclock, xfd, bitmap, etc., will be listed by name (in parentheses) following the ID number.*

The root window is listed above the xterm in the window hierarchy. Client (and other) win-
dows displayed on the root window are called children of the root window, in keeping with

the family tree analogy. Thus, the root window is the parent of the xterm window. In the

xlswins listing, a child window is indented once under its parent

But what are the other windows listed in Figure 7-14? A superficial examination of these

other windows provides a brief introduction to the inner workings of X. An underlying fea-
ture of X is that menus, boxes, icons, and even features of client windows, such as scrollbars,

are actually windows in their own right. What's more, these windows (and client window

icons) may still be considered to exist, even when they are not displayed.

The two remaining windows are unnamed. From the relative indents of the windows, we can

tell certain information. The first unnamed window is a child of the xterm, the second is a

child of the child.

If we again run xlswins, this time requesting a long listing (with the -1 option), we get geom-
etry information that helps identify each window, as shown in Figure 7-15.

0: Ox8006e () 1152x900+0+0 +0+0

1: Ox30000e (xterm) 818x484+0+0 +0+0

2: 0x300015 () 818x484+0+0 +1+1

3: 0x300016 () 14x484+-!+-! +0+0

Figure 7-15. Window tree with geometry specifications

The first number on each line refers to the level of the window in the hierarchy, the root win-
dow being at level 0, client windows at 1, etc. The first geometry string is the complete

*Most likely you will not have to deal with the ID numbers for windows other than the explicitly named client win-
dows. You c'an use the IDs of the client windows in all of the ways we've discussed: with xkill, xwininfo, xprop, etc.

147

Other Clients

specification relative to the parent window. The second geometry string is the current posi-
tion relative to the root window. A window at coordinates 0,0 would have the position +0+0

relative to the root. The two unnamed windows under xterm are the VT102 window and the

window's scrollbar, respectively. (The first xterm listing is the application shell window,

which can be displayed both as a VT102 and a Tektronix window.)

The listing in Figure 7-15 was generated when the twm window manager was not running.

Many of the features provided by twm, such as the window "frame" and its command but-
tons, the icon manager, and menus, are actually all windows. This greatly complicates the

window hierarchy. If you run xlswins while twm is running, you can assume that most of the

mysterious windows in the hierarchy are features provided by the window manager.

For more information on the window hierarchy, see Volume One, Xlib Programming Manual.

Listing the Currently Running Clients: xlsclients

You can get a listing of the client applications running on a particular display by using

xlsclients. Without any options, xlsclients displays a two-column list, similar to the follow-
ing:

colorful xterm -geometry 80x24+10+10 -Is

colorful xclock -geometry -0-0

The first column shows the name of the display (machine) and the second the client running

on it. The client is represented by the command line used to initiate the process.

This sample listing indicates that there is one xterm window and one xclock window running

on the display colorful. (The option -Is following the xterm command reveals that the

shell running in this window is a login shell.) The list is alphabetical.

You can use xlsclients to create an jcsession file, which specifies the clients you want to be

run automatically when you log in. In order to do this, you must have set up client windows

in an arrangement you like using command line options alone (that is, without having moved

or resized windows via the window manager). You can then run xlsclients to print a sum-
mary of the command lines you used to set up the display and include those command lines

in your jcsession file. See Appendix A, System Management, for information on setting up a

user session.

By default, xlsclients lists the clients running on the display corresponding to the DISPLAY

environment variable, almost always the local display. You can list the clients running on

another display by using the -display command line option. See Chapter 8, Command

Line Options, for details.

With the option -1 (indicating long), xlsclients generates a more detailed listing. Figure

7-16 shows the long version of the listing above.

For each client, xlsclients displays six items of information: the window ID number, machine

name, client name, icon name, command line used to run the client, and what are known as

the instance and class resource names associated with the client.

148 X Window System User's Guide

Window Ox30000e:

Machine: colorful

Name: xterm

Icon Name: xterm

Command: xterm -geometry 80x24+10+10 -Is

Instance/Class: xterm/XTerm

Window Ox40000b:

Machine: colorful

Name: xclock

Icon Name: xclock

Command: xclock -geometry -0-0

Instance/Class: xclock/XClock

Figure 7-16. Long xlsclients listing

As we'll see in Chapter 8, Command Line Options, many clients, including xterm, allow you

to specify an alternate name for a client and a title for the client's window. If you've speci-
fied a title, it will appear in the xlsclients Name field. If you haven't specified a title, but

have specified a name for the application, the name will appear in this field. Neither of the

clients in the sample display has been given an alternate name or title.

You use the instance and class resource names to specify default window characteristics, gen-
erally by placing them in a file in your home directory. This is described in detail in Chapter

9, Setting Resources.

Generating Information about the Display: xdpyinfo

The xdpyinfo client gives information about the X display, including the name of the display

(contents of the DISPLAY variable), version and release of X, number of screens, current

screen, and statistics relating to the color, resolution, input, and storage capabilities of each

screen. The xdpyinfo reference page in Part Three of this guide shows a listing for a display

that supports both a color and monochrome screen.

Much of the information provided by xdpyinfo has to do with how clients communicate infor-
mation to one another and is more relevant to a programmer than to the typical user. How-
ever, the basic statistics about the name of the display, the version and release of X, and the

number and nature of screens might be very helpful to a user, particularly one who is using a

display for the first time.

In addition, the detailed information about each screen's color capabilities can also be very

valuable in learning how to use color more effectively. This information includes the default

number of colormap cells: the number of colors you can use on the display at any one time.

See Chapter 8, Command Line Options, for more information on the use of color and how to

specify colors for many clients.

See Volume One, Xlib Programming Manual, for insights into some of the other information

provided by xdpyinfo.

Other Clients 149

User-contributed Clients

In addition to the clients in the standard MIT X distribution, there are many user-contributed

clients available in the X source tree, distributed over Usenet, and perhaps included with var-
ious commercial distributions. If you have access to Usenet, the newsgroup comp.windows jc

contains voluminous discussions of X programming and the newsgroup comp.sourcesjc con-
tains sources.

Prior to Release 4, uwm (the universal window manager) was the official window manager

shipped with the standard X Window System. As of Release 4, uwm is no longer supported,

but is still available as a user-contributed client. However, be aware that uwm does not com-
ply with accepted interclient communication conventions and thus, should probably not be

the window manager of choice.

Several other window managers are widely used and have been tailored to reflect the inter-

client communication conventions proposed in Release 3. Some of the more popular window

managers that reflect these conventions are:

awm Ardent window manager (written by Jordan Hubbard of Ardent Computer

Corporation).

rtl Tiled window manager (written by Ellis Cohen at Siemens Research &

Technology Laboratories, RTL).

olwm OPEN LOOK window manager (developed by AT&T).

mwm Motif window manager (written by Ellis Cohen at the Open Software

Foundation).

Appendix C, The OSF/Motif Window Manager, discusses mwm in greater detail.

Commercial products (such as spreadsheets, word processors, and graphics or publishing

applications) based on the X Window System are also becoming available.

X Toolkit Applications

Many clients have been written (or rewritten) with a programming library called the X

Toolkit. The X Toolkit provides a number of predefined components called widgets. Widg-
ets make it easier to create complex applications; they also ensure a consistent user interface

between applications.

Most of the clients described in this guide were written before the X Toolkit was fully devel-
oped. Although they have since been rewritten to use the X Toolkit, they don't necessarily

make full use of all its features.

However, most of the standard clients use enough of these features that you can see what to

expect from future applications that are based more fully on the X Toolkit

150 X Window System User's Guide

This section briefly reviews some features of X Toolkit applications, with reference to where

they are implemented in the current crop of clients. For a comprehensive treatment of the X

Toolkit, see Volumes Four and Five, X Toolkit Intrinsics Programming Manual and X Toolkit

Intrinsics Reference Manual.

Dialog Boxes and Command Buttons

A dialog box. is used when an application requires a small piece of information from the user,

such as a filename. A dialog box typically has three elements: it always has the first element,

and may or may not have the second and/or third elements in the following list:

" A prompt that identifies the purpose of the widget This might be as simple as the string

"Filename:".

" An area in which you can type your response.

" Command buttons that allow you to confirm or cancel the dialog input.

A dialog box is usually a pop-up window, which goes away after the required information is

provided.

The X client bitmap is one of the few current applications that use a dialog box. It displays

the dialog displayed in Figure 7-17 when you quit the application. Future X applications can

be expected to make far more extensive use of dialogs like this.

Save changes before quitting?

Yes No 1 1 Cancel
1 f 1

Figure 7-17. A dialog box with Yes, No, and Cancel command buttons

Each command button in the box is itself a widget. A command button is a rectangle that

contains a text label. When the pointer is on the button, its border is highlighted to indicate

that the button is available for selection. When a pointer button is clicked, some action

(presumably indicated by the label) is performed by the program.

Some applications use the following convention for command buttons. Whenever you press

a button that may cause you to lose some work or is otherwise dangerous, a second dialog

box will appear asking you to confirm the action. This dialog box will contain an Abort but-
ton and a Confirm button. Pressing the Abort button cancels the operation, and pressing the

Confirm button will proceed with the operation.

Other Clients

(A very handy shortcut exists in some applications: if you press the original button again, it

will be interpreted as a Confirm. If you press any other command button, it will be inter-
preted as an Abort.)

Scrollbars

As described in the discussion of xterm in Chapter 4, The xterm Terminal Emulator, applica-
tions can use a scrollbar to move up and down through data that is too large to fit in a win-
dow. A scrollbar is an X Toolkit widget

The scrollbar consists of a sliding bar (often called the thumb) within a columnar slide

region. The size of the thumb within the scrollbar corresponds to the amount of the data

displayed within the visible portion of the window with respect to the entire body of data. If

no data has yet been displayed in the window, the thumb fills the entire scrolling region, as

shown in Figure 7-18.

xterm uses a vertical scrollbar; other applications may use a horizontal scrollbar, or both.

One type of widget that can have both horizontal and vertical scrollbars is called a viewport.

When the pointer is moved into the scrollbar, the cursor appears as an arrow that points in the

direction that scrolling can occur. If scrolling can occur in either direction, the cursor

appears as a two-headed arrow.

When the middle pointer button is clicked at any point in the scrollbar, the thumb moves to

that point, and the data in the window scrolls to the corresponding position. When the

middle pointer button is pressed and held down, the thumb can be "dragged" to a desired

position in the scrollbar. If you click the first (left) button in the scrollbar, the data in the

window scrolls up, toward the end of the information in the window. If you click the third

(right) button, the data in the window scrolls down, towards the beginning of the information

in the window.

Selecting Information for Copying and Pasting

As described in the discussion of xterm in Chapter 4, when you select contents from one file,

those contents become the PRIMARY selection, which is available to other clients. For

example, you can select text in one xterm window and paste the text into any other xterm

window. See Chapter 4, The xterm Terminal Emulator, for a complete discussion of copying

and pasting. In applications written with the X Toolkit, selections are a method of

widget-to-widget communication.

152 X Window System User's Guide

Figure 7-18. An xterm window with scrollbar

Vertical Panes

A VPaned widget arranges a series of windows one above the other without overlapping (i.e.,

they are vertically tiled).

A small region, called a grip, appears on the border between each subwindow. When the

pointer is positioned on the grip and a button pressed, an arrow is displayed that indicates the

direction in which the border between the two windows can be moved. If you move the

pointer in the direction of the arrow (while keeping the button depressed), one subwindow

will grow, while the other will shrink.

The individual panes can be any other type of widget. For example, the xmh mail handler

includes dialog boxes with buttons, viewports containing text widgets and so on, as shown in

Figure 7-19. (We refer to the xmh client solely to illustrate vertical panes that can be used by

other X clients. The current xmh client is not discussed in this guide.)

153

Other Clients

Xmh

1 oral cathy Wed Jun 22 10:39 10/570 Invoices

vertical

panes

Could you please get all invoices to me by

00 today. I am trying to close out the grips

nth of May!

Figure 7-19. Vertical panes and grips in the xmh client

Viewports

A viewport is a composite widget that provides a main window and horizontal and/or vertical

scrollbars, xman is an application that uses a viewport widget, as illustrated by Figure 7-20.

Text Editing Widget

Many applications include one or more areas in which you can enter text All such text entry

areas support the same set of editing commands. At this point, xedit, xmh, and several user-

contributed clients use the text widget.

In applications (such as xedit) that use the text widget, various Control and Meta keystroke

combinations are bound to a set of commands similar to those provided by the emacs text

editor.* In addition, the pointer buttons may be used to select a portion of text or to move the

insertion point in the text. Pressing the first pointer button (usually the left button) causes the

insertion point to move to the pointer. Double-clicking the first button selects a word, triple-

clicking selects a paragraph, and quadruple-clicking selects everything. Any selection may

be extended in either direction by using the third pointer button (usually the right).

*The commands may be bound to keys different from the defaults described below through the standard X Toolkit

key rebinding mechanisms.

154 X Window System User's Guide

Options Sections The current manual page is: cd.

"

CD(1) USER Commands CD(1)

NAME

cd - change working directory

SYNOPSIS

cd directory

DESCRIPTION

Directory becomes the new working directory. The process must

have execute (search) permission in directory.

Because a new process is created to execute each command, cd

would be ineffective if it were written as a normal command.

It is a therefore recognized and executed by the shells. In

cah (1) you may specify a list of directories in which direc-
tory is to be sought as subdirectory if it is not a sub-
directory of the current directory; see the description of

the cdpath variable in csh(l).

SEE ALSO

csh(l), sh(l), pwd(l), chdir(2)

Figure 7-20. xman uses a viewport widget

In the following list of commands, a line refers to one displayed row of characters in the win-
dow. A paragraph refers to the text between manually inserted carriage returns or blank

lines. Text within a paragraph is automatically broken into lines based on the current width

of the window.

In Release 4 of X, the following keystroke combinations are defined as indicated. (Note that

"Control" and "Meta" are two of the "soft" key names X recognizes. They are mapped to

particular physical keys which may vary from keyboard to keyboard. See the "xmodmap"

section in Chapter 11, Setup Clients, for a discussion of modifier key mapping.) If you are

using an earlier release of X, a few of the following keystroke combinations may produce

slightly different results.

155

Other Clients

Control-A Move to the beginning of the current line.

Control-B Move backward one character.

Control-D Delete the next character.

Control-E Move to the end of the current line.

Control-F Move forward one character.

Control-H, or Delete the previous character.

Backspace

Control-J, New paragraph.

Control-M,

LineFeed, or

Return

Control-K Kill the rest of this line.

Control-L Redraw this window.

Control-N Move down to the next line.

Control-O Divide this line into two lines, at this point.

Control-P Move up to the previous line.

Control-V Move down to the next screenful of text

Control-W Kill the selected text

Control-Y Insert the last killed text

Control-Z Scroll the text one line up.

Meta-< Move to the beginning of the file.

Meta-> Move to the end of the file.

Meta-[Move backward one paragraph.

Meta-j Move forward one paragraph.

Meta-B Move backward one word.

Meta-D Kill the next word.

Meta-F Move forward one word.

Meta-H, or Kill the previous word.

Meta-Delete

Meta-l Insert a file. If any text is selected, use the selected text as the

filename. Otherwise, a dialog box will appear in which you can type

the desired filename.

Meta-V Move up to the previous screenful of text

156 X Window System User's Guide

Meta-Y Insert the last selected text here. Note that this can be text selected in

some other text subwindow. Also, if you select some text in an xterm

window, it may be inserted in an xmh window with this command.

Pressing pointer button 2 is equivalent to this command.

Meta-Z Scroll the text one line down.

Delete Delete the previous character.

157

Other Clients

Part Two:

Customizing X

X has been designed to put the user in the driver's seat. Everything from the

colors and sizes of windows to the contents of twm menus can be custom-

ized by the user. This part of the book tells you how to reshape X to your

liking.

Command Line Options

Setting Resources

Customizing the twm Window Manager

Setup Clients

8

Command Line Options

This chapter describes command-line options that are common to most cli-
ents. Some arguments to command-line options can also be specified as the

values of resource variables, described in Chapter 9. For example, the for-
mat of a geometry string or a color specification is the same whether it is

specified as an argument to an option or as the value of a resource definition.

In This Chapter:

Which Display to Run On 164

Title and Name 165

Window Geometry 166

Border Width 168

Color Specification 169

The rgb.txt File 169

Release 4 Color Names 170

Release 3 Color Names 172

Alternative Release 4 Color Databases 172

Hexadecimal Color Specification 172

The RGB Color Model 173

How Many Colors are Available? 174

Starting a Client Window as an Icon 176

Specifying Fonts on the Command Line 176

Reverse Video .. 177

8

Command Line Options

X allows the user to specify numerous (very numerous!) command line options when starting

most clients. The command line options for each client are detailed on the reference pages in

Part Three of this guide.

As a general rule, all options can be shortened to the shortest unique abbreviation. For

example, -display can be shortened to -d if there is no other option beginning with "d."

(Note that while this is true for all the standard MIT clients, it may not be true of any random

client taken off the net.)

In addition to certain client-specific options, all applications built with the X Toolkit accept

certain standard options, which are listed in Table 8-1. (Some non-Toolkit applications may

also recognize these options.) The first column gives the name of the option, the second the

name of the resource to which it corresponds (see Chapter 9, Setting Resources), and the third

a brief description of what the option does. This chapter discusses some of the more com-
monly used Toolkit options and demonstrates how to use them. (For the syntax of the other

Toolkit options, see the X reference page in Part Three of this guide.)

The options -selectionTimeout and -xnllanguage are available as of Release 4.

Table 8-1. Standard Options

Option Resource Description

-bg background Background color of window.

-background background Background color of window.

-bd borderColor Color of window border.

-bordercolor borderColor Color of window border.

-bw borderWidth Border width of window in pixels.

-borderwidth borderWidth Border width of window in pixels.

-display display Display for client to run on.

-fn font Font for text display.

-font font Font for text display.

163

Command Line Options

Table 8-1. Standard Options (continued)

Option Resource Description

-fg foreground Foreground (drawing or text) color of window.

-foreground foreground Foreground (drawing or text) color of window.

-geometry geometry Geometry string for window size and placement.

-iconic Start the application in iconified form.

-name name Specify a name for the application being run.

-rv reverseVideo Reverse foreground and background colors.

-reverse reverseVideo Reverse foreground and background colors.

+ rv reverseVideo Don't reverse foreground and background.

-selectionTimeout selectionTimeout Timeout in milliseconds within which two com-

municating applications must respond to one

another for a selection request.

-synchronous synchronous Enable synchronous debug mode.

Asynchronous synchronous Disable synchronous debug mode.

-title title Specify a window title (e.g., to be displayed in a

titlebar).

-xnllanguage xnlLanguage The language, territory, and codeset for National

Language Support; this information helps resolve

resource and other filenames.

value of next arg Next argument is a quoted string containing a

resource manager specification as described in

Chapter 9.

Though all Toolkit options are preceded by a minus sign, client-specific options may or may

not require it. See the reference page for each client in Part Three of this guide for the syntax

of all options.

Which Display to Run On

Generally, the results of a client program are displayed on the system where the client is run-
ning. However, if you are running a client on a remote system, you probably want to display

the results on your local server.

An option of the form:

-display [host]:server[.screen]

can be used to tell a client which server to display results on.

164 X Window System User's Guide

The host specifies on which machine to create the window, the server specifies the

server number, and the screen specifies the screen number. Note that the server param-
eter always begins with a colon (a double colon after a DECnet node*), and that the screen

parameter always begins with a period. If the host is omitted or is specified as unix, the

local node is assumed. If the screen is omitted, screen 0 is assumed.

xterm and other X clients normally get the host, server, and screen from the DISPLAY envi-
ronment variable. (In most configurations, DISPLAY will be set to the local host, server 0 and

screen 0.)

However, you may want to specify the host, server, and screen explicitly. You can do this for

all clients by resetting the value of the DISPLAY variable, or for a single invocation of a cli-
ent by using the-display option.

For example:

% xterm -display other_node:0.0 £

creates an xterm window on screen 0 of server 0 on the machine named other_node.

Although much of the current X Window System documentation suggests that any of the

parameters to the -display option can be omitted and will default to the local node, server

and screen 0, respectively, we have not found this to be true. In our experience, only the

host and screen parameters (and the period preceding screen) can be omitted. The

colon and server are necessary in all circumstances.

The -display option can be abbreviated as -d.

Title and Name

The name of the program (as known to the server) and the title of the window can be speci-
fied on the command line. The -title option allows you to specify a text string as the title

of the application's window. If your application has a titlebar, or if the window manager you

are using puts titlebars on windows, this string will appear in the titlebar. Window titles can

be useful in distinguishing multiple instances of the same application.

The -name option actually changes the name by which the server identifies the program.

Changing the name of the application itself (with the -name option) affects the way the

application interprets resource files. This option is discussed further in Chapter 9, Setting

Resources. If a name string is defined for an application, that string will appear as the appli-
cation name in its icon.

If you display information about currently running windows using the xwininfo or xlswins

client, title strings will appear in parentheses after the associated window ID numbers. (If

there is no title string, but there is a name string, the name string will be displayed.)

*By convention, DECnet node names end with a colon.

"ICC

Command Line Options

You can also use the xwininfo client to request information about a particular window by

title, or name, if no title string is defined, using that application's own -name option. See

the xlswins and xwininfo reference pages in Part Three and the section "Window and Display

Information Clients" in Chapter 7, Other Clients, to learn more about these clients.

Window Geometry

All clients that display in a window take a geometry option that specifies the size and loca-
tion of the client window. The syntax of the geometry option is:

-geometry geometry

The -geometry option can be (and often is) abbreviated to -g, unless there is a conflicting

option that begins with "g."

The parameter to the geometry option (geometry), referred to as a "standard geometry

string," has the form:

widthxheight±xoff±yoff

The variables, width, height, xoff (x offset), and yoff (y offset) are values in pixels

for many clients. However, application developers are encouraged to use units that are

meaningful to the application. For example, xterm uses columns and rows of text as width

and height values in the xterm window.

You can specify any or all elements of the geometry string. Incomplete geometry specifica-
tions are compared to the resource manager defaults and missing elements are supplied by

the values specified there. If no default is specified there, and twm is running, the window

manager will require you to place the window interactively.

The values for the x and y offsets and their effects are shown in Table 8-2.

Table 8-2. Geometry specification x and y offsets

Offset Variables Description

+xoff A positive x offset specifies the distance the left edge of the window is

offset from the left side of the display.

+yoff A positive y offset specifies the distance the top edge of the window is

offset from the top of the display.

-xoff A negative x offset specifies the distance the right edge of the window

is offset from the right side of the display.

-yoff A negative y offset specifies the distance the bottom edge of the win-
dow is offset from the bottom of the display.

For example, the command line:

% xclock -geometry 125x125-10+10 &

166 X Window System User's Guide

places a clock 125x125 pixels in the upper-right corner of the display, 10 pixels from both

the top and right edge of the screen.

For xterm, the size of the window is measured in characters and lines. (The default size is 80

characters wide by 24 lines long.) If you wanted to use a large VT100 window, 120 charac-
ters wide by 40 lines long, you could use the following geometry specification:

% xterm -geometry 120x40-10+350 &

This command places the large xterm window in the lower-right corner, 10 pixels from the

right edge of the screen and 350 pixels from the top of the screen. Figure 8-1 illustrates win-
dow offsets.

xterm

% xterm -geometry 132x40 -10+ 350 &

X

xterm

Figure 8-1. Windo w offsets

Several clients, including xterm, allow you to set the size and position of the icon or alterna-
tive window using resource variables (in an ̂ defaults or other resource file). See the appro-
priate client reference pages in Part Three of this guide for a complete list of available

resources. Refer to Chapter 9, Setting Resources, for instructions on how to set resources.

You should be aware that, as with all user preferences, you may not always get exactly what

you ask for. Clients are designed to work with a window manager, which may have its own

rules for window or icon size and placement. However, priority is always given to specific

user requests, so you won't often be surprised.

Command Line Options 167

Border Width

Many clients also allow you to specify the width of the border to be placed around the win-
dow. The border width is specified in pixels. For example:

% xterm -bw 10 &

sets a border of 10 pixels around the xterm window.

You will have to experiment to get a feeling for the translation between the number of pixels

and actual sizes and distances. It will vary, depending on the type of workstation you are

using.

If you are experimenting with geometry measurements, use the xwininfo client to display

information about windows on the screen.

At the command line prompt in an xterm window, type:

% xwininfo

and then click on the window for which you want to display information. You should see a

display which gives various characteristics about the window in question. The statistics most

relevant to window geometry are listed below, with some typical readings:

Upper left X: 572

Upper left Y: 582

Width: 578

Height: 316

Depth: 1

Border width: 1

Corners: +572+582 -0+582 -0-0 +572-0

All numerical information is in pixels, except depth, which is in bits per pixel. (See the dis-
cussion of color later in this chapter for the significance of window depth.) The upper left X

and Y coordinates are particularly useful for setting the location of a window using the

geometry option. Upper left X corresponds to the positive x offset (+xof f) and upper left Y

corresponds to the positive y offset (+yof~f).

The four corners are listed with the upper left corner first and the other three clockwise

around the window (i.e., upper right, lower right, lower left). The upper left corner (first in

the list) always gives the positive x and y offsets for the window. In other words, the upper

left corner specification is the +xof f+yof f part of the geometry string.

The width and height in pixels are somewhat less useful, since the geometry option to xterm

requires that these figures be specified in characters and lines. The readings above are for a

standard size xterm window using a 12 point Roman Courier font. However, you will

undoubtedly become accustomed to thinking in terms of pixels by specifying the geometry of

other clients.

See the xwininfo reference page in Part Three and the section "Window and Display Informa-
tion Clients" in Chapter 7, Other Clients, for more details.

168 X Window System User's Guide

Color Specification

Many clients have options that allow you to specify the color of the window border, back-
ground, and foreground (the color text or graphic elements will be displayed in). These

options generally have the form:

-bg color Sets the background color.

-fg color Sets the foreground color.

-bd col or Sets the border color.

By default, the background of an application window is usually white and the foreground

black, even on color workstations. You can specify a new color using either the color names

listed in a system file called rgb.txt or hexadecimal values representing colors.

In the next section, we'll take a look at some of the colors available in the rgb.txt file. For

now, let's consider the syntax of a command line specifying an xterm to be displayed in three

colors:

% xtarra -bg lightblue -fg darkslategrey -bd plum &

This command creates an xterm window with a background of light blue, foreground of dark

slate grey, and window border of plum (all colors are available in both Releases 3 and 4).

At the command line, a color name should be typed as a single word (for example, dark-
slategrey). However, you can type the words comprising a color name separately if you

enclose them in quotes, as in the following command line:

% xterm -bg "light blue" -fg "dark slate gr«y" -bd plum &

As we'll see, the rgb.txt file contains variants of the same color name (for example, "navy

blue" and "NavyBlue," or "grey" and "gray") to allow a range of spelling, spacing, and capi-
talization on the command line.

Some clients allow additional options to specify color for other elements, such as the cursor,

highlighting, and so on. See the appropriate client reference pages in Part Three of this guide

for details.

The rgb.txt File

The rgb.txt file, usually located in lusrlliblXll, is supplied with the standard distribution of X

and consists of predefined colors assigned to specific text names.

A corresponding compiled file called rgb.dir contains the definitions used by the server; this

machine-readable file serves as a color name database, and is discussed more fully in Appen-
dix A, System Management. The rgb.txt file is the human-readable equivalent.

169

Command Line Options

Release 4 Color Names

The default rgb.txt file shipped with Release 4 of X contains 738 color name definitions.

This number is slightly deceptive, since as we've said, a number of the color names are

merely variants of another color name (differing only in spelling, spacing and capitalization).

Still, the number of colors available in Release 4 is more than double the number available in

Release 3. Some of the Release 4 colors are entirely new (like snow and misty rose), but

many are just slightly different shades of colors available in prior releases.

For example, the Release 3 rgb.txt file includes the color sea green. The Release 4 rgb.txt file

offers the following shades of that color:

light sea green

sea green

medium sea green

dark sea green

SeaGreenl

SeaGreen2

SeaGreer.3

SeaGreenl

DarkSeaGreenl

DarkSeaGreen2

DarkSeaGreen3

DarkSeaGreen4

Each of these names corresponds to a color definition. (This list does not include the variants

SeaGreen, LightSeaGreen, MediumSeaGreen, and DarkSeaGreen, which also appear in the

file.) As you can see, some of these shades are distinguished in the fairly traditional way of

being called "light," "medium," and "dark." The light, medium, and dark shades of a color

can probably be distinguished from one another on virtually any monitor.

Beyond this distinction, there are what might be termed "sub-shades;" gradations of a partic-
ular shade identified by number (SeaGreenl, SeaGreen2, etc.). Numerically adjacent sub-

shades of a color may not be clearly distinguishable on all monitors. For example, Sea-
Greenl and 2 may look very much the same. (You certainly would not choose to create a

window with a SeaGreenl background and SeaGreen2 foreground! On the other hand, sub-

shades a couple of numbers apart are probably sufficiently different to be used on the same

window.)

By supplying many different shades of a single, already fairly precise color like sea green, X

developers have tried to provide definitions that work well on a variety of commonly-used

monitors.* You may have to experiment to determine which colors (or shades) display best

on your monitor.

The color names in the Release 4 rgb.txt file are too numerous to list here. Although there

are no literal dividers within the file, it can roughly be considered to fall into three sections:

*The color database shipped with prior releases of X was originally designed to display optimally on the vt240 series

terminals manufactured by Digital Equipment Corporation.

170 X Window System User's Guide

Section 1: A standard spectrum of colors, many available in or similar to colors in

Release 3 (such as sea green). These colors seem to be ordered roughly

as follows: off-whites and other pale colors, greys, blues, greens, yel-
lows, browns, oranges, pinks, reds, and purples.

Section 2: Sub-shades of Section 1 colors (such as SeaGreen 1 through 4). These

sub-shades comprise the largest part of the file.

Section 3: One hundred and one additional shades of grey, numbered 0 through

100 (also available in Release 3). This large number of precisely gradu-
ated greys provides a wide variety of shading for monochrome screens.

Rather than list every color in the rgb.txt file, we've compiled the following table of repre-
sentative colors. We've chosen some of the more esoteric color names. Naturally, all of the

primary and secondary colors are available also.

Section 1:

ghost white peach puff lavendar blush lemon chiffon

slate grey midnight blue cornflower blue medium slate blue

dodger blue powder blue turquoise pale green

lawn green chartreuse olive drab lime green

khaki light yellow goldenrod Indian red

sienna sandy brown salmon coral

tomato hot pink maroon violet red

magenta medium orchid blue violet purple

Section 2:

snowl - 4 bisquel - 4 cornsilkl - 4 honeydewl -4

azurel - 4 SteelBluel - 4 DeepSkyBluel - 4 LightCyanl - 4

PaleTurquoisel - 4 aquamarinel - 4 PaleGreenl - 4 DarkOliveGreenl - 4

SpringGreenl -4 goldl - 4 RosyBrownl - 4 burlywoodl - 4

chocolatel - 4 firebrickl - 4 DarkOrangel - 4 OrangeRedl - 4

DeepPinkl - 4 PaleVioletRedl - 4 pluml - 4 DarkOrchidl - 4

Section 3:

greyO (grayO) through greylOO (graylOO)

If you want to look more closely at the rgb.txt file, you can open it with any text editor. As

an alternative, you can also display the contents of the file using the showrgb client, showrgb

seems to do nothing more than cat(l) the file to your terminal window. Given the size of the

file, it's necessary to pipe the command's output to a paging program, such as pg(\) or

more(\).

% showrgb | mora

See Appendix A, System Management, for information on customizing color name

definitions.

171

Command Line Options

Release 3 Color Names

The following are the default color names shipped with Release 3 of the X Window System.

Again, this list does not include the many variants of these names.

aquamarine medium aquamarine black blue

cadet blue corn flowerblue dark slate blue light blue

light steel blue medium blue medium slate blue midnight blue

navy blue navy sky blue slate blue

steel blue coral cyan firebrick

brown sandy brown gold goldenrod

medium goldenrod green dark green dark olive green

forest green lime green medium forest green medium sea green

medium spring green pale green sea green spring green

yellow green dark slate grey grey dim grey

light grey khaki magenta maroon

orange orchid dark orchid medium orchid

pink plum red indian red

medium violet red orange red violet red salmon

sienna tan thistle turquoise

dark turquoise medium turquoise violet blue violet

wheat white yellow green yellow

greyO (grayO) through greylOO (graylOO)

Alternative Release 4 Color Databases

In addition to the standard color database described above, Release 4 also includes three

other databases that can be compiled by your system administrator. These files can be found

in the general release in the directory .Irgblothers.

raveling.txt Designed by Paul Raveling, this database rivals the default database in

size and scope, but has been tuned to display optimally on Hewlett-

Packard monitors.

thomas.txt Based on the Release 3 database, this file has been modified by John

Thomas of Tektronix to approximate the colors in a box of Crayola

Crayons.

old-rgb.txt This is nothing more than the Release 3 database.

Hexadecimal Color Specification

You can also specify colors more exactly using a hexadecimal color string. You probably

won't use this method unless you require a color not available by using a color name. In

order to understand how this works, you may need a little background on how color is imple-
mented on most workstations.

172 X Window System User's Guide

The RGB Color Model

Most color displays on the market today are based on the RGB color model. Each pixel on

the screen is actually made up of three phosphors: one red, one green, and one blue. Each of

these three phosphors is excited by a separate electron beam. When all three phosphors are

fully illuminated, the pixel appears white to the human eye. When all three are dark, the

pixel appears black. When the illumination of each primary color varies, the three phosphors

generate a subtractive color. For example, equal portions of red and green, with no admix-
ture of blue, makes yellow.

As you might guess, the intensity of each primary color is controlled by a three-part digital

value-and it is the exact makeup of this value that the hexadecimal specification allows you

to set.

Depending on the underlying hardware, different servers may use a larger or smaller number

of bits (from 4 to 16 bits) to describe the intensity of each primary. To insulate you from this

variation, most clients are designed to take color values containing anywhere from 4 to 16

bits (1 to 4 hex digits), and the server then scales them to the hardware. As a result, you can

specify hexadecimal values in any one of the following formats:

#RGB

#RRGGBB

#RRRGGGBBB

#RRRRGGGGBBBB

where R, G, and B represent single hexadecimal digits and determine the intensity of the red,

green, and blue primaries that make up each color.

When fewer than four digits are used, they represent the most significant bits of the value.

For example, #3a6 is the same as #3000a0006000.*

What this means concretely is perhaps best illustrated by looking at the values that corre-
spond to some colors in the color name database. We'll use 8-bit values-two hexadecimal

digits for each primary. The following definitions are the hexadecimal equivalents of the

decimal values for some of the colors found in the rgb.txt file:

tOOOOOO black

tFFFFFF white

tFFOOOO red

#OOFFOO green

IOOOOFF blue

#FFFFOO yellow

#OOFFFF cyan

fFFOOFF magenta

#5F9EAO cadet blue

I6495ED cornflower blue

tADD8E6 light blue

IBOC4DE light steel blue

tOOOOCD medium blue

#000080 navy blue

*If you are unfamiliar with hexadecimal numbering, see the Glossary for a brief explanation, or a basic computer

textbook for a more extended discussion.

173

Command Line Options

#87CEED sky blue

I6A5ACE slate blue

#468264 steel blue

As you can see from the colors given above, pure red, green, and blue result from the corre-
sponding bits being turned full on. All primaries off yields black, while all nearly full on

gives white. Yellow, cyan, and magenta can be created by pairing two of the other primaries

at full intensity. The various shades of blue shown above are created by varying the intensity

of each primary-sometimes in unexpected ways.

The bottom line here is that if you don't intimately know the physics of color, the best you

can do is to look up existing colors from the color name database and experiment with them

by varying one or more of the primaries till you find a color you like. Unless you need pre-
cise colors, you are probably better off using color names.

How Many Colors are Available?

The number of distinct colors available on the screen at any one time depends on the amount

of memory available for color specification. (The xdpyinfo client provides information about

a display, including the number of colors available at one time. See Chapter 7, Other Clients,

and the xdpyinfo reference page in Part Three for details.)

A color display uses multiple bits per pixel (also referred to as multiple planes or the depth of

the display) to select colors. Programs that draw in color use the value of these bits as a

pointer to a lookup table called a colormap, in which each entry (or colorcell) contains the

RGB values for a particular color.* As shown in Figure 8-2, any given pixel value is used as

an index into this table-for example, a pixel value of 16 will select the sixteenth colorcell.

Why is this technical detail important? Because it explains several issues that you might

encounter in working with color displays.

First, the range of colors possible on the display is a function of the number of bits available

in the colormap for RGB specification. If eight bits is available for each primary, then the

range of possible colors is 256 3 (somewhere over 16 million colors). This means that you

can create incredibly precise differences between colors.

However, the number of different colors that can be displayed on the screen at any one time

is a function of the number of planes. A four-plane system can index 24 colorcells (16 dis-
tinct colors); an eight-plane system can index 28 colorcells (256 distinct colors); and a

24-plane system can index 2 u colorcells (over 16 million distinct colors).

If you are using a four-plane workstation, the fact that you can precisely define hundreds of

different shades of blue is far less significant than the fact that you can't use them all at the

same time. There isn't space for all of them to be stored in the colormap at one time, or any

mechanism for them to be selected even if they could be stored.

*There is a type of high-end display in which pixel values are used directly to control the illumination of the red,

green, and blue phosphors, but far more commonly, the bits per pixel are used indirectly, with the actual color values

specified independently, as described here.

174 X Window System User's Guide

Frame

Colormap
Buffer

RGB

Figure 8-2. Multiple planes used to index a colormap

This limitation is made more significant by the fact that X is a multi-client environment.

When X starts up, usually no colors are loaded into the colormap. As clients are invoked,

certain of these cells are allocated. But when all of the free colorcells are used up, it is no

longer possible to request new colors. When this happens, you will usually be given the

closest possible color from those that have already been allocated. However, you may

instead be given an error message and told that there are no free colorcells.

In order to minimize the chance of running out of colorcells, many programs use "shared"

colorcells. Shared colorcells can be used by any number of applications, but they can't be

changed by any of them. They can only be deallocated by each application that uses them,

and when all applications have deallocated the cell, it is available for setting one again.

Shared cells are most often used for background, border, and cursor colors.

Alternately, some clients have to be able to change the color of graphics they have already

drawn. This requires another kind of cell, called private, which can't be shared. A typical

use of a private cell would be for the pallete of a color mixing application. Such a program

might have three bars of each primary color, and a box which shows the mixed color. The

primary bars would use shared cells, while the mixed color box would use a private cell.

In summary, some programs define colorcells to be read-only and shareable, while others

define colorcells to be read/write and private.

To top it off, there are even clients that may temporarily swap in a whole private colormap of

their own. Because of the way color is implemented, if this happens, all other applications

will be displayed in unexpected colors.

175

Command Line Options

In order to minimize such conflicts, you should request precise colors only when necessary.

By preference, use color names or hexadecimal specifications that you specified for other

applications.

Starting a Client Window as an Icon

The -iconic command line option starts the client window in iconified form. To start an

xterm window as an icon, type:

% xterm -iconic &

This can be especially useful for starting the login xterm window. As described in Chapter 2,

Getting Started, terminating the login xterm window kills the X server and all other clients

that are running. It's always possible to terminate a window inadvertently, by selecting the

wrong menu option or typing the wrong key sequence. If your login xterm window is auto-
matically iconified at startup, you are far less likely to terminate the window inadvertently

and end your X session.

For most clients, the size and position of the icon can be set using resource variables in an

Xdefaults or other resource file. (This is highly recommended if you are starting the login

xterm window as an icon.) See the appropriate client reference pages in Part Three for a

complete list of available resources. Refer to Chapter 9, Setting Resources, for instructions

on how to set resources.

Specifying Fonts on the Command Line

Many clients allow you to specify the font to be used when displaying text in the window.

(These are known as screen fonts and are not to be confused with printer fonts.) For clients

written with the X Toolkit, the option to set the display font is -f n. For example, the com-
mand line:

% xterm -fn fontname £

creates an xterm window in which text will be displayed with the font named fontname.

Chapter 5, Font Specification, describes the available screen fonts and font naming

conventions.

176 X Window System User's Guide

Reverse Video

There are three options to control whether or not the application will display in reverse

video-that is, with the foreground and background colors reversed. The -rv or

-reverse option is used to request reverse video.

The +rv option is used to override any reverse video request that might be specified in a

resource file (see Chapter 9, Setting Resources). This is important, because not all clients

handle reverse video correctly, and even those that do usually do so only on black and white

displays.

777

Command Line Options

9

Setting Resources

This chapter describes how to set resource variables that determine applica-
tion features such as color, geometry, fonts, and so on. It describes the syn-
tax of resource definition files such as .Xresources, as well as the operation

ofxrdtb, a client that can be used to change resource definitions dynamically,

and make resources available to clients running on other machines.

In This Chapter:

Resource Naming Syntax 182

Syntax of Toolkit Client Resources 183

Tight Bindings and Loose Bindings 184

Instances and Classes 184

Precedence Rules for Resource Specification 185

Some Common Resources 187

Event Translations 188

The Syntax of Event Translations 189

xterm Translations to Use xclipboard 191

How to Set Resources 192

A Sample Resources File 193

Specifying Resources from the Command Line 194

The-xrm Option 194

The-name Option 194

Setting Resources with xrdb 195

Querying the Resource Database 196

Loading New Values into the Resource Database 196

Saving Active Resource Definitions in a File 197

Removing Resource Definitions 197

Listing the Current Resources for a Client: appres .

Other Sources of Resource Definition 199

Virtually all X clients are customizable. You can specify how a client looks on the screen-

its size and placement, its border and background color or pattern, whether or not the window

has a scrollbar, and so on. Some applications even allow you to redefine the keystrokes or

pointer actions used to control the application.

Traditional UNIX applications rely on command line options to allow users to customize the

way they work. As we've already discussed in Chapter 8, Command Line Options, X appli-
cations support command line options too, but often not for all of their features. Also, there

can be so many customizable features in an application that a command line to set them all

would be completely impractical. (Imagine the aggravation of misspelling an option in a

command that was three lines long.)

X offers an alternative to customizing an application on the command line. Almost every

feature of a program can be controlled by a variable called a resource', you can change the

behavior or appearance of a program by changing the value associated with a resource vari-
able. (All of the standard X Toolkit Command Line Options described in Chapter 8 have cor-
responding resource variable names. See Table 8-1 for more information.)

Resource variables may be Boolean (such as scrollBar: True) or take a numeric or

string value (borderWidth: 2 or foreground: blue). What's more, in applica-
tions written with the X Toolkit (or other object-oriented systems), resources may be associ-
ated with separate objects (or "widgets") within an application. There is a syntax that allows

for separate control over both a class of objects in the application and an individual instance

of an object. This is illustrated by the following resource specifications for a hypothetical

application called xclient:

xclient*Buttons.foreground: blue

xclient*help.foreground: red

The first resource specification makes the foreground color of all buttons in the xclient appli-
cation (in the class Buttons) blue; the second resource specification makes the foreground

color of the help button in this application (an instance of the class Buttons) red.

The values of resources can be set as application defaults using a number of different mecha-
nisms, including resource files in your home directory and a program called xrdb (X resource

database manager). As we'll see, the xrdb program stores resources directly in the server,

thus making them available to all clients, regardless of the machine the clients are running

on.

181

Setting Resources

Placing resources in files allows you to set many resources at once, without the restrictions

encountered when using command line options. In addition to a primary resource file (often

called Xdefaults or Xresources) in your home directory, which determines defaults for appli-
cations you run, you can create system-wide resource files to set application defaults. You

can also create resource files to set some resources only for the local machine, some for all

machines in a network, and some for one or more specific machines.

The various resource files are automatically read in and processed in a certain order within

an application by a set of routines called the resource manager. The syntax for resource

specifications and the rules of precedence by which the resource manager processes them are

intended to give you the maximum flexibility in setting resources, with the minimum amount

of text. You can specify a resource that controls only one feature of a single application,

such as the red help button in the hypothetical xclient settings above. You can also specify

a resource that controls one feature of multiple objects within multiple applications with a

single line.

It is important to note that command line options normally take precedence over any prior

resource settings, so you can set up the files to control the way you normally want your appli-
cation to work, and then use command line options to specify changes you need for only one

or two instances of the application.

In this chapter, we'll first look at the syntax of resource specifications. Then we'll consider

some methods of setting resources, primarily some special command line options and the

xrdb program. Finally, we'll take a brief look at the section "Other Sources of Resource Def-
inition," additional files that can be created or edited to set application resources.

Resource Naming Syntax

The basic syntax of a resource definition file is fairly simple. Each client recognizes certain

resource variables that can be assigned a value. The variables for each client are documented

on its reference page in Part Three of this guide.

Most of the common clients are written to use the X Toolkit. As described in Chapter 7,

Other Clients, toolkits are a mechanism for simplifying the design and coding of applica-
tions, and making them operate in a consistent way. Toolkits provide a standard set of

objects, or "widgets," such as menus, command buttons, dialog boxes, scrollbars, and so on.

As we'll see, the naming syntax for certain resources parallels the object hierarchy that is

built into X Toolkit programs.*

The most basic line you can have in a resource definition file consists of the name of a client,

followed by a period or an asterisk and the name of a variable. A colon and whitespace sepa-

*If a client was built with the X Toolkit, this should be noted on the reference page. In addition to certain applica-
tion-specific resource variables, clients that use the X Toolkit have a common set of resource variables. These com-
mon variables may not be shown on each reference page, but all of the Toolkit variables are listed in Table 8-1, in

Chapter 8, Command Line Options and are described in slightly greater detail on the X reference page in Part Three

of this guide. A few of the more common variables also appear in Table 9-1 later in this chapter.

182 X Window System User's Guide

rate the client and variable names from the actual value of the resource variable. The follow-
ing line specifies that all instances of the xterm application have a scrollbar:

xterm*scrollBar: True

If the name of the client is omitted, the variable applies to all instances of all clients (in this

case, all clients that can have a scrollbar). If the same variable is specified as a global vari-
able and a client-specific variable, the value of the client-specific variable takes precedence

for that client. Note, however, that if the name of the client is omitted, the line should gener-
ally begin with an asterisk.

Be sure that you don't inadvertently omit the colon at the end of a resource specification.

This is an easy mistake to make and the resource manager provides no error messages. If

there is an error in a resource specification (including a syntax error like the omission of the

colon or a misspelling), the specification is ignored. The value you set will simply not take

effect. To include a comment in a resource file or comment out one of the resource specifica-
tions, begin the line in question with an exclamation point (!). If the last character on a line

is a backslash (\), the resource definition on that line is assumed to continue on the next line.

Syntax of Toolkit Client Resources

As mentioned above, X Toolkit applications are made up of predefined components called

widgets. There can be widgets within widgets (e.g., a command button within a dialog box).

The syntax of resource specifications for Toolkit clients parallels the levels of the widget

hierarchy. Accordingly, you should think of a resource specification as having the following

format:

object. subobject[. subobject. . .].attribute: value

where:

object is the client program, or a specific instance of the program. (See The

-name Option later in this chapter.)

subobjects correspond to levels of the widget hierarchy (usually the major structures

within an application, such as windows, menus, scrollbars, etc.).

attribute is a feature of the last subobject (perhaps, a command button), such as

background color or a label that appears on it.

value is the actual setting of the resource attribute, i.e., the label text, color,

or other feature.

The type of value to supply should usually be evident from the name of the resource or

from the description of the resource variable on the reference page. Most of these values are

similar to those used with the command line options described in Chapter 8, Command Line

Options.

For example, various resources, such as borderColor or background, take color spec-
ifications; geometry takes a geometry string, font takes a font name, and so on. Logical

values, such as the values taken by scrollBar, can be generally specified as on or of f,

as yes or no, or as True or False.

i ao

Setting Resources

Tight Bindings and Loose Bindings

Binding refers to the way in which components of a resource specification are linked

together. Resource components can be linked in two ways:

" By a tight binding, represented by a dot (.).

" By a loose binding, represented by an asterisk (*).

A tight binding means that the components on either side of the dot must be next to one

another in the widget hierarchy. A loose binding is signalled by an asterisk, a wildcard char-
acter, which means there can be any number of levels in the hierarchy between the two sur-
rounding components.

If you want to specify tight bindings, you must be very familiar with the widget hierarchy.

It's easy to use tight bindings incorrectly.

For example, the following resource specification to request that xterm windows be created

with a scrollbar doesn't work:

xterm.scrollBar: True

This specification ignores the widget hierarchy of xterm, in which the VT102 window is con-
sidered to be one widget, the Tektronix window another, and the menus a third. This means

that if you want to use tight bindings to request that xterm windows be created with a

scrollbar, you should specify:

xterm.vtlOO.scrollBar: True

Of course, rather than decipher the widget hierarchy (which may even change with subse-
quent versions of an application), it is far simpler just to use the asterisk connector in the first

place:

xterm*scrollBar: True

In an application that supports multiple levels of widgets, you can mix asterisks and periods.

In general, though, the developers of X recommend always using the asterisk rather than the

dot as the connector even with simple applications, since this gives application developers

the freedom to insert new levels in the hierarchy as they produce new releases of an applica-
tion.

Instances and Classes

Each component of a resource specification has an associated class. Several different widg-
ets, or widget attributes, may have the same class. For example, in the case of xterm, the

color of text (foreground), the pointer color, and the text cursor color are all defined as

instances of the class Foreground. This makes it possible to set the value of all three with

a single resource specification. That is, if you wanted to make the text, the pointer, and the

cursor dark blue, you could specify either:

184 X Window System User's Guide

xterm*foreground: darkblue

xterm*cursorColor: darkblue

xterm*pointerColor: darkblue

or:

xterm*Foreground: darkblue

Initial capitalization is used to distinguish class names from instance names. Class names

always begin with an uppercase letter, while instance names always begin with a lowercase

letter. Note however that if an instance name is a compound word (such as cursor-

Color), the second word is usually capitalized.

The real power of class and instance naming is not apparent in applications like xterm that

have a simple widget hierarchy. In complex applications written with the X Toolkit, class

and instance naming allows you to do such things as specify that all buttons in dialog box be

blue, but that one particular button be red. For example, in the hypothetical xclient applica-
tion, you might have a resource file that reads:

xclient*buttonbox*Buttons*foreground: blue

xclient*buttonbox*delete*foreground: red

where Buttons is a class name and the delete button is an instance of the Buttons

class. This type of specification works because an instance name always overrides the corre-
sponding class name, for that instance. Class names thus allow default values to be specified

for all instances of a given type of object. Instance names can be used to specify exceptions

to the rules outlined by the class names. Note that a class name can be used with a loose

binding to specify a resource for all clients. For example, the following specification would

say that the foreground colors for all clients should be blue:

*Foreground: blue

The reference page for a given program should always give you both instance and class

names for every resource variable you can set. You'll notice that in many cases, the class

name is identical to the instance name, with the exception of the initial capital letter. Often

(but not always) this means that there is only one instance of that class. In other cases, the

instance with the same name is simply the primary or most obvious instance of the class.

Precedence Rules for Resource Specification

Even within a single resource file, such as ̂ resources, resource specifications often conflict.

For instance, recall the example from the first page of the chapter, involving the hypothetical

xclient application:

xclient*Buttons.foreground: blue

xclient*help.foreground: red

The first resource specification makes the foreground color of all buttons (in the class But-
tons) blue. The second resource specification overrides the first in one instance: it makes

the foreground color of the help button (an instance of the class Buttons) red. In the

event of conflicting specifications, there are a number of rules that the resource manager fol-
lows in deciding which resource specification should take effect.

185

Setting Resources

We've already seen two of these rules, which are observable in the way the resource manager

interprets definitions in a user-created resource file. (The first rule applies in the xclient

example above.)

" Instance names take precedence over class names.

" Tight bindings take precedence over loose bindings.

From just these two rules, we can deduce a general principle: the more specific a resource

definition is, the more likely it is to be honored in the case of a conflict.

However, for cases in which you want to set things up very carefully, you should know a bit

about how programs interpret resource specifications.

For each resource, the program has both a complete, fully-specified, tightly-bound instance

name and class name. In evaluating ambiguous specifications, the program compares the

specification against both the full instance name and the full class name. If a component in

the resource specification matches either name, it is accepted. If it matches more than one

element in either name, it is evaluated according to the following precedence rules:

1. The levels in the hierarchy specified by the user must match the program's expecta-
tions, or the entry will be ignored. For example, if the program expects either of the

following:

xterm. vtlOO . scrollBar: value instance name

XTerm.VTIOO . ScrollBar: value class name

the resource specification:

xterm.scrollBar: True

won't work, because the tight binding is incorrect. The objects xterm and scroll-

Bar are not adjacent in the widget hierarchy. There is another widget, vtlOO,

between them. The specification would work if you used a loose binding, however

xterm*scrollBar: True

(Note that the class name of xterm is XTerm, not xterm as you might expect.)

2. Tight bindings take precedence over loose bindings. That is, entries with instance or

class names prefixed by a dot are more specific than entries with names prefixed by an

asterisk, and more specific entries take precedence. For example, the entry

xterm. vtlOO .geometry will take precedence over the entry xterm*geome-

try.

3. Similarly, instances take precedence over classes. For example, the entry *scroll-

Bar will take precedence over the entry *Scrollbar.

4. An instance or class name that is explicitly stated takes precedence over one that is

omitted. For example, the entry xterm*scrollbar is more specific than the entry

*scrollBar.

5. Left components carry more weight than right components. For example, the entry

xterm*background will take precedence over *background.

186 X Window System User's Guide

To illustrate these rules, let's consider the following resource specifications for the hypotheti-
cal Toolkit application xclient, as shown in Example 9-1.

Example 9-1. Sample resources

xclient.toc*Command.activeForeground: black

*Command.Foreground: green

The program would try to match these specifications against the complete tightly-bound

instance and class specifications following:

xclient. toe. messageFunctions . include. activeForeground ins tancc name

Lent. Box . SubBox . Command. Foreground c[ass ^me

Note that these specifications are the instance and class names for the same resource Each

component of the instance name belongs to the class in the corresponding component of the

class name. Thus, the instance toe occurs in the class Box, the messageFunctions

instance name is from the class SubBox, etc.

Both resource specifications in Example 9-1 match these instance and class names. How-
ever, with its tight bindings and instance names, xclient. toc*Command. act ive-
Foreground matches more explicitly; i.e., with higher precedence. That resource is set:

the foreground color of the include button in its active state is set to black.

The specification *Command. Foreground also matches the instance and class names,

but is composed entirely of class names which are less specific. Thus, it takes lower prece-
dence than the first line in Example 9-1 (which sets the include button to black).

However, since the second line is an acceptable specification, hypothetically it would set the

foreground color of other objects in the Command class. This would be true for xclient, as

well as any other application, since the line begins with the asterisk wildcard. So if there

were other xclient command buttons comparable to the include button in the hierarchy,

this second line would set the foreground color of these buttons to green. If you want a

more detailed description of how resource precedence works, see Section 9.2.3 of Volume

Four, X Toolkit Intrinsics Programming Manual.

Some Common Resources

Most applications written using the X Toolkit have a set of class and instance names in com-
mon. These Toolkit resources correspond to the Toolkit options described in Chapter 8, Com-
mand Line Options. Among those Toolkit resource variables you might want to set are:

Table 9-1. Core Toolkit Resources

Instance Name Class Name Default Description

background Background White Background color.

foreground Foreground Black Foreground color.

borderColor BorderColor Black Border color.

Setting Resources 187

Note that in a complex Toolkit application, these values can occur at every level in a widget

hierarchy. For example, our hypothetical xclient application might support the following

complete instance names:

xclient.background

xclient.buttonBox.background

xclient.buttonBox.commandButton.background

xclient.buttonBox.quit.background

These resources would specify the background color for the application window, the button

box area, any command buttons, and the quit command button, respectively.

Of course, the specification:

xclient*background

would match any and all of them. See Table 8-1 for a comprehensive list of the common X

Toolkit resources.

Event Translations

We've discussed the basics of resource naming syntax. From the sample resource settings, it

appears that what many resource variables do is self-evident, or nearly so. Among the less

obvious resource variables, there is one type of specification, an event translation, that can be

used with many clients and warrants somewhat closer examination.

User input and several other types of information pass from the server to a client in the form

of events. An event is a packet of information that tells the client something it needs to act

on, such as keyboard input. As mentioned in Chapter 4, The xterm Terminal Emulator, mov-
ing the pointer or pressing a key, etc., causes input events to occur. When a program receives

a meaningful event, it responds with some sort of action.

For many clients, the resource manager recognizes mappings between certain input events

(like a pointer button click) and some sort of action by the client program (like selecting

text). A mapping between one or more events and an action is called a translation. A

resource containing a list of translations is called a translation table.

Many event translations are programmed into an application and are invisible to the user.*

For our purposes, we are only concerned with very visible translations of certain input

events, primarily the translation of keystrokes and pointer button clicks to particular actions

by a client program.

*For more information on events and translations, see Volume Four, X Toolkit Programming Manual.

188 X Window System User's Guide

The Syntax of Event Translations

The operation of many clients, notably xterm, is partly determined by default input event

translations. For example, as explained in Chapter 4, The xterm Terminal Emulator, selecting

text with the first pointer button (an event) saves that text into memory (an action).

In this case, the input "event" is actually three separate X events:

1. Pushing the first pointer button down.

2. Moving the pointer while holding the first button down.

3. Releasing the button.

Each of these input events performs part of the action of selecting text:

1. Unselects any previously selected text and begins selecting new text.

2. Extends the selection.

3. Ends the selection, saving the text into memory (both as the PRIMARY selection and

CUT_BUFFERO).

The event and action mappings would be expressed in a translation table as follows:

<BtnlDown>: select-start()\n\

<BtnlMotion>: select-extend()\n\

<BtnlUp>: select-end(PRIMARY,CUT_BUFFERO)

where each event is enclosed in angle brackets (< >) and produces the action that follows the

colon. A space or tab generally precedes the action, though this is not mandatory:

<event>: action

A translation table must be a continuous string. In order to link multiple mappings as a con-
tinuous string, each event-action line should be terminated by a newline character (Vi), which

is in turn followed by a backslash (\) to escape the actual newline.

These are default translations for xterm* All of the events are simple, comprised of a single

button motion. As we'll see, events can also have modifiers, i.e., additional button motions

or keystrokes (often Control or Meta) that must be performed with the primary event to pro-
duce the action. (Events can also have modifiers that must not accompany the primary event

if the action is to take place.)

As you can see, the default actions listed in the table are hardly intuitive. The event-action

mappings that can be modified using translation resources are usually described on the refer-
ence page for the particular client.

*They are actually slightly simplified versions of default translations. Before you can understand the actual transla-
tions listed on the xterm reference page in Part Three of this guide, you must learn more about the syntax of transla-
tions. In addition to the current chapter, read Appendix H, Translation Table Syntax.

4 OQ

Setting Resources

You can specify non-default translations using a translation table (a resource containing a list

of translations). Since actions are part of the client application and cannot be modified, what

you are actually doing is specifying alternative events to perform an action.*

The basic syntax for specifying a translation table as a resource is as follows:

[object*[subobject...]]translations: #override\

[modifier]<event>: action

The first line is basically like any other resource specification, with a few exceptions. First,

the final argument is always translations, indicating that one (or more) of the event-

action bindings associated with the [object* [subobject . . .]] are being modified.

Second, note that ^override is not the value of the resource; it is literal and indicates

that what follows should override any default translations. In effect, # over ride is no

more than a pointer to the true value of the resource: a new event-action mapping (on the

following line), where the event may take a modifier.!

A non-obvious principle behind overriding translations is that you only literally "override" a

default translation when the event(s) of the new translation match the event(s) of a default

translation exactly. If the new translation does not conflict with any existing translation, it is

merely appended to the defaults.

In order to be specified as a resource, a translation table must be a single string. The

^override is followed by a backslash (\) to indicate that the subsequent line should be a

continuation of the first.

In the basic syntax example above, the value is a single event-action mapping. The

value could also be a list of several mappings, linked by the characters Nn\ to make the

resource a continuous string.

The following xterm translation table shows multiple event-action mappings linked in this

manner:

*VT100.Translations: #override\

<BtnlDown>: select-start()\n\

<BtnlMotion>: select-extend()\n\

<BtnlUp>: select-end(PRIMARY,CUT BUFFERO)

*As we'll see, in certain cases you may be able to supply an alternative argument (such as a selection name) to an ac-
tion. These changes are interpreted by the resource manager.

fThe use of modifiers can actually become quite complicated, sometimes involving multiple modifiers. For our pur-
poses, we'll deal only with simple modifiers. For more information on modifiers, see Appendix H, Translation Table

Syntax, in this guide, and Volume Four, X Toolkit Programming Manual.

190 X Window System User's Guide

xterm Translations to Use xclipboard

As stated in Chapter 4, The xterm Terminal Emulator, you can specify xterm translations to

have copied text made the CLIPBOARD selection. The CLIPBOARD selection is the property

of the xclipboard client. If you are running xclipboard and you copy text to be made the

CLIPBOARD selection, this text automatically appears in the xclipboard window. The xclip-
board window allows you to store text that can then be copied to other windows.

Some sample translations that would allow you to use the xclipboard in this way follow:

*VT100.Translations: #override\

Buttonl <Btn3Down>: select-end(CLIPBOARD)\n\

'Ctrl ~Meta <Btn2Up>: insert-selection(PRIMARY,CLIPBOARD)

According to this table, while selecting text with Buttonl (the modifier), the event of

pressing the third pointer button (BtnSDown) (while continuing to hold down the first but-
ton), produces the action of making the text the CLIPBOARD selection. (Notice that we've

taken the select-end action and combined it with the argument CLIPBOARD. The default

translation uses the arguments PRIMARY,CUT_BUFFERO.)

The second line modifies the way selected text is pasted into a window so that the CLIP-
BOARD selection can be pasted. As described in Chapter 4, The xterm Terminal Emulator,

pressing the second pointer button pasted the contents of the PRIMARY selection, by default.

If there is no PRIMARY selection, the contents of the cut buffer are pasted. The default trans-
lation that sets this behavior is as follows:

"Ctrl "Meta <Btn2Up>: insert-selection(PRIMARY,CUT_BUFFERO)

This translation specifies that releasing pointer button 2, while pressing any modifier button

or key other than Control or Meta, inserts text from the PRIMARY selection, or if the selec-
tion is empty, from cut buffer 0. In the second line of our translation table, we've replaced

CUT_BUFFERO with the CLIPBOARD selection. The new behavior is that releasing the second

pointer button pastes the PRIMARY selection, or if there is none, the CLIPBOARD selection.

Thus, according to the translations in the example, if you select text as usual with the first

pointer button, and then additionally push the third button down (while continuing to hold

the first button), the text becomes the CLIPBOARD selection and appears automatically in the

xclipboard window, as in Figure 9-1.

Since our first translation specifies a different event/action mapping than the default transla-
tion for selecting text (discussed in the previous section), the default translation still applies.

If you select text with the first pointer button alone, that text is still made the PRIMARY selec-
tion and fills CUT_BUFFERO. To send text to the xclipboard, you would need to use the third

pointer button as well. Thus, not all selected text need be made the CLIPBOARD selection

(and sent automatically to the xclipboard).

There are advantages to making only certain selections CLIPBOARD selections. You can

keep xclipboard running and make many text selections by the default method (first pointer

button), without filling up the xclipboard window. And chances are you don't want to save

every piece of text you copy for an extended period of time, anyway.

Setting Resources

text

Figure 9-1. Selected text appears automatically in the xclipboard window

The CLIPBOARD selection and the xclipboard client also get around the potential problems

of selection ownership discussed in Chapter 4. Once text becomes the CLIPBOARD selection,

it is owned by the xclipboard client. Thus, if the client from which text was copied (the orig-
inal owner) goes away, the selection is still available, owned by the xclipboard, and can be

transferred to another window (and translated to another format if necessary).

The operation of many clients can be modified by specifying event translations as resources.

See the relevant client reference pages in Part Three of this guide.

For information about events, actions, and translation table syntax, see Appendix H, Transla-
tion Table Syntax, in this guide, and Volume Four, X Toolkit Programming Manual.

How to Set Resources

Learning to write resource specifications is a fairly manageable task, once you understand the

basic rules of syntax and precedence. In contrast, the multiple ways you can set

resources-for a single system, for multiple systems, for a single user, for all users-can be

confusing. For our purposes, we are primarily concerned with specifying resources for a

single user running applications both on the local system and on remote systems in a net-
work.

As we've said, resources are generally specified in files. A resource file can have any name

you like. Resources are generally "loaded" into the X server by the xrdb client, which is nor-
mally run from your startup file or run automatically by xdm when you log in. (See Appendix

A, System Management, for information about startup files and xdm.) Prior to Release 2 of X,

there was only one resource file called ̂ defaults, placed in the user's home directory. If no

resource file is loaded into the server by xrdb, the ̂ defaults file will still be read.

Remember that X allows clients to run on different machines across a network, not just on

the machine that supports the X server. The problem with the older ^defaults mechanism

was that users who were running clients on multiple machines had to maintain multiple

192 X Window System User's Guide

Xdefaults files, one on each machine. By contrast, xrdb stores the application resources

directly in the server, thus making them available to all clients, regardless of the machine the

clients are running on. As we'll see, xrdb also allows you to change resources without edit-
ing files.

Of course, you may want certain resources to be set on all machines and others to be set only

on particular machines. See the section "Other Sources of Resource Definition" later in this

chapter for information on setting machine-specific resources. This section gives an over-
view of additional ways to specify resources, using a variety of system files.

In addition to loading resource files, you can specify defaults for a particular instance of an

application from the command line using two options: -xrm and -name.

First we'll consider a sample resources file. Then we'll take a look at the use of the -xrm

and -name command line options. Finally, we'll discuss various ways you can load

resources using the xrdb program and consider "Other Sources of Resource Definition."

A Sample Resources File

Figure 9-2 shows a sample resources file. This file sets the border width for all clients to a

default value of 2 pixels, and sets other specific variables for xclock and xterm. The meaning

of each variable is fairly obvious from its name (for example, xterm*scrollBar:

True means that xterm windows should be created with a scrollbar.

Note that comments are preceded by an exclamation point (!).

For a detailed description of each possible variable, see the appropriate client reference

pages in Part Three of this guide.

*borderWidth: 2

t

! xclock resources

i

xclock*borderWidth: 5

xclock*geometry: 64x64

i

! xterm resources

i

xterm*curses: on

xterm*cursorColor: skyblue

xterm*pointerShape: pirate

xterm*jumpScroll: on

xterm*saveLines: 300

xterm*scrollBar: True

xterm*scrollKey: °n

xterm*background: black

xterm*borderColor: blue

xterm*borderWidth: 3

xterm*foreground: white

xterm*font: 8x13

Figure 9-2. A sample resources file

193

Setting Resources

Specifying Resources from the Command Line

Two command line options that are supported by all clients written with the X Toolkit can be

useful in specifying resources.

The -xrm Option

The -xrm option allows you to set on the command line any specification that you would

otherwise put into a resources file. For example:

% xterm -xrm 'xtarm*Foraground: blue' 6

Note that a resource specification on the command line must be quoted using the single

quotes in the line above.

The -xrm option only specifies the resource(s) for the current instance of the application.

Resources specified in this way do not become part of the resource database.

The -xrm option is most useful for setting classes, since most clients have command line

options that correspond to instance variable names. For example, the -f g command line

option sets the foreground attribute of a window, but -xrm must be used to set Fore-
ground.

Note also that a resource specified with the -xrm option will not take effect if a resource that

takes precedence has already been loaded with xrdb. For example, say you've loaded a

resource file that includes the specification:

xterm*pointerShape: pirate

The following command line specification of another cursor will fail:

% xterm -xrm '*point«rShap«: gumby' &

because the resource xterm*po inter Shape is more specific than the resource

*pointerShape. Instead, you'll get an xterm with the previously specified pirate cursor.

To override the resource database (and get the Gumby cursor), you'd need to use a resource

as or more specific, such as the following:

% xterm -xrm 'xterm*pointerShape: gumby' &

The -name Option

The -name option, which lets you name one instance of a client using an arbitrary alias, can

also be used to set resources. If a client supports the -name option, you can create instance

resources using the arbitrary alias as the object. You can then run the client using the alias

as the -name argument. The client automatically uses the resources that begin with that

alias.

For example, you could put the following entries into a resource file such as Xresources:

XTerm*Font: 8x13

smallxterm*Font: 6x10

194 X Window System User's Guide

smallxterm*Geometry: 80x10

bigxterm*Font: 9x15

bigxterm*Geometry: 80x55

You could then use the following commands to create xterms of different sizes:

% xterm £

would create an xterm with the default specifications, while:

% xterm -name smallxterm £

would create a small xterm, 80 characters across by 10 lines down, displaying in the font

6x10. In addition:

% xterm -name bigxterm &

would create a big xterm, 80 characters across by 55 lines down, displaying in the font 9x15.

Setting Resources with xrdb

The xrdb program saves you from the difficulty of maintaining multiple resource files if you

run clients on multiple machines. It stores resources in the X server, where they are acces-
sible to all clients using that server. (Technically speaking, the values of variables are stored

in a data structure referred to as the RESOURCE_MANAGER property of the root window of

screen 0 for that server. From time to time, we may refer to this property colloquially simply

as the resource database.)

The appropriate xrdb command line should normally be placed in your jcinitrc file or jcses-

sion file to initialize resources at login, although it can also be invoked interactively. It has

the following syntax:

xrdb [options] [filename]

The xrdb client takes several options, all of which are documented on the reference page in

Part Three of this guide. Several of the most useful options are discussed in subsequent sec-
tions. (Those that are not discussed here have to do with xrdb's ability to interpret C prepro-
cessor-style defined symbols; this is an advanced topic. For more information, see the xrdb

reference page in Part Three of this guide, and the cpp(l) reference page in your UNIX Refer-
ence Manual.)

The optional filename argument specifies the name of a file from which the values of client

variables (resources) will be read. If no filename is specified, xrdb will expect to read its data

from standard input. That is, the program will appear to hang, until you type some data, fol-
lowed by an end-of-file (Control-D). Note that whatever you type will override the previous

contents of the RESOURCE_MANAGER property, so if you inadvertently type xrdb without a

filename argument, and then quit with Control-D, you will delete any previous values. (You

can append new settings to current ones using the -merge option discussed later in this

chapter.)

The resource filename can be anything you want. Two commonly used names are Xde-

foults and Xresources.

Setting Resources

You should load a resource file with the xrdb -load option. For example, to load the con-
tents of your Xresources file into the RESOURCE_MANAGER, you would type:

% xrdb -load .Xresources

Querying the Resource Database

You can find out what options are currently set by using the -query option. For example:

% xrdb -query

XTerm*ScrollBar: True

bigxterm*font: 9x15

bigxterm*Geometry: 80x55

smallxterm*Font: 6x10

smallxterm*Geometry: 80x10

xterm*borderWidth: 3

If xrdb has not been run, this command will produce no output.

Loading New Values into the Resource Database

By default, xrdb reads its input (either a file or standard input) and stores the results into the

resource database, replacing the previous values. If you simply want to merge new values

with the currently active ones (perhaps by specifying a single value from standard input), you

can use the -merge option. Only the new values will be changed; variables that were

already set will be preserved rather than overwritten with empty values.

For example, let's say you wanted to add new resources listed in the file new.values. You

could say:

% xrdb -merge new.values

As another example, if you wanted all subsequently run xterm windows to have scrollbars,

you could use standard input, and enter:

% xrdb -marge

xterm*scrollBar: True

and then press Control-D to end the standard input. Note that because of precedence rules

for resource naming, you may not automatically get what you want. For example, if you

specify:

xterm*scrollBar: True

and the more specific value:

xterm*vtlOO.scrollBar: False

has already been set, your new, less specific setting will be ignored. The problem isn't that

you used the -merge option incorrectly-you just got caught by the rules of precedence.

196 X Window System User's Guide

If your specifications don't seem to work, use the -query option to list the values in the

RESOURCE_MANAGER property, and look for conflicting specifications.

Note also that when you add new specifications, they won't affect any programs already run-
ning, but only programs started after the new resource specifications are in effect. (This is

also true even if you overwrite the existing specifications by loading a new resource file.

Only programs run after this point will reflect the new specifications.)

Saving Active Resource Definitions in a File

Assume that you've loaded the RESOURCE_MANAGER property from an ^resources or

other file. However, you've dynamically loaded a different value using the -merge option,

and you'd like to make the new value your default.

You don't need to edit the file manually (although you certainly could.) The -edit option

allows you to write out the current value of the RESOURCE_MANAGER property into a file.

If the file already exists, it is overwritten with the new values. However, xrdb is smart

enough to preserve any comments and preprocessor declarations in the file being overwritten,

replacing only the resource definitions.

For example:

% xrdh -edit ~/"Xrasources

will save the current contents of the RESOURCE_MANAGER property in the file ^resources

in your home directory.

If you want to save a backup copy of an existing file, use the -backup option as follows:

% xrdb -edit .mydafaults -backup old

The string following the -backup option is used as an extension to be appended to the old

filename. In the example shown above, the previous copy of .mydefaults would be saved as

.mydefaults.old.

Removing Resource Definitions

You can delete the definition of the RESOURCE_MANAGER property from the server by cal-
ling xrdb with the -remove option.

There is no way to delete a single resource definition, other than to read the current xrdb val-
ues to a file. For example:

% xrdb -query > filename

Use an editor to edit and save the file, deleting the resource definitions you no longer want:

% vi filename

Then read the edited values back into the RESOURCE.MANAGER with xrdb:

% xrdb -load filename

197

Setting Resources

Listing the Current Resources for a Client: appres

The appres (application resource) program, available as of Release 4, lists the resources that

currently might apply to a client. These resources may be derived from several sources,

including the user's ̂ resources file and a system-wide application defaults file. The direc-
tory lusrlliblXlllapp-defaults contains application default files for several clients. The func-
tion of these files is discussed in the next section. For now, be aware that all of the resources

contained in these files begin with the class name of the application.

Also be aware that appres has one serious limitation: it cannot distinguish between valid and

invalid resource specifications. It lists all resources that might apply to a client, whether the

resources are correctly specified or not.

appres lists the resources that apply to a client having the class_name and/or

instance_name you specify. Typically, you would use appres before running a client

program to find out what resources the client program will access.

For example, say you want to run xterm, but you can't remember the latest resources you've

specified for it, whether you've loaded them, or perhaps what some of the application

defaults are, etc. You can use the appres client to check the current xterm resources. If you

specify only a class name, as in the following command line:

% appros XTerm

appres lists the resources that any xterm would load. In the case of xterm, this is an extensive

list, encompassing all of the system-wide application defaults, as well as any other defaults

you have specified in a resource file.

You can additionally specify an instance name to list the resources applying to a particular

instance of the client, as in the following:

% appres XTerm bigxterm

If you omit the class name, xappres assumes the class -NoSuchClass-, which has no

defaults, and returns only the resources that would be loaded by the particular instance of the

client.

Note that the instance can simply be the client name, for example, xterm. In that case, none

of the system-wide application defaults would be listed, since all begin with the class name

XTerm. For example, the command:

% appres xterm

might return resources settings similar to the following:

xterm.vt100.scrollBar: True

xterm*PhonyResource: youbet

xterm*pointerShape: gumby

xterm*iconGeometry: +50+50

*VT100.Translations: #override\

Buttonl <Btn3Down>: select-end(CLIPBOARD)\n\

"Ctrl ~Meta <Btn2Up>: insert-selection(PRIMARY,CLIPBOARD)

Most of these resources set obvious features of xterm. The translation table sets up xterm to

use the xclipboard. Notice also that appres has returned an invalid resource called

198 X Window System User's Guide

PhonyResource that we created for demonstration purposes. You can't rely on appres to

tell you what resources a client will actually load, because the appres program cannot distin-
guish a valid resource specification from an invalid one. Still it can be fairly useful to jog

your memory as to the defaults you've specified in your ̂ resources file, as well as the

system-wide application defaults.

Other Sources of Resource Definition

If xrdb has not been run, the RESOURCE_MANAGER property will not be set Instead, the

resource manager looks for a file called ̂defaults in the user's home directory. As we dis-
cussed earlier, resources found in this way are only available to clients running on the local

machine.

Whether or not resources have been loaded with xrdb, when a client is run the following

sources of resource definition are consulted in this order:

1. A file with the same name as the client application, in the directory lusrlliblXlllapp-

defaults will be loaded into the resource manager.

2. Files in the directory named by the environment variable XAPPLRESDIR, or if the vari-
able is not set, in the user's home directory, with the name Class where Class is the class

name of a client program.

3. Resources loaded into the RESOURCE_MANAGER property of the root window with

xrdb', these resources are accessible regardless of the machine on which the client is run-
ning.

If no resources are loaded in this way, the resource manager looks for a ^defaults file in

the user's home directory; these resources are only available on the local machine.

4. Next, the contents of any file specified by the shell environment variable XENVIRON-

MENT will be loaded.

If this variable is not defined, the resource manager looks for a file named Xdefaults-

hostname in the user's home directory, where hostname is the name of the host where the

client is running. These methods are used to set machine-specific resources.

5. Any values specified on the command line with the -xrm option will be loaded for that

instance of the program.

All of these various sources of defaults will be loaded and merged, according to the prece-
dence rules described above in the section "Precedence Rules for Resource Specification."

The client will then merge these various defaults specified by the user with its own internal

defaults, if any.

Finally, if the user has specified any options on the command line (other than with the -xrm

option)', these values will override those specified by resource defaults, regardless of their

source.

199

Setting Resources

10

Customizing the

twm Window Manager

This chapter describes the syntax of the .twmrc startup file that can be used

to customize the operation of the twm window manager. It describes how to

bind functions to keys, and how to define your own twm menus. An alterna-
tive .twmrc file is included.

In This Chapter:

Setting .twmrc Variables 205

Button/Key Bindings 206

Pointer Buttons 206

Keys 207

Context 207

Function Names 208

Action 208

Defining Menus 209

Submenus 210

Executing System Commands from a Menu 211

Color Menus 212

A Complete Revamp of twm 213

10

Customizing the twm Window Manager

Difficult as it may be to believe, every function of the window manager described in Chapter

2 and Chapter 3 of this guide can be modified by the user. The function itself will remain the

same (for example, you will still resize a window by moving the pointer over the border you

want to change, and stretching or shrinking the window to the size you want), but the keys

and/or menu items used to invoke the function may be completely different. The flexibility

of twm allows you to redesign the Twm menu by reordering, adding and removing items, and

changing key/button combinations; and to create entirely new menus. The operation of the

window manager, as distributed, is controlled by a text file called system.twmrc in the direc-
tory lusrlliblXllltwm. This file has three parts:

" A variables section, which contains various settings, such as the font with which menus

should be displayed, the volume of the keyboard bell, and so on.

" A key bindings section, which defines the keys, pointer buttons, and key and pointer but-
ton combinations that will be used to invoke each window manager function (including

the display of menus).

" A menus section, which defines the contents of the menus.

As users gain experience with the window manager, each can create a file called .twmrc in

his or her home directory. This file can simply extend system.twmrc, resetting a variable or

two, perhaps changing a key binding or adding a menu item-or it can replace it completely,

changing every aspect of the way the window manager operates.

Rather than abstractly explaining the syntax of these various sections in a .twmrc file, let's

plunge right in, by looking at the system.twmrc file from the MIT XI1 distribution, as shown

in Example 10-1. (Note that if you are using a commercial version of X, this file may be sig-
nificantly different. However, in that case, you most likely have a user's guide specific to

your system-perhaps even a customized version of this one!)

Example 10-1. The system.twmrc file from the MIT distribution

#

f $XConsortium: system.twmrc,v 1.7 89/12/01 11:23:47 jim Exp $

I

Default twm configuration file; needs to be kept smalJ

string space in systems whose compilers don't handle medium-sized

strings.

Customizing the twm Window Manager 203

Example 10-1. The system.twmrc file from the MIT distribution (continued)

t

Sites should tailor this file, providing any extra title buttons,

t menus, etc., that may be appropriate for their environment. For

example, if most of the users were accustomed to uwm, the defaults

f could be set up not to decorate any windows and to use meta-keys.

t

NoGrabServer

DecorateTransients

TitleFont "-adobe-helvetica-bold-r-normal-*-i2Q-*-*-*-*-*-*"

ResizeFont "-adobe-helvetica-bold-r-normal-*-i20-*-*-*-*-*-*"

MenuFont "-adobe-helvetica-bold-r-normal-*-i20-*-*-*-*-*-*n

IconFont "-adobe-helvetica-bold-r-normal-*-ioo-*-*-*-*-*-*n

IconManagerFont "-adobe-helvetica-bold-r-normal-*_IQO-*-*-*"

#ClientBorderWidth

Color

BofderColor "slategrey"

DefaultBackground "maroon"

DefaultForeground "gray85"

TitleBackground "maroon"

TitleForeground "gray85"

MenuBackground "maroon"

MenuForeground "gray85"

MenuTitleBackground "gray70"

MenuTitleForeground "maroon"

IconBackground "maroon"

IconForeground "gray85"

IconBorderColor "gray85"

IconManagerBackground "maroon1

IconManagerForeground "gray85'

Define some useful functions for motion-based actions.

#

MoveDelta 3

Function "move-or-lower" { f.move f.deltastop f.lower }

Function "move-or-raise" { f.move f.deltastop f.raise }

Function "move-or-iconify" { f.move f.deltastop f.iconify }

t Set some useful bindings. Sort of uwm-ish, sort of simple-button-ish

#

Buttonl = root : f .menu "defops"

Buttonl = m window | icon : f . function "move-or-lower"

Button2 = m window | icon : f . iconify

Buttons = m window | icon : f . function "move-or-raise"

Buttonl = title : f . function "move-or-raise"

Button2 = title : f . raiselower

Buttonl = icon : f . function "move-or-iconify"

Button2 = icon : f . iconify

Buttonl = iconmgr : f . iconify

Button2 = iconmgr : f . iconify

204 X Window System User's Guide

Example 10-1. The system.twmrc file from the MIT distribution (continued)

#

And a menu with the usual things

menu "defops"

{

"Twm" f.title

"Iconify" f.iconify

"Resize" f.resize

"Move" f.move

"Raise" f.raise

"Lower" f.lower

f. nop

"Focus" f.focus

"Unfocus" f.unfocus

"Show Iconmgr" f.showiconmgr

"Hide Iconmgr" f.hideiconmgr

f .nop

"Kill" f.destroy

"Delete" f.delete

f .nop

"Restart" f.restart

"Exit" f.quit

}

If you wish to change the operation of the window manager, you shouldn't change the sys-
tem.twmrc file. Instead, copy it to your home directory, under the name .twmrc, and make

changes to that copy. Note that settings in system.twmrc and your own local .twmrc file are

not cumulative; even if you only want to make a small change, you will need to copy the

whole file.

Setting .twmrc Variables

The first section of the file sets global variables. Some variables are Boolean-that is, their

presence or absence "toggles" some attribute of the window manager-while others have the

form:

variable value

where value is a number, a text string, keyword, or list of any of these. Variable names and

keywords are case insensitive.

An example of a Boolean variable is DecorateTransients, which, if present, causes

all windows to have titlebars, even if they are only intended to appear for a short time.

An example of a text string variable is:

MenuFont "-adobe-he1vetica-bold-r-normal-*-120-*-*-*-*-*-*-

which names the font that should be used in all menus. Text string variables are case sensi-

tive, and must always be surrounded by double quotes. (See Appendix E, Release 3 and 4

Standard Fonts, for lists and illustrations of fonts in the standard XI1 distribution.)

Customizing the twm Window Manager 205

An example of a numeric variable is:

IconBorderWidth 5

which sets the width of an icon's window border in pixels.

In the following example, TitleHighlight is a keyword:

Pixmaps

{

TitleHighlight "grayl"

}

An example of a list variable is:

NoTitle { "oclock" "xclock" "xscreensaver" "zwgc" }

The available variables are described in detail on the twm reference page in Part Three of this

guide, so we won't go into detail on each of them here.

Button/Key Bindings

The second section of the .twmrc file specifies which combination of keys, pointer buttons,

and title buttons (and in which context) will be used to invoke each predefined twm function.

Let's see how this works, by looking at the first few lines of the function binding section of

system.twmrc.

BUTTON/KEY = KEYS : CONTEXT : FUNCTION ACTION

Buttonl = : root : f.menu "defops"

Buttonl = m : window|icon : f.function "move-or-lower"

Button2 = m : window(icon : f.iconify

The first line we've shown is just a comment line, which is not present in the original file. It

labels each of the fields in the line below. The first field is separated from the others by an

equals sign; subsequent fields are separated by colons. In system.twmrc, fields are separated

by tabs for clarity, making the colons (falsely) appear to be delimiters only for the context

field; they could instead follow each other without intervening whitespace.

Let's talk about each of the fields in turn.

Pointer Buttons

The first field defines which keys or pointer buttons are used to invoke the function.

twm can handle a pointer with up to five buttons, which would be named Buttonl, Button2,

Buttons, Button4, and ButtonS. To bind a key to a twm function, just use that key's

keysym-the name that represents the label on a key. For example, the keysym for the Fl

key on a DECstation 3100 is "Fl". For more information about keysyms, see Chapter 11,

Setup Clients.

206 X Window System User's Guide

Keys

The second field lists modifier keys, if any, which must be held down while invoking the

specified function, twm recognizes the Shift, Control and Meta keys. (See Chapter 11, Setup

Clients, for more discussion.) These names must be entered in the .twmrc file in lower case,

and can be abbreviated s, c, and m.

If two keys must be held down at once, the names should be separated by a vertical bar (I).

For example, c | s would mean that the Control and Shift keys should be pressed simulta-
neously. It is not permissible to bind a function to three keys at once. If the field is left

blank, no key needs to be pressed while invoking the function.

Control and Shift should be familiar to most users. But what is a "Meta" key? There isn't a

key by that name on many keyboards-instead, Meta is a user-definable Control key that can

be mapped to an actual key on the physical keyboard using the xmodmap client as described

in Chapter 11. Most implementations of X will include a mapped Meta key. Type xmodmap

without any arguments to display the map. The system.twmrc specifies the Meta key in many

keyboard bindings. On workstations without a special key corresponding to Meta, you will

have to use xmodmap to find out or change the definition of Meta to something reasonable.

Meta could be mapped to the Control key, although this could potentially lead to conflicts

with applications that want to use the Control key. In particular, certain functions of xedit

will operate strangely or not at all if Meta is mapped to Control.

If you want to map the Meta key, it is best to choose a keyboard key that's within easy reach

and is not used frequently for other applications (perhaps an Alt or Funct key). Left- or right-

handedness could also be a factor in choosing a Meta key.

Some X developers warn against binding functions to the Shift key alone, since they say cer-
tain applications use it as a Control key. If you use it in twm, it will perform both functions

simultaneously, which is likely to be confusing. For the same reason, you should not bind

functions to buttons without modifier keys in the context of a window, as an application may

want to use the pointer buttons for its own purposes.

Context

The third field defines the context-the location the pointer must be in before the function

can be invoked. This field may be blank, or may contain one or more of: window, title, icon,

root, frame, iconmgr, their first letters (icon is i, iconmgr is m), or all. Multiple context speci-
fications should be separated by vertical bars.

If root is specified, it means that the pointer must be in the root (background) window, and

not in any other window or icon. If the context is window, icon, title, frame, or iconmgr, the

pointer must be in the specified place(s) for the function to be invoked.

The context field makes perfect sense if you consider the sample function binding:

Button2 = m : window I icon : f.iconify

f . iconif y turns a window into an icon, or an icon into a window. The pointer must be in

a window or an icon for the function to be used.

Customizing the twm Window Manager 207

Function Names

The first field in a key binding contains the name of a function, followed by an equals sign.

twm has a number of predefined functions. Each of these functions has a name beginning

with "f.". The meaning of most of these functions should be fairly obvious to you from the

name, if not from your experience using the window manager. For example, f . resize is

used to resize a window, f .move to move a window, or f . iconif y to change a window

to an icon.

Others are less obvious. For example, f. identify provides a summary of the name and

geometry of the window it's invoked on. Notice the function f. nop, which appears coupled

with a set of empty quotes rather than a menu selection. This line in the .twmrc creates a

blank line on the Twm menu, to isolate the KillWindow and Exit selections from the others. If

you select the blank line, nothing happens. If you substituted f . beep for f . nop, the key-
board would beep when the blank line was selected.

Each of the functions is described in detail on the reference page for twm in Part Three of this

guide.

Action

The fifth field, labeled "Action," is typically used only for the f .menu and f. function

functions, which allow you to invoke user-defined menus and functions. The fifth field speci-
fies the name of a menu or function, whose contents are defined in the third section of the

.twmrc file. If the menu or function name contains quotes, special characters, parentheses,

tabs or blanks, it must be enclosed in double quotes. For consistency, you may want to

always quote menu and function names. For example:

Buttonl = : root : f.menu "defops"

Buttonl = m|s : w|t|i|f|m : f.menu "defops"

Buttons = : root : f.menu "utilities"

Going back to our sample function binding:

Buttonl = : root : f.menu "defops"

you can now understand that the f .menu function is invoked (bringing up the menu named

"defops") by moving the pointer to the root window and pressing the left pointer button.

All of the other function definitions should be equally readable to you. Go back for a

moment and review the bindings shown in the system.twmrc file in Example 10-1.

You'll notice that it is possible to bind the same function to more than one set of keys, but-
tons, and/or contexts. For example, the f. iconif y function can be invoked while on a

window by pressing the Meta key together with the middle button on the pointer. But when

the pointer is in the icon, you can invoke this function by pressing only the middle button on

the pointer. The reason for this becomes obvious if you realize that when the pointer is on a

window, the middle pointer button alone might have some other meaning to the application

208 X Window System User's Guide

running in that window. In order to avoid conflict with other applications, twm uses the more

complex key/button combination. But when the pointer is in an icon or in the root window,

there is no possibility of conflict, and it can take a more forgiving approach.

Defining Menus

The third section of a .twmrc file contains menu definitions. These definitions have the

format:

menu "menu_name" {

"Item name" action

The menu name must exactly match a name specified with the f. menu function.

Each item on the menu is given a label (item_name), which will appear on the menu. This

is followed by the action to be performed. The action may be one of ftvm's functions, or if

prefixed by a ! character, it can be a system command to be executed, as if in an xterm win-
dow. The Utilities menu shown in Example 10-2 demonstrates both types of action.

Example 10-2. The Utilities menu

menu = "Utilities" {

"Identify" f.identify

"Source .twmrc" f.twmrc

f.beep

"Check Mail" !"/usr/bin/Xll/xbiff -display $DISPLAY&"

"Clock" !"/usr/bin/Xll/oclock -display $DISPLAY &"

"New Window" !"/usr/bin/Xll/xterm -Is -display $DISPLAY &"

"Phase of Moon" !"/usr/bin/Xll/xphoon &"

"" f.beep

"news" !"/usr/bin/Xll/xhost news.mit.edu;

/usr/bin/Xll/xterm -title news.mit.edu

-e rlogin news.mit.edu &"

"mintaka" !"/usr/bin/Xll/xhost mintaka.lcs.mit.edu;

/usr/bin/Xll/xterm -title mintaka.lcs.mit.edu

-e rlogin mintaka.lcs.mit.edu &"

New Window is accomplished by running another instance of xterm. CheckMail, Clock,

PhaseofMoon, news, and mintaka are also implemented by running a system function. The

other functions are accomplished simply by invoking one of fnw's predefined functions.

The Preferences menu shown in Example 10-3 simply invokes xset with a number of differ-
ent options:

Customizing the twm Window Manager 209

Example 10-3. The Preferences menu

menu "Preferences" {

"Bell Loud" "xset b 80S"

"Bell Normal" "xset b on&"

"Bell Off" "xset b off&"

"Click Loud" "xset c 80&"

"Click Soft" "xset c on&"

"Click Off" "xset c off&"

"Lock On" "xset led on&"

"Lock Off" "xset led offs

"Mouse Fast" "xset m 4 2&"

"Mouse Normal" "xset m 2 5&"

"Mouse Slow" "xset m 1 1&"

Submenus

While the menu defined by the system.twmrc file is a drastic improvement over the cluttered

menus provided by u\vm in previous releases of XI1, it is still far from complete. We'd like

to modify it to add a couple of menus which contain commands that, while still worth putting

in a menu, aren't used as frequently as the commands in the Twm menu.

For the moment, let's assume that we want to leave the variable definitions and function key

bindings alone, but want to add two submenus to the Twm menu. For example, we might

copy system.twmrc to a local .twmrc file, and modify the menus section to be like the one

shown in Example 10-4.

Example 10-4. Window operations divided into three menus

menu "defops"

"Twm" f. title

"Iconify" f.iconify

"Resize" resize

"Move" move

"Raise" raise

"Lower" lower

f .nop

" . .Utilities" r.menu Utilities"

". .Preferences' f.menu Preferences'

f. nop

"Focus" f.focus

"Unfocus" f.unfocus

"Show Iconmgr" f.showiconmgr

"Hide Iconmgr" f.hideiconmgr

n ii f .nop

"Kill" f.destroy

"Delete" f.delete

f .nop

"Restart" f.restart

"Exit" f.quit

menu "Utilities" {

210 X Vtfndow System User's Guide

Example 10-4. Window operations divided into three menus (continued)

"Utilities" f .title

11 >i f.beep

"Identify" f.identify

"Source .twmrc1 f.twmrc

n ii f.beep

"Mail Box" !"/usr/bin/Xll/xbiff -display $DISPLAY&"

"Clock" !"/usr/bin/Xll/oclock -display $DISPLAY &"

"New Window" !"/usr/bin/Xll/xterm -Is -display $DISPLAY &"

"Phase of Moon1 !"/usr/bin/Xll/xphoon &"

n ii f.beep

"news" !"/usr/bin/Xll/xhost news.mit.edu;

/usr/bin/Xll/xterm -title news.mit.edu

-e rlogin news.mit.edu &"

"mintaka" !"/usr/bin/Xll/xhost mintaka.lcs.mit.edu;

/usr/bin/Xll/xterm -title mintaka.lcs.mit.edu

-e rlogin mintaka.lcs.mit.edu &"

menu 'Preferences" {

"Preferences" f .title

"Bell Loud" "xset b 80&"

"Bell Normal" "xset b on&"

"Bell Off" "xset b off&"

"Click Loud" "xset c 80&"

"Click Soft" "xset c on&"

"Click Off" "xset c off&"

"Lock On" "xset led on&"

"Lock Off" "xset led off&'

"Mouse Fast" "xset m 4 2&"

"Mouse Normal' "xset m 2 5&"

"Mouse Slow" "xset m 1 1&"

To get from one menu to another, we simply define f .menu as the action for one item on the

menu. No key, button, or context is defined, so we go right to the next menu when selecting

that item.

Executing System Commands from a Menu

We mentioned above that it is possible to specify a system command as a menu action simply

by placing an exclamation point in front of the string to be executed.

It is easy to cook up a menu that contains a miscellany of useful commands, as shown in

Example 10-5.

Example 10-5. A Useful Commands menu

Buttonl = : root r'f.menu "Useful Commands"

menu "Useful Commands" {

Analog clock 'xclock -geometry 162xl62-10+10&'

Customizing the twm Window Manager 211

Example 10-5. A Useful Commands menu (continued)

Digital clock "xclock -digital -geometry 162x37-10+174&'

Edit File "xterm -e vi"

Calculator "xcalc -geometry 126x230-180+10&"

Mailbox "xbiff -geometry 65x65-353+10&"

Display keyboard mappings "xmodmaps"

As you can quickly see, you can run any window-based programs directly, but you need to

run other programs using xterm's -e option (discussed in Chapter 4, The xterm Terminal

Emulator). You are limited only by your imagination in what commands you might want to

put on a menu. Each command runs in its own window, but that isn't necessarily the case, as

we'll see in a moment.

Color Menus

So far, we've assumed that all menus are black and white. But you can also create color

menus. You can even assign different colors to the menu title, the highlighting bar (the hori-
zontal band that follows the pointer within the menu and shows which item is selected) and

the individual selections on the menu.

Colors are added to menus when they're defined, using optional arguments. In Example

10-6, we show a "colorized" version of the Preferences menu that we defined earlier.

Example 10-6. A menu with color definitions

menu 'Preferences " ("WhiteSmoke' : "HotPink") {

"Preferences" DarkSlateGray" "thistle") J [.title

"Bell Loud" DarkSlateGray" "bisquel") "xset b 80S"

"Bell Normal" DarkSlateGray" "bisquel") "xset b on&"

"Bell Off" DarkSlateGray" "bisquel") "xset b off&"

"Click Loud" DarkSlateGray" "azurel") "xset c 80&"

"Click Soft" DarkSlateGray" "azurel") "xset c on&"

"Click Off" DarkSlateGray" "azurel") "xset c off&"

"Lock On" "xset led on&"

"Lock Off" "xset led off&

"Mouse Fast" DarkSlateGray1 : "goldl") "xset m 4 2&"

"Mouse Normal' DarkSlateGray1 : "goldl") "xset m 2 5&"

"Mouse Slow" DarkSlateGray1 : "goldl") "xset m 1 1&"

In this example, WhiteSmoke and HotPink are the foreground and background (respectively)

of a highlighted menu item. The colors defined for each menu item are the foreground and

background colors (in that order) for that item when it is not highlighted. The default fore-
ground and background colors for menu items are controlled by the variables Menu-

Foreground and MenuBackground.

twm has eighteen variables controlling different aspects of its color:

BorderColor The default color of a window's border.

212 X Window System User's Guide

BorderTileBackground The default background color of the gray pattern used in an

unhighlighted window border.

BorderTileForeground The default foreground color of the gray pattern used in an

unhighlighted window border.

DefaultBackground The background color to be used for sizing and information

windows.

DefaultForeground The foreground color to be used for sizing and information

windows.

IconBackground The background color of icons.

IconForeground The foreground color of icons.

IconBorderColor The default color of an icon's border.

IconManagerBackground The background color to use for icon manager entries.

IconManagerForeground The foreground color to use for icon manager entries.

IconManagerHighlight The border color used when highlighting the icon manager

entry which has the focus.

MenuBackground The background color used for menus.

MenuForeground The foreground color used for menus.

MenuShadowColor The color used for the shadow behind pull-down menus.

MenuTitleBackground The background color of the highlighting bar.

MenuTitleForeground The background color of the highlighting bar.

TitleBackground The background color of the highlighting bar.

TitleForeground The background color of the highlighting bar.

These variables are most commonly used as arguments to the Color and Monochrome

variables, as seen in Example 10-1.

Colors can be specified either with color names or hex strings, as described in Chapter 8,

Command Line Options.

A Complete Revamp of twm

Using the various techniques described in this chapter, we've modified the system.twmrc file

to create an interface we think is more helpful to the average user.

Our modified .twmrc file sets up three pull-right menus, each with a slightly different focus.

The second menu offers some utilities, including oclock and xcalc, and some system com-
mands, such as rlogin. The final menu is a Preferences menu, which sets different keyclick

volumes, leds, and pointer speeds than the default.

You can test our .m-mrc, shown in Example 10-7, or just use it as a touchstone to create your

own.

213

Customizing the twm Window Manager

Example 10-7. Modified .twmrc file

t

t O'Reilly custom .twmrc, modified from the X11R4 system.twmrc

NoGrabServer

AutoRelativeResize

DecorateTransients

UsePPosition "on"

RestartPreviousState

SortlconManager

ShowIconManager

IconifyByUnmapping

NoTitle

"oclock"

"xclock"

"xscreensaver"

"zwgc"

TitleFont "-adobe-he1vetica-bold-r-normal-*-i20-*-*-*-*-*-*"

ResizeFont "-adobe-he1vetica-bold-r-normal-*-i20-*-*-*-*-*-*"

MenuFont "-adobe-he1vetica-bold-r-normal-*-120-*-*-*-*-*-*«

IconFont "-adobe-he1vetica-bold-r-normal-*-ioO-*-*-*-*-*-*"

IconManagerFont "-adobe-he1vetica-bold-r-normal-*-100-*-*-*""

Color

{

BorderColor "slategrey"

DefaultBackground "maroon"

DefaultForeground "gray85"

TitleBackground "maroon"

TitleForeground "gray85"

MenuBackground "maroon"

MenuForeground "gray85"

MenuTitleBackground "gray70"

MenuTitleForeground "maroon"

IconBackground "maroon"

IconForeground "gray85"

IconBorderColor "gray85"

IconManagerBackground "maroon"

IconManagerForeground "gray85"

}

Define some useful functions for motion-based actions.

t

MoveDelta 3

Function "move-or-lower" { f.move f.deltastop f.lower }

Function "move-or-raise" { f.move f.deltastop f.raise }

Function "move-or-iconify" { f.move f.deltastop f.iconify }

Set some useful bindings Sort of uwm-ish, sort of simple-button-ish

#

Buttonl = : root : f.menu "defops"

Button2 = : root : f.menu "Preferences"

Buttons = : root : f.menu "Utilities"

Buttonl = m : window|icon : f.function "move-or-1ower'

214 X Window System User's Guide

Example 10-7. Modified .twmrc file (continued)

Button2 = m window | icon : f .iconify

Buttons = m window I icon : f .function 'move-or-raise"

Buttonl = title : f .function 'move-or-raise"

Button2 = title : f . raiselower

Buttonl = icon : f . function 'move-or-iconify'

Button2 = icon : f . iconify

Buttonl = iconmgr : f . iconify

Button2 = iconmgr : f . iconify

And a menu with the usual things

I

menu "defops"

"Twm" f .title

"Iconify" f. iconify

"Resize" f.resize

"Move" f.move

"Raise" f.raise

"Lower" f.lower

f .nop

"..Utilities" f.menu "Utilities"

". .Preferences' f .menu 'Preferences'

f .nop

"Focus" f.focus

"Unfocus" f.unfocus

"Show Iconmgr" f.showiconmgr

"Hide Iconmgr" f.hideiconmgr

tl ft f. nop

"Kill" f.destroy

"Delete" f.delete

f. nop

"Restart" f.restart

"Exit" f.quit

menu "Utilities'

"Utilities" .title

11 n .beep

"identify" .identify

"source .twmrc" .twmrc

.beep

"mail box" Vusr/bin/Xll/xbiff -display $DISPLAY&"

"clock" /usr/bin/Xll/oclock -display $DISPLAY &"

"xterm" /usr/bin/Xll/xterm -Is -display $DISPLAY &"

"xphoon" /usr/bin/Xll/xphoon &"

n n .beep

"news" /usr/bin/Xll/xhost news.mit.edu;

/usr/bin/Xll/xterm -title news.mit.edu

-e rlogin news.mit.edu &"

'mintaka" /usr/bin/Xll/xhost mintaka.lcs.mit.edu;

/usr/bin/Xll/xterm -title mintaka.lcs.mit.edu

-e rlogin mintaka.lcs.mit.edu &"

Customizing the twm Window Manager 215

Example 10-7. Modified .twmrc file (continued)

menu 'Preferences" {

"Preferences" DarkSlateGray" : "thistle1) f.title

"Bell Loud" HotPink" : "bisquel") !"xset b 80&"

"Bell Normal" HotPink" : "bisquel") !"xset b on&"

"Bell Off" HotPink" : "bisquel") !"xset b off&'

"Click Loud" HotPink" : "azurel") !"xset c 80&"

"Click Soft" HotPink" : "azurel") !"xset c on&"

"Click Off" HotPink" : "azurel") !"xset c off&'

"Lock On" xset led on&"

"Lock Off" xset led off&"

"Mouse Fast" HotPink" : "goldl") !"xset m 4 2&"

"Mouse Normal' HotPink" : "goldl") !"xset m 2 5&"

"Mouse Slow" HotPink" : "goldl") !"xset ml 1&"

216 X Window System User's Guide

11

Setup Clients

77?/s chapter describes three useful setup clients that can be used to custom-
ize the appearance of your display, and the operation of your keyboard and

pointer.

In This Chapter:

xset: Setting Display and Keyboard Preferences 219

Keyboard Bell 219

Bug Compatibility Mode 220

Keyclick Volume 220

Enabling or Disabling Auto-repeat 221

Changing or Rehashing the Font Path 221

Keyboard LEDs 221

Pointer Acceleration 222

Screen Saver 222

Color Definition 223

Help with xset Options 223

xsetroot: Setting Root Window Characteristics 224

Setting Root Window Patterns 224

Foreground, Background Color and Reverse Video 225

Changing the Root Window Pointer 226

xmodmap: Modifier Key and Pointer Customization 227

Keycodes and Keysyms 229

Procedure to Map Modifier Keys 230

Displaying the Current Modifier Key Map 230

Determining the Default Key Mappings 231

Matching Keysyms with Physical Keys Using xev 232

Changing the Map with xmodmap 233

Expressions to Change the Key Map 234

Key Mapping Examples 2

Displaying and Changing the Pointer Map 236

11

Setup Clients

This chapter discusses how to set up certain features of your working environment, using the

following clients:

xset To set certain characteristics of the keyboard, pointer and display.

xsetroot To set root window characteristics.

xmodmap To change pointer and modifier key mappings.

xset: Setting Display and Keyboard Preferences

The xset client allows you to set an assortment of user preference options for the display and

keyboard. Some of these are followed by on or off to set or unset the option. Note that xset

is inconsistent in its use of a dash (-) as an option flag. Some options use a preceding "-" to

indicate that a feature be disabled; this can be confusing at first to users accustomed to seeing

"-" as an introductory symbol on all options.

Although xset can be run any time, it is suggested that you run it at startup. These settings

reset to the default values when you log out. Not all X implementations are guaranteed to

honor all of these options.

Keyboard Bell

The b option controls bell volume (as a percentage of its maximum), pitch (in hertz), and

duration (in milliseconds). It accepts up to three numerical parameters:

b volume pitch duration

If no parameters are given, the system defaults are used. If only one parameter is given, the

bell volume is set to that value. If two values are listed, the second parameter specifies the

bell pitch. If three values are listed, the third one specifies the duration.

For example, the command:

% xset b 70 1000 100

sets the volume of the keyboard bell to 70 percent of the maximum, the pitch to 1000 hertz,

and the duration to 100 milliseconds.

Setup Clients
219

Note that bell characteristics vary with different hardware. The X server sets the characteris-
tics of the bell as closely as it can to the user's specifications.

The b option also accepts the parameters on or of f. If you specify xset b on, system

defaults for volume, pitch and duration are used.

The bell can also be turned off with the option -b, or by setting the volume parameter to 0

(xset b 0).

Bug Compatibility Mode

Some Release 3 clients were written to work with "features" of the Release 3 server, which

could more accurately be called bugs. Many of these bugs have been eliminated in Release

4. In order to allow certain Release 3 clients to work under the Release 4 server, the Release

4 server has a bug compatibility mode that can be enabled using xset. In this mode, the

Release 4 server is compatible with Release 3 clients that depended on bugs in the Release 3

server to work properly (most notably the Release 3 version ofxterni).

To enable bug compatibility mode, use the command xset be; to disable it, use the com-
mand xset -be.

Keyclick Volume

The c option sets the volume of the keyboard's keyclick and takes the form:

c volume

vol ume can be a value from 0 to 100, indicating a percentage of the maximum volume. For

example:

% xset c 75

sets a moderately loud keyclick. The X server sets the volume to the nearest value that the

hardware can support.

The c option also accepts the parameters on or of f. If you specify xset c on, the sys-
tem default for volume is used.

The keyclick can also be turned off with the option -c, or by setting the volume parameter to

0(xset c 0).

On some hardware, a volume of 0 to 50 turns the keyclick off, and a volume of 51 to 100

turns the keyclick on.

220 X Window System User's Guide

Enabling or Disabling Auto-repeat

The r option controls the keyboard's auto-repeat feature. (Auto-repeat causes a keystroke to

be repeated over and over when the key is held down.) Use xset r or xset r on to

enable key repeat. Use xset -r or xset r off to disable key repeat. On some key-
boards (notably Apollo), only some keys repeat, regardless of the state of this option.

Changing or Rehashing the Font Path

As discussed in Chapter 8, Command Line Options, when a client is to be displayed in a par-
ticular font, the server by default looks for the font in three subdirectories of

lusrlliblXll I fonts: misc, 75dpi, and 100dpi.

The f p (font path) option of xset can be used to change the font path, i.e., to direct the X

server to search other directories for fonts called by a client. The option must be followed by

a directory or a comma-separated list of directories, as in the following example:

% acset fp /work/andy/fonts,/usr/lib/Xll/newfonts

To restore the default font path, type:

% xset fp default

As discussed in Chapter 8, the fp option with the rehash parameter causes the server to

reread the fonts.dir and fonts.alias files in the current font path. You need to do this every

time you edit an alias file to make the server aware of the changes.

To make the server aware of aliases, type:

% xset fp rehash

You also have to do this if you add or remove fonts. See Appendix A, System Management,

for more information.

Keyboard LEDs

The led option controls the turning on or off of one or all of the keyboard's LEDs. It

accepts the parameters on or of f to turn all of the LEDs on or off. A preceding dash also

turns all of the LEDs off (-led).

You can also turn individual LEDs on or off by supplying a numerical parameter (a value

between 1 and 32) that corresponds to a particular LED. The led option followed by a

numerical parameter turns that LED on. The led option preceded by a dash and followed by

a numerical parameter turns that LED off. For example:

% xset led 3

would turn LED #3 on, while:

% xset -led 3

would turn LED #3 off.

221

Setup Clients

Note that the particular LED values may refer to different LEDs on different hardware.

Pointer Acceleration

The m (mouse) option controls the rate at which the mouse or pointer moves across the

screen. This option takes two parameters: acceleration and threshold. They must

be positive integers. (The acceleration can also be written as a numerator/denominator com-
bination separated by a '/', for example, 5/4.)

The mouse or pointer moves acceleration times as fast when it travels more than the

threshold number of pixels in a short time. This way, the mouse can be used for precise

alignment when it is moved slowly, yet it can be set to travel across the screen by a flick of

the wrist when desired. If only one parameter is given, it is interpreted as the acceleration.

For example, the command:

% xset m 5 10

sets the mouse movement so that if you move the mouse more than ten pixels, the mouse cur-
sor moves five times as many pixels on the screen as you moved the mouse on the pad.

If no parameter or the value default is used, the system defaults will be set.

If you want to change the threshold and leave the acceleration unchanged, enter the value

de f a u 11 for acceleration.

Screen Saver

X supports a screen saver to blank or randomly change the screen when the system is left

unattended for an extended period. This avoids the "burn in" that can occur when the same

image is displayed on the screen for a long time. The s (screen saver) option to xset deter-
mines how long the server must be inactive before the screen saver is started.

The s option takes two parameters: time and cycle. The screen goes blank if the server

has not received any input for the time interval specified by the time parameter. The con-
tents of the screen reappear upon receipt of any input. If the display is not capable of blank-
ing the screen, then the screen is shifted a pixel in a random direction at time intervals set by

the cycle parameter. The parameters are specified in seconds.

For example, the command:

% xset » 600

sets the length of time before the screen saver is invoked to 600 seconds (ten minutes).

For a display not capable of blanking the screen, the command:

% xset s 600 10

sets the length of time before the screen saver is invoked to ten minutes and shifts the screen

every ten seconds thereafter, until input is received.

222 X Window System User's Guide

The s option also takes the parameters:

default Resets the screen save option to the default.

blank Turns on blanking and overrides any previous settings.

noblank Displays a background pattern rather than blanking the screen; overrides any

previous settings.

off Turns off the screen saver option and overrides any previous settings.

expose Allows window exposures (the server can discard window contents).

noexpose Disables screen saver unless the server can regenerate the screens without

causing exposure events (i.e., without forcing the applications to regenerate

their own windows).

Color Definition

On color displays, every time a client requests a private read/write colorcell, a new color def-
inition is entered in the display's colormap. The p option sets one of these colormap entries

even though they are supposed to be private. The parameters are a positive integer identify-
ing a cell in the colormap to be changed, and a color name:

p entry_number color_name

The root window colors can be changed on some servers using xsetroot. An error results if

the map entry is a read-only color.

For example, the command:

% xset p 3 blue

sets the third cell in the colormap to the color blue, but only if some client has allocated this

cell read/write.

The client that allocated the cell is likely to change it again sometime after you try to set it,

since this is the usual procedure for allocating a read/write cell.

Help with xset Options

The q option lists the current values of all xset preferences.

223

Setup Clients

xsetroot: Setting Root Window Characteristics

You can use the xsetroot client to tailor the appearance of the background (root) window on a

display running X.

The xsetroot client is primarily used to specify the root window pattern: as a plaid-like grid,

tiled grey pattern, solid color, or a bitmap. You can also specify foreground and background

colors (defaults are black and white), reverse video, and set the shape of the pointer when it's

in the root window.

If no options are specified, or the -def option is specified, xsetroot resets the root window to

its default state, a grey mesh pattern, and resets the pointer to the hollow X pointer. The

-def option can also be specified with other options; those characteristics that are not set by

other options are reset to the defaults.

Although xsetroot can be run any time, it is suggested that you run it from a startup shell

script, as described at the end of this chapter. All settings reset to the default values when

you log out.

For a complete list of options, see the xsetroot reference page in Part Three of this guide. Not

all X implementations are guaranteed to support all of these options. Some of the options

may not work on certain hardware devices.

The -help option prints all the xsetroot options to standard output The options you'll

probably use most frequently are explained in the next section. Since only one type of back-
ground pattern can be specified at a time, the -solid, -gray, -grey, -bitmap and

-mod options are mutually exclusive.

Setting Root Window Patterns

The default root window pattern is called a "grey mesh." On most displays, it is fairly dark.

The xsetroot client allows you to specify an alternative grey background with the -grey (or

-gray) option. This tiled grey pattern is slightly lighter than the default grey mesh pattern.

The xsetroot client also allows you to create a root window made up of repeated "tiles" of a

particular bitmap, using the option:

-bitmap filename

where filename is the bitmap file to be used as the window pattern.

You can choose any of the bitmaps in the directory /usr/includefXll/bitmaps or make your

own bitmap files using the bitmap client (see Chapter 7, Other Clients).

For example, the command:

% xsetroot -bitmap /usr/andy/gumby -fg red -bg blue

fills the root window with a tiling of the bitmap /usr/andy/gumby (a virtual army of Gum-

bys!), using the colors red and blue.

224 X Window System User's Guide

The -mod option sets a plaid-like grid pattern on the root window. You specify the horizon-
tal (x) and vertical (y) dimensions in pixels of each square in the grid. The syntax of the

option is:

-mod x y

where the parameters x and y are integers ranging from 1 to 16 (pixels). (Zero and negative

numbers are taken as 1.)

The larger the x and y values you specify, the larger (and more visible) each square on the

root window grid pattern. Try the command:

% xsetroot -mod 16 16

for the largest possible grid squares. Then test different x and y specifications.

The xsetroot option:

-solid color

sets the color of the root window to a solid color. This can be a color from the color name

database or a more exact color name specified by its RGB value.

The command:

% xsetroot -solid lightblua

sets the color of the root window to light blue.* See Chapter 8, Command Line Options, for

more information on how to specify colors.

Foreground, Background Color and Reverse Video

In addition to specifying a solid color for the root window pattern, xsetroot allows you to

specify foreground and background colors if you set the pattern with -bitmap or -mod.

The standard Toolkit options are used to set foreground and background colors: -f g and

-bg. The defaults are black and white.

Colors can be specified as names from the color name database, or as RGB values. See

Chapter 8 for more instructions on how to specify color.

If you specify reverse video (-rv), the foreground and background colors are reversed.

*For technical reasons, colors set with xsetroot -solid may change on you unexpectedly. When you set a

color with the -sol id option to xsetroot, the client allocates a colorcell, sets the color, and deallocates the colorcell.

The root window changes to that color. If another client is started that sets a new color, it allocates the next available

colorcell-which may be the same one xsetroot just deallocated. This results in that color changing to the new color.

The root window also changes to the new color. If this happens, you can run xsetroot again and if there are other

colorcells available, the root window changes to the new color. If all colorcells are allocated, any call to change a

colorcell results in an error message.

While this behavior may seem to be a vicious bug, it is actually an optimization designed to make sure applications

don't run out of colors unnecessarily. Free colormap cells can be a scarce resource. See Volume One, Xlib Program-
ming Manual, for more information.

Setup Clients 225

Foreground and background colors also take effect when you set the root window pointer, as

described in the following section.

Changing the Root Window Pointer

By default, the pointer is an X when it's in the root window. You can change the shape of the

root window pointer to one of the standard X cursor shapes or to any bitmap, using the fol-
lowing options:

-cursor_name standard_cursor_name

-cursor cursorfile maskfile

Available as of Release 4, the first option allows you to set the root window pointer to one of

the standard cursor symbols, which are generally listed in the file lusrlincludelXll I cursor-

font, h. We've provided a list of the standard cursors in Appendix D. To specify a standard

cursor on a command line or in a resource file, strip the xc_ prefix from the name. Thus, to

set the root window pointer to the pirate cursor symbol, you would enter:

% xsetroot -cursor_nama pirate

If you are running the Release 3 version of xsetroot, you have to use a more roundabout

method to set the root window pointer to one of the standard cursor shapes. You must first

convert the cursor character you want to a bitmap, using the atobm client, described in Chap-
ter 6, Graphics Utilities. Then you can specify the bitmap as the root window cursor shape

using the xsetroot option described in the following paragraphs.

This second option is intended to allow you to set the root window pointer to a bitmap, per-
haps one you create. The parameters cursorfile and maskfile are bitmaps. The

cursorfile sets the bitmap for the pointer shape. In effect, the maskfile is placed

behind the cursorfile bitmap to set it off from the root window. The maskfile

should be the same shape as the cursorfile, but should generally be at least one pixel

wider in all directions.*

For the cursorfile, you can use any of the standard bitmaps in lusrlincludelXll/bitmaps

or you can make your own with the bitmap client (see Chapter 6, Graphics Utilities).

Every standard cursor has an associated mask. Pictures of the cursors appear in Appendix D,

Standard Cursors. To get an idea of what masks look like, display the cursor font using the

command:

% acfd -fn cursor.

If you are using your own bitmap as the cursorfile, until you get used to the way masks

work, create a maskfile that is a copy of the cursorfile with all bits set, i.e., the

*Technically speaking, the mask determines the pixels on the screen that are disturbed by the cursor. It functions as a

sort of outliner or highlighter for the cursor shape. The mask appears as a white (or background color) border around

the cursor (black or another foreground color), making it visible over any root window pattern. This is especially im-
portant when a black cursor appears on a black root window.

With the xsetroot defaults, you can observe the effect of a mask. When you move the X pointer onto the dark grey

root window, the X should have a very thin white border, which enables you to see it more clearly.

226 X Window System User's Guide

maskfile should be all black* (or the foreground color). Then edit the maskfile to

make it wider than the cursorfile by at least one pixel in all directions.

To specify a root window pointer made from the smiling Gumby bitmap we created for Fig-
ure 6-2, first copy the bitmap to make a mask file:

% cp guxnby gumby.mask

Then edit the gumby.mask file using the bitmap client, setting all squares inside the Gumby.

(You can use the bitmap command box Flood Fill to set all the empty squares at once.) Con-
tinue to edit the bitmap, making it one pixel wider in all directions.

Then specify the new pointer with xsetroot:

% xsetroot -cursor guxnby gumby.mask

See Chapter 6, Graphics Utilities, for more information on using bitmap.

xmodmap: Modifier Key and Pointer Customization

The xmodmap client is used to assign (or map) key functions to physical keys on the key-
board. Primarily, xmodmap is used to assign so-called "modifier" key functions to physical

keys, but it can also change the way other keys (and even pointer buttons) function.

As described in Chapter 2, Getting Started, keys with labels such as Shift, Control, Caps

Lock, etc. are called "modifier" keys because they modify the action of other keys. The

number and names of modifier keys differ from workstation to workstation. Every keyboard

is likely to have a Shift, Caps Lock, and Control key, but after that, the babble begins. One

workstation might have an Alt key, another might have a Funct key, and yet another a "Gold"

key. On the Sun-3 keyboard, there are no less than three additional modifier keys, labeled

Alternate, Right, and Left

Because of the differences between keyboards, X programs are designed to work with "logi-
cal" modifier keynames. The logical keynames represent functions recognized by X pro-
grams. These modifier keynames can be mapped by the user to any physical key on the key-
board with the xmodmap client.

The logical keynames that X recognizes are:

" Shift

" Lock

" Ctrl

" Modi (also meta or 1 in uwm)

" Mod2 (also 2 in uwm)

*Don't be confused by the idea of a black cursor with a black mask on a black root window. Remember, the mask

determines the pixels that are disturbed by the cursor-in effect creating an outline around the cursor. The outline

appears in white (or specified background color), regardless of the color of the maskf i 1 e.

227

Setup Clients

" Mod3 (also 3 in uwni)

" Mod4 (also 4 in uwrn)

" Mod5 (also 5 in wwm)

These keynames are case insensitive.

Of these X modifier keys, only Shift, Caps Lock, Control, and Mela are in common use. Note

that uwm also recognizes the mod keys simply by number alone (1-5) and recognizes modi

as meta (i.e., modi, meta and 1 are equivalent).

The primary function of xmodmap is to allow you to assign these important modifier key-
name functions (Shift, Control, Meta, etc.) to convenient keys on the keyboard. For

example, you could choose to map the Shift function to a single key called "Shift," to two

"Shift" keys (one on either side of the keypad), to an "Alt" key, or to any other convenient

key or keys on the physical keyboard. A left-handed person might choose to map modifier

keys on the right side of the keyboard that more often are found on the left side, such as Con-
trol.

In practical terms, each server will have a default keyboard configuration. The Shift, Caps

Lock, and Control modifier keynames will be mapped to obvious keys. The assignment of

the Meta key might be less obvious.

The xmodmap client allows you to print out the current assignments of modifier keyname

functions to physical keys and/or to change the assignments.

xmodmap also has two other functions, which you will probably use less frequently. In addi-
tion to mapping modifier keyname functions to physical keys, xmodmap also allows you to

assign the function of any key on the keyboard to any other key. For instance, you can make

the Backspace key and the Delete key both function as Delete keys. (This may be helpful if

the Backspace key is easier to reach.)

Also, in addition to keyboard mappings, xmodmap can be used to display or change the

pointer button assignments. Many X clients recognize logical pointer button commands. For

example, holding down and dragging the first logical pointer button in an xterm window

copies the text into memory. (In many default pointer maps, the first logical button is the

leftmost button, designed to be pressed by the right index finger.) Each logical button is asso-
ciated with a button code. The first logical button generates button code 1, the second logical

button generates button code 2, etc. xmodmap allows you to reassign logical buttons to dif-
ferent physical buttons on the pointer.

Thus, basically, xmodmap can perform three types of mappings:

1. Assign modifier keyname functions (such as Shift, Control, Meta) recognized by X to

physical keys.

2. Make any key on the keyboard function as any other key (for example, making Back-
space function like Delete).

3. Reassign logical pointer button functions to other physical buttons (for example, making

the third physical button function as the first logical button).

228 X Window System User's Guide

In the following sections, we discuss key mapping, with an emphasis on the first type of map-
ping, of modifier keyname functions. Chances are, you'll have relatively little call to map

other key functions (such as Backspace), though we have included an example of one such

mapping, just in case.

After considering key mapping, we'll take a look at the much simpler issues involved in map-
ping pointer button functions. As you might expect, when you're changing the functionality

of (up to) three pointer buttons, it's fairly simple to keep track of what you're doing.

On the other hand, mapping modifier key functions to physical keys can be more than a little

confusing. In order to understand the mechanics of mapping keys, we first need to take a

look at some terms used to describe keyboard keys.

Keycodes and Keysyms

Each key on a physical keyboard can be identified by a number known as a keycode. (Tech-
nically speaking, a keycode is the actual value that the key generates.) Keycodes cannot be

mapped to other keys. No matter what functions you assign to various keys with xmodmap,

the keycode associated with each physical key remains the same.

In addition to a keycode, each physical key is associated with a name known as a keysym. A

keysym ("key symbol" name) is a name that represents the label on a key (theoretically) and

corresponds to its function.

Alphanumeric keys generally have obvious keysyms, corresponding to the label on the key:

for example, the keysym for the key labeled "H" is h. Unfortunately, a keysym does not

always correspond to the key label. For example, on a Sun-3 workstation, though the keysym

for the key labeled "Return" is Return, the keysym for the key labeled "Alternate" is Break,

and the keysym for the key labeled "Right" is Meta_R.

While each keycode is tied to a physical key, each keysym corresponds to a function-and

the keysym/function is mapped to a particular physical key (keycode). Every keyboard has a

default assignment of keysyms to keycodes. In most cases, each physical key on the key-
board will be associated with a different keysym. As we'll see, however, the keysym (func-
tion) associated with a particular physical key (keycode) can be changed. This is done by

assigning the keysym of one key to the keycode of another.

The modifier keynames recognized by X are not to be confused with keysyms. The X modi-
fier keys are limited to the eight keynames discussed previously and are assigned in addition

to the regular keysym/keycode pairings. In other words, when a physical key is mapped to

function as the X Control key, it already has a default functionality (keysym) and keycode.

By default, most modifier keyname functions are mapped to keys having keysyms represent-
ing the same function. For example, the X Control keyname is probably mapped to the key

labeled Control, and having the keysym Control.

The Meta modifier keyname is probably also assigned to a key having the keysym Meta.

However, determining which physical key has the keysym Meta can be something of a

puzzle. Later in this chapter, we'll consider a program called xev, which can be used to

determine the keysym and keycode of any physical key.

Setup Clients
229

With this background information in mind, we can now tackle a procedure to map modifier

keynames.

Procedure to Map Modifier Keys

In order to change modifier key mappings with a minimum of confusion, you should perform

the following steps:

1. Display the current modifier key mappings using xmodmap.

2. Then print out the default assignments of keysyms to keycodes for all keys, using xmod-
map with the -pk option. Save this list of the default key assignments as a reference.

3. Experiment with the xev client to determine the keysyms associated with certain physical

keys. This will help you find the key(s) assigned as the Meta modifier key (which proba-
bly also has the keysym Meta).

4. Once you're familiar with the current assignments, you can remap modifier keys using

xmodmap.

Displaying the Current Modifier Key Map

Before mapping any modifier keynames, you should take a look at the current assignments.

With no options, xmodmap displays the current map of X modifier keynames to actual keys.

Type xmodmap and you get a display similar to this:

xmodmap: up to 2 keys per modifier, (keycodes in parentheses):

shift Shift_L (Ox6a), Shift_R (0x75)

lock Caps_Lock (Ox7e)

control Control_L (0x53)

modi Meta_L (Ox7f), Meta_R (0x81)

mod2

mod3

mod4

mod5

For each logical keyname (on the left), xmodmap lists one or more keysyms, each followed in

parentheses by an actual hardware keycode. The keycodes displayed by xmodmap are repre-
sented in hex. As we'll see, the equivalent decimal and octal keycodes are also accepted as

arguments to xmodmap.

230 X Window System User's Guide

"Logical" modifier keyname Keycode

Keysym
recognized by X (hex version)

Shift Shift_L (Ox6a)

Shift_R (0x75)

Lock Caps_Lock (Ox7e)

Control Control_L (0x53)

Modi Meta_L (Ox7f)

Meta_R (0x81)

In this mapping, two keys are assigned as Meta (modi) keys: keys having the keysyms

Meta_L and Meta_R (for left and right, apparently one on each side of the keyboard). Unfor-
tunately, as you can see, this doesn't really tell you which keys these are on the physical key-
board. You still need to know which physical keys (keycodes) have the keysyms Meta_L and

Meta_R. You can determine this using the xev client, described later in this chapter.

Determining the Default Key Mappings

Before you start mapping keys, you should display and save a map of the default assignments

of keysyms to keycodes. Running xmodmap with the -pk option prints a current map of all

keyboard keys to standard output. This map, called a keymap table, lists the decimal key-

code on the left and the associated keysym(s) on the right. Figure 11-1 shows a portion of a

typical keymap table, for a Sun-3 keyboard.

Notice that each keysym is listed by a keysym name (comma, Caps_Lock, etc.) and a keysym

value (Ox002c, Oxffe5, etc). For our purposes, this value is irrelevant. It cannot be supplied

as a keysym argument to xmodmap.

As you can see, the keymap table lists regular keyboard keys (C, V, comma, slash, space,

etc.), and function/numeric keypad keys (R13, F35, etc.) as well as modifier keys

(Caps.Lock, Meta_L and MetaJR). If you map several keys, you may get confused as to the

original assignments. Before you map any keys, we suggest you redirect the keymap table to

a file to save and use as a reference:

% xmodmap -pk > keytabl*

The keysyms recognized by your server are a subset of a far greater number of keysyms

recognized internationally. The file lusrlincludelXlllkeysym.h lists the keysym families that

are enabled for your server. The file lusrlincludelXlllkeysymdef.h lists the keysyms in each

of the families enabled for your server, as well as the keysyms in several other families. See

Appendix H, Keysyms, of Volume Two, Xlib Reference Manual for more information on

keysyms and tables of the most common ones.

231

Setup Clients

Keycode Keysym

value (name)

109 0x0043 (C)

110 0x0056 (V)

111 0x0042 (B)

112 Ox004e (N)

113 Ox004d (M)

114 Ox002c (comma) Ox003c (less)

115 Ox002e (period) Ox003e (greater)

116 Ox002f (slash) Ox003f (question)

117 Oxffe2 (Shift R)

118 OxffOa (Linefeed)

119 Oxffde (R13)

120 Oxff54 (Down) Oxffdf (F34)

121 OxffeO (F35)

126 OxffeS (Caps_Lock)

127 Oxffe7 (Meta_L)

128 0x0020 (space)

129 OxffeS (Meta R)

Figure 11-1. Partial keymap table

Matching Keysyms with Physical Keys Using xev

The keysym and keycode for any key can be determined with the xev client.* This is particu-
larly useful for finding the Meta key(s). The xev client is used to keep track of events, pack-
ets of information that are generated by the server when actions occur and are interpreted by

other clients. Moving the pointer or pressing a keyboard key cause input events to occur.

(For more information about events, see Volume One, Xlib Programming Manual)

To use xev, enter the command:

% xev

in an xterm window, and then use the pointer to place the xev window, as in Figure 11-2.

Within the xev window is a small box. Move the pointer inside this box. When you type a

key inside the box, information about the key, including its keysym and keycode, will be

displayed in the xterm window from which you started xev. The relevant information will

look like this:

*xev is a Release 3 standard client. In Release 4, it has been moved to the demos directory. If an executable version

does not exist on your system, ask your system administrator.

If you cannot use xev, you must rely on the keymap table and a little deductive reasoning. Since certain twm func-
tions have keyboard shortcuts involving the Meta key, testing these shortcuts should help you locate this key. See

Chapter 3, Using the twm Window Manager, for more information.

232 X Window System User's Guide

Figure 11-2. xev window

. . . keycode 127 (keysym Oxffe7, Meta_L) . . .

Notice that the keycode is given as a decimal number. You can use the decimal keycode as

an argument to xmodmap. The keysym is listed by name, Meta_L, and value, Oxffe?. Again,

this value cannot be supplied as a keysym argument to xmodmap. (See the xev reference

page in Part Three for more information.)

To find the Meta key, type a few likely keys in the xev window. Type Control-C in the win-
dow from which you invoked xev to terminate the program. (If you ran xev in the back-
ground, you'll have to kill the xev window. See Chapter 7, Other Clients, for ways to do

this.)

Changing the Map with xmodmap

xmodmap executes an expression or list of expressions that are interpreted as instructions to

modify the key (or pointer) map. The expressions that can be interpreted by xmodmap are

described in the next section.

xmodmap has the following syntax:

xmodmap [options] [filename]

An expression can be executed in either one of two ways:

" From the command line, using the -e expression option. This option specifies an

expression to be executed (as an instruction to modify the map). Any number of expres-
sions may be specified from the command line. An expression should be enclosed in

quotes.

" Entered in a file that is used as an argument to xmodmap. Several expressions can be

entered in one file.

233

Setup Clients

See the xmodmap reference page in Part Three of this guide for a complete list of options.

Other than -e express! on, the most important options for our purposes are listed below.

-n Indicates that xmodmap should not change the key mappings as specified in

the filename or command line expression, but should display what it

would do. A handy test. (Only works with key mappings, not with expres-
sions that change the pointer map.)

-verbose Indicates that xmodmap should print logging information as it parses its

input.

filename specifies a file containing xmodmap expressions to be executed (as instructions

to modify the map). This file is usually kept in the user's home directory with a name like

jcmodmaprc.

Expressions to Change the Key Map

The expressions interpreted by xmodmap can be used to perform the following types of key

mappings:*

1. Assign and remove keysyms as modifier keynames recognized by X.

2. Map any keysym (function) to any physical key (keycode).

The following list shows allowable expressions, divided by function. (Using xmodmap with

the -grammar option returns a help message with much of this information.) Those expres-
sions that include an equal sign require a space before and after the sign.

1. To assign and remove keysyms as modifier keynames:

Clear MODIFIERNAME

Removes all entries in the modifier map for the given modifier, where valid mod-
ifier names are: shift, lock, control, modi, mod2, mod3, mod4, and mod5 (case

does not matter in modifier names, although it does matter for all other names).

For example, the expression clear Lock will remove all keys that were

bound to the lock modifier.

add MODIFIERNAME = KEYSYMNAME

Adds the given keysym to the indicated modifier map. For example, you could

make the Alt key an additional shift modifier key. The keysym name is

evaluated after all input expressions are read to make it easy to write expressions

to swap keys.

remove MODIFIERNAME = KEYSYMNAME

Removes the given keysym from the indicated modifier map (unmaps it). For

example, remove Caps_Lock as the lock modifier key. Unlike with the add

*Expressions to change the pointer map are discussed in the section Displaying and Changing the Pointer Map, later

in this chapter.

234 X Window System User's Guide

expression, the keysym names are evaluated as the line is read in. This allows

you to remove keys from a modifier without having to worry about whether or

not they have been reassigned.

2. To map any keysym(s) to any physical key (keycode):

keycode NUMBER - KEYSYMNAME

Assigns the keysym to the indicated keycode (which may be specified in deci-
mal, hex or octal). Usually only one keysym is assigned to a given code.

keysym KEYSYMNAME = KEYSYMNAME

Assigns the keysym on the right to the keycode of the keysym on the left. Note

that if you have the same keysym bound to multiple keys, this might not work.

Key Mapping Examples

Expressions can be used on the xmodmap command line or entered in a file that is then used

as an argument to xmodmap. Note that xmodmap should be run from your startup script (dis-
cussed later in this chapter) to take effect for all clients in the login session. This section

includes three examples, corresponding to the three types of mappings you can perform.

Remember that including the -n option on the xmodmap command line allows you to see

what the new mappings would be, without actually performing them. This can be very use-
ful, particularly while you're learning to use xmodmap and getting used to the syntax of

expressions. (Note, however, that -n cannot be used with expressions to change the pointer

mapping.)

First, the xmodmap client also allows you to assign logical modifier keynames to physical

keys. A not so obvious feature of xmodmap is that to change the mapping of a modifier key,

you must first remove that key from the current modifier map. For example, to swap the left

Control and (Caps) Lock keys, you would first need to unmap both physical keys

(Caps_Lock, Control_L) from their respective modifier keynames (lock, control):

remove lock = Caps_Lock

remove control = Control_L

And then reverse the mappings:

add lock = Control_L

add control = Caps_Lock

If you then type xmodmap without options, you see the new map:

xmodmap: up to 2 keys per modifier, (keycodes in parentheses):

shift Shift_L (Ox6a), Shift_R (0x75)

lock Control_L (0x53)

control Caps_Lock (Ox7e)

modi Meta_L (Ox7f), Meta_R (0x81)

mod2

mod3

mod4

mod5

Setup Clients

The key with the keysym Control_L functions as a Lock key and the key with the keysym

CapsJLock functions as a Control key.

Second, xmodmap allows you to assign any keysym to any other key. For example, you

might make the Backspace key function as a Delete key:

% xmodmap -e 'keysym Backspace = Delete'

Then when you display the key map table and grep for the Delete keysym, you'll see that it is

assigned twice. On the command line of an xterm window, type:

% xmodmap -pk | grep Delete

and you'll get two lines from the current keymap table, similar to these:

50 Oxffff (Delete)

73 Oxffff (Delete)

The 50 and 73 are keycodes representing two physical keys. As you can see, both of these

keys now function as Delete keys.

This example suggests some of the confusion you can experience using xmodmap. We know

that one of these keys previously functioned as the Backspace key. But how can we tell

which one? Here is an instance when our default keymap table comes in handy. If you've

run xmodmap -pk and redirected it to a file before changing any mappings, you can check

the file for the keysyms originally associated with the keycodes 50 and 73. In this case, the

file tells us 50 was originally Backspace and 73 was Delete.

Of course, you could also figure out the original assignments by remapping one of the key-

codes to Backspace. Then, if the key marked Backspace functions as marked, you know

you've mapped the keysym to the original keycode. But, as you can see, the default keymap

table can greatly simplify matters.

This example also implies that there are advantages to using expressions of the form:

keycode number = keysymname

This expression syntax requires you to be aware of default keycode/keysym assignments.

Also, if you explicitly assign a keysym to a particular keycode, it's much easier to keep track

of what you're doing and retrace your steps if necessary. On the down side, though keysyms

are portable, keycodes may vary from server to server. Thus, expressions using this syntax

cannot be ported to other systems.

Displaying and Changing the Pointer Map

If you want to change the assignment of logical pointer buttons to physical buttons, you

should first display the current pointer map with the -pp option to xmodmap. A typical

pointer map appears in Figure 11-3.

This is a fairly simple map: the physical buttons are listed on the left and the corresponding

logical functions (button codes) are listed on the right.

236 X Window System User's Guide

There are 3 pointer buttons defined.

Physical Button

Button Code

1 1

2 2

3 3

Figure 11-3. Pointer map

These are typical assignments for a right-handed person: the first logical button is the left-
most button, designed to be pressed by the right index finger. The xmodmap client allows

you to reassign logical buttons so that the pointer can be more easily used with the left hand.

The xmodmap client allows you to change the pointer map.* There are two xmodmap expres-
sions: one to assign logical pointer buttons (button codes) to physical buttons; and another to

restore the default assignments. The syntax of the expressions is as follows:

pointer = x y z

Sets the first, second, and third physical buttons to the button codes x, y, and z.

pointer = default

Sets the pointer map back to its default settings (button 1 generates a code of 1, but-
ton 2 generates a code of 2, etc.).

Being able to change the pointer button assignments is very useful if you happen to be left-

handed and would like the rightmost physical button to function as the first logical button

(i.e., generate button code 1). To configure the pointer for a southpaw:

% xmodmap -e 'pointer =321'

Then if you display the pointer mappings with xmodmap -pp, you get the following:

There are 3 pointer buttons defined.

Physical Button

Button Code

1 3

2 2

3 1

You can then push the first logical button (button code 1) with the index finger of your left

hand.

You can return to the default pointer button assignments by entering:

% xmodmap -e 'pointer = default'

*Remember that the -n option, which allows you to see what xmodmap would do, without performing the changes,

cannot be used with expressions to change the pointer mapping.

Setup Clients

Part Three:

Client Reference Pages

This part of the guide provides UNIX-style "man-pages" for each of the Xpro-
grams. These pages are arranged alphabetically for ease of reference, and

they contain detailed information (such as all options to a program) that is not

covered in other parts of this guide.

The following reference pages appear in this section:

intro xdm

X xdpr

Xau xdpyinfo

Xserver xedit

appres xev

bdftosnf xfd

bitmap xfontsel

listres xhost

mkfontdir xinit

oclock xkill

resize xlswins

sedscr xmag

showsnf xman

twm xmh (Release 4)

uwm xmh (Release 3)

x10tox11 xmodmap

xauth xpr

xbiff xprop

xcalc xpseudoroot

xclipboard xrdb

xclock xrefresh

xcutsel xset

xditview xsetroot

xload xstdcmap

xlogo xterm

xlsatoms xwd

xlsclients xwininfo

xlsfonts xwud

-introduction - / lntr°

Name

Intro - overview of reference page format.

Syntax

This section describes the command line syntax for invoking the client.

Description

This section explains the operation of the client.

Options

This section lists available command line options. In some cases, reference is made to "all of

the standard X Toolkit command line options." These X Toolkit options are listed in Chapter 8

of this guide.

Resources

This section lists the resource variable names that can be specified in an Xresources or other

resource file. In some cases, reference is made to "all the core resource names and classes." A

list of the core names and classes appears on the reference page for X and in Table 8-1 in Chap-
ter 8, Command Line Options. See Chapter 9, Setting Resources, for syntax rules and

examples. For complete information, see Volume Four, X Toolkit Intrinsics Programming

Manual.

Environment

If present, this section lists shell environment variables used by the client. This section does

not list the DISPLAY and XENVIRONMENT variables, which are used by all clients. They are

used as follows:

DISPLAY To get the default host and display number.

XENVIRONMENT To get the name of a resource file that overrides the global resources

stored in the RESOURCE_MANAGER property.

See Also

This section lists other pages in Part Three of this guide that may also be of interest. Note that

versions of these pages may have been installed in the usual on-line manual hierarchy, and may

be available via the UNIX man(l) command. References such as stat(2) can be found in the

standard UNIX documentation. This section may also include references to documentation on

Xlib, the X Toolkit, various widgets, etc.

J9If present, this section lists areas in which the author of the program thinks it could be

improved.' In a few cases, we've added additional bugs we've noted.

authors of the program and (generally) the reference page as well. Most of the reference

pages are subject to the copyright provisions in the "Copyright" section of the X reference

page. Where appropriate, additional copyrights are noted on individual pages.

243

X Window System User's Guide

Intro (continued) Introduction

Note, however, that those portions of this document that are based on the original XI1 docu-
mentation and other source materials have been revised and that all such revisions are copy-
right © 1987, 1988, 1989 O'Reilly & Associates, Inc. Inasmuch as the proprietary revisions

can't be separated from the freely copy able MIT source material, the net result is that copying

of this document is not allowed. Sorry for the doublespeak!

244 X Window System User's Guide

-The X Window System ' X

Name

X - a portable, network transparent window system.

Description

X is a network transparent window system developed at MIT that runs on a wide range of com-
puting and graphics machines. The Release 4 core distribution from MIT has support for the

following operating systems:

Ultrix 3.1 (Digital)

SunOS 4.0.3 (Sun)

HP-UX 6.5 (Hewlett-Packard)

Domain/OS 10.1 (HP/Apollo)

A/UX 1.1 (Apple)

AIX RT-2.2 and PS/2-1.1 (IBM)

AOS-4.3 (IBM)

UTEK 4.0 (Tektronix)

NEWS-OS 3.2 (Sony; client only)

UNICOS 5.0.1 (Cray; client only)

UNIX(tm) System V, Release 3.2 (AT&T 6386 WGS; client only)

It should be relatively easy to build the client-side software on a variety of other systems.

Commercial implementations are also available for a much wider range of platforms.

The X Consortium requests that the following names be used when referring to this software:

X

X Window System

X Version 11

X Window System, Version 11

Xll

X Window System is a trademark of the Massachusetts Institute of Technology.

X window system servers run on computers with bitmap displays. The server distributes user

input to and accepts output requests from various client programs through a variety of different

interprocess communication channels. Although the most common case is for the client pro-
grams to be running on the same machine as the server, clients can be run transparently from

other machines (including machines with different architectures and operating systems) as well.

X supports overlapping hierarchical subwindows and text and graphics operations, on both

monochrome and color displays. For a full explanation of the functions that are available, see

Volume Four, X Toolkit Intrinsic* Programming Manual and Volume Five, X Toolkit Intrinsics

Reference Manual.

The number of programs that use X is growing rapidly. Of particular interest are: a terminal

emulator (xterm), a window manager (twm), a display manager (xdm), mail managing utilities

(xmh and xbiff), a manual page browser (xmari), a bitmap editor (bitmap), access control

X Window System User's Guide 245

X (continued) The X Window System

programs (xauth and xhost), user preference setting programs (xrdb, xset, xsetroot, and xmod-

map), a load monitor (xload), clocks (oclock and xclock), a font displayer (xfd), utilities for list-
ing information about fonts, windows, and displays (xlsfonts, xfontsel, xlswins, xwininfo, xdpy-

info, xlsclients, and xprop), a diagnostic for seeing what events are generated and when (xev),

screen image manipulation utilities (xwd, xwud, xpr, and xmag), and various demos (xeyes, ico,

muncher, puzzle, xgc, etc.).

Many other utilities, window managers, games, toolkits, etc. are available from the user-contri-
buted distribution. See your site administrator for details.

Starting Up

There are currently three ways of starting the X server and an initial set of client applications.

The particular method used depends on what operating system you are running and on whether

or not you use other window systems in addition to X.

xdm (the X Display Manager)

If you want to always have X running on your display, your site administrator

can set your machine up to use the X Display Manager xdm. This program is

typically started by the system at boot time and takes care of keeping the

server running and getting users logged in. If you are running xdm, you will

see a window on the screen welcoming you to the system and asking for your

username and password. Simply type them in as you would at a normal ter-
minal, pressing the Return key after each. If you make a mistake, xdm will

display an error message and ask you to try again. After you have success-
fully logged in, xdm will start up your X environment. By default, if you

have an executable file named jcsession in your home directory, xdm will

treat it as a program (or shell script) to run to start up your initial clients (such

as terminal emulators, clocks, a window manager, user settings for things like

the background, the speed of the pointer, etc.). Your site administrator can

provide details.

xinit (run manually from the shell)

Sites that support more than one window system might choose to use the xinit

program for starting X manually. If this is true for your machine, your site

administrator will probably have provided a program named "xll", "startx",

or "xstart" that will do site-specific initialization (such as loading convenient

default resources, running a window manager, displaying a clock, and starting

several terminal emulators) in a nice way. If not, you can build such a script

using the xinit program. This utility simply runs one user-specified program

to start the server, runs another to start up any desired clients, and then waits

for either to finish. Since either or both of the user-specified programs may

be a shell script, this gives substantial flexibility at the expense of a nice

interface. For this reason, xinit is not intended for end users.

xterm -L (started from letclinit)

This method can be used only with Release 3 (or an earlier release) of X.

Some versions of UNIX that are derived from BSD 4.3 support starting the

246 X Window System User's Guide

The X Window System (continued)

window system and an initial xterm window from the system terminal line

configuration file /etc/ttys. As with xdm, there will be a window requesting

your username and password. However, this window will become your pri-
mary window and is not configurable on a per-user basis. Sites using this

method should switch to xdm as xterm -L is not be supported as of Release 4.

Display Names

From the user's perspective, every X server has a display name of the form:

host:display.screen

This information is used by the application to determine how it should connect to the server and

which screen it should use by default (on displays with multiple monitors):

host The name of the machine to which the display is physically connected. If the

host name is not given, the most efficient way of communicating to a server

on the same machine will be used.

di spl ay The di sp 1 ay number. The phrase "display" is usually used to refer to a col-
lection of monitors that share a common keyboard and pointer (mouse, tablet,

etc.). Most workstations tend to only have one keyboard, and therefore, only

one display. Larger, multi-user systems, however, will frequently have sev-
eral displays so that more than one person can be doing graphics work at

once. To avoid confusion, each display on a machine is assigned a display

number (beginning at 0) when the X server for that display is started. The

display number must always be given in a display name. In this guide, the

display number is also referred to as the server number (referring to the

phrase display server).

screen The screen number. Some displays share a single keyboard and pointer

among two or more monitors. Since each monitor has its own set of win-
dows, each screen is assigned a screen number (beginning at 0) when the X

server for that display is started. If the screen number is not given, then

screen 0 will be used.

On POSIX systems, the default display name is stored in your DISPLAY environment variable.

This variable is set automatically by the xterm terminal emulator. However, when you log into

another machine on a network, you'll need to set DISPLAY by hand to point to your display.

For example,

% stttanv DISPLAY myws:0

$DISPIAY=ntyws:0; export DISPLAY

Finally, most X programs accept a command line option of -display displayname to

temporarily override the contents of DISPLAY. This is most commonly used to pop windows on

another person's screen or as part of a "remote shell" command to start an xterm pointing back

to your display. For example,

247

X Window System User's Guide

X (continued) The X Window System

% xeyes -display joeswsrO -geometry 1000x1000+0+0

% rsh big xterm -display rnyws: 0 -Is </dev/null &

X servers listen for connections on a variety of different communications channels (network

byte streams, shared memory, etc.). Since there can be more than one way of contacting a

given server, the host name part of the display name is used to determine the type of channel

(also called a transport layer) to be used. The sample servers from MIT support the following

types of connections:

local The host part of the display name should be the empty string. For example:

:0, :l,and :0.1.

TCP/IP The host part of the display name should be the server machine's IP address

name. Full Internet names, abbreviated names, and IP addresses are all

allowed. For example: expo. Ics .mit. edu: 0, expo: 0,

18.30.0.212:0,bigmachine:l,and hydra:0.1.

DECnet The host part of the display name should be the server machine's nodename

followed by two colons instead of one. For example: myws : : 0, big: : 1,

and hydra : : 0 .1.

Access Control

The sample server provides two types of access control: an authorization protocol that pro-
vides a list of "magic cookies" clients can send to request access (available as of Release 4);

and a list of hosts from which connections are always accepted, xdm initializes magic cookies

in the server, and also places them in a file accessible to the user. Normally, the list of hosts

from which connections are always accepted should be empty, so that only clients that are

explicitly authorized can connect to the display. When you add entries to the host list (with

xhost), the server no longer performs any authorization on connections from those machines.

Be careful with this.

The file for authorization used by both xdm and Xlib can be specified with the environment

variable XAUTHORITY, and defaults to the file ^authority in the home directory, xdm uses

$HOME/'^authority and will create it or merge in authorization records if it already exists

when a user logs in.

To manage a collection of authorization files containing a collection of authorization records,

use xauth. This program allows you to extract records and insert them into other files. Using

this, you can send authorization to remote machines when you login. As the files are machine-

independent, you can also simply copy the files or use NFS to share them. If you use several

machines, and share a common home directory with NFS, then you never really have to worry

about authorization files, the system should work correctly by default. Note that magic cookies

transmitted "in the clear" over NFS or using ftp or rep can be "stolen" by a network eaves-
dropper, and as such may enable unauthorized access. In many environments this level of secu-
rity is not a concern, but if it is, you need to know the exact semantics of the particular magic

cookie to know if this is actually a problem.

248 X Window System User's Guide

The X Window System (continued) X

Geometry Specifications

One of the advantages of using window systems instead of hardwired terminals is that applica-
tions don't have to be restricted to a particular size or location on the screen. Although the lay-
out of windows on a display is controlled by the window manager that the user is running

(described below), most X programs accept a command line argument of the form -geometry

widthxheight+xoff+yoff (where width, height, xoff, and yoff are numbers) for

specifying a preferred size and location for this application's main window.

The width and height parts of the geometry specification are usually measured in either

pixels or characters, depending on the application. The xoff and yoff parts are measured in

pixels and are used to specify the distance of the window from the left or right and top and bot-
tom edges of the screen, respectively. Both types of offsets are measured from the indicated

edge of the screen to the corresponding edge of the window. The x offset may be specified in

the following ways:

+xof f The left edge of the window is to be placed xoff pixels in from the left edge

of the screen (i.e., the x coordinate of the window's origin will be xoff).

xoff may be negative, in which case the window's left edge will be off the

screen.

-xoff The right edge of the window is to be placed xoff pixels in from the right

edge of the screen, xoff may be negative, in which case the window's right

edge will be off the screen.

The y offset has similar meanings:

+yof f The top edge of the window is to be yoff pixels below the top edge of the

screen (i.e., the y coordinate of the window's origin will be yoff). yoff

may be negative, in which case the window's top edge will be off the screen.

-yoff The bottom edge of the window is to be yoff pixels above the bottom edge

of the screen, yoff may be negative, in which case the window's bottom

edge will be off the screen.

Offsets must be given as pairs; in other words, in order to specify either xoff or yoff both

must be present Windows can be placed in the four corners of the screen using the following

specifications:

+0+0 The upper left hand comer.

-0+0 The upper right hand comer.

- 0 - 0 The lower right hand comer.

+0-0 The lower left hand corner.

In the following examples, a terminal emulator will be placed in roughly the center of the

screen and a load average monitor, mailbox, and clock will be placed in the upper right hand

corner

249

X Window System User's Guide

X (continued) The X Window System

% xterm -fn 6x10 -geometry 80x24+30+200 &

% xclock -geometry 48x48-0+0 &

% xload -geometry 48x48-96+0 &

% xbiff -geometry 48x48-48+0 &

Window Managers

The layout of windows on the screen is controlled by special programs called window manag-
ers. Although many window managers will honor geometry specifications as given, others may

choose to ignore them (requiring the user to explicitly draw the window's region on the screen

with the pointer, for example).

Since window managers are regular (albeit complex) client programs, a variety of different user

interfaces can be built In Release 4, the core distribution comes with a window manager

named twm, which supports overlapping windows, popup menus, point-and-click or

click-to-type input models, titlebars, nice icons (and an icon manager for those who don't like

separate icon windows).

Several other window managers are available in the Release 4 user-contributed distribution:

wwm, gwm, m_swm, olwm, and tekwm.

Font Names

Collections of characters for displaying text and symbols in X are known as fonts. A font typi-
cally contains images that share a common appearance and look nice together (for example, a

single size, boldness, slant, and character set). Similarly, collections of fonts that are based on

a common type face (the variations are usually called roman, bold, italic, bold italic, oblique,

and bold oblique) are called families.

Sets of font families of the same resolution (usually measured in dots per inch) are further

grouped into directories (so named because they were initially stored in file system directories).

Each directory contains a database that lists the name of the font and information on how to

find the font. The server uses these databases to translate font names (which have nothing to do

with filenames) into font data.

The list of font directories in which the server looks when trying to find a font is controlled by

\hcfont path. Although most installations will choose to have the server start up with all of the

commonly used font directories, the font path can be changed at any time with the xset pro-
gram. However, it is important to remember that the directory names are on the server's

machine, not on the application's.

The default font path for the sample server contains three directories:

lusrlliblXl 1 Ifontslmisc

This directory contains several miscellaneous fonts that are useful on all sys-
tems. It contains a small family of fixed-width fonts in pixel heights 5

through 10, a family of fixed-width fonts from Dale Schumacher in similar

pixel heights, several Kana fonts from Sony Corporation, a Kanji font, the

standard cursor font, two cursor fonts from Digital Equipment Corporation,

and OPEN LOOK cursor and glyph fonts from Sun Microsystems. It also has

font name aliases for the fonts fixed and variable.

250 X Window System User's Guide

The X Window System (continued) X

lusrlliblXl 1 /fonts/75 dpi

This directory contains fonts contributed by Adobe Systems, Inc., Digital

Equipment Corporation, Bitstream, Inc., Bigelow and Holmes, and Sun

Microsystems, Inc. for 75 dots per inch displays. An integrated selection of

sizes, styles, and weights is provided for each family.

lusrlliblXlllfontsI 100dpi

This directory contains 100 dots per inch versions of the fonts in the 75dpi

directory.

Font databases are created by running the mkfontdir program in the directory containing the

source or compiled versions of the fonts (in both compressed and uncompressed formats).

Whenever fonts are added to a directory, mkfontdir should be rerun so that the server can find

the new fonts. To make the server reread the font database, reset the font path with the xset

program. For example, to add a font to a private directory, the following commands could be

used:

% cp newfont.snf ~/myfonta

% mkfontdir "/rayfonts

% xset fp rehash

The xlsfonts program can be used to list all of the fonts that are found in font databases in the

current font path. Font names tend to be fairly long as they contain all of the information

needed to uniquely identify individual fonts. However, the sample server supports wildcarding

of font names, so the full specification:

-adobe-courier-medium-r-normal-10-100-75-75-m-60-iso8859-l

could be abbreviated as:

-courier-medium-r-normal--100-*

Because the shell also has special meanings for * and ?, wildcarded font names should be

quoted:

% xlsfonts -fn '*-couri«r-medium-r-normal--*-100-*'

If more than one font in a given directory in the font path matches a wildcarded font name, the

choice of which particular font to return is left to the server. However, if fonts from more than

one directory match a name, the returned font will always be from the first such directory in the

font path. The example given above will match fonts in both the 75dpi and 100dpi directories;

if the 75dpi directory is ahead of the 100dpi directory in the font path, the smaller version of

the font will be used.

Color Names

Most applications provide ways of tailoring (usually through resources or command line argu-
ments) the colors of various elements in the text and graphics they display. Although black and

white displays don't provide much of a choice, color displays frequently allow anywhere

between 16 and 16 million different colors.

251

X Window System User's Guide

X (continued) The X Window System

Colors are usually specified by their commonly-used names (for example, red, white, or

medium slate blue). The server translates these names into appropriate screen colors using a

color database that can usually be found in lusrlliblXlllrgb.txt. Color names are case-insensi-
tive, meaning that red, Red, and RED all refer to the same color.

Many applications also accept color specifications of the following form:

#rgb

#rrggbb

#rrrgggbbb

#rrrrggggbbbb

where r, g, and b are hexidecimal numbers indicating how much red, green, and blue should be

displayed (zero being none and ffff being on full). Each field in the specification must have the

same number of digits (e.g., #rrgb or #gbb are not allowed). Fields that have fewer than four

digits (e.g., #rgb) are padded out with zero's following each digit (e.g., tfrOOOgOOObOOO). The

eight primary colors can be represented as:

black #000000000000 (no color at all)

red #ffffOOOOOOOO

green #OOOOffffOOOO

blue #00000000ffff

yellow #ffffffffOOOO (full red and green, no blue)

magenta tfffffOOOOffff

cyan #0000ffffffff

white tfffffffffffff (full red, green, and blue)

Unfortunately, RGB color specifications are highly unportable since different monitors produce

different shades when given the same inputs. Similarly, color names aren't portable because

there is no standard naming scheme and because the color database needs to be tuned for each

monitor. Application developers should take care to make their colors tailorable.

Keys

The X keyboard model is broken into two layers: server-specific codes (called keycodes) which

represent the physical keys, and server-independent symbols (called keysyms) which represent

the letters or words that appear on the keys. Two tables are kept in the server for converting

keycodes to keysyms:

modifier list Some keys (such as Shift, Control, and Caps Lock) are known as modifier and

are used to select different symbols that are attached to a single key (such as

Shift-a generates a capital A, and Control-L generates a formfeed character

*L). The server keeps a list of keycodes corresponding to the various modifier

keys. Whenever a key is pressed or released, the server generates an event

that contains the keycode of the indicated key as well as a mask that specifies

which of the modifer keys are currently pressed. Most servers set up this list

to initially contain the various shift, control, and shift lock keys on the key-
board.

252 X Window System User's Guide

The X Window System (continued) X

keymap table Applications translate event keycodes and modifier masks into keysyms using

a keysym table which contains one row for each keycode and one column for

each of the modifiers. This table is initialized by the server to correspond to

normal typewriter conventions, but is only used by client programs.

Although most programs deal with keysyms directly (such as those written with the X Toolkit

Intrinsics), most programming libraries provide routines for converting keysyms into the appro-
priate type of string (such as ISO Latin-1).

Options

Most X programs attempt to use the same names for command line options and arguments. All

applications written with the X Toolkit Intrinsics automatically accept the following options:

-display [host] : server[. screen]

Specifies the name of the X server to use. host specifies the machine,

server specifies the display server number, and screen specifies the

screen number. Either or both the host and screen elements to the display

specification can be omitted. If host is omitted, the local machine is

assumed. If screen is omitted, screen 0 is assumed (and the period is

unnecessary). The colon and (display) server are necessary in all cases.

-geometry geometry

Specifies the initial size and location of the application window. The

-geometry option can be (and often is) abbreviated to -g, unless there is a

conflicting option that begins with "g." The argument (geometry) is

referred to as a "standard geometry string," and has the form widthx-

h ei gh t±x o ff±y o ff.

-bg color, -background color

Either option specifies the color to use for the window background.

-bd color, -bordercolor color

Either option specifies the color to use for the window border.

-bwpixels, -borderwidth pixels

Either option specifies the width in pixels of the window border.

-fg color, -foreground color

Either option specifies the color to use for text or graphics.

-fn font, -font font

Either option specifies the font to use for displaying text

-iconic Indicates that the user would prefer that the application's windows initially

not be visible as if the windows had been immediately iconified by the user.

Window managers may choose not to honor the application's request

-name Specifies the name under which resources for the application should be

found. This option is useful in shell aliases to distinguish between invoca-
tions of an application, without resorting to creating links to alter the execut-
able filename.

253

X Window System User's Guide

X (continued) The X Window System

-rv, -reverse

Either option indicates that the program should simulate reverse video if pos-
sible, often by swapping the foreground and background colors. Not all pro-
grams honor this or implement it correctly. It is usually only used on mono-
chrome displays.

+rv Indicates that the program should not simulate reverse video. This is used to

override any defaults since reverse video doesn't always work properly.

-selectionTimeout

Specifies the timeout in milliseconds within which two communicating appli-
cations must respond to one another for a selection request

-synchronous

Indicates that requests to the X server should be sent synchronously, instead

of asynchronously. Since Xlib normally buffers requests to the server, errors

do not necessarily get reported immediately after they occur. This option

turns off the buffering so that the application can be debugged. It should

never be used with a working program.

-title string

Specifies the title to be used for this window. This information is sometimes

used by a window manager to provide some sort of header identifying the

window.

-xnllanguage language[_territory][. codeset]

Specifies the language, territory, and codeset for use in resolving resource and

other filenames.

-xrm resourcestring

Specifies a resource name and value to override any defaults. It is very useful

for setting resources that don't have explicit command line arguments.

Resources

To make the tailoring of applications to personal preferences easier, X supports several mecha-
nisms for storing default values for program resources (e.g., background color, window title,

etc.) Resources are specified as strings of the form:

appname*subname*subsubname ...: value

that are read in from various places when an application is run.

By convention, the application class name is the same as the program name, but with the first

letter capitalized (e.g., Bitmap or Emacs) although some programs that begin with the letter

"x" also capitalize the second letter for historical reasons. The precise syntax for resources is:

ResourceLine = Comment I ResourceSpec

Comment = "!" string I <empty line>

ResourceSpec = WhiteSpace ResourceName WhiteSpace ":" WhiteSpace value

ResourceName = [Binding] ComponentName {Binding ComponentName}

Binding = "." I "*"

WhiteSpace - {" " I "\t"}

254 X Window System User's Guide

The X Window System (continued) X

ComponentName = {"a"-"z" | "A"-"Z" \ "0"-"9" | " " | "- ""}

value = string

string = {<any character not including "\n">}

Note that elements enclosed in curly braces ({...}) indicate zero or more occurrences of the

enclosed elements.

To allow values to contain arbitrary octets, the 4-character sequence Vi/m, where n is a digit in

the range of "0"- "7", is recognized and replaced with a single byte that contains this sequence

interpreted as an octal number. For example, a value containing a NULL byte can be stored by

specifying 'VXXT.

The Xlib routine XGetDefault(3X) and the resource utilities within the X Toolkit obtain

resources from the following sources:

RESOURCE_MANAGER root window property

Any global resources that should be available to clients on all machines

should be stored in the RESOURCE_MANAGER property on the root window

using the xrdb program. This is frequently taken care of when the user starts

up X through the display manager orxinit.

application-specific files

Any application- or machine-specific resources can be stored in the class

resource files located in the XAPPLOADDIR directory (this is a configuration

parameter that is lusrllib/Xlllapp-defaults in the standard distribution). Pro-
grams that use the X Toolkit will also look in the directory named by the

environment variable XAPPLRESDER (default value is user's home directory)

for files named Class where Class is the class name of the particular applica-
tion. XAPPLOADDIR and XAPPLRESDIR configuration files are actually

loaded before the RESOURCE_MANAGER property, so that the property can

override the values.

XENVIRONMENT

Any user- and machine-specific resources may be specified by setting the

XENVIRONMENT environment variable to the name of a resource file to be

loaded by all applications. If this variable is not defined, the X Toolkit looks

for a file named ̂ (defaults-hostname, where hostname is the name of the host

where the application is executing.

-xrm resourcestring

Applications that use the X Toolkit can have resources specified from the

command line. The resourcestring is a single resource name and value

as shown above. Note that if the string contains characters interpreted by the

shell (e.g., asterisk), they must be quoted. Any number of -xrm arguments

may be given on the command line.

Program resources are organized into groups called classes, so that collections of individual

resources (each of which are called instances) can be set all at once. By convention, the

instance name of a resource begins with a lowercase letter and class name with an upper case

letter. Multiple word resources are concatentated with the first letter of the succeeding words

X Window System User's Guide

(continued) The X Window System

capitalized. Applications written with the X Toolkit Intrinsics will have at least the following

resources:

background (class Background)

Specifies the color to use for the window background.

borderWidth (class BorderWidth)

Specifies the width in pixels of the window border.

borderColor (class BorderColor)

Specifies the color to use for the window border.

Most applications using the X Toolkit Intrinsics also have the resource foreground (class

Foreground), specifying the color to use for text and graphics within the window.

By combining class and instance specifications, application preferences can be set quickly and

easily. Users of color displays will frequently want to set Background and Foreground

classes to particular defaults. Specific color instances such as text cursors can then be overrid-
den without having to define all of the related resources. For example,

bitmap*Dashed: off

XTerm*cursorColor: gold

XTerm*multiScroll: on

XTerm*jumpScroll: on

XTerm*reverseWrap: on

XTerm*curses: on

XTerm*Font: 6x10

XTerm*scrollBar: on

XTerm*scrollbar*thickness: 5

XTerm*multiClickTime: 500

XTerm*charClass: 33:48,37:48,45-47:48,64:48

XTerm*cutNewline: off

XTerm*cutToBeginningOfLine: off

XTerm*titeInhibit: on

XTerm*ttyModes: intr ~c erase "? kill "u

XLoad*Background: gold

XLoad*Foreground: red

XLoad*highlight: black

XLoad*borderWidth: 0

emacs*Geometry: 80x65-0-0

emacs*Background: #5b7686

emacs*Foreground: white

emacs*Cursor: white

emacs*BorderColor: white

emacs*Font: 6x10

xmag*geometry: -0-0

xmag*borderColor: white

256 X Window System User's Guide

The X Window System (continued) X

If these resources were stored in a file called Xresources in your home directory, they could be

added to any existing resources in the server with the following command:

% xrdb -merge $HOME/.Xresources

This is frequently how user-friendly startup scripts merge user-specific defaults into any site-

wide defaults. All sites are encouraged to set up convenient ways of automatically loading

resources.

Examples

The following is a collection of sample command lines for some of the more frequently used

commands. For more information on a particular command, please refer to that command's

manual page.

% xrdb -load $HOME/.Xresources

% xmodmap -a 'keysym Backspace = Delete'

% mkfontdir /usr/local/lib/Xll/oth«rfonts

% xs«t fp+ /usr/local/lib/Xll/oth«rfonts

% xmodmap $HOME/.keymap.km

% xsetroot -solid '#888'

% xset b 100 400 c 50 a 1800 r on

% xset q

% twm

% xxnag

% xclock -geometry 48x48-0+0 -bg blue -fg white

% xeyes -geometry 48x48-48+0

% xbiff -update 20

% xlsfonts '*helv«tica*'

% xlswins -1

% xwininfo -root

% xdpyinfo -display joesworkstation:0

% xhost -joesworkstation

% xrefresh

% xwd | xwud

% bitmap companylogo.bm 32x32

% xcalc -bg blue -fg magenta

% xterra -geometry 80x66-0-0 -name myxterm

Diagnostics

A wide variety of error messages are generated from various programs. Various toolkits are

encouraged to provide a common mechanism for locating error text so that applications can be

tailored easily. Programs written to interface directly to the Xlib C language library are

expected to do their own error checking.

The default error handler in Xlib (also used by many toolkits) uses standard resources to con-
struct diagnostic messages when errors occur. The defaults for these messages are usually

stored in /usr/lib/Xll/XErrorDB. If this file is not present, error messages will be rather terse

and cryptic.

X Window System User's Guide

(continued) The X Window System

When the X Toolkit Intrinsics encounter errors converting resource strings to the appropriate

internal format, no error messages are printed. This is convenient when it is desirable to have

one set of resources across a variety of displays (e.g., color versus monochrome, lots of fonts

versus very few, etc.), although it can pose problems for trying to determine why an application

might be failing. This behavior can be overridden by setting the StringConversions-

Warning resource.

To force the X Toolkit Intrinsics to always print string conversion error messages, the following

resource should be placed at the top of the file that gets loaded onto the RESOURCE_MANAGER

property using the xrdb program (frequently called Xresources or Xres in the user's home

directory):

*StringConversionWarnings: on

To have conversion messages printed for just a particular application, the appropriate instance

name can be placed before the asterisk:

xterm*StringConversionWarnings: on

Bugs

If you encounter a repeatable bug, please contact your site administrator for instructions on

how to submit an X Bug Report.

See Also

XConsortium(l), XStandards(l), Xau, Xserver, mkfontdir, bdftosnf, bitmap, bsdtosnf, oclock,

showsnf, twm, uwm, xlOtoxll, xauth, xbiff, xcalc, xclock, xdpyinfo, xedit, xev, xfd, xfontsel,

xhost, xinit, xkill, xload, xlogo, xlsclients, xlsfonts, xlswins, xmag, xman, xmh, xmodmap, xpr,

xprop, xrdb, xrefresh, xset, xsetroot, resize, xterm, xwd, xwininfo, xwud, biff(l), mh(l), init(8),

ttys(5); Volume One, Xlib Programming Manual', Volume Two, Xlib Reference Manual', Vol-
ume Four, X Toolkit Intrinsics Programming Manual; Volume Five, X Toolkit Intrinsics Refer-
ence Manual.

Copyright

The following copyright and permission notice outlines the rights and restrictions covering

most parts of the standard distribution of the X Window System from MIT. Other parts have

additional or different copyrights and permissions; see the individual source files.

Copyright 1984,1985,1986,1987,1988,1989 Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this software and its documentation for any pur-
pose and without fee is hereby granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission notice appear in supporting docu-
mentation, and that the name of M.I.T. not be used in advertising or publicity pertaining to dis-
tribution of the software without specific, written prior permission. M.I.T. makes no represen-
tations about the suitability of this software for any purpose. It is provided "as is" without

express or implied warranty.

258 X Window System User's Guide

The X Window System (continued)

This software is not subject to any license of the American Telephone and Telegraph Company

or of the Regents of the University of California.

Trademarks

UNIX and OPEN LOOK are trademarks of AT&T. X Window System is a trademark of MIT.

Authors

A cast of thousands. See the file doc/contributors in the standard sources for some of the

names.

X Window System User's Guide

Xau \

v Authorization Routines-

Name

XauFileName, XauReadAuth, XauLockAuth,

XauUnlockAuth, XauWriteAuth, XauGetAuthByAddr - X authority database routines

Syntax

#include <Xll/Xauth.h>

typedef struct xauth {

unsigned short family;

unsigned short address_length;

char *address;

unsigned short number_length;

char *number;

unsigned short name_length;

char *name;

unsigned short data_length;

char *data;

} Xauth;

char *XauFileName ()

Xauth *XauReadAuth (auth_file)

FILE *auth_file;

int XauWriteAuth (auth_file, auth)

FILE *auth_file;

Xauth *auth;

Xauth *XauGetAuthByAddr (family, address_length, address,

number_length, number)

unsigned short family;

unsigned short address_length;

char ^address;

unsigned short number_length;

char *number;

int XauLockAuth (file_name, retries, timeout, dead)

char *file_name;

int retries;

int timeout;

long dead;

int XauUnlockAuth (file_name)

char *file_name;

XauDisposeAuth (auth)

Xauth *auth;

Description

XauFileName generates the default authorization file name by first checking the XAU-

THORITY environment variable if set, else it returns $HOMEIXauthority. This name is stati-
cally allocated and should not be freed.

260 X Window System User's Guide Copyright © 1990 O'Reilly & Associates

Authorization Routines (continued) Xau

XauReadAuth reads the next entry from auth_file. The entry is not statically allocated

and should be freed by calling XauDisposeAuth.

XauWriteAuth writes an authorization entry to auth_f±le. It returns 1 on success, 0 on

failure.

XauGetAuthByAddr searches for an entry which matches the given network address/display

number pair. The entry is not statically allocated and should be freed by calling Xau-
DisposeAuth

XauLockAuth does the work necessary to synchronously update an authorization file. First it

makes to file names, one with -c appended to file_name, the other with -1 appended. If

the -c file already exists and is more than dead seconds old, XauLockAuth removes it and

the associated -1 file. To prevent possible synchronization troubles with NFS, a dead value of

zero forces the files to be removed. XauLockAuth makes retries attempts to create and link

the file names, pausing timeout seconds between each attempt. XauLockAuth returns a

collection of values depending on the results:

LOCK_ERROR A system error occurred, either a file_name which is too long, or an

unexpected failure from a system call, errno may prove useful.

LOCK_TIMEOUT retries attempts failed.

LOCK_SUCCESS The lock succeeded.

XauUnlockAuth undoes the work of XauLockAuth by unlinking both the -c and -1

filenames.

XauDisposeAuth frees storage allocated to hold an authorization entry.

See Also

xauth, xdm

Author

Keith Packard, MIT X Consortium.

X Window System User's Guide
261

Xserver A

v X Window System Server-

Name

X - X Window System server.

Syntax

X [: displaynumber] [options] [ttyname]

Description

X is the generic name for the X Window System server. It is frequently a link or a copy of the

appropriate server binary for driving the most frequently used server on a given machine. The

sample server from MIT supports the following platforms:

Xqvss Digital monochrome vaxstationll or II

Xqdss Digital color vaxstationll or II

Xsun Sun monochrome or color Sun 2,3, or 4

Xhp HP Topcat 9000s300

Xibm IBM AED, APA and megapel PC/RT, 8514 and VGA PS/2 model 80

Xapollo Apollo monochrome or color (Domain/OS SRI0.1 or SRI0.2)

XmacII Apple monochrome Macintosh II

Xcfbpmax Digital color DECstation 3100

Xmfbpmax Digital monochrome DECstation 3100

Xtek Tektronix 4319 (this is the only tested configuration)

Starting the Server

The server is usually started from the X Display Manager program, xdm. This utility is run

from the system boot files and takes care of keeping the server running, prompting for user-

names and passwords, and starting up the user sessions. It is easily configured for sites that

wish to provide nice, consistent interfaces for novice users (loading convenient sets of

resources, starting up a window manager, clock, and nice selection of terminal emulator win-
dows).

Since xdm now handles automatic starting of the server in a portable way, the -L option to

xterm is now considered obsolete. Support for starting a login window from BSD 4.3-derived

letclttys files is no longer included as of Release 4.

Installations that run more than one window system will still need to use the xinit utility. How-
ever, xinit is to be considered a tool for building startup scripts and is not intended for use by

end users. Site adminstrators are strongly urged to build nicer interfaces for novice users.

When the sample server starts up, it takes over the display. If you are running on a workstation

whose console is the display, you cannot log into the console while the server is running.

Network Connections

The sample server supports connections made using the following reliable byte-streams:

TCP/IP The server listens on port htons(6000+/i), where n is the display number.

UNIX Domain The sample server uses ItmplXll-unixIXn as the filename for the socket,

where n is the display number.

262 ^ Window System User's Guide

X Window System Server (continued) Xserver

DECnet The server responds to connections to object X$Xn, where n is the display

number.

Options

All of the sample servers accept the following command line options:

-a number Sets pointer acceleration (i.e., the ratio of how much is reported to how much

the user actually moved the pointer).

-auth authorization-file

Specifies a file which contains a collection of authorization records used to

authenticate access. (Available as of Release 4.)

be Disables certain kinds of error checking, for bug compatibility with previous

releases (e.g., to work around bugs in Release 2 and Release 3 versions of

xterm and the toolkits). Use of this option is discouraged. (Available as of

Release 4.)

-bs Disables backing store support on all screens.

-c Turns off key-click.

c vol ume Sets key-click volume (allowable range: 0-8).

-cc class Sets the visual class for the root window of color screens. The class numbers

are as specified in the X protocol. Not obeyed by all servers. (Available as of

Release 4.)

-dpi resolution

Sets the resolution of the screen, in dots per inch. To be used when the server

cannot determine the screen size from the hardware. (Available as of Release

4.)

-f volume Sets beep (bell) volume (allowable range: 0-7).

-I Causes all remaining command line arguments to be ignored. (Available as

of Release 4.)

-Idi kilobytes

Sets the data space limit of the server to the specified number of kilobytes.

The default value is zero, making the data size as large as possible. A value

of -1 leaves the data space limit unchanged. (Available as of Release 4; not

available in all operating systems.)

-Is kilobytes

Sets the stack space limit of the server to the specified number of kilobytes.

The default value is zero, making the stack size as large as possible. A value

of -1 leaves the stack space limit unchanged. This option is not available in

all operating systems. (Available as of Release 4; not available in all operat-
ing systems.)

-logo Turns on the X Window System logo display in the screen-saver. There is

currently no way to change this from a client.

X Window System User's Guide 263

Xserver (continued) X Window System Server

nologo Turns off the X Window System logo display in the screen-saver. There is

currently no way to change this from a client.

-p minutes Sets screen-saver pattern cycle time in minutes.

- r Turns off auto-repeat.

r Turns on auto-repeat.

-s minutes Sets screen-saver timeout in minutes.

-su Disables save under support on all screens.

-t numbers Sets pointer acceleration threshold in pixels (i.e., after how many pixels

pointer acceleration should take effect).

-to seconds Sets default screen-saver timeout in seconds.

v Sets video-on screen-saver preference.

-v Sets video-off screen-saver preference.

-co filename

Sets the name of the RGB color database.

-help Prints a usage message.

-fp fontPath

Sets the search path for fonts. This path is a comma-separated list of direc-
tories the server searches for font databases.

-fc cursorFont

Sets the default cursor font

-fn font Sets the default font.

-wm Forces the default backing-store of all windows to be WhenMapped; a cheap

trick way of getting backing-store to apply to all windows.

-x extension Loads the specified extension at init. (Available as of Release 4; not sup-
ported in most implementations.)

XDMCP-specific Options (Release 4)

You can also have the X server connect to xdm using XDMCP. Although this is not typically

useful as it doesn't allow xdm to manage the server process, it can be used to debug XDMCP

implementations, and servers as a sample implementation of the server side of XDMCP. For

more information on this protocol, see the XDMCP specification in docs/XDMCP/xdmcp.ms.

The following options control the behavior of XDMCP:

-query host-name

Enables XDMCP and sends Query packets to the specified host.

-broadcast Enables XDMCP and broadcasts BroadcastQuery packets to the network.

The first responding display manager will be chosen for the session.

-indirect host-name

Enables XDMCP and sends indirectQuery packets to the specified host.

264 X Window System User's Guide

X Window System Server (continued) Xserver

-port port-num

Specifies an alternate port number for XDMCP packets. Must be specified

before any -query, -broadcast or -indirect options.

-once Makes the server exit after the first session is over. Normally, the server

keeps starting sessions, one after the other.

-class display-class

XDMCP has an additional display qualifier used in resource lookup for dis-
play-specific options. This option sets that value; by default it is "MIT-

Unspecified" (not a very useful value).

-cookie xdm-auth-bits

When testing XDM-AUTHENTICATION-1, a private key is shared between

the server and the manager. This option sets the value of that private data

(not that it's very private, being on the command line).

-displaylD display-id

Yet another XDMCP-specific value, this one allows the display manager to

identify each display so that it can locate the shared key.

Many servers also have device-specific command line options. See the manual pages for the

individual servers for more details.

Security

As of Release 4, the sample server implements a simplistic authorization protocol, MIT-

MAGIC-COOKIE-1, which uses data private to authorized clients and the server. This is a

rather trivial scheme; if the client passes authorization data which is the same as the server has,

it is allowed access. This scheme is worse than the host-based access control mechanisms in

environments with unsecure networks as it allows any host to connect, given that it has

discovered the private key. But in many environments, this level of security is better than the

host-based scheme as it allows access control per-user instead of per-host.

In addition, the server provides support for a DES-based authorization scheme, XDM-

AUTHORIZATION-1, which is more secure (given a secure key distribution mechanism), but

as DES is not generally distributable, the implementation is missing routines to encrypt and

decrypt the authorization data. This authorization scheme can be used in conjunction with

XDMCP's authentication scheme, XDM-AUTHENTICATION-1 or in isolation.

The authorization data is passed to the server in a private file named with the -auth command

line option. Each time the server is about to accept the first connection after a reset (or when

the server is starting), it reads this file. If this file contains any authorization records, the local

host is not automatically allowed access to the server, and only clients which send one of the

authorization records contained in the file in the connection setup information will be allowed

access. See the Xau manual page for a description of the binary format of this file. Mainte-
nance of this file, and distribution of its contents to remote sites for use there, is left as an exer-
cise for the reader.

The sample server also uses a host-based access control list for deciding whether or not to

accept connections from clients on a particular machine. This list initially consists of the host

X Window System User's Guide 265

Xserver (continued) X Window System Server

on which the server is running as well as any machines listed in the file /etc/Xn.hosts, where n is

the display number of the server. Each line of the file should contain either an Internet host-
name (e.g., expo.lcs.mit.edu) or a DECnet hostname in double colon format (e.g., hydra::).

There should be no leading or trailing spaces on any lines. For example:

joesworkstation

. corporate.company.com

star::

bigcpu::

Users can add or remove hosts from this list and enable or disable access control using the

xhost command from the same machine as the server. For example:

% xhost +janeswor)cstation janesworkstation added to access control list

% xhost -star:: star.: removed from access control list

% xhost + all hosts allowed (access control disabled)

% xhost - all hosts restricted (access control enabled)

% xhost

access control enabled (only the following hosts are allowed)

joesworkstation

janesworkstation

corporate.company.com

bigcpu::

Unlike some window systems, X does not have any notion of window operation permissions or

place any restrictions on what a client can do; if a program can connect to a display, it has full

run of the screen. Sites that have authentication and authorization systems (such as Kerberos)

might wish to make use of the hooks in the libraries and the server to provide additional secu-
rity.

Signals

The sample server attaches special meaning to the following signals.

SIGHUP Causes the server to close all existing connections, free all resources, and

restore all defaults. It is sent by the display manager whenever the main

user's primary application (usually an xterm or window manager) exits to

force the server to clean up and prepare for the next user.

SIGTERM Causes the server to exit cleanly.

SIGUSR1 This signal is used quite differently from either of the above. When the

server starts, it checks to see if it has inherited SIGUSR1 as SIG_IGN instead

of the usual SIG_DFL. In this case, the server sends a SIGUSR1 to its parent

process, after it has set up the various connection schemes, xdm uses this fea-
ture to recognize when connecting to the server is possible.

Fonts

Fonts are usually stored as individual files in directories. The list of directories in which the

server looks when trying to open a font is controlled by the/0/if path. Although most sites will

266 X Window System User's Guide

X Window System Server (continued) Xserver

choose to have the server start up with the appropriate font path (using the -fp option men-
tioned above), it can be overridden using the xset program.

The default font path for the sample server contains three directories:

lusrlliblXl 1 Ifontslmisc

This directory contains several miscellaneous fonts that are useful on all sys-
tems. It contains a small family of fixed-width fonts in pixel heights 5

through 10, a family of fixed-width fonts from Dale Schumacher in similar

pixel heights, several Kana fonts from Sony Corporation, a Kanji font, the

standard cursor font, two cursor fonts from Digital Equipment Corporation,

and OPEN LOOK cursor and glyph fonts from Sun Microsystems. It also has

font name aliases for the fonts fixed and variable.

lusrlliblXl 1 /font sf 75 dpi

This directory contains fonts contributed by Adobe Systems, Inc., Digital

Equipment Corporation, Bitstream, Inc., Bigelow and Holmes, and Sun

Microsystems, Inc. for 75 dots per inch displays. An integrated selection of

sizes, styles, and weights is provided for each family.

lusrlliblXl 11 font si 100dpi

This directory contains versions of the fonts in the 75dpi directory for 100

dots per inch displays.

Font databases are created by running the mkfontdir program in the directory containing the

compiled versions of the fonts (the .snf files). Whenever fonts are added to a directory,

mkfontdir should be rerun so that the server can find the new fonts. If mkfontdir is not run, the

server will not be able to find any fonts in the directory.

Diagnostics

Too numerous to list them all. If run from i/u/(8), errors are logged in the file lusr/adm/Xnmsgs.

Files

letclXn.hosts Initial access control list.

lusrlliblXl 1 Ifontslmisc, lusrlliblXlIlfontsl75dpi, lusrlliblXlllfontsl 100dpi

Font directories.

lusrlliblXlllrgb.txt Color database.

ItmplXll-unixIXn UNIX domain socket

lusrladmlXnmsgs Error log file.

See Also

X, Xqdss(l), Xqvss(l), Xsun(l), Xapollo(l), XmacII(l), Xau, mkfontdir, twm, uwm, xauth,

xdm, xhost, xinit, xset, xsetroot, xterm, ttys(5), init(8); X Window System Protocol; Definition

of the Porting Layer for the X vll Sample Server; Strategies for Porting the X vll Sample

Server; Godzilla's Guide to Porting the X Vll Sample Server.

X Window System User's Guide

Xserver (continued) X Window System Server

Bugs

The option syntax is inconsistent with itself and xset.

The acceleration option should take a numerator and a denominator like the protocol.

If X dies before its clients, new clients won't be able to connect until all existing connections

have their TCP TJME.WATT timers expire.

The color database is missing a large number of colors. However, there doesn't seem to be a

better one available that can generate RGB values tailorable to particular displays.

Authors

The sample server was originally written by Susan Angebranndt, Raymond Drewry, Philip

Karlton, and Todd Newman, of Digital Equipment Corporation, with support from a large cast.

It has since been extensively rewritten by Keith Packard and Bob Scheifler of MIT.

268 X Window System User's Guide

- List Application Resources '

Name

appres - list application resource database.

Syntax

appres [[classname [instancename]] [-xrm resource]

Description

Available as of Release 4, the appres client prints the resources seen by an application of the

specified classname and instancename. It is used to determine which resources a partic-
ular program would load. For example:

% appros XTerm

would list the resources that any xterm program would load. To also match particular instance

names, you can enter both an instance and class name, as in the following:

% appres XTertn myxterm

If no application class is specified, the class -NoSuchClass- (which should have no

defaults) is used.

Options

appres supports the following command line option:

-xrm resource

Specifies that, in addition to the current application resources, appres should

return the resource specified as an argument to -xrm, if that resource

would apply to the classname or instancename. You must specify both

a classname and an instancename in order to use the -xrm option.

(Note that -xrm does not actually load any resources.)

Without any arguments, appres returns those resources that might apply to any application (for

example, those beginning with an asterisk in your ̂ resources file).

See Also

X, xrdb, listres

Author

Jim Fulton, MIT X Consortium.

X Window System User's Guide

bdftosnf X
 BDF to SNF Font Compiler -

Name

bdftosnf - BDF to SNF font compiler for XI1.

Syntax

bdftosnf [options] bdf_fHe

Description

bdftosnf reads a Bitmap Distribution Format (BDF) font from the specified file (or from stan-
dard input if no file is specified) and writes an Xll Server Natural Format (SNF) font to stan-
dard output.

Options

-pnumber Forces the glyph padding to a specific number. The legal values are 1,2,4,

and 8.

-unumber Forces the scanline unit padding to a specific number. The legal values are

1,2, and 4.

-m Forces the bit order to most significant bit first.

-1 Forces the bit order to least significant bit first.

-M Forces the byte order to most significant byte first.

-L Forces the byte order to least significant byte first.

-w Prints warnings if the character bitmaps have bits set to one outside of their

defined widths.

-W Prints warnings for characters with an encoding of -1; the default is to silently

ignore such characters.

-t Expands glyphs in "terminal-emulator" fonts to fill the bounding box.

-i Suppresses computation of correct ink metrics for "terminal-emulator" fonts.

See Also

X, Xserver, Bitmap Distribution Format 2.1

270 X Window System User's Guide

- System Bitmap Editor ' bitmap

Name

bitmap, bmtoa, atobm - system bitmap editor and conversion utilities.

Syntax

bitmap [options] filename [WIDTHxHEIGHT]

bmtoa [options] filename

atobm [options] .filename

Description

bitmap allows you to create and edit small bitmaps which you can use to create backgrounds,

icons, and pointers. A bitmap is a grid of pixels, or picture elements, each of which is white,

black, or, in the case of color displays, a color.

The bmtoa and atobm filters convert bitmap files to and from ASCII strings. They are most

commonly used to quickly print out bitmaps and to generate versions for inclusion in text The

bmtoa and atobm programs are available in the standard distribution of X as of Release 3.

The window that bitmap creates has three sections (see Figure 6-1 in Part One of this guide).

The largest section is the checkerboard grid, which is a magnified version of the bitmap you are

editing. Squares on the grid can be set, cleared, or inverted directly with the buttons on the

pointer. A menu of higher level operations, such as drawing lines and circles, is provided to the

right of the grid. You can invoke these menu commands by clicking with any mouse button.

Beneath the menu commands is an actual size picture of the bitmap you are editing; below this

is an inverted version of the same bitmap. Each time the grid changes, the same change occurs

in the actual-size bitmap and its inverse.

If the bitmap is to be used for defining a cursor, one of the squares in the image may be desig-
nated as the hot spot. This determines where the cursor is actually pointing. For cursors with

sharp tips (such as arrows or fingers), this is usually at the end of the tip; for symmetric cursors

(such as crosses or bullseyes), this is usually at the center.

Bitmaps are stored as small C code fragments suitable for including in applications. They pro-
vide an array of bits as well as symbolic constants giving the width, height, and hot spot (if

specified) that may be used in creating cursors, icons, and tiles.

The WTDTHxHElGHT argument gives the size to use when creating a new bitmap (the default

is 16x6). Existing bitmaps are always edited at their current size.

If the bitmap window is resized by the window manager, the size of the squares in the grid will

shrink or enlarge to fit.

Options: bitmap

-display [host] : server[. screen]

Allows you to specify the host, server, and screen on which to create the bit-
map window, host specifies which machine to create the bitmap window

on, server specifies the server number, and screen specifies the screen

number. For example:

X Window System User's Guide

bitmap (continued) System Bitmap Editor

bitmap -display your_node:0.1

creates a bitmap window on screen 1 of server 0 on the machine

your_node. If the host is omitted, the local machine is assumed. If the

screen is omitted, screen 0 is assumed; the server and colon (:) are necessary

in all cases.

-geometry geometry

The bitmap is created with the specified size and location determined by the

supplied geometry specification. The -geometry option can be (and often

is) abbreviated to -g, unless there is a conflicting option that begins with "g."

The argument to the geometry option (geometry) has the form widthx-

height±xoff±yoff. If you do not specify the geometry, bitmap asks you

for window placement when it starts up. See Window Geometry in Chapter 8

of this guide for details.

-help Prints a brief description of the allowable options.

-bw number Specifies the border width in pixels of the bitmap window. Default is 3 pix-
els.

-fn font Specifies the font to be used in the command buttons (refer to the Menu Com-
mands section below). Default is fixed, a 6x13 pixel, mono-spaced font.

-f g col or Specifies the color to be used for the foreground. Default is black.

-bg col or Specifies the color to be used for the background. Default is white.

-hi col or Specifies the color to be used for highlighting.

-bd col or Specifies the color to be used for the window border.

-ms col or Specifies the color to be used for the pointer (mouse). Default is black.

-name variable

Specifies the variable name to be used when writing out the bitmap file. The

default is to use the basename of the filename command line argument

-nodashed Specifies that the grid lines in the bitmap window are drawn as solid lines not

as dashed lines. Default is dashed lines. On some servers, dashed lines are

significantly slower.

WIDTHxHEIGHT

Two numbers, separated by the letter "x", which specify the size of the

checkerboard grid within the bitmap window (e.g., 9x13). The first number is

the grid's width; the second number is its height Default is 16x16.

Options: bmtoa

The bmtoa conversion program accepts the following options:

-chars cc Specifies the pair of characters to use in the string version of the bitmap. The

first character is used for 0 bits and the second character is used for 1 bits.

The default is to use dashes (-) for O's and number signs (#) for 1 's.

272 X Window System User's Guide

System Bitmap Editor (continued) bitmap

Options: atobm

The atobm conversion program accepts the following options:

-chars cc Specifies the pair of characters to use when converting string bitmaps into

arrays of numbers. The first character represents a 0 bit and the second char-
acter represents a 1 bit. The default is to use dashes (-) for O's and number

signs (#)for 1's.

-name variable

Specifies the variable name to be used when writing out the bitmap file. The

default is to use the basename of the filename command line argument or

leave it blank if the standard input is read.

-xhot number

Specifies the X coordinate of the hot spot. Only positive values are allowed.

By default, no hot spot information is included.

-yhot number

Specifies the Y coordinate of the hot spot Only positive values are allowed.

By default, no hot spot information is included.

Changing Grid Squares

Grid squares may be set, cleared, or inverted by pointing to them and clicking one of the but-
tons indicated below. Multiple squares can be changed at once by holding the button down and

dragging the cursor across them. Set squares are filled and represent 1's in the bitmap; clear

squares are empty and represent O's.

Button 1 (usually the left)

Changes one or more grid squares to the foreground color and sets the corre-
sponding bits in the bitmap to 1.

Button 2 (usually the middle)

Inverts one or more grid squares. The corresponding bit or bits in the bitmap

are inverted (1's become O's and O's become 1's).

Button 3 (usually the right)

Changes one or more grid squares to the background color and sets the corre-
sponding bits in the bitmap to 0.

Menu Commands

To make defining shapes easier, bitmap provides 13 commands for drawing whole sections of

the grid at once, two commands for manipulating the hot spot, and two commands for updating

the bitmap file and exiting. A command button for each of these operations is located to the

right of the grid.

Several of the commands operate on rectangular portions of the grid. These areas are selected

after the command button is pressed by moving the cursor to the upper left square of the desired

area, pressing a pointer button, dragging the cursor to the lower right hand comer (with the but-
ton still pressed), and then releasing the button. The command may be aborted by pressing any

other button while dragging or by releasing outside the grid.

X Window System User's Guide

bitmap (continued) System Bitmap Editor

To invoke a command, move the pointer over that command and click any button.

The following command descriptions assume that black is the foreground color and white is the

background color (the defaults).

Clear All Turns all the grid squares white and sets all bitmap bits to 0. This is irrevers-
ible, so invoke it with caution.

Set All Turns all the grid squares black and sets all bitmap bits to 1. This is also irre-
versible, so invoke it with caution.

Clear Area Clears a rectangular area of the grid, turning it white and setting the corre-
sponding bitmap to 0. After you click on this command, the cursor turns into

a comer cursor representing the upper-left comer of the area you want to

clear. Press and hold down any mouse button while moving the mouse to the

lower-right comer of the area you want to clear, then release the button.

While you are holding down the button, the selected area is covered with X's,

and the cursor changes to a lower-right corner cursor. If you now wish to

abort the command without clearing an area, either press another mouse but-
ton, move the cursor outside the grid, or move the cursor to the left of or

above the left-corner.

Set Area Turns a rectangular area of the grid black and sets the corresponding bitmap

bits to 1. It works the same way as the Clear Area command.

Invert Area Inverts rectangular area of the grid. It works the same way as the Clear Area

command.

Copy Area Copies a rectangular area from one part of the grid to another. First, you

select the rectangle to be copied, in the manner described under Clear Area

above.

Once you have selected the area to copy, the cursor changes to an upper-left

corner cursor. When you press a mouse button, a destination rectangle over-
lays the grid; moving the mouse while holding down the button moves this

destination rectangle. The copy occurs when you release the button. To can-
cel the copy, move the mouse outside the grid and then release the button.

Move Area Works identically to Copy Area, except it clears the source rectangle after

copying to the destination.

Overlay Area Lays a rectangular area from one part of the grid over a rectangular area in

another part of the grid. Select the area as described under Clear Area. Over-
lay is not a pixel for pixel replacement: those pixels that are clear (bitmap

bits set to 0) allow those pixels that are set (bitmap bits set to 1) to show

through the overlay.

274 X Window System User's Guide

System Bitmap Editor (continued) bitmap

Line Draws a line between two points. When you select this menu option, the cur-
sor changes to a dot shape. Position the cursor over the first point of the line

you want to draw and click any mouse button. Then position the cursor over

the end point of the line and click any mouse button. A black line is drawn

between the two points.

Circle Draws a circle. When you select this menu option, the cursor changes to a

dot shape. First, position the cursor over the point you want to specify as the

center and click any mouse button. Then position the cursor over a point you

want to specify as the radius and click any mouse button. A black circle is

drawn.

Filled Circle Draws a filled circle when you specify the center and radius of the circle as

with Circle.

Flood Fill Fills all clear squares in a closed shape you specify. When you select this

menu option, the cursor changes to a dot shape. Click on any clear square

inside the shape you want to fill and all clear squares are filled out to the bor-
der of the closed shape. If the shape is not closed, the entire grid will be

filled.

Set Hot Spot Designates a point on the bitmap as the "hot spot." If a program is using your

bitmap as a cursor, the hot spot indicates which point on the bitmap is the

"actual" location of the cursor. For instance, if your cursor is an arrow, the

hot spot could be the tip of the arrow; if your cursor is a cross, the hot spot

should be where the perpendicular lines intersect.

Clear Hot Spot Removes any hot spot that was defined for this bitmap.

Write Output Writes the current bitmap value to the file specified in the command line. If

the file already exists, the original file is first renamed to filename' (in the

manner of emacs(\) and other text editors).

If either the renaming or the writing cause an error, a dialog box will appear

asking if you want to write the file Itmplfilename instead. If you say yes, all

future Write Output commands are written to /tmp/filename as well. See File

Format below for the format of the output file.

Quit Exits the bitmap program. If you have edited the bitmap and have not

invoked Write Output, or you have edited since the last time you invoked Write

Output, a dialog window appears, asking if you want to save changes before

quitting. "Yes" does a Write Output before exiting. "No" just exits, losing the

edits. "Cancel" means you decided not to quit after all and you can continue

with your editing.

You can also terminate bitmap by typing Ctrl-C or q anywhere in the window.

If you have edited the bitmap and have not invoked Write Output, a dialog

window appears, asking if you want to save changes before quitting.

275

X Window System User's Guide

bitmap (continued) System Bitmap Editor

File Format

The Write Output command stores bitmaps as simple C program fragments that can be compiled

into programs, referred to by X Toolkit pixmap resources, manipulated by other programs (see

xsetroot), or read in using utility routines in the various programming libraries. The width and

height of the bitmap as well as the hot spot, if specified, are written as preprocessor symbols at

the start of the file. The bitmap image is then written out as an array of characters:

#define name_width 11

tdefine name_height 5

#define name_x_hot 5

#define na/ne_y_hot 2

static char name_bits[] = {

0x91, 0x04, Oxca, 0x06, 0x84,

0x04, Ox8a, 0x04, 0x91, 0x04

};

The variables ending with _x_hot and _y_hot are optional; they must be present only if a

hot spot has been defined for this bitmap. The other variables must be present.

In place of name, the five variables are prefixed with a string derived from the name of the file

specified on the original command line. Any directories are stripped off the front of the

filename and any suffix (including the preceding period) is stripped off the end. Any

remaining non-alphabetic characters are replaced with underscores.

For example, invoking bitmap with filename lusrlincludelbitmapslcross.bitmap produces a file

with variable names cross_width, cross_height, and cross_bits (and

cross_x_hot and cross_y_hot, if a hot spot is defined).

Each character in the the array contains 8 bits from one row of the image (rows are padded out

at the end to a multiple of 8 to make this is possible). Rows are written out from left to right

and top to bottom. The first character of the array holds the leftmost 8 bits of top line, and the

last character holds the right most 8 bits (including padding) of the bottom line. Within each

character, the leftmost bit in the bitmap is the least significant bit in the character.

This process can be demonstrated visually by splitting a row into words containing 8 bits each,

reversing the bits each word (since Arabic numbers have the significant digit on the right and

images have the least significant bit on the left), and translating each word from binary to hexa-
decimal.

In the following example, the array of 1's and O's on the left represents a bitmap containing 5

rows and 11 columns that spells XIL To its right is is the same array split into 8 bit words with

each row padded with O's so that it is a multiple of 8 in length (16):

10001001001 10001001 00100000

01010011011 01010011 01100000

00100001001 00100001 00100000

01010001001 01010001 00100000

10001001001 10001001 00100000

Reversing the bits in each word of the padded, split version of the bitmap yields the left hand

figure below. Interpreting each word as hexadecimal number yields the array of numbers on

276 X Window System User's Guide

System Bitmap Editor (continued) bitmap

the right:

10010001 00000100 0x91 0x04

11001010 00000110 Oxca 0x06

10000100 00000100 0x84 0x04

10001010 00000100 Ox8a 0x04

10010001 00000100 0x91 0x04

The character array can then be generated by reading each row from left to right, top to bottom:

static char name_bits[] = {

0x91, 0x04, Oxca, 0x06, 0x84,

0x04, Ox8a, 0x04, 0x91, 0x04

};

The bmtoa program may be used to convert bitmap files into arrays of characters for printing or

including in text files. The atobm program can be used to convert strings back to bitmap for-
mat

Using Bitmaps in Programs

To define a bitmap or pointer in an X program, include (^include) a bitmap file and refer to its

variables. For instance, to use a pointer defined in the files this.cursor and thisjnask.cursor,

write:

tinclude "this.cursor"

#include "this_mask.cursor"

XColor foreground background;

Pixmap source = XCreateBitmapFromData (display, drawable, this_bits,

this_width, this_height);

Pixmap mask = XCreateBitmapFromData (display, drawable, this_mask_bits,

this_mask_width, this_mask_height);

Cursor cursor = XCreatePixmapCursor (display, source, mask, foreground,

background, this_x_hot, this_y_hot);

where fo re ground and back ground are XColor values.

Additional routines are available for reading in bitmap files and returning the data in the file in

Bitmap (single-plane Pixmap for use with routines that require stipples) or full depth Pixmaps

(often used for window backgrounds and borders). Applications writers should be careful to

understand the difference between Bitmaps and Pixmaps so that their programs function cor-
rectly on color and monochrome displays.

For backward compatibility, bitmap will also accept X10 format bitmap files. However, when

the file is written out again it will be in XI1 format.

Resources

The bitmap program accepts the following resources. The foreground, background, and high-
light colors are ignored unless you specify new values for all three options.

Background Determines the window's background color. Bits which are 0 in the bitmap

are displayed in this color. Default is white.

X Window System User's Guide

bitmap (continued) System Bitmap Editor

BodyFont Determines the text font. Default is fixed, a 6x13 pixel mono-spaced font

BorderColor Determines the color of the border. Default is black.

BorderWidth Determines the border width. Default is 2 pixels.

Dashed Determines whether dashed or solid lines are used for the bitmap grid. (On

specifies dashed lines, off specifies solid.) Default is on. (Available as of

Release 4.)

Foreground Determines the foreground color. Bits which are 1 in the bitmap are

displayed in this color. Default is black.

Highlight Determines the highlight color, bitmap uses this color to show the hot spot

and to indicate rectangular areas that are affected by the Move Area, Copy

Area, Set Area, Clear Area, and Invert Area commands. If a highlight color is

not given, then bitmap highlights by inverting. For example, if you have a

black rectangular area selected for a move, white X's appear in the rectangle.

Mouse Determines the pointer's color. Default is black.

Geometry Determines the size and location of the bitmap window.

Dimensions Determines the WlDTHxHElGHT of the checkerboard grid within the bitmap

window. Default is 16x16.

Files

Many standard bitmaps can be found in the directory lusrlindudelX11 /bitmaps.

Bugs

The old command line arguments aren't consistent with other X programs.

If you move the pointer too fast while holding a pointer button down, some squares may be

missed. This is caused by limitations in how frequently the X server can sample the pointer

location.

There is no way to write to a file other than the one specified on the command line.

There is no way to change the size of the bitmap once the program has started.

There is no Undo command.

Author

bitmap by Ron Newman, MIT Project Athena; bmtoa and atobm by Jim Fulton, MIT X Consor-
tium.

See Also

Chapter 6 of this guide; Volume One, Xlib Programmer's Guide; XmuReadBitmapDataFrom-

File.

278 X Window System User's Guide

- List Widget Resources '

Name

listres - list resources in widgets.

Syntax

listres [options]

Description

Available as of Release 4, the listres program generates a list of a widget's resource database.

The class in which each resource is first defined, the instance and class name, and the type of

each resource is listed. If no specific widgets or the -all switch are given, a two-column list

of widget names and their class hierarchies is printed.

Options

listres accepts all of the standard X Toolkit command line options, along with the following:

-all Indicates that listres should print information for all known widgets and

objects.

-nosuper Indicates that resources that are inherited from a superclass should not be

listed. This is useful for determining which resources are new to a subclass.

-variable Indicates that widgets should be identified by the names of the class record

variables rather than the class name given in the variable. This is useful for

distinguishing subclasses that have the same class name as their superclasses.

-top name Specifies the name of the widget to be treated as the top of the hierarchy.

Case is not significant, and the name may match either the class variable

name or the class name. The default is core.

-format print f_string

Specifies the printf-style format string to be used to print out the name,

instance, class, and type of each resource.

See Also

X, xrdb; Volume Four, X Toolkit Intrinsics Programming Manual; Volume Five, X Toolkit

Intrinsics Reference Manual; appropriate widget documents

Bugs

On operating systems that do not support dynamic linking of run-time routines, this program

must have all of its known widgets compiled in. The sources provide several tools for automat-
ing this process for various widget sets.

Author

Jim Fulton, MIT X Consortium.

X Window System User's Guide
279

mkfontdir A

> Create fonts.dir Files-

Name

mkfontdir - creates a fonts.dir file for each specified directory of font files.

Syntax

mkfontdir [directory-names]

Description

For each directory argument, mkfontdir reads all of the font files in the directory and searches

for properties named "FONT', or (failing that) the name of the file stripped of its suffix. These

are used as font names, which are written out to the tile fonts.dir in the directory, along with the

name of the font file.

The kinds of font files read by mkfontdir depend on configuration parameters, but typically

include SNF (suffix .snf), compressed SNF (suffix .snf.Z), BDF (suffix .bdf), and compressed

BDF (suffix .bdf.Z). If a font exists in multiple formats, the most efficient format will be used.

Font Name Aliases

The file fonts.alias, which can be put in any directory of the font path, is used to map new

names to existing fonts, and should be edited by hand. The format is straight forward enough,

two white-space separated columns, the first containing aliases and the second containing font-

name patterns.

When a font alias is used, the name it references is searched for in the normal manner, looking

through each font directory in turn. This means that the aliases need not mention fonts in the

same directory as the alias file.

To embed white-space in either name, simply enclose them in double-quote marks. To embed

double-quote marks (or any other character), precede them with back-slash:

"magic-alias with spaces" 'YfontnameV with quotes"

regular alias fontname

If the string FTLE_NAMES_ALIASES stands alone on a line, each filename in the particular

directory (stripped of it's .STI/" suffix) will be used as an alias for that font.

Usage

Xserver looks for both fonts.dir and fonts.alias in each directory in the font path each time the

font path is set (see xset).

See Also

X, Xserver, xset

280 X Window System User's Guide

-Analog dock
/ OC'OCk

Name

oclock - display time of day in analog form.

Syntax

oclock [options]

Description

Available as of Release 4, oclock displays the current time on an analog display.

Options

-display host [: server] [. screen]

Allows you to specify the host, server and screen on which to display the

oclock window, host specifies the machine, server specifies the server

number, and screen specifies the screen number. For example,

oclock -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-geometry geometry

The oclock window is created with the specified size and location determined

by the supplied geometry specification. The -geometry option can be (and

often is) abbreviated to -g, unless there is a conflicting option that begins

with "g." The argument to the geometry option (geometry) is referred to as

a "standard geometry string," and has the form vidthx-

height±xoff±yoff.

-fg color Specifies a color for both the hands and the jewel of the clock.

-bg color Specifies a color for the background.

-jewel color

Specifies a color for the jewel on the clock.

-minute color

Specifies a color for the minute hand of the clock.

-hour col or Specifies a color for the hour hand of the clock.

-backing { WhenMapped Always Not Useful }

Selects an appropriate level of backing store.

-bd col or Specifies a color for the window border.

-bw pixels Specifies a width in pixels for the window border. As the Clock widget

changes its border around quite a bit, this is most usefully set to zero.

281

X Window System User's Guide

OClOCk (continued) Analog Clock

-noshape Causes the clock not to reshape itself and ancestors to exactly fit the outline

of the clock.

Colors

Although the default colors for the Clock widget are black and white, the widget was designed

in color; unfortunately, the toolkit makes specifying these colors in a device-independent man-
ner difficult. If you want to see the correct colors, add the following lines to your resource file:

Clock*Background: grey

Clock*BorderColor: light blue

Clock*hour: yellow

Clock*jewel: yellow

Clock*minute: yellow

See Also

X; Volume Four, X Toolkit Intrinsics Programming Manual', Volume Five, X Toolkit Intrinsics

Reference Manual

Author

Keith Packard, MIT X Consortium.

282 X Window System User's Guide

- Reset Terminal for Window Size-

Name

resize - utility to set TERMCAP and terminal settings to current window size.

Syntax

resize [options]

Description

resize prints a shell command for setting the TERM and TERMCAP environment variables to

indicate the current size of the xterm window from which the command is run. For this output

to take effect, resize must either be evaluated as part of the command line (usually done with a

shell alias or function) or else redirected to a file which can then be read in. From the C shell

(usually known as /bin/csh), the following alias could be defined in the user's .cshrc:

% alias rs 'set noglob; eval 'resize'; unset noglob'

After resizing the window, the user would type:

% rs

Users of versions of the Bourne shell (usually known as Ibinlsh) that don't have command func-
tions will need to send the output to a temporary file and the read it back in with the "." com-
mand:

$ resize >/tmp/out

$. /trap/out

Options

The following options may be used with resize:

-u Indicates that Bourne shell commands should be generated even if the user's

current shell isn't Ibinlsh.

-c Indicates that C shell commands should be generated even if the user's cur-
rent shell isn't Ibinlcsh.

-s [rows columns]

Indicates that that Sun console escape sequences will be used instead of the

special xterm escape code. If rows and columns are given, resize will ask the

xterm to resize itself. However, the window manager may choose to disallow

the change.

The -u or -c must appear to the left of -s if both are specified.

Files

letcltermcap for the base termcap entry to modify.

'/.cshrc user's alias for the command.

See Also

csh(l), tset(l), xterm

X Window System User's Guide
283

resize (continued) Reset Terminal for Window Size

Bugs

There should be some global notion of display size; termcap and terminfo need to be rethought

in the context of window systems. (Fixed in 4.3BSD and Ultrix-32 1.2.)

Authors

Mark Vandevoorde (MIT-Athena), Edward Moy (Berkeley).

Copyright (c) 1984, 1985 by Massachusetts Institute of Technology.

See X for a complete copyright notice.

284 X Window System User's Guide

showsnf

- Print SNF File-

Name

showsnf - print contents of an SNF file to standard output

Syntax

showsnf [options] snf_file

Description

showsnf displays the contents of font files in the Server Natural Format produced by bdftosnf.

It is usually only used to verify that a font file hasn't been corrupted or to convert the individual

glyphs into arrays of characters for proofreading or for conversion to some other format.

Options

-v Indicates that character bearings and sizes should be printed.

-g Indicates that character glyph bitmaps should be printed.

-m Indicates that the bit order of the font is most significant bit first.

-1 Indicates that the bit order of the font is least significant bit first.

-M Indicates that the byte order of the font is most significant byte first.

-L Indicates that the byte order of the font is least significant byte first.

-pnumber Specifies the glyph padding of the font

-unumber Specifies the scanline unit of the font

See Also

X, Xserver, bdftosnf

Bugs

There is no way to just print out a single glyph.

285

X Window System User's Guide

twm V

> Tab Window Manager -

Name

twm - Tab Window Manager for the X Window System.

Syntax

twm [options]

Description

twm is a window manager for the X Window System. It has been made the official window

manager in the standard distribution in Release 4. twm provides titlebars, shaped windows,

several forms of icon management, user-defined macro functions, click-to-type and pointer-

driven keyboard focus, and user-specified key and pointer button bindings.

This program is usually started by the user's session manager or startup script. When used from

xdm or xinit without a session manager, twm is frequently executed in the foreground as the last

client. When run this way, exiting twm causes the session to be terminated (i.e., logged out).

By default, application windows are surrounded by a "frame" with a titlebar at the top and a

special border around the window. The titlebar contains the window's name, a rectangle that is

lit when the window is receiving keyboard input, and function boxes known as "titlebuttons"

at the left and right edges of the titlebar.

Pressing pointer Buttonl (usually the left-most button unless it has been changed with xmod-

map) on a titlebutton will invoke the function associated with the button. In the default inter-
face, windows are iconified by clicking (pressing and then immediately releasing) the left

titlebutton (which looks like a small X). Conversely, windows are deiconified by clicking in

the associated icon or entry in the icon manager (see description of the variable Showicon-

Manager and of the function f . showiconmgr).

Windows are resized by pressing the right titlebutton (which resembles group of nested

squares), dragging the pointer over edge that is to be moved, and releasing the pointer when the

outline of the window is the desired size. Similarly, windows are moved by pressing in the title

or highlight region, dragging a window outline to the new location, and then releasing when the

outline is in the desired position. Just clicking in the title or highlight region raises the window

without moving it

When new windows are created, twm will honor any size and location information requested by

the user (usually through -geometry command line argument or resources for the individual

applications). Otherwise, an outline of the window's default size, its titlebar, and lines dividing

the window into a 3x3 grid that track the pointer are displayed. Clicking pointer Buttonl will

position the window at the current position and give it the default size. Pressing pointer But-

ton2 (usually the middle pointer button) and dragging the outline will give the window its cur-
rent position but allow the sides to be resized as described above. Clicking pointer Button3

(usually the right pointer button) will give the window its current position but attempt to make

it long enough to touch the bottom the screen.

Options

twm accepts the following command line options:

286 X Window System User's Guide

Tab Window Manager (continued) twm

-display host [: server] [. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

twm -display your_node: 0. 0

specifies screen 0 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-s Indicates that only the default screen (as specified by -display or by the

DISPLAY environment variable) should be managed. By default, twm will

attempt to manage all screens on the display.

-f twm file Specifies the name of the startup file to use. By default, twm will look in the

user's home directory for files named .twmrc.num (where num. is a screen

number) or .twmrc.

-v Indicates that twm should print error messages whenever an unexpected X

Error event is received. This can be useful when debugging applications but

can be distracting in regular use.

Customization

Much of fwm's appearance and behavior can be controlled by providing a startup file in one of

the following locations (searched in order for each screen being managed when twm begins):

$HOMEI.twmrc.screennumber

The screennwnber is a small positive number (e.g. 0,1, etc.) representing the

screen number (e.g. the last number in the DISPLAY environment variable

host.-displaynum.screennum) that would be used to contact that screen of the

display. This is intended for displays with multiple screens of differing visual

types.

$HOMEI.twmrc This is the usual name for an individual user's startup file.

lusrlliblXllltwmlsystem.twmrc

If neither of the preceding files are found, twm will look in this file for a

default configuration. This is often tailored by the site administrator to pro-
vide convenient menus or familiar bindings for novice users.

If no startup files are found, twm will use the built-in defaults described above. The only

resource used by twm is bitmapFilePath for a colon-separated list of directories to search

when looking for bitmap files. (For more information, see the Athena Widgets manual and

xrdb).

twm startup files are logically broken up into three types of specifications: variables, bindings,

and menus. The variables section must come first and is used to describe the fonts, colors, cur-
sors, border widths, icon and window placement, highlighting, autoraising, layout of titles,

X Window System User's Guide 287

twm (continued) Tab Window Manager

warping, use of the icon manager. The bindings section usually comes second and is used to

specify the functions that should be to be invoked when keyboard and pointer buttons are

pressed in windows, icons, titles, and frames. The menus section gives any user-defined menus

(containing functions to be invoked or commands to be executed).

Variable names and keywords are case-insensitive. Strings must be surrounded by double

quote characters (e.g., "blue") and are case-sensitive. A pound sign (#) outside of a string

causes the remainder of the line in which the character appears to be treated as a comment.

Variables

Many of the aspects of fwm's user interface are controlled by variables that may be set in the

user's startup file. Some of the options are enabled or disabled simply by the presence of a par-
ticular keyword. Other options require keywords, numbers, strings, or lists of all of these.

Lists are surrounded by braces and are usually separated by whitespace or a newline. For

example:

AutoRaise { "emacs" "XTerm" "Xmh" }

or

AutoRaise

{

"emacs"

"XTerm"

"Xmh"

}

When a variable containing a list of strings representing windows is searched (e.g. to determine

whether or not to enable autoraise as shown above), a string is considered to match a window if

it is a case-sensitive prefix for the window's name name (given by the WM_NAME window

property), resource name or class name (both given by the WM_CLASS window property).

The preceding example would enable autoraise on windows named "emacs" as well as any

xterm (since they are of class XTerm) or xmh windows (which are of class Xmh).

String arguments that are interpreted as filenames (see the Pixmaps, Cursors, and Icon-

Directory variables later in this reference page) will prepend the user's directory (specified

by the HOME environment variable) if the first character is a tilde (~). If, instead, the first char-
acter is a colon (:), the name is assumed to refer to one of the internal bitmaps that are used to

create the default titlebars symbols: :xlogo or :iconify (both refer to the X used for the iconify

button), :resize (the nested squares used by the resize button), and question (the question mark

used for non-existent bitmap files).

The following variables may be specified at the top of a Mm startup file. Lists of Window

name prefix strings are indicated by win_list. Optional arguments are shown in square

brackets:

AutoRaise { win_list }

Specifies a list of windows that should automatically be raised whenever the

pointer enters the window. This action can be interactively enabled or dis-
abled on individual windows using the function f. autoraise.

288 X Window System User's Guide

Tab Window Manager (continued) twm

AutoRelativeResize

Indicates that dragging out a window size (either when initially sizing the

window with pointer Button2 or when resizing it) should not wait until the

pointer has crossed the window edges. Instead, moving the pointer automati-
cally causes the nearest edge or edges to move by the same amount. This

allows allows the resizing windows that extend off the edge of the screen. If

the pointer is in the center of the window, or if the resize is begun by pressing

a titlebutton, twm will still wait for the pointer to cross a window edge (to

prevent accidents). This option is particularly useful for people who like the

press-drag-release method of sweeping out window sizes.

BorderColor string[{ win_color_list }]

Specifies the default color of the border to be placed around all non-iconified

windows, and may only be given within a WColor or WMonochrome list.

The optional \vin_color_list specifies a list of window and color name pairs

for specifying particular border colors for different types of windows. For

example:

BorderColor "graySO"

{

"XTerm" "red"

"xmh" "green"

}

The default is black.

BorderTileBackground string [{ wincolorlist }]

Specifies the default background color in the gray pattern used in

unhighlighted borders (only if NoHighlight hasn't been set), and may

only be given within a Color or Monochrome list. The optional win-
colorlist allows per-window colors to be specified. The default is black.

BorderTileForeground string [{ wincolorlist }]

Specifies the default foreground color in the gray pattern used in

unhighlighted borders (only if NoHighlight hasn't been set), and may

only be given within a Color or Monochrome list. The optional win-
colorlist allows per-window colors to be specified. The default is white.

BorderWidth pixels

Specifies the width in pixels of the border surrounding all client window

frames if Client BorderWidth has not been specified. This value is also

used to set the border size of windows created by twm (such as the icon man-
ager). The default is 2.

Buttonlndent pixels

Specifies the amount by which titlebuttons should be indented on all sides.

Positive values cause the buttons to be smaller than the window text and

highlight area so that they stand out. Setting this and the TitleButton-

BorderWidth variables to 0 makes titlebuttons be as tall and wide as pos-
sible. The default is 1.

X Window System User's Guide
289

twm (continued) Tab Window Manager

ClientBorderWidth

Indicates that border width of a window's frame should be set to the initial

border width of the window, rather than to the value of BorderWidth.

Color { colors_list }

Specifies a list of color assignments to be made if the default display is cap-
able of displaying more than simple black and white. The colors_list is

made up of the following color variables and their values: Default-

Background, DefaultForeground, MenuBackground, Menu-

Foreground, MenuTitleBackground, MenuTitleForeground,

and MenuShadowColor.

The following color variables may also be given a list of window and color

name pairs to allow per-window colors to be specified (see BorderColor

for details): BorderColor, IconManagerHighlight, Border-

TitleBackground, BorderTitleForeground, Title-

Background, TitleForeground, IconBackground, Icon-

Foreground, IconBorderColor, IconManagerBackground, and

iconManagerForeground. For example:

Color

{

MenuBackground "graySO"

MenuForeground "blue"

BorderColor "red" { "XTerm" "yellow" }

TitleForeground "yellow"

TitleBackground "blue"

}

All of these color variables may also be specified for the Monochrome vari-
able, allowing the same initialization file to be used on both color and mono-
chrome displays.

ConstrainedMoveTime milliseconds

Specifies the length of time between button clicks needed to begin a con-
strained move operation. Double clicking within this amount of time when

invoking f. move will cause the window only be moved in a horizontal or

vertical direction. Setting this value to 0 will disable constrained moves. The

default is 400 milliseconds.

Cursors { cursor_list }

Specifies the glyphs that twm should use for various pointer cursors. Each

cursor may be defined either from the Cursor font or from two bitmap files.

Shapes from the Cursor font may be specified directly as:

cursorname "string"

where cursorname is one of the cursor names listed below, and string is

290 X Window System User's Guide

Tab Window Manager (continued) twm

the name of a glyph as found in the file /usr/include/Xll/cursorfont.h (with-
out the "XC_" prefix). If the cursor is to be defined from bitmap files, the

following syntax is used instead:

cursorname "image" "mask"

The image and mask strings specify the names of files containing the glyph

image and mask in bitmap form. The bitmap files are located in the same

manner as icon bitmap files. The following example shows the default cursor

definitions:

Cursors

Frame "top_left_arrow"

Title "top_left_arrow"

Icon "top_left_arrow"

IconMgr "top_left_arrow"

Move "fleur"

Resize "fleur"

Menu "sb_left_arrow"

Button "hand2"

Wait "watch"

Select "dot"

Destroy "pirate"

DecorateTransients

Indicates that transient windows (those containing a WMJTRAN-

SDENT_FOR property) should have titlebars. By default, transients are not

reparented.

Def aultBackground string

Specifies the background color to be used for sizing and information win-
dows. The default is white.

Def aultForeground string

Specifies the foreground color to be used for sizing and information windows.

The default is black.

DontlconifyByUnmapping { win_list }

Specifies a list of windows that should not be iconified by simply unmapping

the window (as would be the case if Iconif yByUnmapping had been set).

This is frequently used to force some windows to be treated as icons while

other windows are handled by the icon manager.

DontMoveOf f Indicates that windows should not be allowed to be moved off the screen. It

can be overridden by the f . f orcemove function.

DontSqueezeTitle [{ win_list }]

Indicates that titlebars should not be squeezed to their minimum size as

described under SqueezeTitle below. If the optional window list is

X Window System User's Guide

twm (continued) Tab Window Manager

supplied, only those windows will be prevented from being squeezed.

Forcelcons Indicates that icon pixmaps specified in the Icons variable should override

any client-supplied pixmaps.

FramePadding pixels

Specifies the distance between the titlebar decorations (the button and text)

and the window frame. The default is 2 pixels.

IconBackground string [{ win_list }]

Specifies the background color of icons, and may only be specified inside of a

Color or Monochrome list. The optional win_list is a list of window

names and colors so that per-window colors may be specified. See the

BorderColor variable for a complete description of the win_list. The

default is white.

IconBorderColor string [{ win_list }]

Specifies the color of the border used for icon windows, and may only be

specified inside of a Color or Monochrome list. The optional win_list

is a list of window names and colors so that per-window colors may be speci-
fied. See the BorderColor variable for a complete description of the

win_list. The default is black.

IconBorderWidth pixels

Specifies the width in pixels of the border surrounding icon windows. The

default is 2.

IconDirectory string

Specifies the directory that should be searched if if a bitmap file cannot be

found in any of the directories in the bitmapFilePath resource.

IconFont string

Specifies the font to be used to display icon names within icons. The default

is 8x13.

IconForeground string [{ win_list }]

Specifies the foreground color to be used when displaying icons, and may

only be specified inside of a Color or Monochrome list. The optional

win_list is a list of window names and colors so that per-window colors

may be specified. See the BorderColor variable for a complete descrip-
tion of the win_list. The default is black.

IconifyByUnmapping [{ win_list }]

Indicates that windows should be iconified by being unmapped without trying

to map any icons. This assumes that the user is will remap the window

through the icon manager, the f .warpto function, or the Twm Windows

menu. If the optional win_list is provided, only those windows will be

iconified by simply unmapping. Windows that have both this and the Icon-

Manage rDont Show options set may not be accessible if no binding to the

TwmWindows menu is set in the user's startup file.

292 X Window System User's Guide

Tab Window Manager (continued) twm

IconManagerBackground string [[win_list }]

Specifies the background color to use for icon manager entries, and may only

be specified inside of a Color or Monochrome list. The optional

win_list is a list of window names and colors so that per-window colors

may be specified. See the BorderColor variable for a complete descrip-
tion of the win_list. The default is white.

IconManagerDontShow[{ win_list }]

Indicates that the icon manager should not display any windows. If the

optional win_list is given, only those windows will not be displayed. This

variable is used to prevent windows that are rarely iconified (such as xclock

or xload) from taking up space in the icon manager.

IconManagerFont string

Specifies the font to be used when displaying icon manager entries. The

default is 8x13.

IconManagerForeground string [(win_list }]

Specifies the foreground color to be used when displaying icon manager

entries, and may only be specified inside of a Color or Monochrome list.

The optional win_list is a list of window names and colors so that per-

window colors may be specified. See the BorderColor variable for a com-
plete description of the win_list. The default is black.

IconManagerGeometry string [columns]

Specifies the geometry of the icon manager window. The string argument

is standard geometry specification that indicates the initial full size of the

icon manager. The icon manager window is then broken into columns

pieces and scaled according to the number of entries in the icon manager.

Extra entries are wrapped to form additional rows. The default number of

columns is 1.

IconManagerHighlight string [{ v/in_list }]

Specifies the border color to be used when highlighting the icon manager

entry that currently has the focus, and can only be specified inside of a

Color or Monochrome list. The optional win_list is a list of window

names and colors so that per-window colors may be specified. See the

BorderColor variable for a complete description of the win_list. The

default is black.

IconManagers { iconmgr_list }

Specifies a list of icon managers to create. Each item in the iconmgr_list

has the following format:

"winname" ["iconname"] "geometry" columns

where winname is the name of the windows that should be put into this icon

manager, iconname is the name of that icon manager window's icon,

geometry is a standard geometry specification, and columns is the num-
ber of columns in this icon manager as described in

X Window System User's Guide

twm (continued) Tab Window Manager

IconManagerGeometry. For example:

IconManagers

{

"XTerm" "=300x5+800+5"5

"myhost""=400x5+100+5"2

}

Clients whose name or class is "XTerm" will have an entry created in the

"XTerm" icon manager. Clients whose name was "myhost" would be put

into the "myhost" icon manager.

IconManagerShow { win_list }

Specifies a list of windows that should appear in the icon manager. When

used in conjunction with the IconManagerDontShow variable, only the

windows in this list will be shown in the icon manager.

IconRegion geomstring vgrav hgrav gridwidth gridheight

Specifies an area on the root window in which icons are placed if no specific

icon location is provided by the client. The geomstring is a quoted string

containing a standard geometry specification. If more than one Icon-

Region lines are given, icons will be put into the succeeding icon regions

when the first is full. The vgrav argument should be either North or

South and control and is used to control whether icons are first filled in from

the top or bottom of the icon region. Similarly, the hgrav argument should

be either East or West and is used to control whether icons should be filled

in from left from the right. Icons are laid out within the region in a grid with

cells gridwidth pixels wide and gridheight pixels high.

Icons { win_list }

Specifies a list of window names and the bitmap filenames that should be

used as their icons. For example:

Icons

{

"XTerm" "xterm.icon"

"xfd" "xfd_icon"

}

Windows that match "XTerm" and would not be iconified by unmapping,

and would try to use the icon bitmap in the file "xterm.icon". If Force-

Icons is specified, this bitmap will be used even if the client has requested

its own icon pixmap.

InterpolateMenuColors

Indicates that menu entry colors should be interpolated between entry speci-
fied colors. In the example below:

Menu "mymenu"

{

"Title" ("black":"red") f.title

294 X Window System User's Guide

Tab Window Manager (continued) twm

"entryl" f.nop

"entry2" f.nop

"entry3" ("white":"green") f.nop

"entry?" f.nop

"entryS" ("red":"white") f.nop

}

The foreground colors for "entryl" and "entry2" will be interpolated

between black and white, and the background colors between red and green.

Similarly, the foreground for "entry4" will be half-way between white and

red, and the background will be half-way between green and white.

MakeTitle { win_list }

Specifies a list of windows on which a titlebar should be placed and is used to

request titles on specific windows when WNoTitle has been set

MaxWindowSize string

Specifies a geometry in which the width and height give the maximum size

for a given window. This is typically used to restrict windows to the size of

the screen. The default is 30000x30000.

MenuBackground string

Specifies the background color used for menus, and can only be specified

inside of a Color or Monochrome list. The default is white.

MenuFont string

Specifies the font to use when displaying menus. The default is 8x13.

MenuForeground string

Specifies the foreground color used for menus, and can only be specified

inside of a Color or Monochrome list. The default is black.

MenuShadowColor string

Specifies the color of the shadow behind pull-down menus and can only be

specified inside of a Color or Monochrome list. The default is black.

MenuTitleBackground string

Specifies the background color for f. title entries in menus, and can only

be specified inside of a Color or Monochrome list. The default is white.

MenuTitleForeground string

Specifies the foreground color for f. title entries in menus and can only be

specified inside of a Color or Monochrome list. The default is black.

Monochrome { colors }

Specifies a list of color assignments that should be made if the screen has a

depth of 1. See the description of Colors.

MoveDelta pixels

Specifies the number of pixels the pointer must move before the f.move func-
tion starts working. Also see the f .deltastop function. The default is

zero pixels.

X Window System User's Guide 295

twm (continued) Tab Window Manager

NoBackingStore

Indicates that twm's menus should not request backing store to minimize

repainting of menus. This is typically used with servers that can repaint fas-
ter than they can handle backing store.

NoCaseSensitive

Indicates that case should be ignored when sorting icon names in an icon

manager. This option is typically used with applications that capitalize the

first letter of their icon name.

NoDefaults Indicates that twm should not supply the default titlebuttons and bindings.

This option should only be used if the startup file contains a completely new

set of bindings and definitions.

NoGrabServer

Indicates that twm should not grab the server when popping up menus and

moving opaque windows.

NoHighlight [{ win_list }]

Indicates that borders should not be highlighted to track the location of the

pointer. If the optional win_list is given, highlighting will only be dis-
abled for those windows. When the border is highlighted, it will be drawn in

the current BorderColor. When the border is not highlighted, it will be

stippled with an gray pattern using the current BorderTileForeground

and BorderTileBackground colors.

NoIconManagers

Indicates that no icon manager should be created.

NoMenuShadows

Indicates that menus should not have drop shadows drawn behind them. This

is typically used with slower servers since it speeds up menu drawing at the

expense of making the menu slightly harder to read.

NoRaiseOnDeiconify

Indicates that windows that are deiconified should not be raised.

NoRaiseOnMove

Indicates that windows should not be raised when moved. This is typically

used to allow windows to slide underneath each other.

NoRaiseOnResize

Indicates that windows should not be raised when resized. This is typically

used to allow windows to be resized underneath each other.

NoRaiseOnWarp

Indicates that windows should not be raised when the pointer is warped into

them with the f. warp to function. If this option is set, warping to an

occluded window may result in the pointer ending up in the occluding win-
dow instead the desired window (which causes unexpected behavior with

f. warpring).

296 X Window System User's Guide

Tab Window Manager (continued) twm

NoSaveUnders

Indicates that menus should not request save-unders to minimize window

repainting following menu selection. It is typically used with displays that

can repaint faster than they can handle save-unders.

NoTitle [{ win_list }]

Indicates that windows should not have titlebars. If the optional win_list

is given, only those windows will not have titlebars. MakeTitle may be

used with this option to force titlebars to be put on specific windows.

NoTitleFocus

Indicates that twm should not set keyboard input focus to each window as it is

entered. Normally, twm sets the focus so that focus and key events from the

titlebar and icon managers are delivered to the application. If the pointer is

moved quickly and twm is slow to respond, input can be directed to the old

window instead of the new. This option is typically used to prevent this

"input lag" and to work around bugs in older applications that have prob-
lems with focus events.

NoTitleHighlight[{ win_list }]

Indicates that the highlight area of the titlebar, which is used to indicate the

window that currently has the input focus, should not be displayed. If the

optional win_list is given, only those windows will not have highlight

areas. This and the SqueezeTitle options can be set to substantially

reduce the amount of screen space required by titlebars.

OpaqueMove Indicates that the f .move function should actually move the window instead

of just an outline so that the user can immediately see what the window will

look like in the new position. This option is typically used on fast displays

(particularly if NoGrabServer is set).

Pixmaps{pixmaps}

Specifies a list of pixmaps that define the appearance of various images. Each

entry is a keyword indicating the pixmap to set, followed by a string giving

the name of the bitmap file. The following pixmaps may be specified:

Pixmaps

{

TitleHighlight "grayl"

}

The default for TitleHighlight is to use an even stipple pattern.

Ra n domP 1 a c erne n t

Indicates that windows with no specified geometry should should be placed in

a pseudo-random location instead of having the user drag out an outline.

ResizeFont string

Specifies the font to be used for in the dimensions window when resizing

windows. The default is fixed.

X Window System User's Guide

twm (continued) Tab Window Manager

RestartPreviousState

Indicates that twm should attempt to use the WM_STATE property on client

windows to tell which windows should be iconified and which should be left

visible. This is typically used to make try to regenerate the state that the

screen was in before the previous window manager was shutdown.

ShowIconManager

Indicates that the icon manager window should be displayed when twm is

started. It can always be brought up using the f . showiconmgr function.

SortlconManager

Indicates that entries in the icon manager should be sorted alphabetically

rather than by simply appending new windows to the end.

SqueezeTitle [{ squeeze_list }]

Indicates that twm should attempt to use the SHAPE extension to make

titlebars occupy only as much screen space as they need, rather than extend-
ing all the way across the top of the window. The optional squeeze_list

may be used to control the location of the squeezed titlebar along the top of

the window. It contains entries of the form:

"name" justification num denom

where name is a window name, justification is either left, center,

or right, and num and denom are numbers specifying a ratio giving the rel-
ative position about which the titlebar is justified. The ratio is measured from

left to right if the numerator is positive, and right to left if negative. A

denominator of 0 indicates that the numerator should be measured in pixels.

For convenience, the ratio 0/0 is the same as 1/2 for center and -1/1 for

right. For example:

SqueezeTitle

{

"XTerm" left 0 0

"xterml" left 1 3

"xterm2" left 2 3

"oclock" center 00

"emacs" right 00

}

The DontSqueezeTitle list can be used to turn off squeezing on certain

titles.

Startlconif led [{ win_list }]

Indicates that client windows should initially be left as icons until explicitly

deiconified by the user. If the optional win_list is given, only those win-
dows will be started iconic. This is useful for programs that do not support an

-iconic command line option or resource.

TitleBackground string [{ win_list }]

Specifies the background color used in titlebars, and may only be specified

298 X Window System User's Guide

Tab Window Manager (continued) twm

inside of a Color or Monochrome list. The optional win_list is a list of

window names and colors so that per-window colors may be specified. The

default is white.

Tit leButtonBorderWidth pixels

Specifies the width in pixels of the border surrounding titlebuttons. This is

typically set to 0 to allow titlebuttons to take up as much space as possible

and to not have a border. The default is 1.

TitleFont string

Specifies the font to used for displaying window names in titlebars. The

default is 8x13.

TitleForeground string [{ win_list }]

Specifies the foreground color used in titlebars, and may only be specified

inside of a Color or Monochrome list. The optional win_list is a list of

window names and colors so that per-window colors may be specified. The

default is black.

Title? adding pixels

Specifies the distance between the various buttons, text, and highlight areas in

the titlebar. The default is 8 pixels.

Unknownlcon string

Specifies the filename of a bitmap file to be used as the default icon. This bit-
map will be used as the icon of all clients which do not provide an icon bit-
map and are not listed in the Icons list.

UsePPosition string

Specifies whether or not twm should honor program-requested locations

(given by the PPos it ion flag in the WM_NORMAL_HINTS property) in

the absence of a user-specified position. The argument string may have

one of three values: off (the default) indicating that twm should ignore the

program-supplied position, on indicating that the position should be used,

and non-zero indicating that the position should used if it is other than

(0,0). The latter option is for working around a bug in older toolkits.

WarpCursor [{ win_list }]

Indicates that the pointer should be warped into windows when they are

deiconified. If the optional win_list is given, the pointer will only be

warped when those windows are deiconified.

WindowRing { win_list }

Specifies a list of windows along which the f. warpring function cycles.

Wa rpUnmapped

Indicates that that the f .warpto function should deiconify any iconified

windows it encounters. This is typically used to make a key binding that will

pop a particular window (such as xmh}, no matter where it is. The default is

for f. warpto to ignore iconified windows.

X Window System User's Guide

twm (continued) Tab Window Manager

Xorvalue number

Specifies the value to use when drawing window outlines for moving and

resizing. This should be set to a value that will result in a variety of of distin-
guishable colors when exclusive-or'ed with the contents of the user's typical

screen. Setting this variable to 1 often gives nice results if adjacent colors in

the default colormap are distinct. By default, twm will attempt to cause tem-
porary lines to appear at the opposite end of the colormap from the graphics.

Zoom [count] Indicates that outlines suggesting movement of a window to and from its

iconified state should be displayed whenever a window is iconified or deicon-

ified. The optional count argument specifies the number of outlines to be

drawn. The default count is 8.

The following variables must be set after the fonts have been assigned, so it is usually best to

put them at the end of the variables or beginning of the bindings sections:

DefaultFunction function

Specifies the function to be executed when a key or button event is received

for which no binding is provided. This is typically bound to f .nop,

f . beep, or a menu containing window operations.

WindowFunction function

Specifies the function to execute when a window is selected from the Twm-

Windows menu. If this variable is not set, the window will be deiconified

and raised.

Bindings

After the desired variables have been set, functions may be attached titlebuttons and key and

pointer buttons. Titlebuttons may be added from the left or right side and appear in the titlebar

from left-to-right according to the order in which they are specified. Key and pointer button

bindings may be given in any order.

Titlebuttons specifications must include the name of the pixmap to use in the button box and

the function to be invoked when a pointer button is pressed within them:

LeftTitleButton "bitmapname"= function

or:

RightTitleButton "bitmapname"= function

The bitmapname may refer to one of the built-in bitmaps (which are scaled to match

TitleFont) by using the appropriate colon-prefixed name described above.

Key and pointer button specifications must give the modifiers that must be pressed, over which

parts of the screen the pointer must be, and what function is to be invoked. Keys are given as

strings containing the appropriate keysym name; buttons are given as the keywords But-

tonl-Button5:

"FP1" = modlist : context : function

Buttonl = modlist : context : function

300 X Window System User's Guide

Tab Window Manager (continued) twin

The modi 1st is any combination of the modifier names shift, control, and met a (which

may be abbreviated as s, c, and m respectively) separated by a vertical bar (i). Similarly, the

context is any combination of window, title, icon, root, frame, iconmgr, their first

letters (iconmgr abbreviation is m), or all, separated by a vertical bar. The function is

any of the f. keywords described below. For example, the default startup file contains the fol-
lowing bindings:

Buttonl = root f.menu "TwmWindows"

Buttonl = m window | icon f.function "move-or-lower"

Button2 = m window | icon f.iconify

Buttons = m window | icon f.function "move-or-raise"

Buttonl = title f.function "move-or-raise"

Button2 = title f.raiselower

Buttonl = icon f.function "move-or-iconify"

Button2 = icon f.iconify

Buttonl iconmgr f.iconify

Button2 = iconmgr f.iconify

A user who wanted to be able to manipulate windows from the keyboard could use the follow-
ing bindings:

"Fl" all f.iconify

"F2 " all f.raiselower

lip "3 II all f.warpring "next"

»F4» all f.warpto "xmh"

"F5" all f.warpto "emacs"

"F6" all f.colormap "next"

"F7" all f.colormap "default"

"F20" all f.warptoscreen "next"

"Left" = m all f.backiconmgr

"Right" = m | s all f.forwiconmgr

"Up" = m all f.upiconmgr

"Down" = m I s all f.downiconmgr

provides many more window manipulation primitives than can be conveniently stored in a

titlebar, menu, or set of key bindings. Although a small set of defaults are supplied (unless the

NoDef aults is specified), most users will want to have their most common operations bound

to key and button strokes. To do this, twm associates names with each of the primitives and

provides user-defined functions for building higher level primitives and menus for interactively

selecting among groups of functions.

User-defined functions contain the name by which they are referenced in calls to f .func-
tion and a list of other functions to execute. For example:

Function "move-or-lower" { f.move f.deltastop f.lower }

Function "move-or-raise" { f.move f.deltastop f.raise }

Function "move-or-iconify" { f.move f.deltastop f.iconify }

Function "restore-colormap" { f.colormap "default" f.lower }

The function name must be used in f . function exactly as it appears in the function specifi-
cation.

X Window System User's Guide 301

twm (continued) Tab Window Manager

In the descriptions below, if the function is said to operate on the selected window, but is

invoked from a root menu, the cursor will be changed to the Select cursor and the next win-
dow to receive a button press will be chosen:

! string This is an abbreviation for f . exec string.

f .autoraise Toggles whether or not the selected window is raised whenever entered by

the pointer. See the description of the variable Auto Raise.

f.backiconmgr

Warps the pointer to the previous column in the current icon manager, wrap-
ping back to the previous row if necessary.

f . beep Sounds the keyboard bell.

f.bottomzoom

Similar to the f . full zoom function, but resizes the window to fill only the

bottom half of the screen.

f.circledown

Lowers the top-most window that occludes another window.

f . c i r c leup Raises the bottom-most window that is occluded by another window.

f . colormap string

Rotates the colormaps (obtained from the WM_COLORMAP_WINDOWS

property on the window) that twm will display when the pointer is in this win-
dow. The argument string may have one of the following values: next,

prev,and default.

f .deiconify Deiconifies the selected window. If the window is not an icon, this function

does nothing.

f . delete Sends the WM_DELETE_WINDOW message to the selected window if the

client application has requested it through the WM_PROTOCOLS window

property. The application is supposed to respond to the message by removing

the indicated window. If the window has not requested

WM_DELETE_WINDOW messages, the keyboard bell will be rung indicat-
ing that the user should choose an alternative method.

f .deltastop Allows a user-defined function to be aborted if the pointer has been moved

more than MoveDelta pixels. See the example definition given for Func-
tion "move-or-raise" at the beginning of the section.

f . destroy Instructs the X server to close the display connection of the client that created

the selected window. This should only be used as a last resort for shutting

down runaway clients.

f.downiconmgr

Warps the pointer to the next row in the current icon manger, wrapping to the

beginning of the next column if necessary.

302 X Window System User's Guide

Tab Window Manager (continued) twm

f .exec string

Passes the argument string to /bin/sh for execution. In multiscreen mode,

if string starts a new X client without giving a display argument, the client

will appear on the screen from which this function was invoked.

f. focus Toggles the keyboard focus of the server to the selected window, changing

the focus rule from pointer-driven if necessary. If the selected window

already was focused, this function executes an f . unf ocus.

f. f orcemove Like f .move, except that it ignores the DontMoveOf f variable.

f.forwiconmgr

Warps the pointer to the next column in the current icon manager, wrapping

to the beginning of the next row if necessary.

f . full zoom Resizes the selected window to the full size of the display or else restores the

original size if the window was already zoomed.

f. function string

Executes the user-defined function whose name is specified by the argument

string.

f.hbzoom A synonym for f.bottomzoom.

f.hideiconmgr

Unmaps the current icon manager.

f. horizoom Similar to the f . zoom function, except that the selected window is resized to

the full width of the display.

f.htzoom A synonym for f. top zoom.

f.hzoom A synonym for f .horizoom.

f. icon if y Iconifies or deiconifies the selected window or icon.

f .identify Displays a summary of the name and geometry of the selected window.

Clicking the pointer or pressing a key in the window will dismiss it.

f. lefticonmgr

Similar to f . backiconmgr, except that wrapping does not change rows.

f . left zoom Similar to the f .bottomzoom function but causes the selected window is

only resized to the left half of the display.

f . lower Lowers the selected window.

f .menu string

Invokes the menu specified by the argument string. Cascaded menus may

be built by nesting calls to f. menu.

f .move Drags an outline of the selected window (or the window itself if the

OpaqueMove variable is set) until the invoking pointer button is released.

Double clicking within the number of milliseconds given by

ConstrainedMoveTime warps the pointer to the center of the window

X Window System User's Guide 303

twm (continued) Tab Window Manager

and constrains the move to be either horizontal or vertical depending on

which grid line is crossed. To abort a move, press another button before

releasing the first button.

f.nexticonmgr

Warps the pointer to the next icon manager containing any windows on the

current or any succeeding screen.

f.nop Does nothing and is typically used with the DefaultFunction or

WindowFunction variables or to introduce blank lines in menus.

f.previconmgr

Warps the pointer to the previous icon manager containing any windows on

the current or preceding screens.

f . quit Causes twm to restore the window's borders and exit. If twm is the first client

invoked from xdm, this will result in a server reset.

f . raise Raises the selected window.

f.raiselower

Raises the selected window to the top of the stacking order if it is occluded

by any windows, otherwise the window will be lowered.

f . refresh Causes all windows to be refreshed.

f .resize Displays an outline of the selected window. Crossing a border (or setting

AutoRelativeResize) will cause the outline to begin to rubber band

until the invoking button is released. To abort a resize, press another button

before releasing the first button.

f. restart Kills and restarts twm.

f.righticonmgr

Similar to f . nexticonmgr, except that wrapping does not change rows.

f . right zoom Similar to the f .bottomzoom function, except that the selected window is

only resized to the right half of the display.

f.saveyourself

Sends a WM_SAVEYOURSELF message to the selected window if it has

requested the message in its WM_PROTOCOLS window property. Clients

that accept this message are supposed to checkpoint all state associated with

the window and update the WM_COMMAND property as specified in the

ICCCM. If the selected window has not selected for this message, the key-
board bell will be rung.

f.showiconmgr

Maps the current icon manager.

f.sorticonmgr

Sorts the entries in the current icon manager alphabetically. See the variable

SortlconManager.

304 X Window System User's Guide

Tab Window Manager (continued) twm

f. source string

Assumes string is a file name. The file is read and parsed as a twm startup

file. This function is intended to be used only to re-build pull-down menus.

None of the twm variables are changed.

f. t it le Provides a centered, unselectable item in a menu definition. It should not be

used in any other context.

f. topzoom Similar to the f .bottomzoom function, except that the selected window is

only resized to the top half of the display.

f. twmrc Causes the startup customization file to be re-read. This function is exactly

like the f. source function without having to specify the filename.

f. unfocus Resets the focus back to pointer-driven. This should be used when a focused

window is no longer desired.

f .upiconmgr Warps the pointer to the previous row in the current icon manager, wrapping

to the last row in the same column if necessary.

f .version Causes the twm version window to be displayed. This window will be

displayed until a pointer button is pressed or the pointer is moved from one

window to another.

f.vlzoom A synonym for f. left zoom.

f.vrzoom A synonym for f . right zoom.

f. warpring string

Warps the pointer to the next or previous window (as indicated by the argu-
ment string, which may be next orprev) specified in the windowRing

variable.

f .warpto string

Warps the pointer to the window which has a name or class that matches

string. If the window is iconified, it will be deiconified if the variable

WarpUnmapped is set or else ignored.

f. warptoiconmgr string

Warps the pointer to the icon manager entry associated with the window con-
taining the pointer in the icon manager specified by the argument string.

If string is empty, the current icon manager is chosen.

f. warptoscreen string

Warps the pointer to the screen specified by the argument string. String

may be a number (e.g., 0 or 1), the word next (indicating the current screen

plus 1, skipping over any unmanaged screens), the word back (indicating the

current screen minus 1, skipping over any unmanaged screens), or the word

prev (indicating the last screen visited).

f.winrefresh

Similar to the f. refresh function, except that only the selected window is

refreshed.

X Window System User's Guide
305

twm (continued) Tab Window Manager

f . zoom Similar to the f. f ullzoom function, except that the only the height of the

selected window is changed.

Menus

Functions may be grouped and interactively selected using pop-up (when bound to a pointer

button) or pull-down (when associated with a titlebutton) menus. Each menu specification con-
tains the name of the menu as it will be referred to by f . menu, optional default foreground and

background colors, the list of item names and the functions they should invoke, and optional

foreground and background colors for individual items:

Menu "menuname" [("deffore":"defback")]

{

stringl [("forel":"backn")]functionl

string2 [("fore2":"backn")]function2

stringN [("foreN":"backN")]functionN

}

The menuname is case-sensitive. The optional def fore and def back arguments specify

the foreground and background colors used on a color display to highlight menu entries. The

string portion of each menu entry will be the text which will appear in the menu. The

optional fore and back arguments specify the foreground and background colors of the menu

entry when the pointer is not in the entry. These colors will only be used on a color display.

The default is to use the colors specified by the MenuForeground and MenuBackground

variables. The function portion of the menu entry is one of the functions, including any user-

defined functions, or additional menus.

There is a special menu named Twmwindows which contains the names of all of the client and

rwm-supplied windows. Selecting an entry will cause the windowFunction to be executed

on that window. If WindowFunction hasn't been set, the window will be deiconified and

raised.

Icons

twm supports several different ways of manipulating iconified windows. The common pixmap-

and-text style may be laid out by hand or automatically arranged as described by the Icon-

Region variable. In addition, a terse grid of icon names, called an icon manager, provides a

more efficient use of screen space as well as the ability to navigate among windows from the

keyboard.

Neither client-supplied icon windows nor dynamic setting of the icon pixmap are supported

(icon name changes will be undated automatically).

An icon manager is a window that contains names of selected or all windows currently on the

display. In addition to the window name, a small button using the default iconify symbol will

be displayed to the left of the name when the window is iconified. By default, clicking on an

entry in the icon manager performs f. iconify. To change the actions taken in the icon man-
ager, use the the iconmgr context when specifying button and keyboard bindings.

306 X Window System User's Guide

Tab Window Manager (continued) twm

Moving the pointer into the icon manager also directs keyboard focus to the indicated window

(setting the focus explicitly or else sending synthetic events NoTitleFocus is set). Using

the f .upiconmgr, f .downiconmgr f . lefticonmgr, and f . righticonmgr func-
tions, the input focus can be changed between windows directly from the keyboard.

Bugs

Lock and Mod2 through Mod5 cannot be specified as modifier contexts. The correct fix is to

add lock, 1, modi (for completeness), mod2, mod3, mod4, mod5 to the parse and grammar

tables, and add a number as a valid key type (so long as it is 1-5).

The resource manager should have been used instead of all of the window lists.

The IconRegion variable should take a list.

Double clicking very fast to get the constrained move function will sometimes cause the win-
dow to move, even though the pointer is not moved.

If Iconif yByUnmapping is on and windows are listed in IconManagerDontShow but

not in Dont Iconif yByUnmapping, they may be lost if they are iconified and no bindings

to f .menu TwmWindows or f. warpto are setup.

Files

$HOME/.twmrc.screen number

$HOMEI.twmrc

/usr/lib/Xn/twm/system.twmrc

Environment Variables

DISPLAY This variable is used to determine which X server to use. It is also set during

f. exec so that programs come up on the proper screen.

HOME This variable is used as the prefix for files that begin with a tilde and for

locating the twm startup file.

See Also

X, Xserver, xdm, xrdb

Copyright

Portions copyright 1988 Evans & Sutherland Computer Corporation; portions copyright 1989

Hewlett-Packard Company and the Massachusetts Institute of Technology. See X for a full

statement of rights and permissions.

Authors

Tom LaStrange, Solboume Computer;

Jim Fulton, MIT X Consortium;

Steve Pitschke, Stardent Computer;

Keith Packard, MIT X Consortium;

Dave Payne, Apple Computer.

X Window System User's Guide 307

uwm \ > X Window Manager-

Name

uwm - a window manager for X.

Syntax

uwm [options]

Description

The uwm program is a window manager client application of the window server. In releases

prior to 4, uwm is the standard X window manager. As of Release 4, uwm has been moved to

the user-contributed part of the distribution and replaced in the standard distribution by twm.

When uwm is invoked, it searches a predefined search path to locate any uwm startup files. If

no startup files exist, uwm initializes its built-in defaults.

If startup files exist in any of the following locations, it adds the variables to the default vari-
ables. In the case of contention, the variables in the last file found override previous specifica-
tions. Files in the uwm search path are:

lusrlliblXl lluwmJsystem.uwmrc

$HOME/.uwmrc

To use only the settings defined in a single startup file, include the variables, re set bind-
ings, resetmenus, resetvariables at the top of that specific startup file.

Options

-f filename Names an alternate file as a uwm startup file.

-display [host] : server[. screen]

Allows you to specify the host, server, and screen on which to run the window

manager, host specifies the machine, server specifies the server number,

and screen specifies the screen number. For example,

uwm -display your_.node:0.1

specifies screen 1 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon (:) are necessary in all cases.

Startup File Variables

Variables are typically entered first, at the top of the startup file. By convention, resetbind-

ings, resetmenus, and resetvariables head the list.

autoselect/noautoselect

Places the menu cursor in first menu item. If unspecified, the menu cursor is

placed in the menu header when the menu is displayed.

background=color

Specifies the default background color for popup sizing windows, menus, and

icons. The default is to use the WhitePixel for the current screen.

308 X Window System User's Guide

X Window Manager (continued) UWm

bordercolor=color

Specifies the default border color for popup sizing windows, menus, and

icons. The default is to use the BlackPixel for the current screen.

borderwidth=pixels

Specifies the default width in pixels for borders surrounding icons.

delta=pixels

Indicates the number of pixels the cursor is moved before the action is inter-
preted by the window manager as a command. (Also refer to the delta

mouse action.)

foreground=color

Specifies the default foreground color for popup sizing windows, menus, and

icons. The default is to use the BlackPixel for the current screen.

freeze/nofreeze

Locks all other client applications out of the server during certain window

manager tasks, such as move and resize.

grid/nogrid Displays a finely-ruled grid to help you position an icon or window during

resize or move operations.

hiconpad=pixels

Indicates the number of pixels to pad an icon horizontally. The default is five

pixels.

hmenupad=pixels

Indicates the number of pixels to pad each menu item to the left and right of

the text

iconfont=.fo.ntrjame

Names the font that is displayed within icons. Font names for a given server

can be obtained using xlsfonts.

maxcolors=n Limits the number of colors the window manager can use in a given invoca-
tion. If set to zero, or not specified, uwm assumes no limit to the number of

colors it can take from the color map. maxcolors counts colors as they are

included in the file.

mborderwidth=pixels

Indicates the width in pixels of the border surrounding menus.

normali/nonormali

Places icons created with f .newiconify within the root window, even if

they are placed partially off the screen. With nonormali the icon is placed

exactly where the cursor leaves it.

normalw/nonormalw

Places window created with f . newiconify within the root window, even

if they are placed partially off the screen. With nonormalw the window is

placed exactly where the cursor leaves it.

X Window System User's Guide 309

UWm (continued) X Window Manager

push=/3 Moves a window n number of pixels or a l/n times the size of the window,

depending on whether pushabsolute or pushrelative is specified.

Use this variable in conjunction with f. pushup, f. pushdown,

f .pushright, or f .pushlef t.

pushabsolute/pushrelative

pushabsolute indicates that the number entered with push is equivalent to

pixels. When an f .push (left, right, up, or down) function is called, the

window is moved exactly that number of pixels.

pushrelative indicates that the number entered with the push variable

represents a relative number. When an f .push function is called, the win-
dow is invisibly divided into the number of parts you entered with the push

variable, and the window is moved one part.

resetbindings,resetmenus, resetvariables

Resets all previous function bindings, menus, and variables entries, specified

in any startup file in the uwm search path, including those in the default envi-
ronment. By convention, these variables are entered first in the startup file.

resizefont=fontname

Identifies the font of the indicator that displays in the corner of the window as

you resize windows. See xlsfonts for obtaining font names.

resizerelative/noresizerelative

Indicates whether or not resize operations should be done relative to a mov-
ing edge or edges. By default, the dynamic rectangle uses the actual pointer

location to define the new size. (Available as of Release 3.)

reverse/noreverse

Defines the display as black characters on a white background for the window

manager windows and icons.

viconpad=pixels

Indicates the number of pixels to pad an icon vertically. Default is five pix-
els.

vmenupad=pixels

Indicates the number of pixels to pad each menu item vertically (i.e., above

and below the text).

volumes Increases or decreases the base level volume set by the xset(V) command.

Enter an integer from 0 to 7,7 being the loudest.

zap/no zap Causes ghost lines to follow the window or icon from its previous default

location to its new location during a move or resize operation.

Binding Syntax

function=[control key (s)]: [context]:mouse events: "menu name"

Function and mouse events are required input. Menu name is required with the f . menu func-
tion definition only.

310 X Window System User's Guide

X Window Manager (continued) uwm

Function

f . beep Emits a beep from the keyboard. Loudness is determined by the volume vari-
able.

f.circledown

Causes the top window that is obscuring another window to drop to the bot-
tom of the stack of windows.

f . circleup Exposes the lowest window that is obscured by other windows.

f .continue Releases the window server display action after you stop action with the

f .pause function.

f . focus Directs all keyboard input to the selected window. To reset the focus to all

windows, invoke f . focus from the root window.

f . iconif y When implemented from a window, this function converts the window to its

respective icon. When implemented from an icon, f . iconif y converts the

icon to its respective window.

f. kill Kills the client that created a window.

f . lower Lowers a window that is obstructing a window below it.

f .menu Invokes a menu. Enclose 'menu name' in quotes if it contains blank charac-
ters or parentheses.

f . move Moves a window or icon to a new location, which becomes the default loca-
tion.

f.moveopaque

Moves a window or icon to a new screen location. When using this function,

the entire window or icon is moved to the new screen location. The grid

effect is not used with this function.

f.newiconify

Allows you to create a window or icon and then position the window or icon

in a new default location on the screen.

f .pause Temporarily stops all display action. To release the screen and immediately

update all windows, use the f . continue function.

f .pushdown Moves a window down. The distance of the push is determined by the push

variables.

f .pushlef t Moves a window to the left. The distance of the push is determined by the

push variables.

f .pushright Moves a window to the right. The distance of the push is determined by the

push variables.

f. pushup Moves a window up. The distance of the push is determined by the push vari-
ables.

X Window System User's Guide

uwm (continued) X Window Manager

f . raise Raises a window that is being obstructed by a window above it.

f .refresh Results in exposure events being sent to the window server clients for all

unobscured or partially obscured windows. The windows will not refresh

correctly if the exposure events are not handled properly.

f .resize Resizes an existing window. Note that some clients, notably editors, react

unpredictably if you resize the window while the client is running.

f . restart Causes the window manager application to restart, retracing the uwm search

path and initializing the variables it finds.

Control Keys

By default, the window manager uses meta as its control key. It can also use Ctrl, shift, lock, or

null (no control key). Control keys must be entered in lowercase, and can be abbreviated as: c,

1, m, s for Ctrl, lock, meta, and shift, respectively.

You can bind one, two, or no control keys to a function. Use the bar (I) character to combine

control keys.

Note that client applications other than the window manager use the shift as a control key. If

you bind the shift key to a window manager function, you can not use other client applications

that require this key.

Context

The context refers to the screen location of the pointer when a command is initiated. When you

include a context entry in a binding, the pointer must be in that context or the function will not

be activated. The window manager recognizes the following four contexts: icon, window,

root, (null).

The root context refers to the root, or background window, A (null) context is indicated when

the context field is left blank, and allows a function to be invoked from any screen location.

Combine contexts using the bar (I) character.

Mouse Buttons

Any of the following mouse buttons are accepted in lowercase and can be abbreviated as 1, m,

or r, respectively: left, middle, right.

With the specific button, you must identify the action of that button. Mouse actions can be:

down Function occurs when the specified button is pressed down.

up Function occurs when the specified button is released.

delta Indicates that the mouse must be moved the number of pixels specified with

the delta variable before the specified function is invoked. The mouse can be

moved in any direction to satisfy the delta requirement.

312 X Window System User's Guide

X Window Manager (continued) uwm

Menu Definition

After binding a set of function keys and a menu name to f .menu, you must define the menu to

be invoked, using the following syntax:

menu = "menu name" {

"item name" : "action"

Enter the menu name exactly the way it is entered with the f .menu function or the window

manager will not recognize the link. If the menu name contains blank strings, tabs or parenthe-
ses, it must be quoted here and in the f .menu function entry. You can enter as many menu

items as your screen is long. You cannot scroll within menus.

Any menu entry that contains quotes, special characters, parentheses, tabs, or strings of blanks

must be enclosed in double quotes. Follow the item name by a colon (:).

Menu Action

Window manager functions

Any function previously described (e.g., f .move or f . iconif y).

Shell commands Begin with an exclamation point (!) and are set to run in the background.

You cannot include a new line character within a shell command.

Text strings Text strings are placed in the window server's cut buffer.

Strings starting with an up arrow Q will have a new line character appended

to the string after the up arrow Q has been stripped from it

Strings starting with a bar character (I) will be copied as is after the bar char-
acter (I) has been stripped.

Color Menus

Use the following syntax to add color to menus:

menu = "menu name" (color 1: color2: color3: color4) (

"item name" :(color5 :color6) : "action"

where:

color1 Foreground color of the header.

color2 Background color of the header.

colorS Foreground color of the highlighter, the horizontal band of color that moves

with the cursor within the menu.

313

X Window System User's Guide

uwm (continued) X Window Manager

col or4 Background color of the highlighter.

col or5 Foreground color for the individual menu item.

col or 6 Background color for the individual menu item.

Color Defaults

Colors default to the colors of the root window under any of the following conditions:

If you run out of color map entries, either before or during an invocation of uwm. If you spec-
ify a foreground or background color that does not exist in the RGB color database of the

server (see lusrlliblXlllrgb.txt for a sample) both the foreground and background colors default

to the root window colors. If you omit a foreground or background color, both the foreground

and background colors default to the root window colors. If the total number of colors speci-
fied in the startup file exceeds the number specified in the maxcolors variable. If you specify

no colors in the startup file.

Sample .mwmrc File

The following sample startup file shows the use of window manager options:

Global variables

#

resetbindings;resetvariables;resetmenus

autoselect

delta=25

freeze

grid

hiconpad=5

hmenupad=6

iconfont=oldeng

menufont=timroml2b

resizefont=9x!5

viconpad=5

vmenupad=3

volume=7

#

Mouse button/key maps

#

#FUNCTION KEYS CONTEXT BUTTON MENU(if any)

ff

f .menu = meta . rleft down :" WINDOW OPS"

f .menu = meta : : middle down : "EXTENDED WINDOW OPS

f . move = meta : w | i : right down

f.circleup = meta rroot : right down

#

Menu specifications

#

menu = "WINDOW OPS" {

"(De)Iconify": f.iconify

Move: f.move

314 X Window System User's Guide

X Window Manager (continued) UWfTI

Resize: f. resize

Lower: f. lower

Raise: f. raise

}

menu = "EXTENDED WINDOW OPS" {

Create Window: ! "xterm &"

Iconify at New Position: f . lowericonify

Focus Keyboard on Window: f. focus

Freeze All Windows: f. pause

Unfreeze All Windows: f. continue

Circulate Windows Up: f.circleup

Circulate Windows Down: f.circledown

Restrictions

The color specifications have no effect on a monochrome system.

Files

/usr/lib/Xll/uwm/system.uwmrc

$HOMEI.uwmrc

See Also

X, Xserver, xset, xlsfonts

Copyright

Copyright 1985, 1986, 1987, 1988 Digital Equipment Corporation, Maynard, MA.

Author

M. Gancarz, DEC Ultrix Engineering Group, Merrimack, New Hampshire, using some algo-
rithms originally by Bob Scheifler, MIT Laboratory for Computer Science.

X Window System User's Guide

x10tox11

Protocol Converter-

Name

xlOtoxl 1 - X version 10 to version 11 protocol converter.

Syntax

xlOtoxll [options]

Description

As of Release 4, this program is no longer included in the standard distribution of X.

xlOtoxll masquerades as an X Window System Version 10 server. It enables an X Version 10

client to run unchanged under X Version 11 by converting Version 10 requests into appropriate

Version 11 requests, and by converting all Version 11 events received from the server into Ver-
sion 10 events. From the perspective of Version 10 clients, all Version 11 clients look like Ver-
sion 10 clients; and from the perspective of Version 11 clients, all Version 10 clients look just

like Version 11 clients. Hence, a Version 11 window manager can manipulate Version 10

clients.

This program does NOT use the X10 libnest ddX library. It does actual protocol translation,

rather than simply using XI1 graphics calls to implement X10 low level operations. As a

result, it is both faster and more robust than the X10 Xnest server.

Typical Usage

The protocol converter must be run after the XI1 server is running and should be run in the

background:

% xlOtoxll &

The program will continue to run until you intentionally kill it or the XI1 server is shut down.

Options

-display [host]:server[. screen]

Allows you to specify the XI1 display to which you want to be connected.

host specifies the machine, server specifies the server number, and

screen specifies the screen number. For example,

xlOtoxll -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both of

the host and screen elements to the display specification can be omitted.

If host is omitted, the local machine is assumed. If screen is omitted,

screen 0 is assumed (and the period is unnecessary). The colon and server

are necessary in all cases.

Note that xlOtoxll will always pretend to be an X10 server with the same

display number as the XI1 server to which it connects. For example, if the

DISPLAY environment variable or the -display option specifies

your_node: 1.0, then xlOtoxll will connect to the XI1 server on

your_node for display 1 and then will pretend to the the X10 server for dis-
play 1. Consequently, your X10 clients will expect to have the environment

316 X Window System User's Guide

Protocol Converter (continued) x1 OtOXl 1

variable DISPLAY set to your_node: 1 (but they should still work even if

your X10 clients use your_node: 1. 0).

MinimumTileSize=n

Sets minimum acceptable tile size to n. There is a difference in semantics

between XlO's XQueryShape and Xll's XQueryBestSize such that

XI1 will allow any tile size but will return the optimum whereas X10

enforced a minimum tile size. Usually this minimum tile size was 16 and this

is the default for xlOtoxll. If you find that this makes your X10 clients break,

then you can override it with this option.

he Ip Prints out a usage message and exits.

NoOverrideRedirect

Instructs xlOtoxll to make every effort not to use OverrideRedirect

when creating and mapping windows. Normally, xlOtoxll creates all win-
dows with the OverrideRedirect attribute set to true. Placing this

option on the command line will cause xlOtoxll not to use Override-
Redirect except for windows that look like they might be menus. This

will allow window managers that provide titlebars to do so. Unfortunately, it

is impossible to determine ahead of time what an X10 client intends to do

with windows. In addition, X10 clients are known to spontaneously unmap

their windows which upsets XI1 window managers unless the Override-
Redirect attribute is true. Further, some XI1 window managers may

refuse to resize or move windows that are marked with Override-

Redirect. This may be fixed to some extent when an Inter Client Commu-
nications Convention Manual (ICCCM) is adopted by the XI1 community.

See Also

X, Xserver

Bugs

There are limitations with respect to emulating Version 10 through a Version 11 server. See the

file lusrlliblXIxlOtoxll.help for more details.

Some window managers may refuse to move, resize, or perform any operations on X10 client

windows.

If the source is compiled with certain flags, there are significant debugging facilities available.

Using the help option will tell you whether debugging facilities are available. xlOtoxll

marks them with OverrideRedirect. See "Options" above.

Copyright

Copyright 1988, Tektronix Inc.

X Window System User's Guide

X1 OtOXl 1 (continued) Protocol Converter

Permission to use, copy, modify, and distribute this software and its documentation for any pur-
pose and without fee is hereby granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission notice appear in supporting

documentation.

Author

Todd Brunhoff, Visual Systems Laboratory, Tektronix.

318 X Window System User's Guide

- Authority File Utility ' X3Uth

Name

xauth - X authority file utility

Syntax

xauth [options] [command arguments]

Description

Available as of Release 4, the xauth program is used to edit and display the authorization infor-
mation used in connecting to the X server. This program is usually to extract authorization

records from one machine and merge them in on another (as is the case when using remote

logins or to grant access to other users). Commands (described below) may be entered interac-
tively, on the xauth command line, or in scripts. Note that this program does not contact the X

server.

Options

The following options may be used with xauth. They may be given individually (for example,

-q -i) or may combined (for example, -qi):

-f authfile Specifies the name of the authority file to use. By default, xauth will use the

file specified by the XAUTHORITY environment variable or Xauthority in

the user's home directory.

-q Indicates that xauth should operate quietly and not print unsolicited status

messages. This is the default if an xauth command is is given on the com-
mand line or if the standard output is not directed to a terminal.

-v Indicates that xauth should operate verbosely and print status messages indi-
cating the results of various operations (for example, how many records have

been read in or written out). This is the default if xauth is reading commands

from its standard input and its standard output is directed to a terminal.

-i Indicates that xauth should ignore any authority file locks. Normally, xauth

will refuse to read or edit any authority files that have been locked by other

programs (usually xdm or another xauth).

-b Indicates that xauth should attempt to break any authority file locks before

proceeding and should only be used to clean up stale locks.

Commands

The following commands may be used to manipulate authority files:

add displaynameprotocolname hexkey

An authorization entry for the indicated display using the given protocol and

key data is added to the authorization file. The data is specified as an even-

lengthed string of hexadecimal digits, each pair representing one octet. The

first digit gives the most significant 4 bits of the octet and the second digit

gives the least significant 4 bits. A protocol name consisting of just a single

period is treated as an abbreviation for MIT-MAGIC-COOKIE-1.

X Window System User's Guide 319

xauth (continued) Authority File Utility

[njextract filename displayname . . .

Authorization entries for each of the specified displays are written to the indi-
cated file. If the nextract command is used, the entries are written in a

numeric format suitable for non-binary transmission (such as secure elect-
ronic mail). The extracted entries can be read back in using the merge and

nmerge commands. If the the filename consists of just a single dash, the

entries will be written to the standard output.

[n]list [displayna/ne...]

Authorization entries for each of the specified displays (or all if no displays

are named) are printed on the standard output. If the nlist command is

used, entries will be shown in the numeric format used by the next r act

command; otherwise, they are shown in a textual format. Key data is always

displayed in the hexadecimal format given in the description of the add com-
mand.

[n]merge [filename...]

Authorization entries are read from the specified files and are merged into the

authorization database, superceding any matching existing entries. If the

nmerge command is used, the numeric format given in the description of the

extract command is used. If a filename consists of just a single dash, the

standard input will be read if it hasn't been read before.

remove displayname...

Authorization entries matching the specified displays are removed from the

authority file.

source filename

The specified file is treated as a script containing xauth commands to execute.

Blank lines and lines beginning with a sharp sign (#) are ignored. A single

dash may be used to indicate the standard input, if it hasn't already been read.

info Information describing the authorization file, whether or not any changes

have been made, and from where xauth commands are being read is printed

on the standard output.

exit If any modifications have been made, the authority file is written out (if

allowed), and the program exits. An end of file is treated as an implicit exit

command.

quit The program exits, ignoring any modifications. This may also be accom-
plished by pressing the interrupt character.

help [string]

A description of all commands that begin with the given string (or all com-
mands if no string is given) is printed on the standard output

320 X Window System User's Guide

Authority File Utility (continued) xauth

? A short list of the valid commands is printed on the standard output

Display Names

Display names for the add, [n]extract, [n]list, [njmerge, and remove commands use

the same format as the DISPLAY environment variable and the common -display command

line option. Display-specific information (such as the screen number) is unnecessary and will

be ignored. Same-machine connections (such as local-host sockets, shared memory, and the

Internet Protocol hostname localhost) are referred to as host-

na/ne/unix: display number so that local entries for different machines may be stored in

one authority file.

Example

The most common use for xauth is to extract the entry for the current display, copy it to another

machine, and merge it into the user's authority file on the remote machine:

% xauth extract - $DISPLAY | rsh other xauth merge -

Environment Variables

This xauth program uses the following environment variables:

XAUTHORITY To get the name of the authority file to use if the -f option isn't used. If this

variable is not set, xauth will use ̂ authority in the user's home directory.

HOME To get the user's home directory if XAUTHORITY isn't defined.

Bugs

Users that have unsecure networks should take care to use encrypted file transfer mechanisms

to copy authorization entries between machines. Similarly, the MIT-MAGIC-COOKIE-1 proto-
col is not very useful in unsecure environments. Sites that are interested in additional security

may need to use encrypted authorization mechanisms such as Kerberos.

Spaces are currently not allowed in the protocol name. Quoting could be added for the truly

perverse.

See Also

X, Xserver, Xau, xdm

Author

Jim Fulton, MIT X Consortium.

X Window System User's Guide 321

^
Mail Notification-

Name

xbiff - mail notification program for X.

Syntax

xbiff [options]

Description

The xbiff program displays a little image of a mailbox. When there is no mail, the flag on the

mailbox is down. When mail arrives, the flag goes up and the mailbox beeps. By default,

pressing any mouse button in the image forces xbiff to remember the current size of the mail file

as being the "empty" size and to lower the flag.

This program is nothing more than a wrapper around the Athena Mailbox widget

Options

xbiff accepts all of the standard X Toolkit command line options along with the additional

options listed below:

-help Indicates that a brief summary of the allowed options should be printed on the

standard error.

-update seconds

Specifies the frequency in seconds at which xbiff should update its display. If

the mailbox is obscured and then exposed, it will be updated immediately.

The default is 60 seconds.

-file filename

Specifies the name of the file which should be monitored. By default, it

watches lusrlspoollmaillusername, where username is your login name.

-shape Indicates that the mailbox window should be shaped if masks for the empty or

full images are given. (Available as of Release 4.)

-volume percentage

Specifies how loud the bell should be rung when new mail comes in.

The following standard X Toolkit command line arguments are commonly used with xbiff:

-bg color Specifies he color to use for the background of the window. The default is

white.

-bd col or Specifies the color to use for the border of the window. The default is black.

-bw pixels Specifies the width in pixels of the border surrounding the window.

-fg color Specifies the color to use for the foreground of the window. The default is

black.

322 X Window System User's Guide

Mail Notification (continued) Xbiff

-rv Indicates that reverse video should be simulated by swapping the foreground

and background colors.

-geometry geometry

Specifies the size and location of the mailbox window. The -geometry

option can be (and often is) abbreviated to -g, unless there is a conflicting

option that begins with "g." The argument to the geometry option (geome-
try) is referred to as a "standard geometry string," and has the form

widthxheight±xoff±yoff. If you do not specify the geometry, xbiff

asks you for window placement See "Window Geometry" in Chapter 8 of

this guide for details. The default mailbox is 48 pixels on each side and is

centered in the window.

-display [host] : server[. screen]

Allows you to specify the host, server, and screen on which to create the mail-
box window, host specifies which machine to create the mailbox window

on, server specifies the server number, and screen specifies the screen

number. For example,

xbiff -display your_node:0.1

creates a mailbox on screen 1 of server 0 on the machine your_node. If the

host is omitted, the local machine is assumed. If the screen is omitted, screen

0 is assumed; the server and colon (:) are necessary in all cases.

-xrm resourcestring

Specifies a resource string to be used. This is especially useful for setting

resources that do not have separate command line options.

Resources

This program uses the Mailbox widget in the X Toolkit It understands all of the core resource

names and classes as well as:

checkCommand (class CheckCommand))

Specifies a shell command to be executed to check for new mail rather than

examining the size of file. The specified string value is used as the argu-
ment to a system(3) call and may therefore contain I/O redirection. An exit

status of zero indicates that new mail is waiting, 1 indicates that there has

been no change in size, and 2 indicates that the mail has been cleared.

file (class File)

Specifies the name of the file to monitor. The default is to watch

/usr/spool/mail/username, where username is your login name.

flip (class Flip)

Specifies whether or not the image that is shown when mail has arrived

should be inverted. The default is true. (Available as of Release 4.)

X Window System User's Guide 323

xbiff (continued) Mall Notification

fullPixmap (class Pixmap)

Specifies a bitmap to be shown when new mail has arrived. (Available as of

Release 4.)

f ullPixmapMask (class PixmapMask)

Specifies a mask for the bitmap to be shown when new mail has arrived.

(Available as of Release 4.)

emptyPixmap (class Pixmap)

Specifies a bitmap to be shown when no new mail is present. (Available as of

Release 4.)

emptyPixmapMask (class PixmapMask)

Specifies a mask for the bitmap to be shown when no new mail is present

(Available as of Release 4.)

width (class Width)

Specifies the width of the mailbox.

height (class Height)

Specifies the height of the mailbox.

onceOnly (class Boolean)

Specifies that the bell is only rung the first time new mail is found and is not

rung again until at least one interval has passed with no mail waiting. The

window will continue to indicate the presence of new mail until it has been

retrieved.

shapeWindow (class ShapeWindow)

Specifies whether or not the mailbox window should be shaped to the given

f ullPixmapMask and emptyPixmapMask. (Available as of Release 4.)

update (class Interval)

Specifies the frequency in seconds at which the mail should be checked.

volume (class Volume)

Specifies how loud the bell should be rung. The default is 33 percent.

foreground (class Foreground)

Specifies the color for the foreground. The default is black since the core

default for background is white.

reverseVideo (class ReverseVideo)

Specifies that the foreground and background should be reversed.

Actions

The Mailbox widget provides the following actions for use in event translations:

check () Causes the widget to check for new mail and display the flag appropriately.

unset () Causes the widget to lower the flag until new mail comes in.

324 X Window System User's Guide

Mail Notification (continued) Xbiff

set () Causes the widget to raise the flag until user resets it

The default translation is:

<ButtonPress>:unset()

See Also

X, xrdb, stat(2)

Author

Jim Fulton, MIT X Consortium;

Additional hacks by Ralph Swick, DEC/MIT Project Athena.

X Window System User's Guide 325

xcdlc

X-Based Scientific Calculator-

Name

xcalc - scientific calculator for X.

Syntax

xcalc [options]

Description

xcalc is a scientific calculator desktop accessory that can emulate a TI-30 or an HP-IOC. The

Release 4 version of xcalc has been rewritten to use the X Toolkit. Also as of Release 4, the

number in the calculator display can be selected, allowing you to paste the result of a calcula-
tion into text.

Versions of xcalc prior to Release 4 also emulate a slide rule.

Options

xcalc accepts all of the standard X Toolkit command line options, as well as the following:

-stip,-stipple

Indicates that the background of the calculator should be drawn using a

stipple of the foreground and background colors. On monochrome displays,

this improves the appearance. The -stipple version of this option is avail-
able as of Release 4. The -stip option can also still be used.

-rpn Indicates that Reverse Polish Notation should be used. In this mode the cal-
culator will look and behave like an HP-IOC. Without this flag, it will emu-
late a TI-30.

-analog Indicates that a slide rule should be used. (Eliminated in Release 4.)

The following X Toolkit options are commonly used with xcalc:

-bw pixels Specifies the border width in pixels.

-fg color Specifies the foreground color in use.

-bg col or Specifies the background color in use.

-rv Indicates that reverse video should be used.

-geometry geometry

The xcalc window is created with the specified size and location determined

by the supplied geometry specification. The -geometry option can be (and

often is) abbreviated to -g, unless there is a conflicting option that begins

with "g." The argument to the geometry option (geometry) is referred to as

a "standard geometry string," and has the form widthx-

height±xoff±yoff.

326 X Window System User's Guide

X-Based Scientific Calculator (continued) xcalc

-display [host] :server[. screen]

Allows you to specify the host, server, and screen on which to create the

xcalc window, host specifies the machine on which to create the xcalc win-
dow, server specifies the server number, and screen specifies the screen

number. For example,

xcalc -display your_node:0.1

specifies screen 1 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon (:) are necessary in all cases.

Calculator Operations

Pointer Usage

Operations may be performed with pointer button 1 (usually the leftmost button), or in many

cases, with the keyboard. Many common calculator operations have keyboard equivalents,

which are called accelerators, because they facilitate data entry. There are several ways to

cause xcalc to exit: pressing the AC key of the TI calculator or the ON key of the HP calcula-
tor with pointer button 3 (usually the rightmost button); typing q, Q, or Ctrl-C while the pointer

is in the xcalc window.

Calculator Key Usage (TI Mode)

The number keys, the +/- key, and the +, -, *, /, and = keys all do exactly what you would expect

them to. It should be noted that the operators obey the standard rules of precedence. Thus, en-
tering "3+4*5=" results in 23, not 35. Parentheses can be used to override this. For example,

"(1+2+3) * (4+5+6)=" is evaluated as "6* 15=" which results in 90.

The action associated with each function are given below. These are useful if you are interest-
ed in defining a custom calculator. The action used for all digit keys is digit (n), where n is

the corresponding digit, 0-9. (The actions are available as of Release 4).

The keys are described below.

1/x Replaces the number in the display with its reciprocal. The corresponding

action is reciprocal ().

x"2 Squares the number in the display. The corresponding action is square ().

SORT Evaluates the square root of the number in the display. The corresponding ac-
tion is squareRoot ().

CE/C When pressed once, clears the number in the display without clearing the

state of the machine. Allows you to re-enter a number if you make a mistake.

Pressing it twice clears the state also. The corresponding action is clear ().

AC Clears everything: the display, the state, and the memory. Pressing it with

the third (usually the right) button 'turns off the calculator, in that it exits the

program. The corresponding action to clear the state is of f (); to quit, the

action is quit ().

X Window System User's Guide

XCalC (continued) X-Based Scientific Calculator

INV Inverts the meaning of the function keys. See the individual function keys for

details. The corresponding action is inverse ().

sin Computes the sine of the number in the display, as interpreted by the current

DRG mode (see DRG, below). If inverted, it computes the arcsine. The cor-
responding action is sine ().

cos Computes the cosine, or arccosine when inverted. The corresponding action

is cosine ().

tan Computes the tangent, or arctangent when inverted. The corresponding ac-
tion is tangent ().

DRG Changes the DRG mode, as indicated by 'DEC', 'RAD', or 'GRAD' at the

bottom of the calculator "liquid crystal" display. When in 'DEG' mode, num-
bers in the display are taken as being degrees. In 'RAD' mode, numbers are

in radians, and in 'GRAD' mode, numbers are in gradians. When inverted,

the DRG key has the handy feature of converting degrees to radians to gradi-
ans and vice-versa. For example, put the calculator into 'DEG' mode, and

type "45 INV DRG". The calculator should display approximately .785398,

which is 45 degrees converted to radians. The corresponding action is de-
gree ().

e Is the constant 'e'. (2.7182818 ...) The corresponding action is e ().

EE Is used for entering exponential numbers. For example, to enter "-2 . 3E-4"

you would type "2 . 3 +/- EE 4 +/-". The corresponding action is

scientific().

log Calculates the log (base 10) of the number in the display. When inverted, it

raises 10.0 to the number in the display. For example, entering "3 INV

log" should result in 1000. The corresponding action is logarithm ().

In Calculates the log (base e) of the number in the display. When inverted, it

raises "e" to the number in the display. For example, entering "e In" should

result in 1. The corresponding action is naturalLog ().

y*x Raises the number on the left to the power of the number on the right. For ex-
ample, "2 y~x 3 =" results in 8, which is 2"3. Also, "(1+2+3) y~x

(1+2)=" is evaluated as "6 y~x 3=" which results in 216. The corre-

sponding action is power ().

PI The constant 'pi'. (3.1415927) The corresponding action is pi ().

x! Computes the factorial of the number in the display. The number in the dis-
play must be an integer in the range 0-500, though, depending on your math

library, it might overflow long before that. The corresponding action is f ac-

toriaK).

(Left parenthesis. The corresponding action for TI calculators is left-

Paren().

328 X Window System User's Guide

X-Based Scientific Calculator (continued) xcalc

) Right parenthesis. The corresponding action for TI calculators is right-

Paren().

/ Division. The corresponding action is divide ().

Multiplication. The corresponding action is multiply ().

Subtraction. The corresponding action is subtract ().

+ Addition. The corresponding action is add ().

Perform calculation. TheTT-specific action is equal ().

STO Copies the number in the display to the memory location. The corresponding

action is store ().

RCL Copies the number from the memory location to the display. The correspond-
ing action is recall ().

SUM Adds the number in the display to the number in the memory location. The

corresponding action is sum ().

EXC Swaps the number in the display with the number in the memory location.

The corresponding action is exchange ().

+/- Negate (change sign). The corresponding action is negate ().

Decimal point. The corresponding action is decimal ().

Calculator Key Usage (RPN mode)

The number keys, CHS (change sign), +, -, *, /, and ENTR keys all do exactly what you would

expect them to. Many of the remaining keys are the same as in TI (default) mode. The differ-
ences are detailed below. The action for the ENTR key is enter ().

<- Is a backspace key that can be used while entering a number. It will erase di-
gits from the display. (See "Bugs.") Inverse backspace clears the X register.

The corresponding action is back ().

ON Clears everything: the display, the state, and the memory. Pressing it with

the third (usually the right) pointer button 'turns off the calculator, in that it

exits the program. The corresponding action to clear the state is of f (); to

quit, the action is quit ().

INV Inverts the meaning of the function keys. This would be the "f" key on an HP

calculator, but xcalc does not display multiple legends on each key. See the

individual function keys for details.

10"x Raises 10.0 to the number in the top of the stack. When inverted, it calculates

the log (base 10) of the number in the display. The corresponding action is

tenpower().

e"x Raises "e" to the number in the top of the stack. When inverted, it calculates

the log (base e) of the number in the display. The corresponding action is

epower().

X Window System User's Guide

xcalc (continued) X-Based Scientific Calculator

STO Copies the number in the top of the stack to one of ten memory locations.

The desired memory is specified by pressing this key and then pressing a digit

key.

RCL Pushes the number from the specified memory location onto the stack.

SUM Adds the number on top of the stack to the number in the specified memory

location.

x:y Exchanges the numbers in the top two stack positions, the X and Y registers.

The corresponding action is XexchangeY ().

R v Rolls the stack downward. When inverted, it rolls the stack upward. The cor-
responding action is roll ().

Blank keys were used for programming functions on the HP-IOC. Their functionality has not

been duplicated in xcalc.

Keyboard Equivalents (Accelerators)

If you have the pointer in the xcalc window, you can use the keyboard to enter numbers and

other keys. Almost all of the calculator keys have keyboard equivalents, which are known as

accelerators because they speed entry. The number keys, the operator keys, and the parenthe-
ses all have the obvious equivalents. The accelerators defined by xcalc are listed in the follow-
ing table:

Keyboard

TIKey HP Key TT Function HP Function
Accelerator

SQRT SQRT r squareRoot () squareRoot ()

AC ON space clear () clear ()

AC <- Delete clear () back()

AC <- Backspace clear () back()

AC <- Control-H clear () back()

AC Clear clear ()

AC ON q quit () quit()

AC ON Control-C quitO quit ()

INV i i inverse () inverse ()

sin s s sine () sine ()

cos c c cosine () cosine ()

tan t t tangent () tangent ()

DRG DRG d degree () degree ()

e e e()

In In 1 naturalLogO naturalLog ()

y~x y*x A power () power ()

PI PI P pi() pi()

x! x! | factorial () factorial ()

330 X Window System User's Guide

X-Based Scientific Calculator (continued) xcalc

Keyboard
TIKey HP Key TI Function HP Function

Accelerator

((leftParen()

)) rightParen ()

/ / / divide () divide ()

* * * multiply () multiply ()

- - - subtract () subtract ()

+ + + add() add()

= = equal ()

0..9 0..9 0..9 digit () digit ()

. . decimal () decimal ()

+/- CHS n negate () negate ()

x:y X XexchangeY ()

ENTR Return enter ()

ENTR Linefeed enter ()

Note that the use of the e keyboard accelerator to invoke the e calculator key is Release 4 spe-
cific. In the Release 3 version of xcalc, the e keyboard accelerator corresponds to the EE cal-
culator key.

Resources (Release 4)

rpn (class Rpn)

Specifies that the rpn mode should be used. The default is TI mode.

stipple (class Stipple)

Indicates that the background should be stippled. The default is on for monochrome dis-
plays, and off for color displays.

cursor (class Cursor)

The name of the symbol used to represent the pointer. The default is hand2.

Widget Hierarchy (Release 4)

In order to specify resources, it is useful to know the hierarchy of the widgets that compose

xcalc. In the notation below, indentation indicates hierarchical structure. The widget class

name is given first, followed by the widget instance name.

XCalc xcalc

Form ti or rpn (the name depends on the mode)

Form bevel

Form screen

Label M

Toggle LCD

Label INV

Label DEC

Label RAD

Label GRAD

Label P

X Window System User's Guide 331

xcalc (continued) X-Based Scientific Calculator

Command buttonl

Command button2

Command buttons

and so on,...

Command button38

Command button39

Command button40

Customization (Release 4)

The application class name is XCalc.

As of Release 4, xcalc has an enormous application defaults file, which specifies the position,

label, and function of each key on the calculator. It also gives translations to serve as keyboard

accelerators. Because these resources are not specified in the source code, you can create a

customized calculator by writing a private application defaults file, using the Athena Command

and Form widget resources to specify the size and position of buttons, the label for each button,

and the function of each button.

The foreground and background colors of each calculator key can be individually specified.

For the TI calculator, a classical color resource specification might be:

XCalc.ti.Command.background: gray50

XCalc.ti.Command.foreground: white

For each of buttons 20,25,30,35, and 40, specify:

XCalc.ti.button20.background: black

XCalc.ti.button20.foreground: white

For each of buttons 22,23,24,27,28,29,32,33,34,37,38, and 39:

XCalc.ti.button22.background: white

XCalc.ti.button22.foreground: black

Resources (Release 3)

The program uses the Xlib routine XGetDef ault(3X) to read defaults, so its resource names

are all capitalized.

BorderWidth Specifies the width of the border. The default is 2.

ReverseVideo

Indicates that reverse video should be used.

St ipple Indicates that the background should be stippled. The default is on for mono-
chrome displays, and off for color displays.

Mode Specifies the default mode. Allowable values are are rpn, analog.

Foreground Specifies the default color used for borders and text.

Background Specifies the default color used for the background.

NKeyFore,NKeyBack

Specifies the colors used for the number keys.

332 X Window System User's Guide

X-Based Scientific Calculator (continued) XCalC

OKeyFore,OKeyBack

Specifies the colors used for the operator keys.

FKeyFore,FKeyBack

Specifies the colors used for the function keys.

DispFore,DispBack

Specifies the colors used for the display.

IconFore,IconBack

Specifies the colors used for the icon.

Customization (Releases)

If you're running on a monochrome display, you shouldn't need any resource file entries for

xcalc. However, xcalc uses a lot of colors, given the opportunity. In the default case, it will

just use two colors (Foreground and Background) for everything. This works out nicely.

However, if you're a color fanatic you can specify the colors used for the number keys, the op-
erator (+, -, *, /, =) keys, the function keys, the display, and the icon. On a color display, you

might want to try the following in TI mode:

xcalc*Foreground: black

xcalc*Background: lightsteelblue

xcalc*NKeyFore: black

xcalc*NKeyBack: white

xcalc*OKeyFore: aquamarine

xcalc*OKeyBack: darkslategray

xcalc*FKeyFore: white

xcalc*FKeyBack: #900

xcalc*DispFore: yellow

xcalc*DispBack: #777

xcalc*IconFore: red

xcalc*IconBack: white

Bugs in Release 4

In HP mode, a bug report claims that the sequence of keys 5, ENTR, and <- should clear the dis-
play, but it doesn't.

Bugs in Release 3

The calculator doesn't resize.

The slide rule and HP mode may or may not work correctly.

Base conversions are not easily done.

See Also

X, xrdb, and for Release 4, the Athena Widget set

Authors

John Bradley, University of Pennsylvania;

Mark Rosenstein, MIT Project Athena.

X Window System User's Guide

xclipboard

X Clipboard Client-

Name

xclipboard - X clipboard client.

Syntax

xclipboard [options]

Description

The xclipboard program is used to collect and display text selections that are sent to the CLIP-
BOARD by other clients. It is typically used to save CLIPBOARD selections for later use.

Since xclipboard uses a Text Widget to display the contents of the clipboard, text sent to the

CLIPBOARD may be re-selected for use in other applications.

Release 4 Specifics

The Release 4 version of xclipboard stores each CLIPBOARD selection as a separate string,

each of which can be selected. Each time CLIPBOARD is asserted by another application, xclip-
board transfers the contents of that selection to a new buffer and displays it in the text window.

Buffers are never automatically deleted, so you'll want to use the delete button to get rid of

useless items.

xclipboard also responds to requests for the CLIPBOARD selection from other clients by send-
ing the entire contents of the currently displayed buffer.

An xclipboard window has the following buttons across the top:

quit When this button is pressed, xclipboard exits.

delete When this button is pressed, the current buffer is deleted and the next one

displayed.

new Creates a new buffer with no contents. Useful in constructing a new CLIP-
BOARD selection by hand.

next Displays the next buffer in the list.

previous Displays the previous buffer.

Release 3 Specifics

The Release 3 version of xclipboard has the following buttons across the top:

quit When this button is pressed, xclipboard exits.

erase When this button is pressed, the contents of the text window are erased. (The

erase button is not functional.)

Options

The xclipboard program accepts all of the standard X Toolkit command line options as well as

the following:

-w Indicates that lines of text that are too long to be displayed on one line in the

clipboard should wrap around to the following lines.

-nw Indicates that long lines of text should not wrap around. This is the default

behavior.

334 X Window System User's Guide

X Clipboard Client (continued) xclipboard

Some of the more common Toolkit options used with xclipboard are:

-display [host]: serverf. screen]

Allows you to specify the host, server and screen on which to create the xclip-
board windows, host specifies the machine, server specifies the server

number, and screen specifies the screen number. For example,

xclipboard -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-geometry geometry

The xclipboard window is created with the specified size and location deter-
mined by the supplied geometry specification. The -geometry option can

be (and often is) abbreviated to -g, unless there is a conflicting option that

begins with "g." The argument to the geometry option (geometry) is

referred to as a "standard geometry string," and has the form widthx-

height+xoff+yoff.

Sending and Retrieving Clipboard Contents

Text is copied to the clipboard whenever a client asserts ownership of the CLIPBOARD selec-
tion. Text is copied from the clipboard whenever a client requests the contents of the CLIP-
BOARD selection. Examples of event bindings that a user may wish to include in a resource

configuration file to use the clipboard are:

*VT100.Translations: toverride \

Buttonl <Btn3Down>: select-end(CLIPBOARD) \n\

<Btn2Up>: insert-selection(PRIMARY,CLIPBOARD) \n\

Resources

This program accepts all of the standard X Toolkit resource names and classes as well as:

wordwrap (class Wordwrap)

Specifies whether or not lines of text should wrap around to the following

lines. The default is no. (Release 3 only.)

Widgets

In order to specify resources, it is useful to know the hierarchy of the widgets that compose

xclipboard. In the notation below, indentation indicates hierarchical structure. The widget

class name is given first, followed by the widget instance name.

XClipboard xclipboard

Form form

Command quit

Command delete

X Window System User's Guide 335

XClipboard (continued) X Clipboard Client

Command new

Command next

Command prev

Text text

Bugs in Release 3

The erase button is not functional.

It would be nice to have a way of specifying the file in which the clipboard contents are saved.

Files

lusrlliblXl 1 lapp-defaultslXClipboard Specifies required resources (as of Release 4).

See Also

X, xcutsel, xterm, individual client documentation for how to make a selection and send it to

the CLIPBOARD.

Author

Ralph R. Swick, DEC/MIT Project Athena;

Chris Peterson, MIT X Consortium;

Keith Packard, MIT X Consortium.

336 X Window System User's Guide

-Analog/Digital Clock ' XClOCk

Name

xclock - continuously display the time in either analog or digital form.

Syntax

xclock [options]

Description

xclock continuously displays the time of day, either in digital or analog form. In digital form,

xclock displays the time using a 24-hour clock. It also displays the day, month, and year. In

analog form, xclock displays a standard 12-hour clock face. You can set up more than one

clock simultaneously.

The default clock is an analog clock with a black foreground on a white background. If you

want to change the clock's appearance, type in the appropriate options. For example,

xclock -bd slatablue -fg navyblua -hi darkslategrey &

sets up a conventional 12-hour clock with a slate blue window border, navy blue tick marks,

and dark slate grey hands.

By default, the clock is positioned in the upper-left corner of your background window. If you

are running twm, you can place the clock using the pointer.

Options

xclock accepts all of the standard X Toolkit command line options along with the additional

options listed below:

-help Displays a brief summary of xclock's calling syntax and options.

-analog Draws a conventional 12-hour clock face with tick marks for each minute and

stroke marks for each hour. This is the default.

-digital or-d

Displays the date and time in digital format. Note that -display must be

used to specify a display.

-chime Indicates that the clock should chime once on the half hour and twice on the

hour.

-hd coI or Specifies the color of the hands on an analog clock. The default is black.

-hi color Specifies the color of the edges of the hands on an analog clock. Only useful

on color displays. The default is black.

-padding pixels

Specifies the width in pixels of the space between the window border and any

portion of the xclock display. The default is 10 pixels in digital mode and 8

pixels in analog mode.

-update seconds

Specifies the frequency in seconds with which xclock updates its display. If

the xclock window is obscured and then exposed, xclock overrides this setting

X Window System User's Guide

XClOCk (continued) Analog/Digital Clock

and redisplays immediately. A value of less than 30 seconds will enable a

second hand on an analog clock. The default is 60 seconds.

The following standard X Toolkit options are commonly used with xclock:

-bg col or Determines the background color of the window. The default is white.

-bd color Determines the border color of the window. The default is black.

-bw pixels Specifies the width in pixels of the border around the xclock window. The

default is 2 pixels.

-f g color Determines the color of the text in digital mode, and the color of the tick and

stroke marks in analog mode. The default is black.

-fn font Specifies the font to be used in digital mode. Any fixed width font may be

used. The default is 6x10.

-rv Indicates that reverse video should be simulated by swapping the foreground

and background colors.

-geometry geometry

Sets xclock window size and location according to the geometry specifica-
tion. The -geometry option can be (and often is) abbreviated to -g, unless

there is a conflicting option that begins with "g." The argument to the geom-
etry option (geometry) is referred to as a "standard geometry string," and

has the form widthxheight±xoff±yoff.

In digital mode, height and width are determined by the font in use, unless

otherwise specified. In analog mode, width and height defaults are 164 pix-
els, unless otherwise specified. The default value for any unspecified x or y

offset is -0. All values are in pixels. If you do not specify the geometry,

xclock asks you for window window.

-display [host] :server[. screen]

Allows you to specify the host, server and screen on which to create the

xclock window, host specifies which machine to create the xclock window

on, server specifies the server number and screen specifies the screen

number. For example,

xclock -display your_node:Q.l

creates an xclock display on screen 1 on server 0 on the machine

your_node. If the host is omitted, the local machine is assumed. If the

screen is omitted, the screen 0 is assumed; the server and colon (:) are neces-
sary in all cases.

Note that -display cannot be abbreviated to -d, which is shorthand for the

-digital option.

-xrm resourcestring

Specifies a resource string to be used. This is especially useful for setting

resources that do not have separate command line options.

338 X Window System User's Guide

Analog/Digital Clock (continued) XClOCk

Resources

xclock uses the Athena Clock widget It understands all of the core resource names and classes

as well as:

width (class Width)

Specifies the width of the clock.

height (class Height)

Specifies the height of the clock.

update (class Interval)

Specifies the frequency in seconds at which the time should be redisplayed.

background (class Background)

Determines the background color. The default is white.

foreground (class Foreground)

Specifies the color for the tick marks and stroke marks. Using the class speci-
fies the color for all things that normally would appear in the foreground

color. The default is black since the core default for background is white.

hands (class Foreground)

Specifies the color of the insides of the clock's hands. The default is the

foreground color.

highlight (class Foreground)

Specifies the color used to highlight the clock's hands. The default is the

foreground color.

analog (class Boolean)

Specifies whether or not an analog clock should be used instead of a digital

one. The default is true.

chime (class Boolean)

Specifies whether or not a bell should be rung on the hour and half hour. The

default is false.

padding (class Margin)

Specifies the amount of internal padding in pixels to be used. The default is

8.

font (class Font)

Specifies the font to be used for the digital clock. Note that variable width

fonts currently will not always display correctly.

reverseVideo (class ReverseVideo)

Specifies that the foreground and background colors should be reversed.

Widgets (Release 4)

In order to specify resources, it is useful to know the hierarchy of the widgets which compose

xclock. In the notation below, indentation indicates hierarchical structure. The widget class

name is given first, followed by the widget instance name.

X Window System User's Guide

XClOCk (continued) Analog/Digital Clock

XClock xclock

Clock clock

Files

lusrlliblXl 1 lapp-defaultslXClock

Specifies default resources (as of Release 4).

Bugs

xclock believes the system clock.

When in digital mode, the string should be centered automatically.

No way to exit the program.

See Also

X, oclock, xrdb, time(3C), Athena Clock widget

Authors

Tony Delia Fera (MIT-Athena, DEC);

Dave Mankins (MIT-Athena, BBN);

Ed Moy (UC Berkeley).

340 X Window System User's Guide

- Cut Buffer/Selection Interchange-x
XCUtS8l

Name

xcutsel - interchange between cut buffer and selection.

Syntax

xcutsel [options]

Description

The xcutsel program is used to copy the current selection into a cut buffer and to make a selec-
tion that contains the current contents of the cut buffer. It acts as a bridge between applications

that don't support selections and those that do.

By default, xcutsel will use the selection named PRIMARY and the cut buffer CUT_BUFFERO.

Either or both of these can be overridden by command line arguments or by resources.

An xcutsel window has the following buttons:

quit When this button is pressed, xcutsel exits. Any selections,held by xcutsel are

automatically released.

copy PRIMARY toO

When this button is pressed, xcutsel copies the current selection into the cut

buffer.

copy 0 to PRIMARY

When this button is pressed, xcutsel converts the current contents of the cut

buffer into the selection.

The button labels reflect the selection and cut buffer selected by command line options or

through the resource database.

When the copy 0 to PRIMARY button is activated, the button will remain inverted as long as

xcutsel remains the owner of the selection. This serves to remind you which client owns the

current selection. Note that the value of the selection remains constant; if the cut buffer is

changed, you must again activate the copy button to retrieve the new value when desired.

Options

xcutsel accepts all of the standard X Toolkit command line options as well as the following:

-selection name

Specifies the name of the selection to use. The default is PRIMARY. The only

supported abbreviations for this option are -select, -sel and -s, since

the standard Toolkit option -selectionTimeout has a similar name.

-cutbuf fer number

Specifies the cut buffer to use. The default is cut buffer 0.

The following X Toolkit options are commonly used with xcutsel:

X Window System User's Guide

XCUtsel (continued) Cut Buffer/Selection Interchange

-display [host] :server[. screen]

Allows you to specify the host, server, and screen on which to create the

xcutsel window, host specifies the machine, server specifies the server

number, and screen specifies the screen number. For example,

xcutsel -display your_/3ode:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-geometry geometry

The xcutsel window is created with the specified size and location determined

by the supplied geometry specification. The -geometry option can be (and

often is) abbreviated to -g, unless there is a conflicting option that begins

with "g." The argument to the geometry option (geometry) is referred to as

a "standard geometry string," and has the form widthx.-

hei gh t±xoff±yoff.

Resources

This program accepts all of the standard X Toolkit resource names and classes as well as:

selection (class Selection)

This resource specifies the name of the selection to use. The default is PRI-
MARY.

cutBuf f er (class CutBuf f er)

This resource specifies the number of the cut buffer to use. The default is 0.

Widget Names

The following instance names may be used when user configuration of the labels in them is

desired:

sel-cut (class Command)

This is the copy selection to buffer button.

cut-sel (class Command)

This is the copy buffer to selection button.

quit (class Command)

This is the quit button.

Bugs

There is no way to change the name of the selection or the number of the cut buffer while the

program is running.

342 X Window System User's Guide

Cut Buffer/Selection Interchange (continued) xcutsel

See Also

X, xclipboard, xterm; Chapter 4 of this guide; text widget documentation, including Volume

Four, X Toolkit Intrinsics Programming Manual

Author

Ralph R. Swick, DEC/MIT Project Athena.

343

X Window System User's Guide

XditVleW
D,,p,ay dKroH Fl,,,-

Name

xditview - display ditroffDVl files.

Syntax

xditview [options]

Description

The xditview program displays ditroff output on an X display. It uses special font metrics that

match the font set distributed with XI1 Release 3, so it does not require access to the server

machine for font loading.

Options

xditview accepts all of the standard X Toolkit command line options along with the additional

options listed below:

-he lp Indicates that a brief summary of the allowed options should be printed.

-page Specifies the page number of the document to be displayed.

-backingStore backing_store_type

Redisplay of the DVI window can take upto a second or so. This option

causes the server to save the window contents so that when it is scrolled

around the viewport, the window is painted from contents saved in backing

store. backing_store_type can be one of Always, WhenMapped or

NotUseful.

The following standard X Toolkit command line arguments are commonly used with xditview:

-bg col or Specifies the color to use for the window background. The default is white.

-bd col or Specifies the color to use for the window border. The default is black.

-bw pixel s Specifies the width in pixels of the window border.

-f g col or Specifies the color to use for displaying text. The default is black.

-fn font Specifies the font to be used for displaying widget text The default is

"fixed".

-rv Indicates that reverse video should be simulated by swapping the foreground

and background colors.

-display host [: server] [. screen]

Allows you to specify the host, server and screen on which to display the

xditview window, host specifies the machine, server specifies the server

number, and screen specifies the screen number. For example,

xditview -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

344 X Window System User's Guide

Display ditroff Files (continued) xditview

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-geometry geometry

The xditview window is created with the specified size and location deter-
mined by the supplied geometry specification. The -geometry option can

be (and often is) abbreviated to -g, unless there is a conflicting option that

begins with "g." The argument to the geometry option (geometry) is

referred to as a "standard geometry string," and has the form widthx-

hei gh t±xoff±y off.

-xrm resourcestring

Specifies a resource string to be used.

Resources

This program uses the Dvi widget in the X Toolkit It understands all of the core resource

names and classes as well as:

width (class Width)

Specifies the width of the window.

height (class Height)

Specifies the height of the window.

foreground (class Foreground)

Specifies the default foreground color.

font (class Font)

Specifies the font to be used for error messages.

Using xdftview with ditroff

To build a DVI file suitable for use with xditview, use the device description in devX75:

$ cd devX75

$ makedev DESC

$ mkdir /usr/lib/font/devX75

$ cp *.out /usr/lib/font/devX75

$ ditroff -TX75 ditroff_input \ xditview

See Also

X,xrdb,ditroff(l)

Bugs

xditview can be easily confused by attempting to display a DVI file constructed for the wrong

device. Support for pic is not yet implemented.

X Window System User's Guide

Xditview (continued) Display dltroff Files

Authors

Portions of this program originated in xtroff which was derived from suntroff.

Keith Packard (MIT X Consortium);

Richard L. Hyde (Purdue);

David Slattengren (Berkeley);

Malcom Slaney (Schlumberger Palo Alto Research);

Mark Moraes (University of Toronto).

346 X Window System User's Guide

-X Display Manager '

Name

xdm - X display manager.

Syntax

xdm [options]

Description

xdm manages a collection of X displays, both local and possibly remote - the emergence of X

terminals guided the design of several parts of this system, along with the development of the X

Consortium standard XDMCP, the X Display Manager Control Protocol (introduced in Release

4). It is designed to provide services similar to that provided by init, getty and login on charac-
ter terminals: prompting for login/password, authenticating the user and running a "session."

A "session" is defined by the lifetime of a particular process; in the traditional character-based

terminal world, it is the user's login shell process. In the xdm context, it is an arbitrary session

manager. This is because in a windowing environment, a user's login shell process would not

necessarily have any terminal-like interface with which to connect.

Until real session managers become widely available, the typical xdm substitute would be

either a window manager with an exit option, or a terminal emulator running a shell - with the

condition that the lifetime of the terminal emulator is the lifetime of the shell process that it is

running - thus degenerating the X session to an emulation of the character-based terminal ses-
sion.

When the session is terminated, xdm resets the X server and (optionally) restarts the whole pro-
cess.

Because xdm provides the first interface that users will see, it is designed to be simple to use

and easy to customize to the needs of a particular site, xdm has many options, most of which

have reasonable defaults. Browse through the various sections, picking and choosing the things

you want to change. Pay particular attention to "The Xsession File", which will describe how

to set up the style of session desired.

Options

First, note that all of these options, except -conf ig, specify values that can also be specified

in the configuration file as resources.

-conf ig configuration_file

Specifies a resource file which specifies the remaining configuration parame-
ters. If no file is specified and the file /usr/lib/Xll/xdm/xdm-config exists,

xdm will use it

-daemon Specifies true as the value for the DisplayManager .daemonMode

resource. This makes xdm close all file descriptors, disassociate the control-
ling terminal and put itself in the background when it first starts up (just like

the host of other daemons). It is the default behavior.

-debug debug_level

Specifies the numeric value for the DisplayManager .debugLevel

resource. A non-zero value causes xdm to print piles of debugging state-

X Window System User's Guide 347

xdm (continued) X Display Manager

ments to the terminal; it also disables the DisplayManager.daemon-

Mode resource, forcing xdm to run synchronously. To interpret these debug-
ging messages, a copy of the source code for xdm is almost a necessity. No

attempt has been made to rationalize or standardize the output

-error error_log_file

Specifies the value for the DisplayManager .errorLogFile resource.

This file contains errors from xdm as well as anything written to standard

error by the various scripts and programs run during the progress of the

session.

-nodaemon Specifies "false" as the value for the DisplayManager .daemonMode

resource.

-resources resource_file

Specifies the value for the DisplayManager*resources resource. This

file is loaded using xrdb to specify configuration parameters for the authenti-
cation widget.

-server server_entry

Specifies the value for the DisplayManager .servers resource. (See

"Resources" below.)

-udpPort port_number

Specifies the value for the DisplayManager .requestPort resource.

This sets the port-number which XDM will monitor for XDMCP requests. As

XDMCP uses the registered well-known udp port 177, this resource should

probably not be changed except for debugging. (Available as of Release 4.)

-session session_program

Specifies the value for the DisplayManager*session resource. This

indicates the program to run when the user has logged in as the session.

(Available as of Release 4.)

-xrm resource_specification

Allows an arbitrary resource to be specified, just as most toolkit applications.

Resources

At many stages the actions of xdm can be controlled through the use of the configuration file,

which is in the familiar X resource format. See Jim Fulton's article on resource files

(doc/tutorials/resources.txt) for a description of the format. Some resources modify the behav-
ior of xdm on all displays, while others modify its behavior on a single display. Where actions

relate to a specific display, the display name is inserted into the resource name between

"DisplayManager" and the final resource name segment. For example, Display-

Manager . expo_0 . startup is the name of the resource that defines the startup shell file on

the "expo:0" display. Because the resource manager uses colons to separate the name of the

resource from its value and dots to separate resource name parts, xdm substitutes underscores

348 X Window System User's Guide

X Display Manager (continued) xdm

scores for the dots and colons when generating the resource name. (If you are running Release

3, DisplayManager. expo. 0. startup is the resource. In Release 3, xdm substitutes

dots for the colons when generating the resource name.)

DisplayManager.servers

Specifies either a filename full of server entries, one per line, or a single

server entry. Each entry indicates a display that should constantly be man-
aged and that is not using XDMCP. (If the resource value begins with a slash,

it is assumed to be the name of a file containing the list.) Each entry consists

of at least three parts: a display name, a display class (Release 4 only), a dis-
play type, and (for local servers) a command line to start the server. (The pro-
gram name should be an absolute UNIX pathname, since xdm does not search

through the directories of the PATH environment variable.) Foreign servers

can have a comment in place of the command line. A typical entry for local

display number 0 would be:

:0 Digital-QV local /usr/bin/Xll/X :0

The display types are:

local A local display, i.e., one that has a server program to run

foreign A remote display, i.e., one that has no server program to run

If you're running the Release 3 version of xdm, the following display types

are also acceptable:

localTransient A local display that has only one session run

transient A remote display that has only one session run

The display name must be something that can be passed in the -display

option to any X program. This string is used in the display-specific resources

to specify the particular display, so be careful to match the names (e.g., use

:0 local /usr/bin/Xll/X : 0 instead of localhost: 0 local

/usr/bin/Xll/X : 0 if your other resources are specified as Display-

Manager ._0 . session).

The display class portion can also be used in display-specific resources, as the

class portion of the resource. This is useful if you have a large collection of

similar displays (perhaps several X terminals) and would like to set resources

for groups of them. When using XDMCP, the display is required to specify

the display class. Your X terminal documentation should describe a reason-
ably standard display class string for your device.

DisplayManager.requestPort

Indicates the UDP port number which xdm uses to listen for incoming

XDMCP requests. Unless you need to debug the system, leave this with its

default value of 177. (Available as of Release 4.)

X Window System User's Guide 349

xdm (continued) X Display Manager

DisplayManager.errorLogFile

Error output is normally directed at the system console. To redirect it simply

set this resource to any filename. A method to send these messages to syslog

should be developed for systems that support it; however the wide variety of

"standard" interfaces precludes any system-independent implementation.

This file also contains any output directed to standard error by Xstartup, Xses-

sion, and Xreset, so it will contain descriptions of problems in those scripts as

well.

DisplayManager.debugLevel

A non-zero value specified for this integer resource will enable reams of

debugging information to be printed. It also disables daemon mode which

would redirect the information into the bit-bucket. Specifying a non-zero

debug level also allows non-root users to run xdm which would normally not

be useful. (Available as of Release 4.)

DisplayManager.daemonMode

Normally, xdm attempts to make itself into an unassociated daemon process.

This is accomplished by forking and leaving the parent process to exit, then

closing file descriptors and mangling the controlling terminal. When attempt-
ing to debug xdm, this is quite bothersome. Setting this resource to false will

disable this feature. (Available as of Release 4.)

DisplayManager.pidFile

The filename specified will be created to contain an ASCII representation of

the process ID of the main xdm process. This is quite useful when reinitializ-
ing the system, xdm also uses file locking to attempt to eliminate multiple

daemons running on the same machine, which would cause quite a bit of

havoc. (Available as of Release 4.)

DisplayManager.lockPidFile

Controls whether xdm uses file locking to keep multiple xdm processes from

running amok. On System V, this uses the lockf library call, while on BSD it

uses flock. The default value is true. (Available as of Release 4.)

DisplayManager.remoteAuthDir

This is a directory name that xdm uses to temporarily store authorization files

for displays using XDMCP. The default value is lusrlliblXlllxdm. (Available

as of Release 4.)

DisplayManager.autoRescan

This boolean controls whether xdm rescans the configuration file and servers

file after a session terminates and the files have changed. By default it is true.

You can force xdm to reread these files by sending a SIGHUP to the main pro-
cess. (Available as of Release 4.)

DisplayManager.removeDomainname

When computing the display name for XDMCP clients, the resolver will typi-
cally create a fully qualified host name for the terminal. Since this is

350 X Window System User's Guide

X Display Manager (continued) xdm

sometimes confusing, xdm will remove the domain name portion of the host

name if it is the same as the domain name for the local host when this vari-
able is set. By default the value is true. (Available as of Release 4.)

DisplayManager.keyFile

XDM-AUTHENTICATION-1 style XDMCP authentication requires that a

private key be shared between xdm and the terminal. This resource specifies

the file containing those values. Each entry in the file consists of a display

name and the shared key. By default, xdm does not include support for XDM-

AUTHENTICATION-1 as it requires DES which is not generally distribut-
able. (Available as of Release 4.)

DisplayManager.DISPLAY.resources

Specifies the name of the file to be loaded by xrdb as the resource database

onto the root window of screen 0 of the display. This resource database is

loaded just before the authentication procedure is started, so it can control the

appearance of the "login" window. See "Authentication Widget Resources",

which describes the various resources which are appropriate to place in this

file. There is no default value for this resource, but the conventional name is

/usr/lib/Xl 11xdm/Xre sources.

DisplayManager.DISPLAY.xrdb

Specifies the program used to load the resources. By default, xdm uses

lusrlbinlXlllxrdb.

DisplayManager.DISPLAY.cpp

Specifies the name of the C preprocessor used by xrdb. (Available as of

Release 4.)

DisplayManager.DISPLAY.startup

Specifies a program which is run (as root) after the authentication process

succeeds. By default, no program is run. The conventional name for a file

used here is Xstartup. See 'The Xstartup File" below.

DisplayManager.DISPLAY.session

Specifies the session to be executed (not running as root). By default,

/usr/bin/Xll/xterm is run. The conventional name is Xsession. See "The

Xsession File" below.

DisplayManager.DISPLAY.reset

Specifies a program which is run (as root) after the session terminates. Again,

by default no program is run. The conventional name is Xreset. See "The

Xreset File" below.

DisplayManager.DISPLAY.openDelay

DisplayManager.DISPLAY.openRepeat

DisplayManager.DISPLAY.openTimeout

DisplayManager.DISPLAY.startAttempts

Numeric resources control the behavior of xdm when attempting to open

intransigent servers. openDelay is the length of the pause (in seconds)

X Window System User's Guide

xdm (continued) X Display Manager

between successive attempts. openRepeat is the number of attempts to

make. openTimeout is the amount of time to wait while actually attempt-
ing the open (i.e., the maximum time spent in the connect syscall). start-

Attempts (Release 4) is the number of times this entire process is done

before giving up on the server. After openRepeat attempts have been

made, or if openTimeout seconds elapse in any particular attempt, xdm ter-
minates and restarts the server, attempting to connect again. This process is

repeated start Attempts times, at which point the display is declared

dead and disabled. Although this behaviour may seem arbitrary, it has been

empirically developed and works quite well on most systems. The default

values are 5 for openDelay, 5 for openRepeat, 30 for openTimeout,

and 4 for startAttempts.

DisplayManager.DISPLAY.pinglnterval

DisplayManager.DISPLAY.pingTimeout

To discover when remote displays disappear, xdm occasionally "pings" them,

using an X connection and sending XSync requests, pinglnterval

specifies the time (in minutes) between each ping attempt, pingTimeout

specifies the maximum amount of time (in minutes) to wait for the terminal to

respond to the request If the terminal does not respond, the session is

declared dead and terminated. By default, both are set to 5 minutes, xdm will

not ping local displays. Although it would seem harmless, it is unpleasant

when the workstation session is terminated as a result of the server hanging

for NFS service and not responding to the ping. (Available as of Release 4.)

DisplayManager.DISPLAY.terminateServer

Specifies whether the X server should be terminated when a session termi-
nates (instead of resetting it). This option can be used when the server tends

to grow without bound over time in order to limit the amount of time the

server is run. The default value is false.

DisplayManager.DISPLAY.userPath

xdm sets the PATH environment variable for the session to this value. It

should be a colon separated list of directories, see sh(l) for a full description.

The default value can be specified in the X system configuration file with

Def UserPath, frequently it is set to :/bin:/usr/bin:/usr/bin/Xll:/usr/ucb.

DisplayManager.DISPLAY.systemPath

xdm sets the PATH environment variable for the startup and reset scripts to the

value of this resource. The default for this resource is specified with the

Def aultSystemPath entry in the system configuration file, but it is fre-
quently /etc:/bin:/usr/bin:/usr/bin/Xll:/usr/ucb. Note the conspicuous

absence of "." from this entry. This is a good practise to follow for root; it

avoids many common trojan horse system penetration schemes.

DisplayManager.DISPLAY.systemShell

xdm sets the SHELL environment variable for the startup and reset scripts to

the value of this resource. By default, it is Ibinlsh.

352 X Window System User's Guide

X Display Manager (continued) xdm

DisplayManager.DISPLAY.failsafeClient

If the default session fails to execute, xdm will fall back to this program. This

program is executed with no arguments, but executes using the same environ-
ment variables as the session would have had. See 'The Xsession File"

below. By default, lusrlbinlXlllxterm is used.

DisplayManager.DISPLAY.grabServer

DisplayManager.DISPLAY.grabTimeout

To eliminate obvious security shortcomings in the X protocol, xdm grabs the

server and keyboard while reading the name/password. The grabServer

resource specifies if the server should be held for the duration of the

name/password reading, when FALSE, the server is ungrabbed after the key-
board grab succeeds, otherwise the server is grabbed until just before the

session begins. The grabTimeout resource specifies the maximum time

xdm will wait for the grab to succeed. The grab may fail if some other client

has the server grabbed, or possibly if the network latencies are very high.

This resource has a default value of 3 seconds; you should be cautious when

raising it as a user can be spoofed by a look-alike window on the display. If

the grab fails, xdm kills and restarts the server (if possible) and session.

(Available as of Release 4.)

DisplayManager.DISPLAY.authorize

DisplayManager.DISPLAY.authName

authorize is a boolean resource that controls whether xdm generates and

uses authorization for the server connections. If authorization is used,

authName specifies the type to use. Currently, xdm supports only MIT-

MAGIC-COOKIE-1 authorization, XDM-AUTHORIZATION-1 could be

supported as well, but DES is not generally distributable. XDMCP connec-
tions specify which authorization types are supported dynamically, so auth-
Name is ignored in this case. When authorize is set for a display and

authorization is not available, the user is informed by having a different mes-
sage displayed in the login widget By default, authorize is true; auth-
Name is MIT-MAGIC-COOKIE-1. (Available as of Release 4.)

DisplayManager.DISPLAY.authFile

This file is used to communicate the authorization data from xdm to the

server, using the -auth server command line option. It should be kept in a

directory which is not world-writable as it could easily be removed, disabling

the authorization mechanism in the server. (Available as of Release 4.)

DisplayManager.DISPLAY.resetForAuth

The original implementation of authorization in the sample server reread the

authorization file at server reset time, instead of when checking the initial

connection. As xdm generates the authorization information just before con-
necting to the display, an old server would not get up-to-date authorization

information. This resource causes xdm to send SIGHUP to the server after

setting up the file, causing an additional server reset to occur, during which

X Window System User's Guide 353

Xdm (continued) X Display Manager

time the new authorization information will be read. (Available as of Release

4.)

DisplayManager.DISPLAY.userAuthDir

When xdm is unable to write to the usual user authorization file

($HOMEIXauthority), it creates a unique file name in this directory and

points the environment variable XAUTHORITY at the created file. By

default it uses Itmp. (Available as of Release 4.)

Controlling The Server

xdm controls local servers using POSIX signals. SIGHUP is expected to reset the server, closing

all client connections and performing other clean up duties. SIGTERM is expected to terminate

the server. If these signals do not perform the expected actions, xdm will not perform properly.

To control remote servers not using XDMCP, xdm searches the window hierarchy on the display

and uses the protocol request KillClientinan attempt to clean up the terminal for the next

session. This may not actually kill all of the clients, as only those which have created windows

will be noticed. XDMCP provides a more sure mechanism; when xdm closes its initial connec-
tion, the session is over and the terminal is required to close all other connections.

Controlling xdm

xdm responds to two signals: SIGHUP and SIGTERM. When sent a SIGHUP, xdm rereads the file

specified by the DisplayManager .servers resource and notices if entries have been

added or removed. If a new entry has been added, xdm starts a session on the associated dis-
play. Entries that have been removed are disabled immediately, meaning that any session in

progress will be terminated without notice, and no new session will be started.

When sent a SIGTERM, xdm terminates all sessions in progress and exits. This can be used

when shutting down the system.

xdm attempts to mark the various sub-processes for ps(\) by editing the command line argu-
ment list in place. Because xdm can't allocate additional space for this task, it is useful to start

xdm with a reasonably long command line (15 to 20 characters should be enough). Each pro-
cess that is servicing a display is marked -<Display_Name>.

Authentication Widget Resources

The authentication widget is an application which reads a name/password pair from the key-
board. As this is a toolkit client, nearly every imaginable parameter can be controlled with a

resource. Resources for this widget should be put into the file named by Display-

Manager .DISPLAY, resources. All of these have reasonable default values, so it is not

necessary to specify any of them.

xlogin.Login.width, xlogin.Login.height, xlogin.Login.x,

xlogin.Login.y

The geometry of the login widget is normally computed automatically. If you

wish to position it elsewhere, specify each of these resources.

354 X Window System User's Guide

X Display Manager (continued) xdm

xlogin.Login.foreground

The color used to display the typed-in user name.

xlogin.Login.font

The font used to display the typed-in user name.

xlogin.Login.greeting

A string which identifies this window. The default is "Welcome to the X

Window System".

xlogin.Login.unsecureGreeting

When X authorization is requested in the configuration file for this display

and none is in use, this greeting replaces the standard greeting. Its default

value is "This is an unsecure session". (Available as of Release 4.)

xlogin.Login.greetFont

The font used to display the greeting.

xlogin.Login.greetColor

The color used to display the greeting.

xlogin.Login.namePrompt

The string displayed to prompt for a user name, xrdb strips trailing white

space from resource values, so to add spaces at the end of the prompt (usually

a nice thing), add spaces escaped with backslashes. (In Release 3, Control-A

should work.) The default is "Login:".

xlogin.Login.passwdPrompt

The string displayed to prompt for a password. The default is "Pass-
word:".

xlogin.Login.promptFont

The font used to display both prompts.

xlogin.Login.promptColor

The color used to display both prompts.

xlogin.Login.fail

A message which is displayed when the authentication fails. The default is

"Login Failed, please try again".

xlogin.Login.failFont

The font used to display the failure message.

xlogin.Login.failColor

The color used to display the failure message.

xlogin.Login.failTimeout

The time (in seconds) that the fail message is displayed. The default is 30

seconds.

X Window System User's Guide 355

xdm (continued) X Display Manager

xlogin.Login.translations

This specifies the translations used for the login widget. See Chapter 9, Set-
ting Resources, and Appendix G, Translation Table Syntax, for more informa-
tion on translations. The default translation table for xdm is:

Ctrl<Key>H: delete-previous-character() \n\

Ctrl<Key>D: delete-character() \n\

Ctrl<Key>B: move-backward-character() \n\

Ctrl<Key>F: move-forward-character() \n\

Ctrl<Key>A: move-to-begining() \n\

Ctrl<Key>E: move-to-end() \n\

Ctrl<Key>K: erase-to-end-of-line() \n\

CtrKKeyXJ: erase-line() \n\

Ctrl<Key>X: erase-line() \n\

Ctrl<Key>C: restart-session() \n\

Ctrl<Key>\\: abort-session() \n\

<Key>BackSpace: delete-previous-character() \n\

<Key>Delete: delete-previous-character() \n\

<Key>Return: finish-fieldO \n\

<Key>: insert-char() \

The actions that are supported by the widget are:

delete-previous-character Erases the character before the cursor.

delete-character Erases the character after the cursor.

move-backward-character Moves the cursor backward.

move-forward-character Moves the cursor forward.

move-to-begining (Apologies about the spelling error.) Moves the cursor to

the beginning of the editable text

move-to-end Moves the cursor to the end of the editable text

erase-to-end-of-line Erases all text after the cursor.

erase-line Erases the entire text.

finish-field If the cursor is in the name field, proceeds to the password

field; if the cursor is in the password field, check the current

name/password pair. If the name/password pair are valid,

xdm starts the session. Otherwise the failure message is

displayed and the user is prompted to try again.

abort-session Terminates and restarts the server.

abort-display Terminates the server, disabling it. This is a rash action and

is not accessible in the default configuration. It can be used

to stop xdm when shutting the system down, or when using

xdmshell.

356 X Window System User's Guide

X Display Manager (continued) xdm

restart-session Resets the X server and starts a new session. This can be

used when the resources have been changed and you want

to test them, or when the screen has been overwritten with

system messages.

insert-char Inserts the character typed.

set-session-argument Specifies a single word argument which is passed to the

session at startup. See 'The Xsession File" and 'Typical

Usage" below.

allow-all-access Disables access control in the server, this can be used when

the ^authority file cannot be created by xdm. Be very

careful when using this; it might be better to disconnect the

machine from the network first. (Available as of Release 4.)

The Xstartup File

This file is typically a shell script. It is run as "root" and should be very careful about security.

This is the place to put commands which make fake entries in /etc/utmp, mount users' home

directories from file servers, display the message of the day, or abort the session if logins are

not allowed. Various environment variables are set for the use of this script:

DISPLAY is set to the associated display name.

HOME is set to the home directory of the user.

USER is set to the user name.

PATH is set to the value of DisplayManager .DISPLAY. systemPath.

SHELL is set to the value of DisplayManager .DISPLAY. systemShell.

XAUTHORITY may be set to a non-standard authority file (Release 4).

No arguments of any kind are passed to the script, xdm waits until this script exits before start-
ing the user session. If the exit value of this script is non-zero, xdm discontinues the session

immediately and starts another authentication cycle.

The Xsession File

This is the script that is run as the user's session. It is run with the permissions of the author-
ized user, and has several environment variables specified:

DISPLAY is set to the associated display name.

HOME is set to the home directory of the user.

USER is set to the user name.

PATH is set to the value of DisplayManager .DISPLAY. userPath.

SHELL is set to the user's default shell (from letclpasswd).

XAUTHORITY may be set to a non-standard authority file (Release 4).

X Window System User's Guide 357

xdm (continued) X Display Manager

At most installations, Xsession should look in $HOME for a file jcsession which would contain

commands that each user would like to use as a session. This would replace the system default

session. Xsession should also implement the system default session if no user-specified session

exists. See 'Typical Usage" below.

An argument may be passed to this program from the authentication widget using the 'set-

session-argument' action. This can be used to select different styles of session. One very good

use of this feature is to allow the user to escape from the ordinary session when it fails. This

would allow users to repair their own jcsession if it fails, without requiring administrative inter-
vention. The section 'Typical Usage" demonstrates this feature.

The Xreset File

Symmetrical with Xstartup, this script is run after the user session has terminated. Run as root,

it should probably contain commands that undo the effects of commands in Xstartup, removing

fake entries from letclutmp or unmounting directories from file servers. The collection of envi-
ronment variables that were passed to Xstartup are also given to Xreset.

Typical Usage

Actually, xdm is designed to operate in such a wide variety of environments that "typical" is

probably a misnomer. However, this section will focus on making xdm a superior solution to

traditional means of starting X from letclttys or manually.

First off, the xdm configuration file should be set up. A good thing to do is to make a directory

(lusrlliblXlllxdm comes immediately to mind) that will contain all of the relevant files. Here is

a reasonable configuration file for Release 4, which could be named xdm-config:

DisplayManager.servers: /usr/lib/Xll/xdm/Xservers

DisplayManager.errorLogFile: /usr/lib/Xll/xdm/xdm-errors

DisplayManager.pidFile: /usr/lib/Xll/xdm/xdm-pid

DisplayManager*resources: /usr/lib/Xll/xdm/Xresources

DisplayManager*session: /usr/lib/Xll/xdm/Xsession

DisplayManager._0.authorize: true

DisplayManager*authorize: false

If you are running the Release 3 version of xdm, the default xdm-config file looks like this:

DisplayManager.servers: /usr/lib/Xll/xdm/Xservers

DisplayManager.errorLogFile: /usr/lib/Xll/xdm/xdm-errors

DisplayManager*resources: /usr/lib/Xll/xdm/Xresources

DisplayManager*startup: /usr/lib/Xll/xdm/Xstartup

DisplayManager*session: /usr/lib/Xll/xdm/Xsession

DisplayManager*reset: /usr/lib/Xll/xdm/Xreset

As you can see, the xdm-config file primarily contains references to other files. Note that some

of the resources are specified with "*" separating the components. These resources can be

made unique for each different display, by replacing the "*" with the display name, but nor-
mally this is not very useful. See the "Resources" section for a complete discussion.

The first file, lusrlliblXlllxdmlXservers, contains the list of displays to manage. Most worksta-
tions have only one display, numbered 0, so the file will look like this:

353 X Window System User's Guide

X Display Manager (continued) xdm

:0 display_class local /usr/bin/Xll/X :0

This will keep lusrlbinlXUIX running on this display and manage a continuous cycle of

sessions.

The file lusrlliblXlllxdmlxdm-errors will contain error messages from xdm and anything output

to standard error by Xstartup, Xsession or Xreset. When you have trouble getting xdm working,

check this file to see if xdm has any clues to the trouble.

The next configuration entry, lusrlliblXll IxdmlXresources, is loaded onto the display as a

resource database using xrdb. As the authentication widget reads this database before starting

up, it usually contains parameters for that widget

xlogin*login.translations: #override\\e

<Key>Fl: set-session-argument(failsafe) finish-field()\\en\\e

<Key>Return: set-session-argument() finish-field{)

xlogin*borderWidth: 3

#ifdef COLOR

xlogin*greetColor: #f63

xlogin*failColor: red

xlogin*Foreground: black

xlogin*Background: #fdc

#else

xlogin*Foreground: black

xlogin*Background: white

#endif

The various colors specified here look reasonable on several of the displays we have, but may

look awful on other monitors. As X does not currently have any standard color naming scheme,

you might need to tune these entries to avoid disgusting results. Please note the translations

entry; it specifies a few new translations for the widget which allow users to escape from the

default session (and avoid troubles that may occur in it). Note that if ^override is not specified,

the default translations are removed and replaced by the new value, not a very useful result as

some of the default translations are quite useful (like <Key>: insert-char () which

responds to normal typing).

The Xstartup file used here simply prevents login while the file letclnologin exists. As there is

no provision for displaying any messages here (there isn't any core X client which displays

files), the user will probably be baffled by this behavior. I don't offer this as a complete

example, but simply a demonstration of the available functionality.

Here is a sample Xstartup script:

#!/bin/sh

#

Xstartup

I

This program is run as root after the user is verified

#

if [-f /etc/nologin]; then

exit 1

X Window System User's Guide 359

xdm (continued) X Display Manager

fi

exit 0

The most interesting script is Xsession. This version recognizes the special "failsafe" mode,

specified in the translations in the Xresources file above, to provide an escape from the ordinary

session:

#!/bin/sh

#

Xsession

#

This is the program that is run as the client

for the display manager. This example is

quite friendly as it attempts to run a per-user

.xsession file instead of forcing a particular

session layout

case $# in

1)

case $1 in

failsafe)

exec xterm -geometry 80x24-0-0 -Is

esac

startup=$HOME/.xsession

resources=$HOME/.Xresources

#

check for a user-specific session and execute it

#

Note: the -x flag to test is not supported in all versions of

unix, check with local authorities before proceeding . . .

#

if [-f $startup]; then

if [-x $startup]; then

exec $startup

else

exec /bin/sh $startup

fi

else

#

a simple default session. Check to see

if the user has created a default resource file

360 X Window System User's Guide

X Display Manager (continued) xdm

and load it, start the universal window manager

and use xterm as the session control process.

#

if [-f Sresources]; then

xrdb -load $resources

fi

twin &

exec xterm -geometry 80x24+10+10 -Is

fi

No Xreset script is necessary, so none is provided in Release 4. (The Release 3 sample Xreset

file contains nothing but a comment.)

Some Other Possibilities

You can also use xdm to run a single session at a time, using the 4.3 init options or other suit-
able daemon by specifying the server on the command line:

% xdm -server ":0 SUN-3/60CG4 local /usr/bin/X :0"

Or, you might have a file server and a collection of X terminals. The configuration for this

could look identical to the sample above, except the Xservers file might look like:

extol:0 VISUAL-19 foreign

exalt:0 NCD-19 foreign

explode:0 NCR-TOWERVIEW3000 foreign

This would direct xdm to manage sessions on all three of these terminals. See "Controlling

xdm" above for a description of using signals to enable and disable these terminals in a manner

reminiscent of init.

One thing that xdm isn't very good at doing is coexisting with other window systems. To use

multiple window systems on the same hardware, you'll probably be more interested in xinit.

See Also

X, xinit, and XDMCP

Author

Keith Packard, MIT X Consortium.

X Window System User's Guide 361

^-Dump Window Directly to Printer-

Name

xdpr - dump an X window directly to the printer.

Syntax

xdpr [filename] [options]

Description

xdpr runs the commands xwd, xpr, and lpr(l) to dump an X window, process it for a laser

printer, and print it out. This is the easiest way to get a printout of a window, xdpr by default

will print the largest possible representation of the window on the output page.

The options for xdpr are the same as those for xpr, xwd, and lpr(l). The most commonly used

options are described below; see the reference pages for these commands for more detailed

descriptions of the many options available.

Options

filename Specifies an existing file containing a window dump (created by xwd) to be

printed instead of selecting an X window.

-Pprin ter Specifies the name of the printer to be used. If a printer name is not specified

here, xdpr (really, lpr(l)) will send your output to the printer specified by the

PRINTER environment variable. Be sure that the type of the printer matches

the type specified with the -device option.

-device printer_device

Specifies the device on which the file is to be printed. Currently the follow-
ing printers are supported:

In03 Digital LN03.

lalOO Digital LA 100.

Ijet HP LaserJet series and other monochrome PCL devices,

such as ThinkJet, QuietJet, RuggedWriter, HP2560 series,

and HP2930 series printers. (As of Release 4.)

p j e t HP PaintJet (color mode). (As of Release 4.)

p jetxl HP PaintJet XL Color Graphics Printer (color mode). (As

of Release 4.)

pp IBMPP3812.

ps PostScript printer.

-he Ip Displays the list of options known to xdpr.

-display [host] : server[. screen]

Allows you to specify the server to connect to. host specifies the machine,

server specifies the server number, and screen specifies the screen num-
ber. For example,

xdpr -display your_node:0.1

362 X Window System User's Guide

Dump Window Directly to Printer (continued) xdpr

prints a dump of an X window from screen 1 of server 0 on the machine

your_node. If the host is omitted, the local machine is assumed. If the

screen is omitted, screen 0 is assumed; the server and colon (:) are necessary

in all cases.

Any other arguments will be passed to the xwd, xpr, and lpr(\) commands as appropriate for

each.

Environment Variables

PRINTER Specifies which printer to use by default.

See Also

X, xwd, xpr, xwud, lpr(l)

Authors

Paul Boutin, MIT Project Athena;

Michael R. Gretzinger, MIT Project Athena;

Jim Gettys, MIT Project Athena.

X Window System User's Guide
363

xdpvinfo \

v Display Information Utility-

Name

xdpyinfo - display information utility for X.

Syntax

xdpyinfo [option]

Description

xdpyinfo is a utility for displaying information about an X server. It is used to examine the

capabilities of a server, the predefined values for various parameters used in communicating

between clients and the server, and the different types of screens and visuals that are available.

Option

-display [host]:server[. screen]

Specifies the display about which xdpyinfo should display information, host

specifies the machine, server specifies the server number, and screen

specifies the screen number. By default, xdpyinfo displays information about

all screens on the display. For example,

xdpyinfo -display your_node:0.0

displays information about all screens of server 0 of the machine

your_node. If the hostname is omitted, the local node is assumed. If the

screen is omitted, screen 0 is assumed. The server and colon (:) are necessary

in all cases.

Sample Output (Release 4)

The following shows a sample produced by the Release 4 version of xdpyinfo when connected

to a display that supports an 8 plane screen and a 1 plane screen.

name of display: :0.0

version number: 11.0

vendor string: MIT X Consortium

vendor release number: 4

maximum request size: 16384 longwords (65536 bytes)

motion buffer size: 0

bitmap unit, bit order, padding: 32, MSBFirst, 32

image byte order: MSBFirst

number of supported pixmap formats: 2

supported pixmap formats:

depth 1, bits_per_pixel 1, scanlinejpad 32

depth 8, bits_per_pixel 8, scanline_pad 32

keycode range: minimum 8, maximum 129

number of extensions: 4

SHAPE

MIT-SHM

Multi-Buffering

MIT-SUNDRY-NONSTANDARD

default screen number: 0

number of screens: 2

X Window System User's Guide

-".m
*

- . : -.

. revise

.-..--. : ". - . . .

I

:

. " .

:..:

.--..:" 1 planes

: r : .-:".-. ; . - - "

- - " : . . . : : _ - " . . : . . -. ..:...-..

5 :

- . " -

::

: - : ::~- . " . . " . . " - - "

d:

" . " "

- -

. , : ,

xdpyinfo (continued) Display Information Utility

red, green, blue masks: 0x7, 0x38, OxcO

significant bits in color specification: 8 bits

visual:

visual id: Ox8006a

class: TrueColor

depth: 8 planes

size of colormap: 8 entries

red, green, blue masks: 0x7, 0x38, OxcO

significant bits in color specification: 8 bits

number of mono multibuffer types: 6

visual id, max buffers, depth: 0x80065, 0,

visual id, max buffers, depth: 0x80066, o,

visual id, max buffers, depth: 0x80067, o,

visual id, max buffers, depth: 0x80068, o,

visual id, max buffers, depth: 0x80069, o,

visual id, max buffers, depth: Ox8006a, o,

number of stereo multibuffer types: 0

screen #1:

dimensions: 1152x900 pixels (325x254 millimeters)

resolution: 90x90 dots per inch

depths (1): 1

root window id: 0x80070

depth of root window: 1 plane

number of colormaps: minimum 1, maximum 1

default colormap: Ox8006c

default number of colormap cells: 2

preallocated pixels: black 1, white 0

options: backing-store YES, save-unders YES

current input event mask: OxdOSOld

KeyPressMask ButtonPressMask ButtonReleaseMask

EnterWindowMask ExposureMask SubstructureRedirectMask

PropertyChangeMask ColormapChangeMask

number of visuals: 1

default visual id: 0x80064

visual:

visual id: 0x80064

class: StaticGray

depth: 1 plane

size of colormap: 2 entries

red, green, blue masks: 0x0, 0x0, 0x0

significant bits in color specification: 1 bits

number of mono multibuffer types: 1

visual id, max buffers, depth: 0x80064, 0, 1

number of stereo multibuffer types: 0

366 X Window System User's Guide

Display Information Utility (continued) xdpyinfo

Sample Output (Release 3)

The following shows a sample produced by the Release 3 version of xdpyinfo when connected

to a display that supports an 8 plane Pseudocolor screen as well as a 1 plane (monochrome)

screen.

name of display: empire:0.0

version number: 11.0

vendor string: MIT X Consortium

vendor release number: 3

maximum request size: 16384 longwords (65536 bytes)

motion buffer size: 0

bitmap unit, bit order, padding: 32, MSBFirst, 32

image byte order: MSBFirst

keycode range: minimum 8, maximum 129

default screen number: 0

number of screens: 2

screen #0:

dimensions: 1152x900 pixels (325x254 millimeters)

resolution: 90x90 dots per inch

root window id: Ox8006d

depth of root window: 1 plane

number of colormaps: minimum 1, maximum 1

default colormap: 0x80065

default number of colormap cells: 2

preallocated pixels: black 1, white 0

options: backing-store YES, save-unders YES

current input event mask: Oxlb8003c

ButtonPressMask ButtonReleaseMask EnterWindowMask

LeaveWindowMask SubstructureNotifyMask SubstructureRedirectMask

FocusChangeMask ColormapChangeMask OwnerGrabButtonMask

number of visuals: 1

default visual id: 0x80064

visual:

visual id: 0x80064

class: StaticGray

depth: 1 plane

size of colormap: 2 entries

red, green, blue masks: 0x0, 0x0, 0x0

significant bits in color specification: 1 bits

screen #1:

dimensions: 1152x900 pixels (325x254 millimeters)

resolution: 90x90 dots per inch

root window id: 0x80070

depth of root window: 8 planes

number of colormaps: minimum 1, maximum 1

default colormap: 0x80067

default number of colormap cells: 256

preallocated pixels: black 1, white 0

options: backing-store YES, save-unders YES

X Window System User's Guide 367

Xdpyinfo (continued) Display Information Utility

current input event mask: 0x0

number of visuals: 1

default visual id: 0x80066

visual:

visual id: 0x80066

class: Pseudocolor

depth: 8 planes

size of colormap: 256 entries

red, green, blue masks: 0x0, 0x0, 0x0

significant bits in color specification: 8 bits

See Also

X, xwininfo, xprop, xrdb

Bugs in Release 3

Due to a bug in the Xlib interface, there is no portable way to determine the depths of pixmap

images that are supported by the server.

Author

Jim Fulton, MIT X Consortium.

368 X Window System User's Guide

-Text Editor for X- xedit

Name

xedit - simple text editor for X.

Syntax

xedit [options] [filename]

Description of the Release 4 Client

The Release 4 version of xedit provides a window consisting of the following four areas:

Commands Section

A set of commands that allow you to exit xedit, save the file, or load a new

file into the edit window.

Message Window

Displays xedit messages. In addition, this window can be used as a scratch

pad.

Filename Display

Displays the name of the file currently being edited, and whether this file is

Read - Write or Read Only.

Edit Window Displays the text of the file that you are editing or creating.

Editing (Release 4)

The Athena Text widget is used for the three sections of this application that allow text input.

The characters typed will go to the Text widget that the pointer cursor is currently over. If the

pointer cursor is not over a text widget then the keypresses will have no effect on the applica-
tion. This is also true for the special key sequences that popup dialog widgets, so typing Con-

trol-S in the filename widget will enable searching in that widget, not the edit widget.

Both the message window and the edit window will create a scrollbar if the text to display is

too large to fit in that window. Horizontal scrolling is not allowed by default, but can be turned

on through the Text widget's resources, see Athena Widget set documentation for the exact

resource definition.

Commands (Release 4)

Quit Quits the current editing session. If any changes have not been saved, xedit

displays a warning message, allowing the user to save the file.

Save If file backups are enabled (see "Resources") xedit stores a copy of the origi-
nal, unedited file in <prefix>/ite<suffix>, then overwrites the file with the

contents of the edit window. The filename is retrieved from the Text widget

directly to the right of the Load button.

Load Loads the file named in the text widget immediately to the right of the this

button and displays it in the Edit Window. If the currently displayed file has

been modified a warning message will ask the user to save the changes, or

press Load again.

Description of the Release 3 Client

The Release 3 version of xedit provides a window consisting of the following three areas:

X Window System User's Guide 369

xedit (continued) Text Editor for X

Commands Menu

Lists editing commands (for example, Undo or Search).

Message Window

Displays xedit messages. In addition, this window can be used as a scratch

pad.

Edit Window Displays the text of the file that you are editing or creating.

Commands (Releases)

Quit Quits the current editing session. If any changes have not been saved, xedit

displays a warning message and allows you to save the file.

Save Stores a copy of the original, unedited file in/i/e.BAK. Then, overwrites the

original file with the edited contents.

Edit Allows the text displayed in the Edit window to be edited.

Load Loads the specified file and displays it in the Edit window.

Undo Undoes the last edit only.

More Undoes each edit previous to the last edit, which must first be undone with

the Undo command.

Jump Advances the cursor from the beginning of the file to the text line that corre-
sponds to the selected line number.

Searches from the cursor back to the beginning of the file for the string

entered in the Search input box. If you do not enter a string in the Search

input box, xedit automatically copies the last string that you selected from

any X application into the Search input box and searches for that string.

Search » Searches from the cursor forward to the end of the file for the string entered

in the search input box. If you do not enter a string in the Search input box,

xedit automatically copies the last string that you selected from any X appli-
cation into the Search input box and searches for that string.

Replace Replaces the last searched-for string with the string specified in the Replace

input box. If no string has been previously searched for, searches from the

insert cursor to the end of the file for the next occurrence of the search string

and highlights it.

All Repositions the cursor at the beginning of the file and replaces all occur-
rences of the search string with the string specified in the Replace input box.

Options

xedit accepts all of the standard X Toolkit command line options, as well as the following:

filename Specifies the file that is to be loaded during start-up. This is the file that will

be edited. If a file is not specified, xedit lets you load a file or create a new

file after it has started up.

370 X Window System User's Guide

Text Editor for X (continued) xedit

Widgets (Release 4)

In order to specify resources, it is useful to know the hierarchy of the widgets which compose

xedit. In the notation below, indentation indicates hierarchical structure. The widget class

name is given first, followed by the widget instance name.

Xedit xedit

Paned paned

Paned buttons

Command quit

Command save

Command load

Text filename

Label bc_label

Text messageWindow

Label labelWindow

Text editWindow

Resources (Release 4)

For the Release 4 version of xedit, the available resources are:

enableBackups (class EnableBackups)

Specifies that, when edits made to an existing file are saved, xedit is to copy

the original version of that file to <prefix>/t/e<suffix> before it saves the

changes. The default value for this resource is "off, stating that no backups

should be created.

backupNamePref ix (class BackupNamePref ix)

Specifies a string that is to be prepended to the backup filename. The default

is that no string shall be prepended.

backupNameSuf f ix (class BackupNameSuf f ix)

Specifies a string that is to be appended to the backup filename. The default

is to append the string ".BAK".

Resources (Releases)

For the Release 3 verion of xedit, the available class identifiers are:

ButtonBox The two boxes containing command buttons.

Command All command buttons.

Scrollbar The two scroll bars.

Text The two text areas.

The available name identifiers are:

All

Edit

EditWindow

Jump

X Window System User's Guide 371

xedit (continued) Text Editor for X

Load

MessageWindow

More

Quit

Replace

Save

Undo

xedit

The name identifiers for the various buttons are the same as the string on each button. The

resources for individual buttons can be set using these names. All of the buttons can be

affected by using the Command class. The resources for the two text windows can be modified

using the names Edit window and MessageWindow.

Beyond the standard resources, xedit's resources are:

EnableBackups

Specifies that, when edits made to an existing file are saved, xedit is to copy

the original version of that file tofile.BAK before it saves the changes. If the

value of this option is specified as off, a backup file is not created.

background Specifies the background color to be displayed in command buttons. The

default is white.

bo rde r Specifies the border color of the xedit window.

borderwidth Specifies the border width, in pixels, of the xedit window.

font Specifies the font displayed in the xedit window.

foreground Specifies the foreground color of the xedit window. The default is black.

geometry Specifies the geometry (window size and screen location) to be used as the

default for the xedit window. For the format of the geometry specification,

seeX.

internalHeight

Specifies the internal horizontal padding (spacing between text and button

border) for command buttons.

internalWidth

Specifies the internal vertical padding (spacing between text and button bor-
der) for command buttons.

Key Bindings (Release 3)

Each specification included in the XtActions file modifies a key setting for the editor that xedit

uses. When defining key specifications, you must use the following resource specification:

xedit *text.EventBindings: .XtAct ions

Each key specification assigns an editor command to a named key and/or mouse combination

and has the format:

372 X Window System User's Guide

Text Editor for X (continued) xedlt

key: function

where

key Specifies the key or mouse button that is used to invoke the named function.

functi on Specifies the function to be invoked when the named key is pressed.

Files

/usr/lib/Xll/app-defaults/Xedit - Specifies required resources (Release 4)

'IXtActions (Release 3 only)

lusrlliblXlllXtActions (Release 3 only)

Restrictions In Release 4

There is no undo function.

Restrictions in Release 3

Large numbers of certain edit functions (for example, Undo or More) tend to degrade perfor-
mance over time. If there is a noticeable decrease in response time, save and reload the file.

Bugs In Release 3

It is not clear how to select a line number for the Jump command.

The string searches do not work properly.

See Also

X, xrdb, Athena Widget set documentation

Copyright

Copyright © 1988, Digital Equipment Corporation. Copyright © 1989, Massachusetts Institute

of Technology.

Author

Chris D. Peterson, MIT X Consortium.

X Window System User's Guide

X6V \

v Print X Events-

Name

xev - print contents of X events.

Syntax

xev [options]

Description

xev creates a window and then asks the X server to send it notices called events whenever any-
thing happens to the window (such as being moved, resized, typed in, clicked in, etc.). It is use-
ful for seeing what causes events to occur and to display the information that they contain.

xev is included in the Release 3 standard distribution; in Release 4, it has been moved to demos.

Options

-display [host] : server[. screen]

Allows you to specify the host, server, and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

x«v -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

nost is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-geometry geometry

The xev window is created with the specified size and location determined by

the supplied geometry specification. The -geometry option can be (and

often is) abbreviated to -g, unless there is a conflicting option that begins

with "g." The argument to the geometry option (geometry) 's referred to as

a "standard geometry string," and has the form widthx-

hei gh t±xoff+yoff.

See Also

X, xwininfo, xdpyinfo; Volume One, Xlib Programming Manual', Volume Zero, X Protocol

Reference Manual.

Author

Jim Fulton, MIT X Consortium.

374 X Window System User's Guide

- Font Dlsplayer '

Name

xfd - X window font displayer.

Syntax

xfd [options]-fn fontname

Description of the Release 4 Client

The Release 4 version of xfd creates a window containing the name of the font being displayed,

a row of command buttons, several lines of text for displaying character metrics, and a grid

containing one glyph per cell. The characters are shown in increasing order from left to right,

top to bottom. The first character displayed at the top left will be character number 0 unless the

-start option has been supplied in which case the character with the number given in the

-start option will be used.

The characters are displayed in a grid of boxes, each large enough to hold any single character

in the font Each character glyph is drawn using the Poly Text 16 request (used by the Xlib

routine XDrawStringl6). If the -box option is given, a rectangle will be drawn around

each character, showing where an imageTextlG request (used by the Xlib routine XDraw-

lmageString!6) would cause background color to be displayed.

The origin of each glyph is normally set so that the character is drawn in the upper left hand

corner of the grid cell. However, if a glyph has a negative left bearing or an unusually large

ascent, descent, or right bearing (as is the case with the cursor font), some character may not

appear in their own grid cells. The -center option may be used to force all glyphs to be cen-
tered in their respective cells.

All the characters in the font may not fit in the window at once. To see the next page of glyphs,

press the Next button at the top of the window. To see the previous page, press Prev. To exit

xfd, press Quit.

Individual character metrics (index, width, bearings, ascent and descent) can be displayed at

the top of the window by pressing on the desired character.

The font name displayed at the top of the window is the full name of the font, as determined by

the server. See xlsfonts for ways to generate lists of fonts, as well as more detailed summaries

of their metrics and properties.

Description of the Release 3 Client

The Release 3 version of xfd creates a window in which the characters in the named font are

displayed. The characters are shown in increasing order from left to right, top to bottom. The

first character displayed at the top left will be character number 0 unless the -start option

has been supplied in which case the character with the number given in the -start option

will be used.

The characters are displayed in a grid of boxes, each large enough to hold any character in the

font If the -gray option has been supplied, the characters will be displayed using the Xlib

routine XDrawlmageString using the foreground and background colors on a gray back-

X Window System User's Guide 375

xf d (continued) Font Displayer

ground. This permits determining exactly how XDrawlmageString will draw any given

character. If -gray has not been supplied, the characters will simply be drawn using the fore-
ground color on the background color.

All the characters in the font may not fit in the window at once. To see additional characters,

click the right mouse button on the window. This will cause the next window full of characters

to be displayed. Clicking the left mouse button on the window will cause the previous window

full of characters to be displayed, xfd will beep if an attempt is made to go back past the Oth

character.

Note that if the font is a 8 bit font, the characters 256-511 (OxlOO-Oxlff in hexidecimal),

512-767 (Ox200-0x2ff), etc., will display exactly the same as the characters 0-255 (OxOO-Oxff).

xfd by default creates a window big enough to display the first 256 characters using a 16 by 16

grid. In this case, there is no need to scroll forward or backward window fulls in order to see

the entire contents of a 8 bit font. Of course, this window may very well not fit on the screen.

Clicking the middle button on a character will cause that character's number to be displayed in

both decimal and hexidecimal at the bottom of the window. If verbose mode is selected, addi-
tional information about that particular character will be displayed as well. The displayed

information includes the width of the character, its left bearing, right bearing, ascent, and

descent. If verbose mode is selected, typing '<' or *>* into the window will display the mini-
mum or maximum values respectively taken on by each of these fields over the entire font.

The fontname is interpreted by the X server. To obtain a list of all the fonts available, use

xlsfonts.

The window stays around until the xfd process is killed or one of *q', 'Q', ' ', or Control-C is

typed into the xfd window.

Options (Release 4)

The Release 4 version of xfd accepts all of the standard X Toolkit command line options, as

well as the following additional options. The option -f n font is required.

- f n f on t Specifies the font to be displayed.

-box Indicates that a box outlining the area that would be filled with background

color by an Image Text request.

-center Indicates that each glyph should be centered in its grid.

-start char_num

Specifies that character number char_num should be the first character

displayed. (It appears in the upper left hand corner of the grid.) This option

is used to view characters at arbitrary locations in the font. The default is 0.

-be col or Specifies the color to be used if imageText boxes are drawn.

Options (Release 3)

The Release 3 version of xfd accepts the following options. The option -f n font is required.

-f n font Specifies the font to be displayed.

376 X Window System User's Guide

Font Displayer (continued) xfd

-bw pixel s Allows you to specify the width of the window border in pixels.

-rv Specifies that the foreground and background colors be switched. The default

colors are black on white.

-fw Overrides a previous choice of reverse video. The foreground and back-
ground colors will not be switched.

- f g col or On color displays, determines the foreground color (the color of the text).

-bg color On color displays, determines the background color.

-bd col or On color displays, determines the color of the border.

-bf fontname

Specifies the font to be used for the messages at the bottom of the window.

-tl title Specifies that the title of the displayed window should be ti tie.

-in iconname

Specifies that the name of the icon should be i conname.

-icon filename

Specifies that the bitmap in file filename should be used for the icon.

-verbose Specifies that verbose mode should be used (i.e., extra information about the

font should be displayed).

-gray Specifies that a gray background should be used.

-start char_num

Specifies that character number char_num should be the first character

displayed. (It appears in the upper left hand corner of the grid.) This option

is used to view characters at arbitrary locations in the font. The default is 0.

-geometry geometry

Specifes the size and location of the xfd window. The -geometry option

can be (and often is) abbreviated to -g, unless there is a conflicting option

that begins with "g." The argument to the geometry option (geometry) is

referred to as a "standard geometry string," and has the form widthx-

hei gh t±xoff±yoff.

-display [host]:server[.screeri]

Allows you to specify the host, server and screen on which to create the xfd

window, host specifies the machine on which to create the xfd window,

server specifies the server number, and screen specifies the screen num-
ber. For example,

xfd -display your_/5ode:0.1

creates a window on screen 1 of server 0 on the machine your_node. If the

host is omitted, the local machine is assumed. If the screen is omitted, the

screen 0 is assumed; the server and colon (:) are necessary in all cases.

X Window System User's Guide 377

xfd (continued) Font Disp layer

Resources (Release 4)

The Release 4 version of xfd was written with the X Toolkit Intrinsics. xfd accepts the follow-
ing resources, which are accepted by most applications written with the Toolkit:

background (class Background)

Specifies the color to use for the window background.

borderWidth (class BorderWidth)

Specifies the width in pixels of the window border.

borderColor (class BorderColor)

Specifies the color to use for the window border.

foreground (class Foreground)

Specifies the color to use for text and graphics within the window.

Resources (Releases)

The Release 3 xfd program uses the following resources:

BorderWidth Set the border width of the window in pixels.

BorderColor Set the border color of the window.

ReverseVideo

If "on", reverse the definition of foreground and background color.

Foreground Set the foreground color.

Background Set the background color.

BodyFont Set the font to be used in the body of the window (i.e., for messages). This is

not the font that xfd displays; it is the font used to display information about

the font being displayed.

IconName Set the name of the icon.

iconBitmap Set the file we should look in to get the bitmap for the icon.

Title Set the title to be used.

Bugs In Release 4

xfd should skip over pages full of non-existent characters.

Bugs in Release 3

Character information displayed in verbose mode is sometimes clipped to the window bound-
ary hiding it from view.

xfd should skip over pages full of non-existent characters.

See Also

X, xfontsel, xlsfonts, xrdb

375 X Window System User's Guide

Font Displayer (continued) xfd

Author

Release 4 version by Jim Fulton, MIT X Consortium;

Release 3 version by Mark Lillibridge, MIT Project Athena.

X Window System User's Guide 379

xfontsel \
̂ Preview and Select Fonts-

Name

xfontsel - point and click interface for selecting display font names.

Syntax

xfontsel [options]

Description

Available as of Release 4, xfontsel provides a simple way to display the fonts known to your X

server, examine samples of each, and retrieve the X Logical Font Description (XLFD) full

name for a font.

If -pattern is not specified, all fonts with XLFD 14-part names will be selectable. To work

with only a subset of the fonts, specify -pattern followed by a partially or fully qualified

font name. For example,

% xfontsel -pattern *medium*

will select the subset of fonts that contain the string medium somewhere in their font name.

Be careful about escaping wildcard characters in your shell.

If -print is specified on the command line the selected font specifier will be written to stan-
dard output when the quit button is activated. Regardless of whether or not -print was

specified, the font specifier may be made the (text) selection by activating the select button.

Clicking any pointer button in one of the XLFD field names will pop up a menu of the cur-
rently-known possibilities for that field. If previous choices of other fields were made, only

values for fonts which matched the previously selected fields will be selectable; to make other

values selectable, you must deselect some other field(s) by choosing the "*" entry in that field.

Unselectable values may be omitted from the menu entirely as a configuration option; see the

ShowUnselectable resource, below. Whenever any change is made to a field value,

xfontsel will assert ownership of the PRIMARY_FONT selection. Other applications (such as

xterni) may then retrieve the selected font specification.

Clicking the left pointer button in the select widget will cause the currently selected font name

to become the PRIMARY text selection as well as the PRIMARY_FONT selection. Then you can

paste the string into other applications. The select button remains highlighted to remind you

of this fact, and de-highlights when some other application takes the PRIMARY selection away.

The select widget is a toggle; pressing it when it is highlighted will cause xfontsel to release

the selection ownership and de-highlight the widget. Activating the select widget twice is the

only way to cause xfontsel to release the PRIMARY_FONT selection.

380 X Window System User's Guide

Preview and Select Fonts (continued) xf ontsel

Options

xfontsel accepts all of the standard X Toolkit command line options along with the additional

options described below.

-display host[: server][. screen]

Allows you to specify the host, server and screen on which to display the

xfontsel window, host specifies the machine, server specifies the server

number, and screen specifies the screen number. For example,

xfontsel -display your_/7ode:0.1

specifies screen 1 of server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, screen 0 is

assumed; the colon (:) is necessary in either case.

-pattern fontname

Specifies a subset of the available fonts, those with names that contain

fontname, which can be a partial or full name.

-print Specifies that the selected font will be written to standard output when the

quit button is activated.

-sample text

Specifies the sample text to be used to display the selected font, overriding

the default (the lower and uppercase alphabet and the digits 0 through 9).

Resources

The application class is XFontSel. Most of the user-interface is configured in the app-

defaults file; if this file is missing a warning message will be printed to standard output and the

resulting window will be nearly incomprehensible.

Most of the significant parts of the widget hierarchy are documented in the app-defaults file

(normally lusrlliblXlllapp-defaultslXFontSel).

Application specific resources:

cursor (class Cursor)

Specifies the cursor for the application window.

pattern (class Pattern)

Specifies the font name pattern for selecting a subset of available fonts.

Equivalent to the -pattern option. Most useful patterns will contain at

least one field delimiter, for example, *-m-* for monospaced fonts.

X Window System User's Guide 381

xf ontsel (continued) Preview and Select Fonts

printOnQuit (class PrintOnQuit)

If True, the currently selected font name is printed to standard output when

the quit button is activated. Equivalent to the -print option.

Widget-specific resources:

showUnselectable (class ShowUnselectable)

For each field menu, specifies whether or not to show values that are not cur-
rently selectable, based upon previous field selections. If shown, the

unselectable values are clearly identified as such and do not highlight when

the pointer is moved down the menu. The full instance name of this resource

is fieldN.menu.options.showUnselectable, class Menu-

Button. SimpleMenu. Opt ions .ShowUnselectable; where N is

replaced with the field number (starting with the left-most field numbered 0).

The default is True for all but field 11 (average width of characters in font)

and False for field 11. If you never want to see unselectable entries,

*menu.options .showUnselectable : False is a reasonable thing

to specify in a resource file.

Files

lusrlliblXlllapp-defaultslXFontSel - Specifies default resources.

See Also

xrdb

Bugs

Sufficiently ambiguous patterns can be misinterpreted and lead to an initial selection string

which may not correspond to what the user intended and which may cause the initial sample

text output to fail to match the proffered string. Selecting any new field value will correct the

sample output, though possibly resulting in no matching font.

Should be able to return a font for the PRIMARY selection, not just a string.

Any change in a field value will cause xfontsel to assert ownership of the PRIMARY_FONT

selection. Perhaps this should be parameterized.

When running on a slow machine, it is possible for the user to request a field menu before the

font names have been completely parsed. An error message indicating a missing menu is

printed to standard error, but otherwise nothing happens.

382 X Window System User's Guide

Preview and Select Fonts (continued) xfontsel

Author

Ralph R. Swick, Digital Equipment Corporation/MIT Project Athena.

X Window System User's Guide 383

xhost V
> Server Access Control-

Name

xhost - server access control program for X.

Syntax

xhost [options]

Description

The xhost program is used to add and delete hosts to and from the list of machines that are

allowed to make connections to the X server. This provides a rudimentary form of privacy con-
trol and security. It is only sufficient for a workstation (single user) environment, although it

does limit the worst abuses. Environments that require more sophisticated measures should use

the hooks in the protocol for passing authentication data to the server.

The server initially allows network connections only from programs running on the same

machine or from machines listed in the file letclXn.hosts (where n is the display number of the

server). The xhost program is usually run either from a startup file or interactively to give

access to other users.

Hostnames that are followed by two colons (::) are used in checking DECnet connections; all

other hostnames are used for TCP/IP connections.

If no command line options are given, the list of hosts that are allowed to connect is printed on

the standard output along with a message indicating whether or not access control is currently

enabled. This is the only option that may be used from machines other than the one on which

the server is running.

Options

xhost accepts the command line options described below. For security, the options that affect

access control may only be run from the same machine as the server.

[+]hostname The given hostname (the plus sign is optional) is added to the list of

machines that are allowed to connect to the X server.

-hostname The given hostname is removed from the list of machines that are allowed

to connect to the server. Existing connections are not broken, but new con-
nection attempts will be denied. Note that the current machine is allowed to

be removed; however, further connections (including attempts to add it back)

will not be permitted. Resetting the server (thereby breaking all connections)

is the only way to allow local connections again.

+ Access is granted to everyone, even if they aren't on the list of allowed hosts

(i.e., access control is turned off).

Access is restricted to only those machines on the list of allowed hosts (i.e.,

access control is turned on).

Files

letclXn.hosts

334 X Window System User's Guide

Server Access Control (continued) xhost

Bugs

You can't specify a display on the command line because -display indicates that you want

to remove the machine named display from the access list.

See Also

X, Xserver

Authors

Bob Scheifler, MIT Laboratory for Computer Science;

Jim Gettys, MIT Project Athena (DEC).

X Window System User's Guide

. . ^v

^ Window System Initializer -

Name

xinit - X Window System initializer.

Syntax

xinit [[client] options] [-[server_program]

[-display [host] :server[. screen]] options]

Description

The xinit program is used to start the X Window System server program and a first client pro-
gram (usually a terminal emulator) on systems that cannot start X directly from letclinit or in

environments that use multiple window systems. When this first client exits, xinit will kill the

X server program and then terminate.

If no specific client program is given on the command line, xinit will look in the user's home

directory for a file called jcinitrc to run as a shell script to start up other client programs. If no

such file exists, xinit will use the following xterm command line as a default:

xterm -geometry +1+1 -n login -display :0

If no specific server program is given on the command line, xinit will look in the user's home

directory for a file called jcserverrc to run as a shell script to start up the server. If no such file

exists, xinit will use the following as a default server specification:

X :0

Note that this assumes that there is a server program called X in the current search path. How-
ever, servers are usually named Xdisplaytype, where display type is the type of graphics display

which is driven by the server (for example, Xsuri). The site administrator should therefore

make a link to the appropriate type of server on the machine (see Chapter 2, Getting Started, in

Part One of this guide for details), or create a shell script that runs xinit with the appropriate

server.

Note that programs run by jcinitrc and by jcserverrc should be run in the background if they do

not exit right away, so that they don't prevent other programs from starting up. However, the

last long-lived program started (usually a window manager or terminal emulator) should be left

in the foreground so that the script won't exit (which indicates that the user is done and that

xinit should exit).

An alternate client and/or server may also be specified on the command line. The desired client

program and its arguments should be given as the first command line arguments to xinit. To

specify a particular server program, append a double dash (--) to the xinit command line (after

any client and arguments) followed by the desired server program.

Both the client program name and the server program name must begin with a slash (/) or a

period (.); otherwise, they are treated as an arguments to be appended to their respective startup

lines. This makes it possible to add arguments (for example, foreground and background

colors) without having to retype the whole command line.

If an explicit server name is not given and the first argument following the double dash (--) is a

colon followed by a digit, xinit will use that number as the display number instead of zero. All

remaining arguments are appended to the server command line.

386 X Window System User's Guide

Window System Initializer (continued) xinit

Note that you can start X manually by running xinit from the command line or start it automati-
cally by adding the xinit command line to your .login or .profile file. (See Appendix A, System

Management, for more information.)

Options

client Specifies the client to be started with the server.

serve r_jprogram

Specifies the server program to be used.

-display [host]:server[.screeri]

Specifies the host, server and screen on which you are initializing the X Win-
dow System. For example,

xinit -display your_node:0.1

specifies screen 1 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon (:) are necessary in any case.

Examples

xinit Will start up a server named X and run the user's jcinitrc, if it exists, or else

start an xterm.

xinit -- /usr/bin/Xll/Xqdss :1

Is how one could start a specific type of server on an alternate display.

xinit -geometry 80x65+10+10 -fn 8x13 -j -fg white -bgnavy

Will start up a server named X, and will append the given arguments to the

default xterm command. It will ignore jcinitrc.

xinit -e widgets -- Xsun -1 -c

Will use the command ./Xsun -I -c to start the server and will append the

arguments -e widgets to the default xterm command.

xinit rsh fasthost cpupig -display workstation: 1 -- 1 -a 2 -t 5

Will start a server named X on display 1 with the arguments -a 2 -t 5. It will

then start a remote shell on the machine fasthost in which it will run the com-

mand cpupig, telling it to display back on the local workstation.

Below is a sample jcinitrc that starts a clock, several terminals, and leaves the window manager

running as the "last" application. Assuming that the window manager has been configured

properly, the user then chooses the Exit menu item to shut down X.

xrdb -load $HOME/.Xres

xsetroot -solid gray &

xclock -g 50x50-0+0 -bw 0 &

xload -g 50x50-50+0 -bw 0 &

xterm -g 80x24+0+0 &

xterm -g 80x24+0-0 &

twm

X Window System User's Guide 387

Xinit (continued) Window System Initializer

Sites that want to create a common startup environment could simply create a default jcinitrc

that references a site-wide startup file:

#!/bin/sh

./usr/local/lib/site.xinitrc

Another approach is to write a script that starts xinit with a specific shell script. Such scripts

are usually named xll, xstart, or startx and are a convenient way to provide a simple interface

for novice users:

#!/bin/sh

./xinit/usr/local/bin/startx - /usr/bin/Xll/Xhp :1

Environment Variables

XINITRC Specifies an init file containing shell commands to start up the initial win-
dows. By default, jcinitrc in the home directory will be used.

See Also

X, Xserver, xterm

Author

Bob Scheifler, MIT Laboratory for Computer Science.

3QQ X Window System User's Guide

-Kill a Client '

Name

xkill - kill a client by its X resource.

Syntax

xkill [options]

Description

xkill is a utility for forcing the X server to close connections to clients. This program is very

dangerous, but is useful for aborting programs that have displayed undesired windows on a

user's screen. If no resource identifier is given with -id, xkill will display a special cursor as a

prompt for the user to select a window to be killed. If a pointer button is pressed over a non-

root window, the server will close its connection to the client that created the window.

Options

-display [host]:server[. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xkill -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-id resource

Specifies the X identifier for the resource whose creator is to be aborted. If

no resource is specified, xkill will display a special cursor with which you

should select a window to be killed.

-button number

-button any

Specifies the number of the pointer button that should be used to select the

window to kill. If the word any is specified, any button on the pointer can be

used. By default, the first button in the pointer map (which is usually the left-
most button) is used.

-all Indicates that all clients with top-level windows on the screen should be

killed, xkill will ask you to select the root window with each of the currently

defined buttons to give you several chances to abort. Use of this option is

highly discouraged.

-frame Indicates that xkill should ignore the standard conventions for finding top-

level client windows (which are typically nested inside a window manager

window), and simply believe that you want to kill direct children of the root.

(Available as of Release 4.)

OOQ

X Window System User's Guide

Xkill (continued) Kill a Client

Resources

Button Specifies a pointer button number to use when selecting the window to be

removed. If the word any is specified, any button on the pointer can be used.

See Also

X, xwininfo; Volume One, Xlib Programming Manual

Author

Jim Fulton, MIT X Consortium;

Dana Chee, Bellcore.

390 X Window System User's Guide

- Display Load Average '

Name

xload - display system load average.

Syntax

xload [options]

Description

The xload program displays a periodically updating histogram of the system load average.

Options

xload accepts all of the standard X Toolkit command line options along with the additional

options listed below:

-scale integer

Specifies the minimum number of tick marks in the histogram, where one

division represents one load average point. If the load goes above this num-
ber, xload will create more divisions, but it will never use fewer than this

number. The default is 1.

-update seconds

Specifies the frequency in seconds at which xload updates its display. If the

load average window is uncovered (by moving windows with a window man-
ager or by the xrefresh program), the graph will also be updated. In Release

4, the minimum amount of time allowed between updates is 1 second (the

default is 5 seconds). In Release 3, the minimum amount of time allowed

between updates is 5 seconds (which is also the default).

-hi color or

-highlight color

Specifies the color of the scale lines in Release 4. Specifies the color of the

label and scale lines in Release 3.

-jumpscroll pixels

Specifies the number of pixels to shift the graph to the left when the graph

reaches the right edge of the window. The default value is 1/2 the width of

the current window. Smooth scrolling can be achieved by setting it to 1.

(Available as of Release 4.)

-label string

Specifies the text string for the label above the load average. (Available as of

Release 4.)

-nolabel Specifies that no label be displayed above the load graph. (Available as of

Release 4.)

The following standard X Toolkit options are commonly used with xload:

-bd col or Specifies the border color. The default is black.

-bg color Specifies the background color. The default is white.

X Window System User's Guide 391

Xload (continued) Display Load Average

-bw pixels Specifies the width in pixels of the border around the window. The default is

2.

-f g color Specifies the graph color. The default is black.

-fn fontname

Specifies the font to be used in displaying the name of the host whose load is

being monitored. The default is the 6x10 pixel, fixed-width font "fixed".

-rv Indicates that reverse video should be simulated by swapping the foreground

and background colors.

-geometry geometry

Specifies the size and location of the window. The -geometry option can

be (and often is) abbreviated to -g, unless there is a conflicting option that

begins with "g." The argument to the geometry option (geometry) is

referred to as a "standard geometry string," and has the form widthx-

height±xoff±yoff.

-display [host]:server[.screen]

Allows you to specify the host, server and screen on which to create the xload

window, host specifies on which machine to create the xload window,

server specifies the server number, and scree/3 specifies the screen num-
ber. For example,

xload -display your_node:0.1

creates an xload window on screen 1 of server 0 on the machine

your_node. If the host is omitted, the local machine is assumed. If the

screen is omitted, screen 0 is assumed; the server and colon (:) are necessary

in all cases.

-xrm resourcestring

Specifies a resource string to be used. This is especially useful for setting

resources that do not have separate command line options.

Resources (Release 4)

In addition to the resources available to each of the widgets used by xload, there is one resource

defined by the application itself.

showLabel (class Boolean)

If False, then no label will be displayed.

Widgets (Release 4)

In order to specify resources, it is useful to know the hierarchy of the widgets that compose

xload. In the notation below, indentation indicates hierarchical structure. The widget class

name is given first, followed by the widget instance name.

392 X Window System User's Guide

Display Load Average (continued) xload

XLoad xload

Paned paned

Label label

StripChart load

Resources (Releases)

The Release 3 version of xload uses the Load widget in the X Toolkit. It understands all of the

core resource names and classes as well as:

width (class Width)

Specifies the width of the load average graph.

height (class Height)

Specifies the height of the load average graph.

update (class Interval)

Specifies the frequency in seconds at which the load should be redisplayed.

scale (class Scale)

Specifies the initial number of ticks on the graph. The default is 1.

minScale (class Scale)

Specifies the minimum number of ticks that will be displayed. The default is

1.

foreground (class Foreground)

Specifies the color for the graph. Using the class specifies the color for all

things that normally would appear in the foreground color. The default is

black since the core default for background is white.

highlight (class Foreground)

Specifies the color for the text and scale lines. The default is the same as for

the foreground resource.

label (class Label)

Specifies the label to use on the graph. The default is the hostname.

font (class Font)

Specifies the font to be used for the label. The default is "fixed."

reverseVideo (class ReverseVideo)

Specifies that the foreground and background colors should be reversed.

See Also

X, xrdb, mem(4), Athena StripChart widget (Release 4), Athena Load widget (Release 3)

Diagnostics

Unable to open display or create window. Unable to open Idevlkmem. Unable to query win-
dow for dimensions. Various X errors.

X Window System User's Guide 393

Xload (continued) Display Load Average

Bugs

This program requires the ability to open and read Idevlkmem. Sites that do not allow general

access to this file should make xload belong to the same group as Idevlkmem and turn on the set

group id permission flag.

Reading Idevlkmem is inherently non-portable. Therefore, the routine used to read it

(get_load. c) must be ported to each new operating system.

Border color has to be explicitly specified when reverse video is used.

Authors

K. Shane Hartman (MIT-LCS) and Stuart A. Malone (MIT-LCS);

with features added by Jim Gettys (MIT-Athena), Bob Scheifler (MIT-LCS), Tony Delia Fera

(MIT-Athena), and Chris Peterson (MIT-LCS).

X Window System User's Guide

- X Window System Logo- xlogo

Name

xlogo - X Window System logo.

Synopsis

xlogo [options]

Description

The xlogo program displays the X Window System logo. This program is nothing more than a

wrapper around the undocumented Athena Logo widget

Options

xlogo accepts all of the standard X Toolkit command line options, of which the following are

commonly used:

-bg color Specifies the color to use for the background of the window. The default is

white. A correct color for the background is something like maroon.

-bd col or Specifies the color to use for the border of the window. The default is black.

-bw pixels Specifies the width in pixels of the border surrounding the window.

-fg color Specifies the color to use for displaying the logo. The default is black. A

correct color for the foreground is something like silver, which you can

approximate with a shade of grey.

-rv Indicates that reverse video should be simulated by swapping the foreground

and background colors.

-geometry geometry

The xlogo window is created with the specified size and location determined

by the supplied geometry specification. The -geometry option can be (and

often is) abbreviated to -g, unless there is a conflicting option that begins

with "g." The argument to the geometry option (geometry) is referred to as

a "standard geometry string," and has the form widthx-

height±xoff±yoff.

-display [host]:server[.screen]

Allows you to specify the host, server and screen on which to create the xlogo

window (see X). host specifies on which machine to create the xlogo win-
dow, server specifies the server number, and screen specifies the screen

number. For example,

xlogo -display your_node: 0 .1

creates an xlogo window on screen 1 of server 0 on the machine

your_node. If the host is omitted, the local machine is assumed. If the

screen is omitted, screen 0 is assumed; the server and colon (:) are necessary

in all cases.

X Window System User's Guide 395

xlogo (continued) X Window System Logo

-xrm resourcestring

Specifies a resource string to be used. This is especially useful for setting

resources that do not have separate command line options.

Resources

This program uses the Logo widget in the Athena widget set. It understands all of the core

resource names and classes as well as:

width (class width)

Specifies the width of the logo.

height (class Height)

Specifies the height of the logo.

foreground (class Foreground)

Specifies the foreground color for the logo. The default depends on whether

reverseVideo is specified. If reverseVideo is specified, the default is

white; otherwise, the default is black.

reverseVideo (class ReverseVideo)

Specifies that the foreground and background should be reversed.

Widgets

In order to specify resources, it is useful to know the hierarchy of the widgets that compose

xlogo. In the notation below, indentation indicates hierarchical structure. The widget class

name is given first, followed by widget instance name.

XLogo xlogo

Logo xlogo

Files

lusrlliblXlllapp-defaultslXLogo - specifies required resources (as of Release 4).

See Also

X, xrdb

Authors

Ollie Jones of Apollo Computer and Jim Fulton of the X Consortium wrote the logo graphics

routine, based on a graphic design by Danny Chong and Ross Chapman of Apollo Computer.

396 X Window System User's Guide

-List interned Atoms / X'SatOIT1S

Name

xlsatoms - list interned atoms defined on server.

Syntax

xlsatoms [options]

Description

Available as of Release 4, xlsatoms lists the interned atoms. By default, all atoms starting from

1 (the lowest atom value defined by the protocol) are listed until unknown atom is found. If an

explicit range is given, xlsatoms will try all atoms in the range, regardless of whether or not any

are undefined.

Options

-display host[: server][. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xlsatoms -display your_node: 0 .1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-format printf_string

Specifies a printf-style string used to list each atom <value, name> pair,

printed in that order (val ue is an unsigned long and name is a char *). xlsa-
toms will supply a newline at the end of each line. The default is %ld\t%s.

-range [low]-[high]

Specifies the range of atom values to check. If low is not given, a value of 1

assumed. If high is not given, xlsatoms will stop at the first undefined atom

at or above low.

-name string

Specifies the name of an atom to list. If the atom does not exist, a message

will be printed on the standard error.

See Also

X, Xserver, xprop

Author

Jim Fulton, MIT X Consortium.

X Window System User's Guide 397

xlsclients \

v List Running Clients-

Name

xlsclients - list client applications running on a display.

Syntax

xlsclients [options]

Description

Available as of Release 4, xlsclients is a utility for listing information about the client applica-
tions running on a display. It may be used to generate scripts representing a snapshot of the the

user's current session.

Options

-display host[: server][. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xlsclients -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-a Specifies that clients on all screens should be listed. By default, only those

clients on the default screen are listed.

-1 Requests a long listing showing the window name, icon name, and class hints

in addition to the machine name and command string in the default listing.

-m maxcmdlength

Specifies the maximum number of characters in a command to list. The

default is 1000.

See Also

X, xprop, xwininfo

Author

Jim Fulton, MIT X Consortium.

398 X Window System User's Guide

-List Ava.lab.e Fonts / XlSfOTItS

Name

xlsfonts - list available fonts.

Syntax

xlsfonts [options] [-fn pattern]

Description

xlsfonts lists the fonts that match the given pattern. The wildcard character "*" may be used

to match any sequence of characters (including none), and "?" to match any single character. If

no pattern is given, "*" is assumed.

The "*" and "?" characters must be quoted to prevent them from being expanded by the shell.

Options

-display [host]:server[.screen]

Allows you to specify the host, server and screen. For example,

xlsfonts -display your node:0.1

specifies screen 1 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon are necessary in all cases.

-fn pattern Indicates that only fonts matching the specified pattern be listed.

-1 [1 [1]] Indicates that medium, long, and very long listings, respectively, should be

generated for each font

-1 Indicates that a long listing should be generated for each font. (Release 3)

-m Indicates that long listings should also print the minimum and maximum

bounds of each font.

-C Indicates that listings should use multiple columns. This is the same as

-n 0.

-1 Indicates that listings should use a single column. This is the same as -n 1.

-w width Specifies the width in characters that should be used in figuring out how many

columns to print. The default is 79.

-n col umns Specifies the number of columns to use in displaying the output. By default, it

will attempt to fit as many columns of font names into the number of charac-
ters specified by -w width.

See Also

X, Xserver, xset, xfd, xfontsel

Bugs

Doing xlsfonts -1 can tie up your server for a very long time. This is really a bug with

single-threaded, non-preemptable servers, not with this program.

X Window System User's Guide 399

xlsfontS (continued) List Available Fonts

Author

Mark Lillibridge, MIT Project Athena;

Jim Fulton, MIT X Consortium;

Phil Karlton, SGI.

400 X Window System User's Guide

- List Window Tree ' _ x
xlswins

Name

xlswins - server window list displayer for X,

Syntax

xlswins [options] [window_id]

Description

xlswins lists the window tree. By default, the root window is used as the starting point,

although another window may be specified using the window_id option.

Options

-display [host]:server[.screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xlswins -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-1 Indicates that a long listing should be generated for each window. This

includes a number indicating the depth, the geometry relative to the parent as

well as the location relative to the root window.

-format radix

Specifies the radix to use when printing out window IDs. Allowable values

are: hex, octal, and decimal. The default is hex.

-indent number

Specifies the number of spaces that should be indented for each level in the

window tree. The default is 2.

w±ndow_id Specifies that the starting point for the window tree listing is the window

window_id.

See Also

X, Xserver, xwininfo, xprop

Bugs

This should be integrated with xwininfo somehow.

Author

Jim Fulton, MIT X Consortium.

X Window System User's Guide 401

^ Magnify Screen Portions-

Name

xmag - magnify parts of the screen.

Syntax

xmag [options]

Description

The xmag program allows you to magnify portions of the screen. If no explicit region is speci-
fied, a square centered around the pointer is displayed indicating the area to be enlarged. Once

a region has been selected, a window is popped up showing a blown up version of the region in

which each pixel in the source image is represented by a small square of the same color. Press-
ing Buttonl on the pointer in the enlargement window pops up a small window displaying the

position, number, and RGB value of the pixel under the pointer until the button is released.

Pressing the space bar or any other pointer button removes the enlarged image so that another

region may be selected. Pressing q, Q, or Control-C in the enlargement window exits the pro-
gram.

Options

-display host]: serverf. screen]

Allows you to specify the host, server and screen to use for both reading the

screen and displaying the enlarged version of the image, host specifies the

machine, server specifies the server number, and screen specifies the

screen number. For example,

xmag -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-geometry geometry

The enlargement window is created with the specified size and location deter-
mined by the supplied geometry specification. The -geometry option can

be (and often is) abbreviated to -g, unless there is a conflicting option that

begins with "g." The argument to the geometry option (geometry) is

referred to as a "standard geometry string," and has the form widthx-

h ei gh t±xoff±y off.

By default, the size is computed from the size of the source region and the

desired magnification. Therefore, only one of -source size and -mag

magfactor options may be specified if a window size is given with the

-geometry option.

-source geometry

This option specifies the size and/or location of the source region on the

screen. By default, a 64x64 square centered about the pointer is provided for

402 X Window System User's Guide

Magnify Screen Portions (continued) xmag

the user to select an area of the screen. The size of the source is used with the

desired magnification to compute the default enlargement window size.

Therefore, only one of -geometry size and -mag magfactor options

may be specified if a source size is given with this option.

-mag magfactor

This option specifies an integral factor by which the source region should be

enlarged. The default magnification is 5. This is used with the size of the

source to compute the default enlargement window size. Therefore, only one

of -geometry size and -source geom options may be specified if a

magnification factor is given with this option.

-bw pixels This option specifies the width in pixels of the border surrounding the enlarge-
ment window.

-bd color This option specifies the color to use for the border surrounding the enlarge-
ment window.

-bg color_or_pixel_value

This option specifies the name of the color to be used as the background of

the enlargement window. If the name begins with a percent size (%), it is

interpreted to be an absolute pixel value. This is useful when displaying large

areas since pixels that are the same color as the background do not need to be

painted in the enlargement. The default is to use the BlackPixel of the

screen.

-fn fontname

This option specifies the name of a font to use when displaying pixel values

(used when button 1 is pressed in the enlargement window).

-z This option indicates that the server should be grabbed during the dynamics

and the call to XGet Image. This is useful for ensuring that clients don't

change their state as a result of entering or leaving them with the pointer.

Resources

The xmag program uses the following X resources:

geometry (class Geometry)

Specifies the size and/or location of the enlargement window.

source (class Source)

Specifies the size and/or location of the source region on the screen.

magnification (class Magnification)

Specifies the enlargement factor.

borderWidth (class BorderWidth)

Specifies the border width in pixels.

borderColor (class BorderColor)

Specifies the color of the border.

X Window System User's Guide 403

xmag (continued) Magnify Screen Portions

background (class Background)

Specifies the color or pixel value to be used for the background of the

enlargement window.

font (class Font)

Specifies the name of the font to use when displaying pixel values when the

user presses button 1 in the enlargement window.

See Also

X, xwd

Bugs

This program will behave strangely on displays that support windows of different depths.

Because the window size equals the source size times the magnification, you only need to spec-
ify two of the three parameters. This can be confusing.

Being able to drag the pointer around and see a dynamic display would be very nice.

Another possible interface would be for the user to drag out the desired area to be enlarged.

Author

Jim Fulton, MIT X Consortium.

404 X Window System User's Guide

xman

- Display Man Pages-

Name

xman - display manual pages.

Syntax

xman [options]

Description

xman is a manual page browser. The default size of the initial xman window is small so that

you can leave it running throughout your entire login session. In the initial window there are

three options: Help will pop up a window with on-line help, Quit will exit, and Manual Page

will pop up a window with a manual page browser in it. You may pop up more than one man-
ual page browser window from a single execution of xman.

For further information on using xman please read the on-line help information. The rest of this

manual page will discuss customization of xman.

Customization (Release 4)

xman allows customization of both the directories to be searched for manual pages, and the

name that each directory will map to in the Sections menu, xman determines which directories

it will search by reading the MANPATH environment variable. If no MANPATH is found then

the directory is lusrlman is searched on POSIX systems. This environment is expected to be a

colon-separated list of directories for xman to search.

setenv MANPATH /mit/kit/man:/usr/man

By default, xman will search each of the following directories (in each of the directories speci-
fied in the users MANPATH) for manual pages. If manual pages exist in that directory then they

are added to list of manual pages for the corresponding menu item. A menu item is only

displayed for those sections that actually contain manual pages.

Directory Section Name

manl (1) User Commands

man2 (2) System Calls

man3 (3) Subroutines

man4 (4) Devices

man5 (5) File Formats

man6 (6) Games

man? (7) Miscellaneous

man8 (8) Sys. Administration

manl (1) Local

mann (n) New

mano (o) Old

For instance, a user has three directories in her manual path and each contain a directory called

man3. All these manual pages will appear alphabetically sorted when the user selects the menu

item called (3) Subroutines. If there is no directory called mano in any of the directories in her

X Window System User's Guide 405

xman (continued) Display Man Pages

MANPATH, or there are no manual pages in any of the directories called mono, then no menu

item will be displayed for the section called (o) Old.

By using the mandesc file a user or system manager is able to more closely control which man-
ual pages will appear in each of the sections represented by menu items in the Sections menu.

This functionality is only available on a section by section basis, and individual manual pages

may not be handled in this manner (Although generous use of symbolic links, /«(!), will allow

almost any configuration you can imagine).

The format of the mandesc file is a character followed by a label. The character determines

which of the sections will be added under this label. For instance suppose that you would like

to create an extra menu item that contains all programmer subroutines. This label should con-
tain all manual pages in both sections two and three. The mandesc file would look like this:

2Programmer Subroutines

SProgrammer Subroutines

This will add a menu item to the Sections menu that would bring up a listing of all manual

pages in sections two and three of the UNIX Programmer's Manual. Since the label names are

exactly the same they will be added to the same section. Note, however, that the original sec-
tions still exist.

If you want to completely ignore the default sections in a manual directory then add the line:

no default sections

anywhere in your mandesc file. This keeps xman from searching the default manual sections in

that directory only. As an example, suppose you want to do the same thing as above, but you

don't think that it is useful to have the System Calls or Subroutines sections any longer. You

would need to duplicate the default entries, as well as adding your new one.

no default sections

1(1) User Commands

2Programmer Subroutines

SProgrammer Subroutines

4(4) Devices

5 (5) File Formats

6(6) Games

7(7) Miscellaneous

8(8) Sys. Administration

1(1) Local

n(n) New

0(0) Old

xman will read any section that is of the form man<character>, where <character> is

an upper or lower case letter (they are treated distinctly) or a numeral (0-9). Be warned, how-
ever, that man(\) and catman(S) will not search directories that are non-standard.

Customization (Release 3)

xman accomodates new manual sections by the use of the environment variable MANPATH and

by directory description files named mandesc. xman will search each directory specified in the

environment variable MANPATH for the following subdirectories only: manO, manl, ...,

406 X Window System User's Guide

Display Man Pages (continued) xman

man8, manl (local), and mann (new). (It usually ignores the information in manO unless there is

a mandesc file that specifically tells it not to.) These subdirectories should contain man pages.

Any manual section can be renamed by an optional mandesc file.

As an example, if MANPATH was set to lusrlman:lusrlsipblman and there was no mandesc file

in lusrlman, xman would put all of the files in the default section names (e.g., manl gets a sec-
tion name of local). But if there were a mandesc file in lusrlsipblman which contained the line

ISIPB Programs, then xman would put all files in the manl subdirectory in a new section called

"SIPB Programs." xman will search the mandesc file until there are no more lines of informa-
tion. This flexibility is ideal for courses that have their own manual pages.

xman creates temporary files in Itmp for all unformatted man pages and all apropos searches.

Options

xman accepts all of the standard X Toolkit command line options, as well as the following addi-
tional options:

-helpf ile filename

Specifies a helpfile to use other than the default.

-bothshown Allows both the manual page and manual directory to be on the screen at the

same time.

-notopbox Starts without the top menu with the three buttons in it.

-pagesize geometry

Sets the size and location of all the Manual Pages.

The following X Toolkit options are commonly used with xman:

-geometry geometry

Sets the size and location of the Top Menu with the three buttons in it. The

top menu with the three buttons in it is created with the specified size and

location determined by the supplied geometry specification. The

-geometry option can be (and often is) abbreviated to -g, unless there is a

conflicting option that begins with "g." The argument to the geometry option

(geometry) is referred to as a "standard geometry string," and has the form

wi dthxhei gh t±xoff±yoff.

-display [host]: server[. screen]

Allows you to specify the host, server and screen on which to display the

xman window, host specifies the machine, server specifies the server

number, and screen specifies the screen number. For example,

xman -display your_node: 0 .1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

X Window System User's Guide 407

xman (continued) Display Man Pages

-bw pixels or -borderwidth pixels

Specifies the width of the border for all windows in xman.

-bd color or -bordercolor color

Specifies the color of the borders of all windows in xman.

-fg color or -foreground color

Specifies the foreground color to be used.

-bg color or -background color

Specifies the background color to be used.

-fn font or -font font

Specifies the font to use for all buttons and labels.

-name name Specifies the name to use when retrieving resources.

-title title Specifies the title of this application.

-xrm resources

Allows a resource to be specified on the command line.

Resources (Release 3 and Release 4)

The resources in this section are valid for both Release 3 and Release 4, unless otherwise

indicated.

The xman program uses the following X Toolkit resources: foreground, background,

width, height, borderwidth, and borderColor.

In addition, xman has application-specific resources that allow unique xman customizations.

manualFontNormal (class Font)

The font to use for normal text in the manual pages.

manualFontBold (class Font)

The font to use for bold text in the manual pages.

manualFontltalic (class Font)

The font to use for italic text in the manual pages.

directoryFontNormal (class Font)

The font to use for the directory text.

bothShown (class Boolean)

Either true or false, specifies whether or not you want both the directory and

the manual page shown at start up.

directoryHeight (class DirectoryHeight)

The height in pixels of the directory, when the directory and the manual page

are shown simultaneously.

topCursor (class Cursor)

The cursor to use in the top box.

408 X Window System User's Guide

Display Man Pages (continued) xman

helpCursor (class Cursor)

The cursor to use in the help window.

manpageCursor (class Cursor)

The cursor to use in the manual page window.

searchEntryCursor (class Cursor)

The cursor to use in the search entry text widget.

pointerColor (class Foreground)

The color of all the cursors (pointers) listed above. The name was chosen to

be compatible with xterm. (Available as of Release 4.)

helpFile (class File)

Use this rather than the system default helpfile.

topBox (class Boolean)

Either true or false, determines whether the top box (containing the Help, Quit

and Manual Page buttons) or a manual page is put on the screen at start-up.

The default is true.

verticalList (class Boolean)

Either true or false, determines whether the directory listing is vertically or

horizontally organized. The default is horizontal (false).

Widgets (Release 4)

In order to specify resources, it is useful to know the hierarchy of the widgets that compose

xman. In the notation below, indentation indicates hierarchical structure. The widget class

name is given first, followed by the widget instance name.

Xman xman (This widget is never used)

TopLevelShell topbox

Form form

Label topLabel

Command helpButton

Command quitButton

Command manpageButton

TransientShell search

DialogWidgetClass dialog

Label label

Text value

Command manualPage

Command apropos

Command cancel

TransientShell pleaseStandBy

Label label

TopLevelShell manualBrowser

Paned Manpage_Vpane

Paned horizPane

MenuButton options

MenuButton sections

X Window System User's Guide 409

xman (continued) Display Man Pages

Label manualBrowser

Viewport directory

List directory

List directory

. (one for each section,

created "on the fly")

ScrollByLine manualPage

SimpleMenu optionMenu

SmeBSB displayDirectory

SmeBSB displayManualPage

SmeBSB help

SmeBSB search

SmeBSB showBothScreens

SmeBSB removeThisManpage

SmeBSB openNewManpage

SmeBSB showVersion

SmeBSB quit

SimpleMenu sectionMenu

SmeBSB <name of section>

. (one for each section)

TransientShell search

DialogWidgetClass dialog

Label label

Text value

Command manualPage

Command apropos

Command cancel

TransientShell pleaseStandBy

Label label

TransientShell likeToSave

Dialog dialog

Label label

Text value

Command yes

Command no

TopLevelShell help

Paned Manpage_Vpane

Paned horizPane

MenuButton options

MenuButton sections

Label manualBrowser

ScrollByLine manualPage

SimpleMenu optionMenu

SmeBSB displayDirectory

SmeBSB displayManualPage

SmeBSB help

410 X Window System User's Guide

Display Man Pages (continued) xman

SmeBSB search

SmeBSB showBothScreens

SmeBSB removeThisManpage

SmeBSB openNewManpage

SmeBSB showVersion

SmeBSB quit

Widgets (Releases)

In order to change the default values for widget resources you need to know widget names.

Below are the names of some of the most common widgets. You can also reference widgets by

class. The most common classes are Label, Command, and Text.

topBox The top menu.

help The help window.

manualBrowser

The manual page display window.

xmanCommands

The manual page command popup menu.

xmanSections

The manual page section popup menu.

xmanSearch The manual page search popup menu.

Here are a few examples of how to string all this information together into a resource specifica-
tion that can be used on the command line with the -xrm flag, or added to an Xresources or

other resource file.

xman*Command. foreground: blue

All command buttons will be blue.

xman*topBox*foreground: blue

Everything in the top menu has a blue foreground.

xman*Text.border: red

All text widgets have a red border.

xman*Label.font: 9x15

All label buttons have a 9x15 font.

Global Actions (Release 4)

xman defines all user interaction through global actions. This allows the user to modify the

translation table of any widget, and bind any event to the new user action. The list of actions

supported by xman are:

GotoPage(page)

When used in a manual page display window, this action allows the user to

move between a directory and manual page display. The page argument can

be either Directory or ManualPage.

X Window System User's Guide

xman (continued) Display Man Pages

Quit () Can be used anywhere; exits xman.

Search(type, action)

Only useful when used in a search popup, this action will cause the search

widget to perform the named search type on the string in the search popup's

value widget. This action will also pop down the search widget The type

argument can be either Apropos, Manpage or Cancel. If an action of

Open is specified then xman will open a new manual page to display the

results of the search, otherwise xman will attempt to display the results in the

parent of the search popup.

PopupHelp () Can be used anywhere; pops up the help widget.

PopupSearch()

Can be used anywhere, except in a help window. It will cause the search

popup to become active and visible on the screen, allowing the user search

for a manual page.

CreateNewManpage()

Can be used anywhere; creates a new manual page display window.

RemoveThisManpage()

Can be used in any manual page or help display window. When called it will

remove the window, and clean up all resources associated with it.

SaveFormattedPage (action)

Can only be used in the likeToSave popup widget, and tells xman whether

to Save or Cancel a save of the manual page that has just been formatted.

ShowVersion()

May be called from any manual page or help display window, and will cause

the informational display line to show the current version of xman.

Files

<manpath directory>/man<character>

<manpath directory>lcat<character>

<manpath directory>lmandesc

/usr/lib/XH/app-defaults/Xman - specifies required resources (as of Release 4)

Itmp xman creates temporary files in limp for all unformatted man pages and all apropos

searches.

Environment Variables

MANPATH

The search path for manual pages. Directories are separated by colons (e.g.,

lusrlman:lmitlkitlman:lfoolbarlman).

XAPPLRESDIR

A string that will have "Xman" appended to it. This string will be the full path name of a

user app-defaults file to be merged into the resource database after the system app-defaults

file, and before the resources that are attached to the display. (Available as of Release 4.)

412 X Window System User's Guide

Display Man Pages (continued) xman

Bugs in Release 3

The -fn and -font options only specify the fonts for the command button and not the text of

the manpages or directories.

Protocol error upon selecting Remove This Manpage.

See Also

X, apropos(l), catman(8), man(l), Athena Widget set

Authors

Chris Peterson, MIT X Consortium from the V10 version written by Barry Shein formerly of

Boston University.

X Window System User's Guide 413

"X Interface to mh (Release 4)-

Name

xmh - X window interface to the mh message handling system.

Syntax

aonh [-path mailpath] [-initial foldername] [-flag] [-toolkitoption]

Description

This reference page describes the Release 4 version of xmh, a window-oriented user interface to

the Rand mh Message Handling System. The Release 3 version is described in the next refer-
ence page in this guide.

To actually do things with your mail, xmh makes calls to the mh package. Electronic mail mes-
sages may be composed, sent, received, replied to, forwarded, sorted, and stored in folders.

Please don't be misled by the size of this document. It introduces many aspects of the Athena

Widget Set, and provides extensive mechanism for customization of the user interface, xmh

really is easy to use.

Options

xmh accepts all of the standard X Toolkit command line options, as well as the following:

-path mailpath

To specify an alternate collection of mail folders in which to process mail,

use -path followed by the pathname of the alternate mail directory. The

default mail path is the value of the Path component in $HOMEI.mh_profile,

or $HOMEIMail if the MH Path is not given.

-initial foldername

Specifies an alternate folder that may receive new mail and is initially opened

by xmh. The default initial folder is 'inbox'.

-flag Causes xmh to attempt to change the appearance of its icon when new mail

arrives.

These three options have corresponding application-specific resources, named MailPath,

InitialFolder, and MailWaitingFlag, which can be used in a resource file.

See X for a list of the standard Toolkit options.

Installation

The current version of xmh requires that the user is already set up to use mh, version 6. To do

so, see if there is a file called .mh_profile in your home directory. If it exists, check to see if it

contains a line that starts with Current-Folder. If it does, you've been using version 4 or

earlier of mh; to convert to version 6, you must remove that line. (Failure to do so causes spuri-
ous output to standard error, which can hang xmh depending on your setup.)

If you do not already have a .mh_profile, you can create one (and everything else you need) by

typing inc to the shell. You should do this before using xmh to incorporate new mail.

For more information, refer to the m/i(l) documentation.

414 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

Basic Screen Layout

xmh starts out with a single window, divided into four main areas: Six buttons with pull-down

command menus. A collection of buttons, one for each top level folder. New users of mh will

have two folders, "drafts" and "inbox". A listing, or Table of Contents, of the messages in

the open folder. Initially, this will show the messages in "inbox". A view of one of your mes-
sages. Initially this is blank.

xmh and the Athena Widget Set

xmh uses the X Toolkit Intrinsics and the Athena Widget Set. Many of the features described

below (scrollbars, buttonboxes, etc.) are actually part of the Athena Widget Set, and are

described here only for completeness. For more information, see the Athena Widget Set docu-
mentation.

Scrollbars

Some parts of the main window will have a vertical area on the left containing a grey bar. This

area is a scrollbar. They are used whenever the data in a window takes up more space than can

be displayed. The grey bar indicates what portion of your data is visible. Thus, if the entire

length of the area is grey, then you are looking at all your data. If only the first half is grey,

then you are looking at the top half of your data. The message viewing area will have a hori-
zontal scrollbar if the text of the message is wider than the viewing area.

You can use the pointer in the scrollbar to change what part of the data is visible. If you click

with the middle button, then the top of the grey area will move to where the pointer is, and the

corresponding portion of data will be displayed. If you hold down the middle button, you can

drag around the grey area. This makes it easy to get to the top of the data: just press with the

middle, drag off the top of the scrollbar, and release.

If you click with button 1, then the data to the right of the pointer will scroll to the top of the

window. If you click with pointer button 3, then the data at the top of the window will scroll

down to where the pointer is.

Buttonboxes, Buttons, and Menus

Any area containing many words or short phrases, each enclosed in a rectangle or rounded

boundary, is called a buttonbox. Each rectangle or rounded area is actually a button that you

can press by moving the pointer onto it and pressing pointer button 1. If a given buttonbox has

more buttons in it than can fit, it will be displayed with a scrollbar, so you can always scroll to

the button you want.

Some buttons have pull-down menus. Pressing the pointer button while the pointer is over one

of these buttons will pull down a menu. Holding the button down while moving the pointer

over the menu, called dragging the pointer, will highlight each selectable item on the menu as

the pointer passes over it. To select an item in the menu, release the pointer button while the

item is highlighted.

Adjusting the Relative Sizes of Areas

If you're not satisfied with the sizes of the various areas of the main window, they can easily be

changed. Near the right edge of the border between each region is a black box, called a grip.

Simply point to that grip with the pointer, press a pointer button, drag up or down, and release.

Exactly what happens depends on which pointer button you press.

X Window System User's Guide

xmh (continued) X Interface to mh (Release 4)

If you drag with the middle button, then only that border will move. This mode is simplest to

understand, but is the least useful.

If you drag with pointer button 1, then you are adjusting the size of the window above, xmh

will attempt to compensate by adjusting some window below it

If you drag with pointer button 3, then you are adjusting the size of the window below, xmh

will attempt to compensate by adjusting some window above it.

All windows have a minimum and maximum size; you will never be allowed to move a border

past the point where it would make a window have an invalid size.

Processing Your Mall

This section will define the concepts of the selected folder, current folder, selected message(s),

current message, selected sequence, and current sequence. Each xmh command is introduced.

For use in customization, action procedures corresponding to each command are given; these

action procedures can be used to customize the user interface, particularly the keyboard accel-
erators and the functionality of the buttons in the optional button box created by the application

resource CommandButtonCount.

Selected Folder

A folder contains a collection of mail messages, or is empty.

The selected folder is whichever foldemame appears in the bar above the folder buttons. Note

that this is not necessarily the same folder that is being viewed. To change the selected folder,

just press on the desired folder button; if that folder has subfolders, select a folder from the pull

down menu.

The Table of Contents, or toe, lists the messages in the viewed folder. The title bar above the

Table of Contents displays the name of the viewed folder.

The toe title bar also displays the name of the viewed sequence of messages within the viewed

folder. Every folder has an "all" sequence, which contains all the messages in the folder, and

initially the toe title bar will show "inbox:aU".

Folder Commands

The Folder command menu contains commands of a global nature:

Open Folder Displays the data in the selected folder. Thus, the selected folder also

becomes the viewed folder. The action procedure corresponding to this com-
mand is XmhOpenFolder ([foldemame]). It takes an optional argu-
ment as the name of a folder to select and open; if no folder is specified, the

selected folder is opened. It may be specified as part of an event translation

from a folder menu button or from a folder menu, or as a binding of a key-
board accelerator to any widget other than the folder menu buttons or the

folder menus.

416 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

Open Folder in New Window

Displays the selected folder in an additional main window. Note, however,

that you may not reliably display the same folder in more than one window at

a time, although xmh will not prevent you from trying. The corresponding

action is XmhOpenFolderlnNewWindow ().

Create Folder Creates a new folder. You will be prompted for a name for the new folder, to

enter the name, move the pointer to the blank box provided and type. Sub-

folders are created by specifying the parent folder, a slash, and the subfolder

name. For example, to create a folder named "xmh" which is a subfolder of

an existing folder named "clients", type "clients/xmh". Click on the Okay

button when finished, or just press Return; click on Cancel to cancel this

operation. The action corresponding to Create Folder is XmhCreate-

Folder().

Delete Folder Destroys the selected folder. You will be asked to confirm this action (see

"Confirmation Windows"). Destroying a folder will also destroy any subfold-

ers of that folder. The corresponding action is XmhDeleteFolder ().

Close Window Exits xmh, after first confirming that you won't lose any changes; or, if

selected from any additional xmh window, simply closes that window. The

corresponding action is XmhClose ().

Highlighted and Selected Messages and the Current Message

It is possible to highlight a set of adjacent messages in the area of the Table of Contents. To

highlight a message, click on it with pointer button 1. To highlight a range of messages, click

on the first one with pointer button 1 and on the last one with pointer button 3; or press pointer

button 1, drag, and release. To extend a range of selected messages, use pointer button 3. To

highlight all messages in the table of contents, click rapidly three times with pointer button 1.

To cancel any selection in the table of contents, click rapidly twice.

The selected messages are the same as the highlighted messages, if any. If no messages are

highlighted, then the selected messages are considered the same as the current message.

The current message is indicated by a '+' next to the message number. It usually corresponds

to the message currently being viewed. When a message is viewed, the title bar above the view

will identify the message.

Table of Contents Commands

The Table of Contents command menu contains commands which operate on the open, or

viewed folder.

Incorporate New Mail

Adds any new mail received to your inbox folder, and set the current message

to be the first new message. (This command is selectable only if "inbox" is

the folder being viewed.) The corresponding action is Xmhlncorporate-

NewMail().

X Window System User's Guide 417

xmh (continued) X Interface to mh (Release 4)

Commit Changes

Executes all deletions, moves, and copies that have been marked in this

folder. The corresponding action is XmhCommitChanges ().

Pack Folder Renumbers the messages in this folder so they start with 1 and increment by

1. The corresponding action is XmhPackFolder ().

Sort Folder Sorts the messages in this folder in chronological order. As a side effect, this

also packs the folder. The corresponding action is XmhSortFolder ().

Rescan Folder Rebuilds the list of messages. This can be used whenever you suspect that

xmh's idea of what messages you have is wrong. (In particular, this is neces-
sary if you change things using straight mh commands without using xmh.)

The corresponding action is XmhForceRescan ().

Message Commands

The Message command menu contains commands that operate on the selected message(s), or if

there are no selected messages, the current message.

Compose Message

Composes a new message. A new window will be brought up for composi-
tion; a description of it is given in the Composition Windows section below.

This command does not affect the current message. The corresponding action

is XmhComposeMessage ().

View Next Message

Views the first selected message. If no messages are highlighted, view the

current message. If current message is already being viewed, view the first

unmarked message after the current message. The corresponding action is

XmhViewNextMessage().

View Previous Views the last selected message. If no messages are highlighted, view the

current message. If current message is already being viewed, view the first

unmarked message before the current message. The corresponding action is

XmhViewPrevious().

Mark Deleted Marks the selected messages for deletion. If no messages are highlighted,

then this mark the current message for deletion and automatically display the

next unmarked message. The corresponding action is XmhMark-

DeletedO.

Mark Move Marks the selected messages to be moved into the current (selected) folder.

(If the current folder is the same as the viewed folder, this command will just

beep.) If no messages are highlighted, this will mark the current message to

be moved and display the next unmarked message. The corresponding action

is XmhMarkMove ().

Mark Copy Marks the selected messages to be copied into the current folder. (If the cur-
rent folder is the same as the viewed folder, this command will just beep.) If

no messages are highlighted, mark the current message to be copied. The

corresponding action is XmhMarkCopy ().

418 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

Unmark Removes any of the above three marks from the selected messages, or the

current message, if none are highlighted. The corresponding action is Xmh-

Unmark().

View in New Window

Creates a new window containing only a view of the first selected message, or

the current message, if none are highlighted. The corresponding action is

XmhViewInNewWindow().

Reply Creates a composition window in reply to the first selected message, or the

current message, if none are highlighted. The corresponding action is Xmh-

Reply().

Forward Creates a composition window whose body is initialized to be the contents of

the selected messages, or the current message if none are highlighted. The

corresponding action is XmhForward ().

Use as Composition

Creates a composition window whose body is initialized to be the contents of

the first selected message, or the current message if none are selected. Any

changes you make in the composition will be saved in a new message in the

"drafts" folder, and will not change the original message. However, this

command was designed to be used within the "drafts" folder to compose

message drafts, and there is an exception to this rule. If the message to be

used as composition was selected from the "drafts" folder, the changes will

be reflected in the original message (see "Composition Windows"). The

action procedure corresponding to this command is XmhUse-

AsComposition().

Print Prints the selected messages, or the current message if none are selected, xmh

normally prints by invoking the enscript(V) command, but this can be custom-
ized with the application-specific resource PrintCommand. The action pro-
cedure corresponding to this command is XmhPrint ().

Sequence Commands

The Sequence command menu contains commands pertaining to message sequences (See

"Message-Sequences"), and a list of the message-sequences defined for the currently viewed

folder. The selected message-sequence is indicated by a check mark in its entry in the margin

of the menu. To change the selected message-sequence, select a new message-sequence from

the sequence menu.

Pick Messages Defines a new message-sequence. The corresponding action is XmhPick-

Messages().

The following menu entries will be sensitive only if the current folder has any message-

sequences other than the "all" message-sequence.

Open Sequence Changes the viewed sequence to be the same as the selected sequence. The

corresponding action is XmhOpenSequence ().

X Window System User's Guide 419

xmh (continued) X Interface to mh (Release 4)

Add to Sequence

Adds the selected messages to the selected sequence. The corresponding

action is XmhAddToSequence ().

Remove from Sequence

Removes the selected messages from the selected sequence. The correspond-
ing action is XmhRemoveFromSequence ().

Delete Sequence

Removes the selected sequence entirely. The messages themselves are not

affected; they simply are no longer grouped together to define a message-

sequence. The corresponding action is XmhDeleteSequence ().

View Commands

Commands in the View menu and in the buttonboxes of view windows (which result from the

Message command View in New Window) correspond in functionality to commands of the same

name in the Message menu, but they operate on the viewed message rather than the selected

messages or current message.

Close Window When the viewed message is in a separate view window, this command will

close the view, after confirming the status of any unsaved edits. The corre-
sponding action procedure is XmhCloseView ().

Reply Creates a composition window in reply to the viewed message. The related

action procedure is XmhViewReply ().

Forward Creates a composition window whose body is initialized to be the contents of

the viewed message. The corresponding action is XmhviewForward ().

Use As Composition

Creates a composition window whose body is initialized to be the contents of

the viewed message. Any changes made in the composition window will be

saved in a new message in the "drafts" folder, and will not change the origi-
nal message. An exception: if the viewed message was selected from the

"drafts" folder, the original message is edited. The action procedure corre-
sponding to this command is XmhViewUseAsComposition ().

Edit Message Enables the direct editing of the viewed message. The action procedure is

XmhEditView().

Save Message This command is insensitive until the message has been edited; when

activated, edits will be saved to the original message in the view. The corre-
sponding action is Xmh Save View ().

Print Prints the viewed message, xmh prints by invoking the enscript(l) command,

but this can be customized with the application-specific resource Print-

Command. The corresponding action procedure is XmhPrintView ().

Options Menu

The Options menu contains one entry.

420 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

Read in Reverse When selected, a check mark appears in the margin of this menu entry. Read

in Reverse will switch the meaning of the next and previous messages, and

will increment in the opposite direction. This is useful if you want to read

your messages in the order of most recent first. The option acts as a toggle;

select it from the menu a second time to undo the effect. The check mark

appears when the option is selected.

Composition Windows

Aside from the normal text editing functions, there are six command buttons associated with

composition windows:

Close Window Closes this composition window. If changes have been made since the most

recent Save or Send, you will be asked to confirm losing them. The corre-
sponding action is XmhC lose view ().

Send Sends this composition. The corresponding action is XmhSend ().

New Headers Replaces the current composition with an empty message. If changes have

been made since the most recent Send or Save, you will be asked to confirm

losing them. The corresponding action is XmhResetCompose ().

Compose Message

Brings up another new composition window. The corresponding action is

XmhComposeMessage().

Save Message Saves this composition in your drafts folder. Then you can safely close the

composition. At some future date, you can continue working on the composi-
tion by opening the drafts folder, selecting the message, and using the Use as

Composition command. The corresponding action is XmhSave ().

Insert Inserts a related message into the composition. If the composition window

was created with a Reply command, the related message is the message being

replied to, otherwise no related message is defined and this button is insensi-
tive. The message may be filtered before being inserted; see Reply-

Insert Filter under "Application-specific Resources" for more informa-
tion. The corresponding action is Xmhlnsert ().

Accelerators

Accelerators are shortcuts. They allow you to invoke commands without using the menus,

either from the keyboard or by using the pointer.

xmh defines pointer accelerators for common actions: To select and view a message with a

single click, use pointer button 2 on the message's entry in the table of contents. To select and

open a folder or a sequence in a single action, make the folder or sequence selection with

pointer button 2.

To mark the highlighted messages to be moved in a single action, or current message if none

have been highlighted, use pointer button 3 to select the target folder. Similarly, selecting a

sequence with pointer button 3 will add the highlighted or current message(s) to that sequence.

X Window System User's Guide 421

xmh (continued) X Interface to mh (Release 4)

In both of these operations, the selected folder or sequence and the viewed folder or sequence

are not changed.

xmh defines the following keyboard accelerators over the surface of the main window, except in

the view area while editing a message:

Meta-l Incorporate new mail.

Meta-C Commit changes.

Meta-R Rescan folder.

Meta-P Pack folder.

Meta-S Sort folder.

Meta-space View next message.

Meta-c Mark copy.

Meta-d Mark deleted.

Meta-f Forward the selected or current message.

Meta-m Mark move.

Meta-n View next message.

Meta-p View previous message.

Meta-r Reply to the selected or current message.

Meta-u Unmark.

Control-V Scroll the table of contents forward.

Meta-V Scroll the table of contents backward.

Control-v Scroll the view forward.

Meta-v Scroll the view backward.

Text Editing Commands

All of the text editing commands are actually defined by the Text widget in the Athena Widget

Set. The commands may be bound to different keys than the defaults described below through

the X Toolkit Intrinsics key re-binding mechanisms. See the X Toolkit Intrinsics and the

Athena Widget Set documentation for more details.

Whenever you are asked to enter any text, you will be using a standard text editing interface.

Various control and meta keystroke combinations are bound to a somewhat Emacs-like set of

commands. In addition, the pointer buttons may be used to select a portion of text or to move

the insertion point in the text. Pressing pointer button 1 causes the insertion point to move to

the pointer. Double-clicking button 1 selects a word, triple-clicking selects a line, quadruple-

clicking selects a paragraph, and clicking rapidly five times selects everything. Any selection

may be extended in either direction by using pointer button 3.

In the following, a line refers to one displayed row of characters in the window. A paragraph

refers to the text between carriage returns. Text within a paragraph is broken into lines for

422 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

display based on the current width of the window. When a message is sent, text is broken into

lines based upon the values of the SendBreakWidth and Sendwidth application-specific

resources.

The following keystroke combinations are defined:

Control-a Move to the beginning of the current line.

Control-b Move backward one character.

Control-d Delete the next character.

Control-e Move to the end of the current line.

Control-f Move forward one character.

Control-g Multiply reset.

Control-h Delete previous character.

Control-j Create a new paragraph with the same indentation as the previous one.

Control-k Kill the rest of the current line.

Control-l Refresh window.

Control-m New paragraph.

Control-n Move down to the next line.

Control-o Break this paragraph into two.

Control-p Move up to the previous line.

Control-r Search/replace backward.

Control-s Search/replace forward.

Control-t Transpose characters.

Control-u Multiply by 4.

Control-v Move down to the next screenful of text

Control-w Kill the selected text

Control-y Insert the last killed text

Control-z Scroll the text up one line.

Meta-B Move backward one word.

Meta-d Delete the next word.

Meta-D Kill the next word.

Meta-f Move forward one word.

Meta-h Delete the previous word.

Meta-H Kill the previous word.

X Window System User's Guide 423

xmh (continued) X Interface to mh (Release 4)

Meta-i Insert file.

Meta-k Kill to end of paragraph.

Meta-q Form paragraph.

Meta-v Move up to the previous screenful of text.

Meta-y Insert current text selection.

Meta-z Scroll one line down.

Meta-< Move to the beginning of the file.

Meta-> Move to the end of the file.

Meta-] Move forward one paragraph.

Meta-[Move backward one paragraph.

Meta-Delete Delete previous word.

Meta-Shift Delete Kill previous word.

Meta-Backspace Delete previous word.

Meta-Shift Backspace

Kill previous word.

In addition, the pointer may be used to cut and paste text:

Button 1 Down Start selection.

Button 1 Motion Adjust selection.

Button 1 Up End selection (cut).

Button 2 Down Insert current selection (paste).

Button 3 Down Extend current selection.

Button 3 Motion Adjust selection.

Button 3 Up End selection (cut).

Confirmation Dialog Boxes

Whenever you press a button that may cause you to lose some work or is otherwise dangerous,

a popup dialog box will appear asking you to confirm the action. This window will contain an

Abort or No button and a Confirm or Yes button. Pressing the No button cancels the operation,

and pressing the Yes will proceed with the operation.

Some dialog boxes contain messages from mh. Clicking on the message field will cause the

dialog box to resize so that you can read the entire message.

Message-Sequences

An mh message sequence is just a set of messages associated with some name. They are local

to a particular folder, two different folders can have sequences with the same name. In all fold-
ers, the sequence "all" is predefined; it consists of the set of all messages in that folder. As

424 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

many as nine sequences may be defined for each folder, including the predefined "all"

sequence. (The sequence "cur" is also usually defined for every folder, it consists of only the

current message, xmh hides "cur" from the user, instead placing a "+" by the current mes-
sage. Also, xmh does not support the "unseen" sequence, so that one is also hidden from the

user.)

The message sequences for a folder (including one for "all") are displayed in the Sequence

menu, below the sequence commands. The table of contents (also known as the "toe") is at

any one time displaying one message sequence. This is called the "viewed sequence", and its

name will be displayed in the toe title bar just after the folder name. Also, at any time one of

the sequences in the menu will have a check mark next to it. This is called the "selected

sequence". Note that the viewed sequence and the selected sequence are not necessarily the

same. (This all pretty much corresponds to the way the folders work.)

The Open Sequence, Add to Sequence, Remove from Sequence, and Delete Sequence com-
mands are active only if the viewed folder contains message-sequences.

Note that none of the above actually affect whether a message is in the folder. Remember that

a sequence is a set of messages within the folder, the above operations just affect what mes-
sages are in that set.

To create a new sequence, select the Pick menu entry. A new window will appear, with lots of

places to enter text. Basically, you can describe the sequence's initial set of messages based on

characteristics of the message. Thus, you can define a sequence to be all the messages that

were from a particular person, or with a particular subject, and so on. You can also connect

things up with boolean operators, so you can select all things from "weissman" with the sub-
ject "xmh".

Hopefully, the layout is fairly obvious. The simplest cases are the easiest: just point to the

proper field and type. If you enter in more than one field, it will only select messages which

match all non-empty fields.

The more complicated cases arise when you want things that match one field or another one,

but not necessarily both. That's what all the "or" buttons are for. If you want all things with

the subject "xmh" or "xterm", just press the "or" button next to the "Subject:" field.

Another box will appear where you can enter another subject.

If you want all things either from "weissman" or with subject "xmh", but not necessarily

both, select the "-Or-" button. This will essentially double the size of the form. You can then

enter "weissman" in a from: box on the top half, and "xmh" in a subject: box on the lower

part.

If you select the Skip button, then only those messages that don't match the fields on that row

are included.

Finally, in the bottom part of the window will appear several more boxes. One is the name of

the sequence you're defining. (It defaults to the name of the selected sequence when Pick was

pressed, or to "temp" if "all" was the selected sequence.) Another box defines which

sequence to look through for potential members of this sequence; it defaults to the viewed

sequence when Pick was pressed.

X Window System User's Guide 425

xmh (continued) X Interface to mh (Release 4)

Two more boxes define a date range; only messages within that date range will be considered.

These dates must be entered in 822-style format: each date is of the form "dd mmm yy

hh:mm:ss zzz", where dd is a one or two digit day of the month, mmm is the three-letter abbre-
viation for a month, and yy is a year. The remaining fields are optional: hh, mm, and ss specify

a time of day, and zzz selects a time zone. Note that if the time is left out, it defaults to mid-
night; thus if you select a range of "7 nov 86" - "8 nov 86", you will only get messages from

the 7th, as all messages on the 8th will have arrived after midnight

Date field specifies which date field in the header to look at for this date range; it probably

won't be useful to anyone. If the sequence you're defining already exists, you can optionally

merge the old set with the new; that's what the Yes and No buttons are all about. Finally, you

can OK the whole thing, or Cancel it.

In general, most people will rarely use these features. However, it's nice to occasionally use

Pick to find some messages, look through them, and then hit Delete Sequence to put things back

in their original state.

Widget Hierarchy

In order to specify resources, it is useful to know the hierarchy of widgets which compose xmh.

In the notation below, indentation indicates hierarchical structure. The widget class name is

given first, followed by the widget instance name. The application class name is Xmh.

The hierarchy of the main toe and view window is identical for additional toe and view win-
dows, except that a topLevelShell widget is inserted in the hierarchy between the applica-
tion shell and the Paned widget.

Xmh xmh

Paned xmh

SimpleMenu folderMenu

SmeBSB open

SmeBSB openlnNew

SmeBSB create

SmeBSB delete

SmeLine line

SmeBSB close

SimpleMenu tocMenu

SmeBSB inc

SmeBSB commit

SmeBSB pack

SmeBSB sort

SmeBSB rescan

SimpleMenu messageMenu

SmeBSB compose

SmeBSB next

SmeBSB prev

SmeBSB delete

SmeBSB move

SmeBSB copy

SmeBSB unmark

SmeBSB viewNew

426 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

SmeBSB reply

SmeBSB forward

SmeBSB useAsComp

SmeBSB print

SimpleMenu sequenceMenu

SmeBSB pick

SmeBSB openSeq

SmeBSB addToSeq

SmeBSB removeFromSeq

SmeBSB deleteSeq

SmeLine line

SmeBSB all

SimpleMenu viewMenu

SmeBSB reply

SmeBSB forward

SmeBSB useAsComp

SmeBSB edit

SmeBSB save

SmeBSB print

SimpleMenu optionMenu

SmeBSB reverse

Viewport.Core menuBox.clip

Box menuBox

MenuButton folderButton

MenuButton tocButton

MenuButton messageButton

MenuButton sequenceButton

MenuButton viewButton

MenuButton optionButton

Grip grip

Label folderTitlebar

Grip grip

Viewport.Core folders.clip

Box folders

MenuButton inbox

MenuButton drafts

SimpleMenu menu

SmeBSB <folder name>

Grip grip

Label tocTitlebar

Grip grip

Text toe

Scrollbar vScrollbar

Grip grip

Label viewTitlebar

Grip grip

X Window System User's Guide 427

xmh (continued) X Interface to mh (Release 4)

Text view

Scrollbar vScrollbar

Scrollbar hScrollbar

The hierarchy of the Create Folder popup dialog box:

transientShell prompt

Dialog dialog

Label label

Text value

Command okay

Command cancel

The hierarchy of the Notice dialog box, which reports messages from mh:

transientShell notice

Dialog dialog

Label label

Text value

Command confirm

The hierarchy of the Confirmation dialog box:

transientShell confirm

Dialog dialog

Label label

Command yes

Command no

The hierarchy of the dialog box which reports errors:

transientShell error

Dialog dialog

Label label

Command OK

The hierarchy of the composition window:

topLevelShell xmh

Paned xmh

Label composeTitlebar

Text comp

Viewport.Core compButtons.clip

Box compButtons

Command close

Command send

Command reset

Command compose

Command save

Command insert

428 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

The hierarchy of the view window:

topLevelShell xmh

Paned xmh

Label viewTitlebar

Text view

Viewport.Core viewButtons.clip

Box viewButtons

Command close

Command reply

Command forward

Command useAsComp

Command edit

Command save

Command print

The hierarchy of the pick window:

(Unnamed widgets have no name.)

topLevelShell xmh

Paned xmh

Label pickTitlebar

Viewport.core pick.clip

Form form

Form

The first 6 rows of the pick window have identical structure:

Form

Toggle

Toggle

Label

Text

Command

Form

Toggle

Toggle

Text

Text

Command

Form

Command

Viewport.core pick.clip

Form form

From

Form

Label

Text

Label

Text

X Window System User's Guide 429

xmh (continued) X Interface to mh (Release 4)

Form

Label

Text

Label

Text

Label

Text

Form

Label

Toggle

Toggle

Form

Command

Command

Application-specific Resources

Resource instance names begin with a lower case letter but are otherwise identical to the class

name.

If TocGeometry, ViewGeometry, CompGeometry, or PickGeometry are not speci-
fied, then the value of Geometry is used instead. If the resulting height is not specified (e.g.,

"", "=500", "+0-0"), then the default height of windows is calculated from fonts and line

counts. If the width is not specified (e.g., "", "=x300", "-0+0), then half of the display width is

used. If unspecified, the height of a pick window defaults to half the height of the display.

Any of these options may also be specified on the command line by using the X Toolkit Intrin-

sics resource specification mechanism. Thus, to run xmh showing all message headers,

% xmh -xrm '*HideBoringHeaders:off'

The following resources are defined:

Banner A short string that is the default label of the folder, Table of Contents, and

view. The default is:

xmh MIT X Consortium R4

BlockEventsOnBusy

Whether to disallow user input and show a busy cursor while xmh is busy pro-
cessing a command. Default is true.

Busy Cursor The name of the symbol used to represent the position of the pointer,

displayed if BlockEventsOnBusy is true, when xmh is processing a time-

consuming command. The default is watch.

BusyPointerColor

The foreground color of the busy cursor. Default is xtDefault-

Foreground.

430 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

CheckFrequency

How often to check for new mail, make checkpoints, and rescan the Table of

Contents, in minutes. If CheckNewMail is true, xmh checks to see if you

have new mail each interval. If MakeCheckpoints is true, checkpoints

are made every fifth interval. Also every fifth interval, the Table of Contents

is checked for inconsistencies with the file system, and rescanned. To prevent

all of these checks from occurring, set CheckFrequency to 0. The default

isl.

CheckNewMail

If true, xmh will check at regular intervals to see if new mail has arrived for

any of the folders. A visual indication will be given if new mail is waiting to

be retrieved. Default is True. (See "Bugs"). The interval can be adjusted

with the CheckFrequency.

CommandButtonCount

The number of command buttons to create in a button box in between the toe

and the view areas of the main window, xmh will create these buttons with

the names buttonl, button2 and so on, in a box with the name

commandBox. The user can specify labels and actions for the buttons in a

private resource file; see the section on "Actions". The default is 0.

CompGeomet ry

Initial geometry for windows containing compositions.

Cursor The name of the symbol used to represent the pointer. Default is lef t_ptr.

DraftsFolder

The folder used for message drafts. Default is drafts.

Geometry Default geometry to use. Default is none.

HideBoringHeaders

If "on", then xmh will attempt to skip uninteresting header lines within mes-
sages by scrolling them off. Default is on.

InitialFolder

Which folder to display on startup. Can also be set with the command-line

option -initial. Default is inbox.

InitialIncFile

The file name of your incoming mail drop, xmh tries to construct a filename

for the inc -file command, but in some installations (e.g., those using the

Post Office Protocol) no file is appropriate. In this case, initiallncFile

should be specified as the empty string, and inc will be invoked without a

-file argument. The default is to use the value of the environment variable

MAIL, or if that is not set, to append the value of the environment variable

USER to lusrlspoollmaill'.

X Window System User's Guide 431

xmh (continued) X Interface to mh (Release 4)

MailPath The full path prefix for locating your mail folders. May also be set with the

command-line option, -path. The default is the Path component in

$HOMEI.mh_profile, or $HOMEIMail if none.

MailWaitingFlag

If true, xmh will attempt to set an indication in its icon when new mail is

waiting to be retrieved. If this option is true, then CheckNewMail is assumed

to be true as well. The -flag command line option is a quick way to turn

MailWaitingFlag on.

MakeCheckpoints

If true, xmh will attempt to save checkpoints of volatile information. The fre-
quency of checkpointing is controlled by the resource CheckFrequency.

MhPath What directory in which to find the mh commands. If a command isn't found

here, then the directories in the user's path are searched. Default is

Iusrllocallmh6.

PickGeometry

Initial geometry for pick windows.

PointerColor

The foreground color of the pointer. Default is xtDef aultForeground.

PrefixWmAndlconName

Whether to prefix the window and icon name with "xmh: ". Default is true.

PrintCommand

What sh command to execute to print a message. Note that standard output

and standard error must be specifically redirected! If a message or range of

messages is selected for printing, the full file paths of each message file is

appended to the specified print command. The default is "enscript >/dev/null

2>/dev/null".

ReplyInsertFilter

A shell command to be executed when the Insert button is activated in a com-

position window. The full path and filename of the source message is added

to the end of the command before being passed to sh(l). The default filter is

cat; i.e., it inserts the entire message into the composition. Interesting filters

are: awk -e ' {print" " $0}' or <mh directory>lliblmhl -form mhl.body.

ReverseReadOrder

When true, the next message will be the message prior to the current message

in the table of contents, and the previous message will be the message after

the current message in the table of contents. The default is false.

SendBreakWidth

When a message is sent from xmh, lines longer than this value will be split

into multiple lines, each of which is no longer than Sendwidth. This value

may be overridden for a single message by inserting an additional line in the

432 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

message header of the form SendBreakWidth: val ue. This line will be

removed from the header before the message is sent The default is 85.

SendWidth When a message is sent from xmh, lines longer than SendBreakWidth

characters will be split into multiple lines, each of which is no longer than

this value. This value may be overridden for a single message by inserting an

additional line in the message header of the form SendWidth: val ue.

This line will be removed from the header before the message is sent. The

default is 72.

SkipCopied Whether to skip over messages marked for copying when using View Next

Message and View Previous Message. Default is true.

SkipDeleted Whether to skip over messages marked for deletion when using View Next

Message and View Previous Message. Default is true.

SkipMoved Whether to skip over messages marked for moving to other folders when

using View Next Message and View Previous Message. Default is true.

StickyMenu If true, when popup command menus are used, the most recently selected

entry will be under the cursor when the menu pops up. Default is false. See

the file clients/xmh/Xmh.sample for an example of how to specify resources

for pop up command menus.

TempDir Directory for xmh to store temporary directories. For privacy, a user might

want to change this to a private directory. Default is Itmp.

TocGeometry Initial geometry for master xmh windows.

TocPercentage

The percentage of the main window that is used to display the Table of Con-
tents. Default is 33.

TocWidth How many characters to generate for each message in a folder's table of con-
tents. Default is 100. Use 80 if you plan to use mhl a lot, because it will be

faster, and the extra 20 characters may not be useful.

ViewGeometry T

Initial geometry for windows showing only a view of a message.

Actions

Because xmh provides action procedures which correspond to command functionality and

installs accelerators, users can customize accelerators in a private resource file, xmh provides

action procedures which correspond to entries in the command menus; these are given in the

sections describing menu commmands. For examples of specifying customized resources, see

the file clients/xmh/Xmh.sample. Unpredictable results can occur if actions are bound to events

or widgets for which they were not designed.

In addition to the actions corresponding to commands, these action routines are defined:

X Window System User's Guide 433

xmh (continued) X Interface to mh (Release 4)

XmhPushFolder([foldername, . . .])

Pushes each of its arguments) onto a stack of foldernames. If no arguments

are given, the selected folder is pushed onto the stack.

XmhPopFolder()

Pops one foldername from the stack and sets the selected folder.

XmhPopupFolderMenu()

Should always be taken when the user selects a folder button. A folder button

represents a folder and zero or more subfolders. The menu of subfolders is

built upon the first reference, by this routine. If there are no subfolders, this

routine will mark the folder as having no subfolders, and no menu will be

built. In that case the menu button emulates a toggle button. When subfold-
ers exist, the menu will popup, using the menu button action PopupMenu ().

XmhSetCurrentFolder()

Allows menu buttons to emulate toggle buttons in the function of selecting a

folder. This action is for menu button widgets only, and sets the selected

folder.

XmhLeaveFolderButton()

Insures that the menu button behaves properly when the user moves the

pointer out of the menu button window.

XmhPushSequence([sequencename, . . .])

Pushes each of its arguments onto the stack of sequence names. If no argu-
ments are given, the selected sequence is pushed onto the stack.

XmhPopSequence()

Pops one sequence name from the stack of sequence names, which then

becomes the selected sequence.

XmhPromptOkayAction ()

Equivalent to pressing the okay button in the Create Folder popup.

XmhCancelPick()

Equivalent to pressing the cancel button in the pick window.

Customization Using mh

The initial text displayed in a composition window is generated by executing the corresponding

mh command; i.e., comp, repl, orforw, and therefore message components may be customized

as specified for those commands, comp is executed only once per invocation of xmh and the

message template is re-used for each successive new composition.

Files

-/Mail

~l.mh_profile - mh profile

Iusrllocallmh6 - mh commands

~/Mail/<folder>/.xmhcache - scan folder

434 X Window System User's Guide

X Interface to mh (Release 4) (continued) xmh

~IMaill<folder>l.mh_sequences - sequence definitions

Itmp - temporary files

See Also

X, xrdb, mh(l), enscript(l); Athena Widget Set; Volume Four, X Toolkit Intrinsics Program-
ming Manual', Volume Five, X Toolkit Intrinsics Reference Manual

Bugs

Printing support is minimal.

Should handle the "unseen" message-sequence.

Should determine by itself if the user hasn't used mh before, and offer to create the .mh_profile,

instead of hanging on inc.

Still a few commands missing (rename folder, remail message).

A bug in mh limits the the number of characters in .mh_sequences to BUFSIZ. When the limit is

reached, the .mh_sequences file often becomes corrupted, and sequence definitions may be lost.

Except for the icon, there isn't an indication that you have new mail.

There should be a resource, ShowOnlnc, which when true, would show the current message in

the view after incorporating new mail.

The CheckFrequency resource should be split into two separate resources.

WM_SAVE_YOURSELF protocol is ignored.

WM_DELETE_WINDOW protocol doesn't work right when requesting deletion of the first toe

and view, while trying to keep other xmh windows around.

Doesn't support annotations when replying to messages.

Copyright

Copyright 1988,1989, Digital Equipment Corporation.

Copyright 1989, Massachusetts Institute of Technology

See X for a full statement of rights and permissions.

Author

Terry Weissman, Digital Western Research Laboratory;

Modified by Donna Converse, MIT X Consortium.

X Window System User's Guide 435

"X Interface to mh (Release 3)-

Name

xmh - X window interface to the mh message handling system.

Syntax

xmh [-path mailpath] [-initial foldername] [-f lag] [-toolkitoption]

Description

This reference page describes the Release 3 version of xmh, a window-oriented user interface to

the mh message handling system. The Release 4 version is described on the preceding refer-
ence page in this guide.

xmh consists of user-interface code only. To actually do things with your mail, it makes calls to

the mh package.

Please don't be misled by the size of this document, xmh really is easy to use!

Options

xmh accepts all of the standard X Toolkit command line options, as well as the following:

-path mailpath

To specify an alternate collection of mail folders in which to process mail,

use -path followed by the pathname of the alternate mail directory. The

default mail path is the value of the Path component in $HOMEI.mh_profile,

or $HOMEIMail if the MH Path is not given.

-initial foldername

Specifies an alternate folder that may receive new mail and is initially opened

by xmh. The default initial folder is 'inbox'.

-flag Causes xmh to attempt to change the appearance of its icon when new mail

arrives.

These three options have corresponding application-specific resources, named MailPath,

initialFolder, and MailWaitingFlag, which can be used in a resource file.

See X for a list of the standard Toolkit options.

Installation

The current version of xmh requires that the user is already set up to use mh, Version 6. To do

so, see if there is a file called .mh_profile in your home directory. If it exists, check to see if it

contains a line that starts with Current-Folder. If it does, then you've been using version

4 or earlier of mh; to convert to version 6, you must remove that line. (Failure to do so causes

spurious output to standard error, which can hang xmh depending on your setup.)

If you do not already have a .mh_profile, you can create one (and everything else you need) by

typing inc to the shell.

For more information, refer to the m/i(l) documentation.

436 X Window System User's Guide

X Interface to mh (Release 3) (continued) xmh

Running xmh

Run xmh as you would any other X application (e.g., xterm). It will accept a command-line dis-
play (of the form -display [host]:server[. screen] the default display is specified in

the environment variable DISPLAY.

The rest of this document will probably be rather hard to follow without actually running xmh

and seeing the things being described.

Basic Screen Layout

xmh starts out with a single screen. There will be 6 or 7 areas on the screen:

" A list of your folders. (New users of mh will see only "inbox" here.)

" A list of the global and folder-oriented commands.

" A list of the messages in one of your folders (initially, this will show the messages in

"inbox").

" A list of the message-oriented commands.

" A view of one of your messages. (Initially this is blank.)

" A list of commands for the message being viewed.

And, there will possibly be:

" A list of message-sequences defined for this folder. This appears just below the list of mes-
sages in this folder. (Message-sequences are discussed below; if you don't know what they

are, then you won't have any.)

xmh and the Toolkit

xmh uses the X Toolkit. Many of the features described below (scrollbars, buttonboxes, etc.)

are actually part of the Toolkit, and are described here only for completeness. For more infor-
mation, see the Toolkit documentation.

Scrollbars

Some parts of the screen will have a vertical area on the left containing a grey bar. This area is

a scrollbar. They are used whenever the data in a window takes up more space than can be

displayed. The grey bar indicates what portion of your data is visible. Thus, if the entire length

of the area is grey, then you are looking at all your data. If only the first half is grey, then you

are looking at the top half of your data.

You can use the pointer in the scrollbar to change what part of the data is visible. If you click

with the middle button, then the top of the grey area will move to where the pointer is, and the

corresponding portion of data will be displayed. If you hold down the middle button, you can

drag around the grey area. This makes it easy to get to the top of the data: just press with the

middle, drag off the top of the scrollbar, and release.

If you click with button 1, then the data to the right of the pointer will scroll to the top of the

window. If you click with pointer button 3, then the data at the top of the window will scroll

down to where the pointer is.

X Window System User's Guide 437

xmh (continued) X Interface to mh (Release 3)

Buttonboxes

Any area consisting of many words or short phrases, each enclosed in a box, is called a button-

box. Each box is actually a button that you can press by moving the pointer onto it and pressing

pointer button 1. If a given buttonbox has more buttons in it than can fit, it will be displayed

with a scrollbar, so you can always scroll to the button you want.

Adjusting the Relative Sizes of Areas on the Screen

If you're not satisfied with the size of the various areas on the screen, they can easily be

changed. Near the right edge of the border between each region is a black box, called a grip.

Simply point to that grip with the pointer, press a pointer button, drag up or down, and release.

Exactly what happens depends on which pointer button you press.

If you drag with the middle button, then only that border will move. This mode is simplest to

understand, but is probably the least useful.

If you drag with pointer button 1, then you are adjusting the size of the window above, xmh

will attempt to compensate by adjusting some window below it.

If you drag with pointer button 3, then you are adjusting the size of the window below, xmh

will attempt to compensate by adjusting some window above it.

All windows have a mininum and maximum size; you will never be allowed to move a border

past the point where it would make a window have an invalid size.

Selected Folder

The selected folder is whichever foldername is highlighted in the top buttonbox. Note that this

is not necessarily the same folder that is being viewed. To change the selected folder, just press

on the desired folder button.

General Commands and Folder Commands

The second buttonbox contains commands of a global nature:

Quit XMH Exits xmh, after first checking that you won't lose any changes.

Compose Message

Composes a new message. A new window will be brought up; for a descrip-
tion of it, see "Composition Windows," below.

Open Folder Displays the data in the selected folder. Thus, the selected folder also

becomes the viewed folder.

Open Folder in New Window

Creates a new screen, and displays the selected folder in that screen. Note,

however, that you may not display the same folder in more than one screen at

a time.

Create Folder Creates a new folder. You will be prompted for a name for the new folder, to

enter the name, point the pointer at the blank box provided and type. Hit the

Confirm button when finished, or hit Abort to cancel this operation.

438 X Window System User's Guide

X Interface to mh (Release 3) (continued) xmh

Delete Folder Destroys the selected folder. You will be asked to confirm this action (see

"Confirmation Windows").

Highlighted Messages, Selected Messages and the Current Message

It is possible to highlight a set of messages in the list of messages for the viewed folder. To

highlight a message, just click on it with pointer button 1. To highlight a range of messages,

click on the first one with pointer button 1 and on the last one with pointer button 3.

The selected messages are the same as the highlighted messages, if any. If no messages are

highlighted, then the selected messages are considered the same as the current message.

The current message is indicated by a "+" next to the message number. It usually corresponds

to the message currently being viewed.

Message Commands

The third buttonbox (fourth if you have message-sequences displayed) contains commands to

deal with messages:

Incorporate New Mail

Adds any new mail received to your inbox folder, and set the current message

to be the first new message. (This button is selectable only if "inbox" is the

folder being viewed.)

View Next Message

Views the first selected message. If no messages are highlighted, view the

current message. If current message is already being viewed, view the first

unmarked message after the current message.

View Previous Message

Views the last selected message. If no messages are highlighted, view the

current message. If current message is already being viewed, view the first

unmarked message before the current message.

Mark Deleted Marks the selected messages for deletion. If no messages are highlighted,

then this will automatically display the next unmarked message.

Mark Move Marks the selected messages to be moved into the current folder. (If the cur-
rent folder is the same as the viewed folder, this command will just beep.) If

no messages are highlighted, then this will automatically display the next

unmarked message.

Mark Copy Marks the selected messages to be copied into the current folder. (If the cur-
rent folder is the same as the viewed folder, this command will just beep.)

Unmark Removes any of the above three marks from the selected messages.

View in New Window

Creates a new window containing only a view of the first selected message.

Reply Creates a composition window in reply to the first selected message.

X Window System User's Guide 439

xmh (continued) X Interface to mh (Release 3)

Forward Creates a composition window whose body is initialized to be the contents of

the selected messages.

Use as Composition

Creates a composition window whose body is initialized to be this message.

Note that any changes you make in the composition will also be saved in this

message. This function is meant to be used with the "drafts" folder. (See

"Composition Windows.")

Commit Changes

Executes any deletions, moves, and copies that have been marked in this

folder.

Print Prints the selected messages, xmh normally prints by invoking the enscript

command, but you may change the command it uses. (See "Resources"

below).

Pack folder Renumbers the messages in this folder so they start with 1 and increment by

1.

Sort folder Sorts the messages in this folder in chronological order. As a side effect, this

also packs the folder.

Force Rescan Rebuilds the list of messages. This can be used whenever you suspect xmh's

idea of what messages you have is wrong. (In particular, this is useful if you

ever change things using straight mh commands without using xmh.)

Pick Messages Defines a new message-sequence. (See "Message-Sequences.")

The following buttons will appear but will be sensitive only if the current folder has any mes-
sage-sequences defined. (See "Message-Sequences.")

Open Sequence Changes the viewed sequence to be the same as the selected sequence.

Add to Sequence

Adds the selected messages to the selected sequence.

Remove from Sequence

Removes the selected messages from the selected sequence.

Delete Sequence

Removes the selected sequence entirely. Note the messages themselves are

not affected; they simply are no longer grouped together as a message-

sequence.

View Windows

The commands in these windows are the same as the message commands by the same name,

except instead of affecting the selected messages, they affect the viewed message. In addition

there is the Edit View button, which allows you to edit the message being viewed. While edit-
ing, the Edit View button will change to a Save View button, which should be pressed to save

your edits.

440 X Window System User's Guide

X Interface to mh (Release 3) (continued) xmh

Composition Windows

Aside from the normal text editing functions, there are six command buttons associated with

composition windows:

Close Closes this composition window. If changes have been made since the most

recent Save or Send, you will be asked to confirm losing them.

Send Sends this composition.

Reset Replaces the current composition with an empty message. If changes have

been made since the most recent Send or Save, you will be asked to confirm

losing them.

Compose Brings up another new composition window.

Save Saves this composition in your drafts folder. (If you do not have a folder

named "drafts", one will be created.) Then you can safely close the compo-
sition. At some future date, you can continue working on the composition by

opening your drafts folder, selecting the message, and using the Use as Com-
position command.

Insert Inserts a related message into the composition. If the composition window

was created with'a Reply button, the related message is the message being

replied to, otherwise no related message is defined and this button is inactive.

The message will be filtered before being inserted; see Replylnsert-

Filter under "Resources" below.

Text Editing Commands

All of the text editing commands are actually defined by the Text widget in the X Toolkit. The

commands may be bound to different keys than the defaults described below through the stan-
dard X Toolkit key re-binding mechanisms. See the X Toolkit and Athena Widgets documenta-
tion for more details.

Whenever you are asked to enter any text, you will be using a standard text editing interface.

Various control and meta keystroke combinations are bound to a somewhat Emacs-like set of

commands. In addition, the pointer buttons may be used to select a portion of text or to move

the insertion point in the text. Pressing pointer button 1 causes the insertion point to move to

the pointer. Double-clicking button 1 selects a word, triple-clicking selects a paragraph, and

quadruple-clicking selects everything. Any selection may be extended in either direction by

using pointer button 3.

In the following, a line refers to one displayed row of characters in the window. A paragraph

refers to the text between carriage returns. Text within a paragraph is broken into lines based

on the current width of the window.

The following keystroke combinations are defined:

Control-A Move to the beginning of the current line.

Control-B, Control-H, Backspace

Move backward one character.

X Window System User's Guide 441

xmh (continued) X Interface to mh (Release 3)

Control-D Delete the next character.

Control-E Move to the end of the current line.

Contro!-F Move forward one character.

Control-J, LineFeed

Create a new paragraph with the same indentation as the previous one.

Control-K Kill the rest of this line.

Control-L Refresh window.

Control-M, Return

New paragraph.

Control-N Move down to the next line.

Control-O Break this paragraph into two.

Control-P Move up to the previous line.

Control-V Move down to the next screenful of text

Control-W Kill the selected text

Control-Y Insert the last killed text.

Control-Z Scroll the text one line up.

Meta-< Move to the beginning of the document.

Meta-> Move to the end of the document.

Meta-[Move backward one paragraph.

Meta-] Move forward one paragraph.

Meta-B Move backward one word.

Meta-D Kill the next word.

Meta-F Move forward one word.

Meta-H, Meta-Delete

Kill the previous word.

Meta-l Insert a file. If any text is selected, use the selected text as the filename.

Otherwise, a box will appear in which you can type the desired filename.

Meta-V Move up to the previous screenful of text.

Meta-Y Stuff the last selected text here. Note that this can be text selected in some

other text subwindow. Also, if you select some text in an xterm window, it

may be inserted in an xmh window with this command. Pressing pointer but-
ton 2 is equivalent to this.

Meta-Z Scroll the text one line down.

442 X Window System User's Guide

X Interface to mh (Release 3) (continued) xmh

Delete Delete the previous character.

Confirmation Windows

Whenever you press a button that may cause you to lose some work or is otherwise dangerous,

a window will appear asking you to confirm the action. This window will contain an Abort or

No button and a Confirm or Yes button. Pressing the Abort button cancels the operation, and

pressing the "Confirm" will proceed with the operation. (A very handy shortcut exists: if you

press the original, offending button again, it will be interpreted as a Confirm. If you press any

other command button, it will be interpreted as an Abort.)

Message-Sequences

An mh message sequence is just a set of messages associated with some name. They are local

to a particular folder, two different folders can have sequences with the same name. In all fold-
ers, the sequence "all" is predefined; it consists of the set of all messages in that folder. (The

sequence "cur" is also usually defined for every folder, it consists of only the current message.

xmh hides "cur" from the user, instead placing a "+" by the current message. Also, xmh does

not support the "unseen" sequence, so that one is also hidden from the user.)

The message sequences for a folder are displayed as buttons containing the names of the

sequences (including one for "all"). The table of contents (aka "toe") is at any one time dis-
playing one message sequence. This is called the "viewed sequence"; if it's not "all", its

name will be displayed in the title bar just after the folder name. Also, at any time one of the

sequence buttons will be highlighted. This is called the "selected sequence". Note that the

viewed sequence and the selected sequence are not necessarily the same. (This all pretty much

corresponds to the way the folder buttons work.)

The Open Sequence, Add to Sequence, Remove from Sequence, and Delete Sequence buttons

are active only if the viewed folder contains message-sequences.

Note that none of the above actually effect whether a message is in the folder. Remember that

a sequence is a set of messages within the folder, the above operations just affect what mes-
sages are in that set

To create a new sequence, press the Pick button. A new window will appear, with lots of places

to enter text. Basically, you can describe the sequence's initial set of messages based on charac-
teristics of the message. Thus, you can define a sequence to be all the messages that were from

a particular person, or with a particular subject, and so on. You can also connect things up with

boolean operators, so you can select all things from "weissman" with the subject "xmh".

Hopefully, the layout is fairly obvious. The simplest cases are the easiest: just point to the

proper field and type. If you enter in more than one field, it will only select messages which

match all non-empty fields.

The more complicated cases arise when you want things that match one field or another one,

but not necessarily both. That's what all the "or" buttons are for. If you want all things with

the subject "xmh" or "xterm", just press the "or" button next to the "Subject:" field.

Another box will appear where you can enter another subject.

X Window System User's Guide 443

xmh (continued) X Interface to mh (Release 3)

If you want all things either from "weissman" or with subject "xmh", but not necessarily

both, select the -Or- button. This will essentially double the size of the form. You can then

enter "weissman" in a from: box on the top half, and "xmh" in a subject: box on the lower

part.

If you ever select the Skip button, then only those messages that don't match the fields on that

row are included.

Finally, in the bottom part of the window will appear several more boxes. One is the name of

the sequence you're defining. (It defaults to the name of the selected sequence when Pick was

pressed, or to "temp" if "all" was the selected sequence.) Another box defines which

sequence to look through for potential members of this sequence; it defaults to the viewed

sequence when Pick was pressed.

Two more boxes define a date range; only messages within that date range will be considered.

These dates must be entered in 822-style format: each date is of the form "dd mmm yy

hh:mm:ss zzz", where dd is a one or two digit day of the month, mmm is the three-letter abbre-
viation for a month, and yy is a year. The remaining fields are optional: hh, mm, and ss specify

a time of day, and zzz selects a time zone. Note that if the time is left out, it defaults to mid-
night; thus if you select a range of "7 nov 86" - "8 nov 86", you will only get messages from

the 7th, as all messages on the 8th will have arrived after midnight.

Date field specifies which date field in the header to look at for this date range; it probably

won't be useful to anyone. If the sequence you're defining already exists, you can optionally

merge the old set with the new; that's what the Yes and No buttons are all about. Finally, you

can OK the whole thing, or Cancel it.

In general, most people will rarely use these features. However, it's nice to occasionally use

Pick to find some messages, look through them, and then hit Delete Sequence to put things back

in their original state.

Resources

As with all standard X applications, xmh may be customized through entries in the resource

manager. The following resource manager entries are defined: [Note: the entry names must be

entered in either all lower-case, or in the exact case shown below.]

BackGround Background color. Currently, this will effect only buttons. (Default is white.)

ButtonFont What font to use for button names. (Default is timromlO.)

CheckNewMail

If True, xmh will check at regular intervals to see if new mail has arrived for

any of the folders. A visual indication will be given if new mail is waiting to

be retrieved. (Default is true.)

CompButtonLines

How many rows of buttons to display under a composition. (Default is 1.)

CompFont What font to use when composing a message. (Default is 6x13.)

CompGeometry

Initial geometry for windows containing compositions.

444 X Window System User's Guide

X Interface to mh (Release 3) (continued) xmh

CompLines How many lines of a composition to display. (Default is 20.)

Conf irmFont What font to use for confirmation windows. (Default is timromlOb.)

FolderButtonLines

How many rows of folder command buttons to display. (Default is 1.)

Folder Lines How many rows of foldemame buttons to display. (Default is 1.)

ForeGround Foreground color. Currently, this will effect only title bars and buttons.

(Default is black.)

Geometry Default geometry to use. (Default is none.)

HideBoringHeaders

If on, then xmh will attempt to skip uninteresting header lines within mes-
sages by scrolling them off. (Default is on.)

InitialFolder

Which folder to display on startup. May also be set with the command-line

option -initial. (Default is inbox.)

InitiallncFile

The filename of your incoming mail drop, xmh tries to construct a filename

for the inc -file command, but in some installations (e.g., those using the

Post Office Protocol) no file is appropriate. In this case, InitiallncFile

should be specified as the empty string, and inc will be invoked without a

-file argument.

LabelFont What font to use for the title bars. (Default is timromlOi.)

MailPath The full path prefix for locating your mail folders. May also be set with the

command-line option, -path. (Default is the Path component in

$HOME/.mh_profile, or $HOME/Mail if none.)

MailWaitingFlag

If True, xmh will attempt to set an indication in it's icon when new mail is

waiting to be retrieved. If this option is True, then CheckNewMail is

assumed to be True as well. The -flag command line option is a quick way

to turn MailWaitingFlag on.

MhPath What directory in which to find the mh commands. If a command isn't found

here, then the directories in the user's path are searched. (Default is

Iusrllocallmh6.)

PickGeometry

Initial geometry for pick windows.

PickEntryFont

What font to use for user text fields in pick windows. (Default is timromlO.)

PickTextFont

What font to use for static text fields in pick windows. (Default is timromlO.)

X Window System User's Guide 445

xmh (continued) X Interface to mh (Release 3)

PrintCommand

What shell command to execute to print a message. Note that standard output

and standard error must be specifically redirected! If a message or range of

messages is selected for printing, the full file paths of each message file is

appended to the specified print command. (Default is "enscript >ldevlnull

2>/dev/null").

ReplyInsertFilter

A shell command to be executed when the Insert button is activated in a com-

position window. The full path and filename of the source message is added

to the end of the command before being passed to sh(l). The default filter is

echo\ i.e., it merely inserts the name of the file into the composition. Other

interesting filters are awk -e '{print " " $0}' or lusrlnewlmh.6.51 liblmhl

-form mhl.body.

TempDir Directory for xmh to store temporary directories. For privacy, a user might

want to change this to a private directory. (Default is /tmp.)

TocButtonLines

How many rows of message command buttons to display. (Default is 1.)

TocFont What font to use for a folder's table of contents. (Default is 6x13.)

TocGeomet ry Initial geometry for master xmh windows.

TocLines How many messages to display in a folder's table of contents. (Default is

10.)

TocWidth How many characters to generate for each message in a folder's table of con-
tents. (Default is 100. Use 80 if you plan to use mhl a lot.)

ViewButtonLines

How many rows of buttons to display under a view of a message. (Default is

1.)

viewFont What font to use for a view of a message. (Default is 6x13.)

ViewGeomet ry

Initial geometry for windows showing only a view of a message.

viewLines How many lines of a message to display. (Default is 20.)

If TocGeomet ry, ViewGeomet ry, CompGeometry, or PickGeometry are not speci-
fied, then the value of Geometry is used instead. If the resulting height is not specified (e.g.,

"", "=500", "+0-0"), then the default height is calculated from the fonts and line counts speci-
fied above. If the width is not specified (e.g., "", "=x300", "-0+0"), then half of the display

width is used. If unspecified, the height of a pick window defaults to half the height of the dis-
play.

Any of these options may also be specified on the command line by using the standard X

Toolkit resource specification mechanism. Thus, to run xmh showing all message headers,

% xmh -xrm '*HideBoringHeaders:off'

446 X Window System User's Guide

X Interface to mh (Release 3) (continued) xmh

The initial text displayed in a composition window is generated by executing the corresponding

mh command; i.e., comp, repl, orforw and therefore message components may be customized

as specified for those commands, comp is executed only once per invocation of xmh and the

message template is re-used for each successive new composition.

Files

"/Mail

~l.mh_profile

See Also

X, xrdb, mh - the mh Message Handler

Bugs

Printing support is minimal.

Keyboard shortcuts for commands would be nice.

Should handle the "unseen" message-sequence.

Should determine by itself if the user hasn't used mh before, and offer to set things up for him

or her.

Still a few commands missing (rename folder, remail message).

Needs sub-folder support.

Copyright

Copyright 1988, Digital Equipment Corporation.

See X for a full statement of rights and permissions.

Author

Terry Weissman, Digital Western Research Laboratory.

X Window System User's Guide 447

xmodmap \ Keyboard Mod|f|w ut|||ty_

Name

xmodmap - keyboard and pointer modifier utility.

Syntax

xmodmap [options] [filename]

Description

xmodmap is a utility for displaying and altering the X keyboard modifier map and keymap table

on the specified server and host. It is intended to be run from a user's X startup script to setup

the keyboard according to personal tastes.

With no arguments, xmodmap displays the current map.

Options

-display [host]:serverf. screen]

Allows you to specify the host, server and screen to use. For example,

xmodmap -display your_node:0.0

specifies the screen 0 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon (:) are necessary in all cases.

-help Indicates that a brief description of the command line arguments should be

printed on the standard error. This will be done whenever an unhandled argu-
ment is given to xmodmap.

-grammar Indicates that a help message describing the expression grammar used in files

and with -e expressions should be printed on the standard error.

-verbose Indicates that xmodmap should print logging information as it parses its input.

-quiet Turns off the verbose logging. This is the default.

-n Indicates that xmodmap should not change the mappings, but should display

what it would do, like make(\) does when given this option. (Cannot be used

with expressions to change the pointer mapping.)

-e expression

Specifies an expression to be executed. Any number of expressions may be

specified from the command line.

-pm Indicates that the current modifier map should be printed on the standard

output.

-pk Indicates that the current keymap table should be printed on the standard

output.

-pp Indicates that the current pointer map should be printed on the standard

output.

448 X Window System User's Guide

Keyboard Modifier Utility (continued) xmodmap

A lone dash means that the standard input should be used as the input file.

The filename specifies a file containing xmodmap expressions to be executed. This file is

usually kept in the user's home directory and has a name like jcmodmaprc.

For compatibility with an older version, xmodmap also accepts the following obsolete single

letter options:

-[SLC12345]

These options indicate that all current keys for the Shift, Lock, Control, or

Mod modifier sets should be removed from the modifier map. These are

equivalent to clear expressions.

-[sic] keysym

These options specify a keysym to be removed from the Shift, Lock, or Con-
trol modifier sets. These are equivalent to remove expressions.

+[slc!2345] keysym

These options specify a keysym to be added to the Shift, Lock, or Control

modifier sets. These are equivalent to add expressions.

Expression Grammar

The xmodmap program reads a list of expressions and parses them all before attempting to exe-
cute any of them. This makes it possible to refer to keysyms that are being redefined in a natu-
ral way without having to worry as much about name conflicts. Allowable expressions include:

keycode NUMBER = KEYSYMNAME . . .

The list of keysyms is assigned to the indicated keycode (which may be

specified in decimal, hex or octal and can be determined by running the xev

program in the examples directory). Usually only one keysym is assigned to

a given code.

keysym KEYSYMNAME = KEYSYMNAME . . .

The KEYSYMNAME on the left hand side is looked up to find its current key-

code and the line is replaced with the appropriate keycode expression.

Note that if you have the same keysym bound to multiple keys, this might not

work.

Clear MODIFIERNAME

This removes all entries in the modifier map for the given modifier, where

valid name are: Shift, Lock, Control, Modi, Mod2, Mod3, Mod4 and Mod5

(case does not matter in modifier names, although it does matter for all other

names). For example, "clear Lock" will remove any keys that were bound to

the lock modifier.

X Window System User's Guide 449

xmodmap (continued) Keyboard Modifier Utility

add MODIFIERNAME=KEYSYMNAME . . .

This adds the given keysyms to the indicated modifier map. The keysym

names are evaluated after all input expressions are read to make it easy to

write expressions to swap keys.

remove MODIFIERNAME = KEYSYMNAME . . .

This removes the given keysyms from the indicated modifier map. Unlike

add, the keysym names are evaluated as the line is read in. This allows you

to remove keys from a modifier without having to worry about whether or not

they have been reassigned.

pointer = default

This sets the pointer map back to its default settings (button 1 generates a

code of 1, button 2 generates a 2, etc.).

pointer = X Y Z

This sets the pointer map to contain the button codes x, Y and z, where x, Y

and Z are numbers. The list always starts with the first physical button.

Lines that begin with an exclamation mark (!) are taken as comments.

If you want to change the binding of a modifier key, you must also remove it from the appropri-
ate modifier map.

Examples

Many pointers are designed such that the first button is pressed using the index finger of the

right hand. People who are left handed frequently find that it is more comfortable to reverse the

button codes that get generated so that the primary button is pressed using the index finger of

the left hand. This could be done on a 3 button pointer as follows:

% xmodmap -e "pointer =321"

Many editor applications support the notion of Meta keys (similar to Control keys except that

Meta is held down instead of Control). However, some servers do not have a Meta keysym in

the default keymap table, so one needs to be added by hand. The following command will

attach Meta to the Multi-language key (sometimes labeled Compose Character). It also takes

advantage of the fact that applications that need a Meta key simply need to get the keycode and

don't require the keysym to be in the first column of the keymap table. This means that appli-
cations that are looking for a Multi_key (including the default modifier map) won't notice any

change.

% keysym Multi_key = Multijcey Meta_L

One of the more simple, yet convenient, uses si xmodmap is to set the keyboard's "rubout" key

to generate an alternate keysym. This frequently involves exchanging Backspace with Delete

to be more comfortable to the user. If the ttymodes resource in xterm is set as well, all termi-
nal emulator windows will use the same key for erasing characters:

% xmodmap -" "keysym Backspace = Delete"

% echo "XTerm*ttyModes: erase ~?" | xrdb -merge

450 X Window System User's Guide

Keyboard Modifier Utility (continued) xmodmap

Some keyboards do not automatically generate less than and greater than characters when the

comma and period keys are shifted. This can be remedied with xmodmap by resetting the bind-
ings for the comma and period with the following scripts:

I

! make shift-, be < and shift-, be >

j

keysym comma = comma less

keysym period = period greater

One of the more irritating differences between keyboards is the location of the Control and

Shift Lock keys. A common use of xmodmap is to swap these two keys as follows:

I

! Swap Caps_Lock and Control_L

I

remove Lock = Caps_Lock

remove Control = Control_L

keysym Control_L = Caps_Lock

keysym Caps__Lock = Control_L

add Lock = Caps_Lock

add Control = Control_L

The keycode command is useful for assigning the same keysym to multiple keycodes.

Although unportable, it also makes possible to write scripts that can reset the keyboard to a

known state. The following script sets the backspace key to generate Delete (as shown above),

flushes all existing caps lock bindings, makes the CapsLock key a control key, makes F5 gener-
ate Escape, and makes Break/Reset be a shift lock.

On the HP, the following keycodes have key caps as listed:

101 Backspace

55 Caps

14 Ctrl

15 Break/Reset

86 Stop

89 F5

keycode 101 = Delete

keycode 55 = Control_R

clear Lock

add Control = Control_R

keycode 89 = Escape

keycode 15 = Caps_Lock

add Lock = Caps_Lock

X Window System User's Guide 451

xmodmap (continued) Keyboard Modifier Utility

See Also

X

Bugs

Every time a keycode expression is evaluated, the server generates a MappingNotify

event on every client. This can cause some thrashing. All of the changes should be batched

together and done at once. Clients that receive keyboard input and ignore MappingNotify

events will not notice any changes made to keyboard mappings.

xmodmap should generate add and remove expressions automatically whenever a keycode

that is already bound to a modifier is changed.

There should be a way to have the remove expression accept keycodes as well as keysyms for

those times when you really mess up your mappings.

Authors

Rewritten by Jim Fulton, MIT X Consortium, from an earlier version by David Rosenthal of

Sun Microsystems.

452 X Window System User's Guide

- Print X Window Dump '

Name

xpr - print an X window dump.

Syntax

xpr [options] [filename]

Description

xpr takes as input a window dump file produced by xwd and formats it for output on PostScript

printers, the DEC LN03 or LAIOO, the IBM PP3812 page printer, or, as of Release 4, the HP

LaserJet (or other PCL printers), or the HP PaintJet. If you do not give a file option, standard

input is used. By default, xpr prints the largest possible representation of the window on the

output page. Options allow you to add headers and trailers, specify margins, adjust the scale

and orientation, and append multiple window dumps to a single output file. Output is sent to

standard output unless you specify -output filename.

Options

-device printer_device

Specifies the device on which the file is to be printed. Currently the follow-
ing printers are supported:

In03 Digital LN03.

lalOO Digital LAIOO.

Ijet HP LaserJet series and other monochrome PCL devices,

such as ThinkJet, QuieUet, RuggedWriter, HP2560 series,

and HP2930 series printers. (As of Release 4.)

p jet HP PaintJet (color mode). (As of Release 4.)

p jetxl HP PaintJet XL Color Graphics Printer (color mode). (As

of Release 4.)

pp IBMPP3812.

ps PostScript printer.

The default printer, for historical reasons, is the LN03. -device lw (Apple

LaserWriter) is equivalent to -device pp and is provided only for back-
wards compatibility.

-scale scale

Affects the size of the window on the page. The PostScript, LN03, and HP

printers are able to translate each bit in a window pixel map into a grid of a

specified size. For example, each bit might translate into a 3x3 grid. This is

specified by -scale 3. By default, a window is printed with the largest

scale that fits onto the page for the specified orientation.

-height inches

Specifies the maximum height of the page.

X Window System User's Guide 453

Xpr (continued) Print X Window Dump

-width inches

Specifies the maximum width of the page.

-left inches

Specifies the left margin in inches. Fractions are allowed. By default, the

window is centered on the page.

-top inches Specifies the top margin for the picture in inches. Fractions are allowed. By

default, the window is centered on the page.

-header header

Specifies a header string to be printed above the window. Default is no

header.

-trailer trailer

Specifies a trailer string to be printed below the window. Default is no trailer.

-landscape Prints the window in landscape mode. By default, a window is printed such

that its longest side follows the long side of the paper.

-portrait Prints the window in portrait mode. By default, a window is printed such that

its longest side follows the long side of the paper.

-rv Reverses the foreground and background colors.

-compact Compresses white pixels on PostScript printers.

-output filename

Specifies an output filename. If this option is not specified, standard output is

used.

-append filename

Specifies a filename previously produced by xpr to which the window con-
tents are to be appended.

-nof f When specified in conjunction with -append, the window appears on the

same page as the previous window.

-split n Allows you to split a window onto several pages. This might be necessary for

large windows that would otherwise cause the printer to overload and print

the page in an obscure manner.

-plane number

Specifies which bit plane to use in an image. The default is to use the entire

image and map values into black and white based on color intensities.

(Available as of Release 4.)

-gray 2 I 3 I 4

Uses a simple 2x2, 3x3, or 4x4 gray scale conversion on a color image, rather

than mapping to strictly black and white. This doubles, triples, or quadruples

the effective width and height of the image. (Available as of Release 4.)

-psf ig Suppress translation of the PostScript picture to the center of the page.

(Available as of Release 4.)

454 X Window System User's Guide

Print X Window Dump (continued) xpr

-density dpi Indicates what dot-per-inch density should be used by the HP printer. (Avail-
able as of Release 4.)

-cutoff level

Changes the intensity level where colors are mapped to either black or white

for monochrome output on a LaserJet printer. (Available as of Release 4.)

The level is expressed as percentage of full brightness. Fractions are

allowed. (Available as of Release 4.)

-noposition Causes header, trailer, and image positioning command generation to be

bypassed for LaserJet, PaintJet and PaintJet XL printers. (Available as of

Release 4.)

-gamma correction

Changes the intensity of the colors printed by PaintJet XL printer. The cor-
rection is a floating point value in the range 0.00 to 3.00. Consult the

operator's manual to determine the correct value for the specific printer.

(Available as of Release 4.)

-render algorithm

Allows PaintJet XL printer to render the image with the best quality versus

performance tradeoff. Consult the operator's manual to determine which

algori thn& are available. (Available as of Release 4.)

-slide Allows overhead transparencies to be printed using the PaintJet and PaintJet

XL printers. (Available as of Release 4.)

Limitations

The current version of xpr can generally print out on the LN03 most X windows that are not

larger than two-thirds of the screen. For example, it will be able to print out a large emacs win-
dow, but it will usually fail when trying to print out the entire screen. The LN03 has memory

limitations that can cause it to incorrectly print very large or complex windows. The two most

common errors encountered are "band too complex" and "page memory exceeded." In the

first case, a window may have a particular band (a row six pixels deep) that contains too many

changes (from black to white to black). This will cause the printer to drop part of the line and

possibly parts of the rest of the page. The printer will flash the number ' 1' on its front panel

when this problem occurs. A possible solution to this problem is to increase the scale of the

picture, or to split the picture onto two or more pages. The second problem, "page memory

exceeded," will occur if the picture contains too much black, or if the picture contains complex

half-tones such as the background color of a display. When this problem occurs the printer will

automatically split the picture into two or more pages. It may flash the number '5' on its from

panel. There is no easy solution to this problem. It will probably be necessary to either cut and

paste, or rework the application to produce a less complex picture.

There are several limitations on the use of xpr with the LA 100: the picture will always be

printed in portrait mode, there is no scaling, and the aspect ratio will be slightly off.

Support for PostScript output currently cannot handle the -append, -nof f or -split

options.

X Window System User's Guide 455

xpr (continued) Print X Window Dump

The -compact option is only supported for PostScript output. It compresses white space but

not black space, so it is not useful for reverse-video windows.

For color images, should map directly to PostScript image support.

HP Printer Specifics (Release 4)

If no -density is specified on the command line, 300 dots per inch will be assumed for 1 jet

and 90 dots per inch for p jet. Allowable densi ty values for a LaserJet printer are 300,150,

100, and 75 dots per inch. Consult the operator's manual to determine densities supported by

other printers.

If no -scale is specified the image will be expanded to fit the printable page area.

The default printable page area is 8x10.5 inches. Other paper sizes can be accommodated using

the -height and -width options.

Note that a 1024x768 image fits the default printable area when processed at 100 dpi with

scale=l, the same image can also be printed using 300 dpi with scale=3 but will require con-
siderably more data be transferred to the printer.

xpr may be tailored for use with monochrome PCL printers other than the LaserJet. To print on

a ThinkJet (HP2225A) xpr could be invoked as:

% xpr -density 96 -width 6.667 filename

or for black-and-white output to a PaintJet:

% xpr -danaity 180 filename

The monochrome intensity of a pixel is computed as 0.30*R + 0.59*G + 0.11*B. If a pixel's

computed intensity is less than the -cutoff level it will print as white. This maps

light-on-dark display images to black-on-white hardcopy. The default cutoff intensity is 50%

of full brightness. Example: specifying -cutoff 87.5 moves the white/black intensity

point to 87.5% of full brightness.

A LaserJet printer must be configured with sufficient memory to handle the image. For a full

page at 300 dots per inch approximately 2MB of printer memory is required.

Color images are produced on the Pain Jet at 90 dots per inch. The PaintJet is limited to sixteen

colors from its 330 color palette on each horizontal print line, xpr will issue a warning message

if more than sixteen colors are encountered on a line, xpr will program the PaintJet for the first

sixteen colors encountered on each line and use the nearest matching programmed value for

other colors present on the line.

Specifying the -rv, reverse video, option for the PaintJet will cause black and white to be

interchanged on the output image. No other colors are changed.

Multiplane images must be recorded by xwd in ZPixmap format. Single plane (monochrome)

images may be in either XYPixmap or ZPixmap format.

Some PCL printers do not recognize image positioning commands. Output for these printers

will not be centered on the page and header and trailer strings may not appear where expected.

456 X Window System User's Guide

Print X Window Dump (continued) Xpr

The -gamma and -render options are supported only on the Pain Jet XL printers.

The -slide option is not supported for LaserJet printers.

The -split option is not supported for HP printers.

See Also

xwd, xdpr, xwud, X

Copyright

Copyright 1988, Massachusetts Institute of Technology.

Copyright 1986, Marvin Solomon and the University of Wisconsin.

Copyright 1988, Hewlett-Packard Company.

See X for a full statement of rights and permissions.

Authors

Michael R. Gretzinger, MIT Project Athena;

Jose Capo, MIT Project Athena (PP3812 support);

Marvin Solomon (University of Wisconsin);

Bob Scheifler, MIT;

Angela Bock and E. Mike Durbin, Rich Inc. (grayscale);

Larry Rupp, Hewlett-Packard (HP printer support).

X Window System User's Guide 457

^ Display Properties for X-

Name

xprop - display window and font properties for X.

Syntax

xprop [options]

Description

The xprop utility is for displaying window and font properties in an X server. One window or

font is selected using the command line arguments or in the case of a window, by clicking on

the desired window. A list of properties is then given, possibly with formatting information.

For each of these properties, its value on the selected window or font is printed using the sup-
plied formatting information if any. If no formatting information is supplied, internal defaults

are used. If a property is not defined on the selected window or font, "not defined" is printed as

the value for that property. If no property list is given, all the properties possessed by the

selected window or font are printed.

A window may be selected in one of four ways. First, if the desired window is the root window,

the -root option may be used. If the desired window is not the root window, it may be

selected in two ways on the command line, either by id number such as might be obtained from

xwininfo, or by name if the window possesses a name. The -id option selects a window by id

number in either decimal or hex (must start with Ox) while the -name option selects a window

by name.

The last way to select a window does not involve the command line at all. If none of -font,

-id, -name, and -root are specified, a crosshair cursor is displayed and the user allowed to

choose any visible window by pressing any pointer button in the desired window. If it is

desired to display properties of a font as opposed to a window, the -font option must be used.

Other than the above four options, the -help option for obtaining help, and the -grammar

option for listing the full grammar for the command line, all the other command line options are

used in specifing both the format of the properties to be displayed and how to display them.

The -len n option specifies that at most n bytes of any given property will be read and

displayed. This is useful, for example, when displaying the cut buffer on the root window

which could run to several pages if displayed in full.

Normally each property name is displayed by printing first the property name, then its type (if it

has one) in parentheses, followed by its value. The -notype option specifies that property

types should not be displayed. The -f s option is used to specify a file containing a list of for-
mats for properties, while the -f option is used to specify the format for one property.

The formatting information for a property actually consists of two parts, a format and a

dformat. The format specifies the actual formatting of the property (i.e., is it made up of

words, bytes, or longs?, etc.) while the d format specifies how the property should be

displayed.

The following paragraphs describe how to construct formats and d formats. However, for

the vast majority of users and uses, this should not be necessary as the built in defaults contain

the formats and d formats necessary to display all the standard properties. It should only be

458 X Window System User's Guide

Display Properties for X (continued) xprop

necessary to specify formats and d formats if a new property is being dealt with or the user

dislikes the standard display format. New users especially are encouraged to skip this part.

A format consists of one of 0, 8, 16, or 32 followed by a sequence of one or more format

characters. The 0, 8, 16, or 32 specifies how many bits per field there are in the property. Zero

is a special case meaning use the field size information associated with the property itself. (This

is only needed for special cases like type INTEGER which is actually three different types

depending on the size of the fields of the property.)

A value of 8 means that the property is a sequence of bytes while a value of 16 would mean that

the property is a sequence of words. The difference between these two lies in the fact that the

sequence of words will be byte swapped while the sequence of bytes will not be when read by a

machine of the opposite byte order of the machine that orginally wrote the property. For more

information on how properties are formatted and stored, consult Volume One, Xlib Program-
ming Manual.

Once the size of the fields has been specified, it is necessary to specify the type of each field

(i.e., is it an integer, a string, an atom, or what?). This is done using one format character per

field. If there are more fields in the property than format characters supplied, the last character

will be repeated as many times as necessary for the extra fields. The format characters and

their meaning are as follows:

a The field holds an atom number. A field of this type should be of size 32.

b The field is an boolean. A 0 means false while anything else means true.

c The field is an unsigned number, a cardinal.

i The field is a signed integer.

m The field is a set of bit flags, 1 meaning on.

s This field and the next ones until either a 0 or the end of the property represent a

sequence of bytes. This format character is only usable with a field size of 8 and is

most often used to represent a string.

x The field is a hex number (like 'c' but displayed in hex - most useful for displaying

window ids and the like).

An example format is 32ica which is the format for a property of three fields of 32 bits each,

the first holding a signed integer, the second an unsigned integer, and the third an atom.

The format of a d format (unlike that of a format) is not so rigid. The only limitations on a

d format is that it may not start with a letter or a dash. This is so that it can be distingished

from a property name or an option. A d format is a text string containing special characters

instructing that various fields be printed at various points in a manner similar to the formatting

string used by printf. For example, the d format " is ($0, $1 \)\n" would render the POINT 3,

-4 which has a format of 32ii as " is (3, -4)\n".

Any character other than a $, ?,\, or a (in a d format prints as itself. To print out one of $, ?,

\, or (preceed it by a \. For example, to print out a $, use \$. Several special backslash

sequences are provided as shortcuts. \n will cause a newline to be displayed while \t will cause

a tab to be displayed. \o where o is an octal number will display character number o.

X Window System User's Guide 459

Xprop (continued) Display Properties for X

A $ followed by a number n causes field number n to be displayed. The format of the

displayed field depends on the formatting character used to describe it in the corrsponding

format. For example, if a cardinal is described by 'c' it will print in decimal while if it is

described by a 'x' it will be displayed in hex.

If the field is not present in the property (this is possible with some properties), <field not avail-

able> is displayed instead. $n+ will display field number n then a comma then field number

n+1 then another comma then ... until the last field defined. If field n is not defined, nothing

is displayed. This is useful for a property that is a list of values.

A ? is used to start a conditional expression, a kind of if-then statement. ?exp(text) will dis-
play text if and only if exp evaluates to non-zero. This is useful for two things. First, it

allows fields to be displayed if and only if a flag is set. And second, it allows a value such as a

state number to be displayed as a name rather than just as a number. The syntax of exp is as

follows:

exp ::= term \ term=exp \ \exp

term::= n \ $n \ run

The ! operator is a logical "not", changing 0 to 1 and any non-zero value to 0. = is an equality

operator. Note that internally all expressions are evaluated as 32 bit numbers so -1 is not equal

to 65535. = returns 1 if the two values are equal and 0 if not n represents the constant value n

while $n represents the value of field number n. mn is 1 if flag number n in the first field hav-
ing format character 'm' in the corrsponding format is 1,0 otherwise.

Examples: ?m3(count: $3^) displays field 3 with a label of count if and only if flag number 3

(count starts at 0!) is on. ?$2=0(True)?!$2=0(False) displays the inverted value of field 2 as a

boolean.

In order to display a property, xprop needs both a format and a dformat. Before xprop uses

its default values of a format of 32x and a d format of " = { $0+ }\n", it searches several

places in an attempt to find more specific formats. First, a search is made using the name of the

property. If this fails, a search is made using the type of the property. This allows type STRING

to be defined with one set of formats while allowing property WM_NAME which is of type

STRING to be defined with a different format. In this way, the display formats for a given type

can be overridden for specific properties.

The locations searched are in order: the format if any specified with the property name (as in 8x

WM_NAME), the formats defined by -f options in last to first order, the contents of the file

specified by the -f s option if any, the contents of the file specified by the environment variable

XPROPFORMATS if any, and finally xprop's built in file of formats.

The format of the files refered to by the -f s option and the XPROPFORMATS variable is one or

more lines of the following form:

name format [dformat]

Where name is either the name of a property or the name of a type, format is the format to

be used with name and d format is the d format to be used with name. If d format is not

present,
"

= $0+\n" is assumed.

460 X Window System User's Guide

Display Properties for X (continued) xprop

Options

-help Prints out a summary of command line options.

-gramma r Prints out a detailed grammar for all command line options.

-id id Allows the user to select window id on the command line rather than using

the pointer to select the target window. This is very useful in debugging X

applications where the target window is not mapped to the screen or where

the use of the pointer might be impossible or interfere with the application.

-name name Allows the user to specify that the window named name is the target window

on the command line rather than using the pointer to select the target window.

-font font Allows the user to specify that the properties of font font should be

displayed.

-root Specifies that X's root window is the target window. This is useful in situa-
tions where the root window is completely obscured.

-display [host]:server[. screen]

Allows you to specify the server to connect to. For example,

xprop -display your_node:0.1

specifies screen 1 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon (:) are necessary in any case.

-len n Specifies that at most n bytes of any property should be read or displayed.

-not ype Specifies that the type of each property should not be displayed.

-f s file Specifies that file file should be used as a source of more formats for pro-
perties.

-remove propname

Specifies the name of a property to be removed from the indicated window.

-f name format [dformat]

Specifies that the format for name should be format and that the dformat

for name should be dformat. If dformat is missing, " = $0+\n" is

assumed.

-frame Specifies that when selecting a window by hand (i.e., if none of -name,

-root, or -id are given), xprop should look at the window manager frame

(if any) instead of looking for the client window. (Available as of Release 4.)

-spy Indicates that xprop should examine window properties forever, looking for

property change events. (Available as of Release 4.)

X Window System User's Guide 461

Xprop (continued) Display Properties for X

Examples

To display the name of the root window: prop -root WM_NAME

To display the window manager hints for the clock: xprop -name xclock WM_HINTS

To display the start of the cut buffer: xprop -root -len 100 CUT_BUFFERO

To display the point size of the fixed font: xprop -font fixed POINT_SIZE

To display all the properties of window # 0x200007: xprop -id 0x2 00007

Environment Variables

XPROPFORMATS Specifies the name of a file from which additional formats are to be

obtained.

See Also

X, xwininfo

Author

Mark Lillibridge, MIT Project Athena.

462 X Window System User's Guide

-Create Pseudo Root Window- xpseudoroot

Name

xpseudoroot - create a pseudo root window.

Syntax

xpseudoroot [options]

Description

This client is available in Release 3 only. It is experimental and should be used with cau-
tion. (Please see Warning below.) xpseudoroot has been removed from the X distribution as

of Release 4.

The xpseudoroot program allows you to create pseudo root windows as outlined in the Inter-

Client Communications Conventions Manual. By default it just makes a copy of the normal

root window, but command line options may be used to alter much of the screen-related infor-
mation.

The command line argument property_name specifies the name of a property on the

screen's real root window in which to store the pseudo root information. Applications can be

run within the pseudo root window by appending .property_name to the

server, screen part of the display name; for example: expo : 0 . 0 .property_name.

Warning

This is experimental code for implementing pseudo root windows as specified by the Inter-Cli-
ent Communications Conventions Manual. The interfaces that it provides should be considered

private to the MIT implementation of Xlib and will change in the next release. The interfaces

that it provides should not be incorporated into any toolkits or applications. No effort will be

made to provide backward compatibility.

Options

-display [host] : server[. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xpseudoroot -display your_node:0.l

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-geometry geometry

The xpseudoroot window is created with the specified size and location deter-
mined by the supplied geometry specification. The -geometry option can

be (and often is) abbreviated to -g, unless there is a conflicting option that

begins with "g." The argument to the geometry option (geometry) is

referred to as a "standard geometry string," and has the form vidthx-

hei gh t+xoff±yoff.

X Window System User's Guide 463

xpseudoroot (continued) Create Pseudo Root Window

-visuals visualid

Specifies a list of visuals to support on the pseudo root window. Any number

of numeric visual identifiers (in hex, octal, or decimal) may be supplied using

the -visuals option.

-colormap colormapid

Specifies the numeric colormap identifier to be associated with the pseudo

root window.

-Colormap visualid

Specifies a numeric visual identifier to be used in creating a new colormap for

the pseudo root window. If this option is given, xpseudoroot will create a

new colormap from the given visual and set the black and white pixel fields

to the desired colors.

-white pixel

Specifies the numeric pixel value to use for whitePixel when creating a

new colormap with -Colormap. The default is to copy the real screen's

WhitePixel.

-White colorname

Specifies the color to use when setting WhitePixel in newly created color-

maps. It may be used with -white to create arbitrary WhitePixels.

-black pixel

Specifies the numeric pixel value to use for BlackPixel when creating a

new colormap with -Colormap. The default is to copy the real screen's

BlackPixel.

-Black colorname

Specifies the color to use when setting BlackPixel in newly created color-

maps. It may be used with -black to create arbitrary BlackPixels.

-empty Indicates that any colormaps created with -Colormap should not have

BlackPixel and WhitePixel preallocated (although the values may still

be set with -black and -white). This leaves as much room as possible for

running applications that would otherwise not find enough colors. This is not

for general use as it guarantees that an application will be displayed in incor-
rect colors.

-max number Specifies the maximum number of installed colormaps that will be allowed on

this screen. The default is to use the real screen's value.

-min number Specifies the minimum number of installed colormaps that will be allowed on

this screen. The default is to use the real screen's value.

-backingstore when

Specifies when backing store window attributes will be honored and takes

one of the following arguments: NotUsef ul, WhenMapped, or Always.

The default is to use the real screen's value.

464 X Window System User's Guide

Create Pseudo Root Window (continued) xpseudoroot

-saveunders boolean

Specifies whether or not this screen supports save-unders and takes one of the

following arguments: yes or no.

-name string

Specifies the name to be used for the pseudo root window.

See Also

X, xdpyinfo, xwininfo, xprop; Volume One, Xlib Programming Manual

Bugs

This is a sample program that is primarily intended as a testbed for ICCCM pseudo roots. It

should not be incorporated into any toolkit or application.

Author

Jim Fulton, MIT X Consortium.

X Window System User's Guide 465

^S(Server Resource Database Utility-

Name

xrdb - X server resource database utility.

Syntax

xrdb [options] [filename]

Description

xrdb is used to get or set the contents of the RESOURCE_MANAGER property on the root win-
dow of screen 0. You would normally run this program from your X startup file.

The resource manager (used by the Xlib routine XGetDefault(3X) and the X Toolkit) uses the

RESOURCE_MANAGER property to get user preferences about color, fonts, and so on for appli-
cations. Having this information in the server (where it is available to all clients) instead of on

disk, solves the problem in previous versions of X that required you to maintain defaults files

on every machine that you might use. It also allows for dynamic changing of defaults without

editing files.

For compatibility, if there is no RESOURCE_MANAGER property defined (either because xrdb

was not run or the property was removed), the resource manager will look for a file called Xde-

faults in your home directory.

The filename (or the standard input if - or no input file is given) is optionally passed through

the C preprocessor with the following symbols defined, based on the capabilities of the server

being used:

SERVERHOST=hostname

HOST=hostname

The hostname portion of the display to which you are connected.

WIDTH=.n umber

The width of the default screen in pixels.

HEIGHT=number

The height of the default screen in pixels.

X_RESOLUTION=/J umber

The x resolution of the default screen in pixels per meter.

Y_RESOLUTION=.n umber

The y resolution of the default screen in pixels per meter.

PLANES=number

The number of bit planes (the depth) of the root window of the default screen.

CLASS=visua_Z class

One of StaticGray, Grayscale, StaticColor, PsuedoColor,

TrueColor, DirectColor. This is the visual class of the root window

of the default screen.

COLOR Defined only if CLASS is one of StaticColor, PsuedoColor, True-

Color, or DirectColor.

466 X Window System User's Guide

X Server Resource Database Utility (continued) xrdb

BITS_PER_RBG=number

The number of significant bits in an RGB color specification. This is the log

base 2 of the number of distinct shades of each primary that the hardware can

generate. Note that it is usually not related to the number of PLANES.

CLIENTHOST=hostname

The name of the host on which xrdb is running. (Available as of Release 4.)

RELEASE=number

The vendor release number for the server. The interpretation of this number

will vary depending on VENDOR. (Available as of Release 4.)

REVISION=number

The X protocol minor version supported by this server (currently 0).

VERSION=number

The X protocol major version supported by this server (should always be 11).

VENDOR=n umber

A string specifying the vendor of the server. (Available as of Release 4.)

Lines that begin with an exclamation mark (!) are ignored and may be used as comments.

Options

xrdb accepts the following options:

-help This option (or any unsupported option) will cause a brief description of the

allowable options and parameters to be printed.

-display [host] : server[. scree/?]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example:

xrdb -display your_node: 0 . 0

specifies screen 0 of server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, screen 0 is

assumed; the server and colon (:) are necessary in all cases.

-cpp filename

Specifies the pathname of the C preprocessor program to be used. Although

xrdb was designed to use CPP, any program that acts as a filter and accepts

the -D, -I, and -u options may be used.

-nocpp Indicates that xrdb should not run the input file through a preprocessor before

loading it into the RESOURCE_MANAGER property.

-symbols Indicates that the symbols that are defined for the preprocessor should be

printed onto the standard output. This option can be used in conjunction with

-query, but not with the options that change the RESOURCE_MANAGER

property.

X Window System User's Guide 467

xrdb (continued) X Server Resource Database Utility

-query Indicates that the current contents of the RESOURCE_MANAGER property

should be printed onto the standard output. Note that since preprocessor

commands in the input resource file are part of the input file, not part of the

property, they won't appear in the output from this option. The -edit

option can be used to merge the contents of the property back into the input

resource file without damaging preprocessor commands.

-load Indicates that the input should be loaded as the new value of the

RESOURCE_MANAGER property, replacing whatever was there (i.e., the old

contents are removed). This is the default action.

-merge Indicates that the input should be merged with, instead of replacing, the cur-
rent contents of the RESOURCE_MANAGER property. Since xrdb can read

the standard input, this option can be used to the change the contents of the

RESOURCE_MANAGER property directly from a terminal or from a shell

script. Note that this option does a lexicographic sorted merge of the two

inputs, which is almost certainly not what you want, but remains for back-
ward compatibility.

-n Indicates that changes to the property (when used with -load) or to the

resource file (when used with -edit) should be shown on the standard

output, but should not be performed. (Available as of Release 4.)

-quiet Indicates that warning about duplicate entries should not be displayed.

(Available as of Release 4.)

-remove Indicates that the RESOURCE_MANAGER property should be removed from

its window.

-retain Indicates that the server should be instructed not to reset if xrdb is the first

client. (Available as of Release 4.)

-edit filename

Indicates that the contents of the RESOURCE_MANAGER property should be

edited into the given file, replacing any values already listed there. This

allows you to put changes that you have made to your defaults back into your

resource file, preserving any comments or preprocessor lines.

-backup string

Specifies a suffix to be appended to the filename used with -edit to gener-
ate a backup file.

-Dname[=value]

Is passed through to the preprocessor and is used to define symbols for use

with conditionals such as ttifdef.

-Uname Is passed through to the preprocessor and is used to remove any definitions of

this symbol.

-Idirectory Is passed through to the preprocessor and is used to specify a directory to

search for files that are referenced with ttinclude.

468 X Window System User's Guide

X Server Resource Database Utility (continued) xrdb

Files

Generalizes '/.Xdefaults files.

See Also

X, XGetDefault(3X), Xlib Resource Manager

Bugs

The default for no arguments should be to query, not to overwrite, so that it is consistent with

other programs.

Authors

Phil Karlton, rewritten from the original by Jim Gettys. Copyright 1988, Digital Equipment

Corporation.

X Window System User's Guide 469

XrefrSSh
Refresh X Screen-

Name

xrefresh - refresh all or part of an X screen.

Syntax

xrefresh [options]

Description

xrefresh is a simple X program that causes all or part of your screen to be repainted. This is

useful when system messages have displayed on your screen, xrefresh maps a window on top

of the desired area of the screen and then immediately unmaps it, causing refresh events to be

sent to all applications. By default, a window with no background is used, causing all applica-
tions to repaint "smoothly." However, the various options can be used to indicate that a solid

background (of any color) or the root window background should be used instead.

Options

-white Use a white background. The screen just appears to flash quickly, and then

repaints.

-black Use a black background (in effect, turning off all of the electron guns to the

tube). This can be somewhat disorienting as everything goes black for a

moment.

-solid color

Use a solid background of the specified color. Try green.

-root Use the root window background.

-none This is the default. All of the windows simply repaint.

-geometry geometry

Specifies the portion of the screen to be repainted. The -geometry option

can be (and often is) abbreviated to -g, unless there is a conflicting option

that begins with "g." The argument to the geometry option (geometry) is

referred to as a "standard geometry string," and has the form widthx.-

height±xoff±yoff.

-display [host]:server[. screen]

Allows you to specify the server and screen to refresh. For example, host

specifies the machine, server specifies the server number, and screen

specifies the screen number. For example,

xrefresh -display your_node:0 .1

specifies screen 1 of server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, screen 0 is

assumed; the server and colon (:) are necessary in all cases.

470 X Window System User's Guide

Refresh X Screen (continued) xrefresh

Resources

The xrefresh program uses the routine XGetDefault(3X) to read defaults, so its resource names

are all capitalized.

Black,White,Solid,None, Root

Determines what sort of window background to use.

Geometry Determines the area to refresh. Not very useful.

See Also

X

Bugs

It should have just one default type for the background.

Author

Jim Gettys, Digital Equipment Corp., MIT Project Athena.

X Window System User's Guide 471

xset X, isplay and Keyboard Preferences-

Name

xset - user preference utility for X.

Syntax

xset [options]

Description

xset is used to set various user preference options of the display and keyboard.

Options

Note that not all X implementations are guaranteed to honor all of these options.

-display [host]:server[. screen]

Allows you to specify the host, server, and screen for which to set prefer-
ences, host specifies the machine, server specifies the server number, and

screen specifies the screen number. For example,

-display your_node:Q.l &

specifies screen 1 of server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, screen 0 is

assumed; the server and colon (:) are necessary in all cases.

b Controls bell volume, pitch, and duration. The b option accepts up to three

numerical parameters (volume, pitch, and duration), a preceding dash

(-), or an on/of f flag. If no parameters are given, or the on flag is used, the

system defaults will be used. If the dash or of f are given, the bell will be

turned off. If only one numerical parameter is given, the bell -volume will

be set to that value, as a percentage of its maximum. Likewise, the second

numerical parameter specifies the bell pitch, in hertz, and the third numeri-
cal parameter specifies the duration in milliseconds. Note that not all

hardware can vary the bell characteristics. The X server will set the charac-
teristics of the bell as closely as it can to the user's specifications.

-be Controls bug compatibility mode in the server, if possible. The option with a

preceding dash (-) disables the mode; the option alone enables the mode.

The need for this option is determined by the following circumstances. Vari-
ous pre-R4 clients pass illegal values in some protocol requests, and pre-R4

servers did not correctly generate errors in these cases. Such clients, when

run with an R4 server, will terminate abnormally or otherwise fail to operate

correctly. Bug compatibility mode explicitly reintroduces certain bugs into

the X server, so that many such clients can still be run.

This mode should be used with care; new application development should be

done with this mode disabled. Be aware that the server must support the MTT-

SUNDRY-NONSTANDARD protocol extension in order for this option to work.

472 X Window System User's Guide

Display and Keyboard Preferences (continued) xset

c Controls key click. The c option can take an optional value, a preceding dash

(-), or an on/off flag. If no parameter or the on flag is given, the system

defaults will be used. If the dash or of f flag is used, the keyclick will be dis-
abled. If a value from 0 to 100 is given, it is used to indicate volume, as a

percentage of the maximum. The X server will set the volume to the nearest

value that the hardware can support.

f p= path Sets the font path used by the server, path must be a directory or a comma-

separated list of directories. The directories are interpreted by the server, not

the client, and are server-dependent. (Directories that do not contain font

databases created by mkfontdir will be ignored by the server.)

f p default Restores the default font path.

f p rehash Causes the server to reread the font databases in the current font path. This is

generally only used when adding new fonts to a font directory (after running

mkfontdir to recreate the font database).

-f p path or f p- path

The -f p and f p- options remove elements from the current font path, path

must be a directory or comma-separated list of directories.

+fppath or fp+path

The +fp and fp+ options prepend and append elements to the current font

path, respectively, path must be a directory or comma-separated list of

directories.

led Controls the turning on or off of one or all of the LEDs. The led option

accepts an optional integer, a preceding dash (-) or an on/of f flag. If no

parameter or the on flag is given, all LEDs are turned on. If a preceding dash

or the flag of f is given, all LEDs are turned off. If a value between 1 and 32

is given, that LED will be turned on or off depending on the existence of a

preceding dash. A common LED which can be controlled is the Caps Lock

LED. xset led 3 would turn led #3 on. xset -led 3 would turn it

off. The particular LED values may refer to different LEDs on different hard-
ware.

m Controls the mouse parameters. The parameters for the mouse are accel-
eration and threshold. The mouse, or whatever pointer the machine is

connected to, will go acceleration times as fast when it travels more

than threshold pixels in a short time. This way, the mouse can be used for

precise alignment when it is moved slowly, yet it can be set to travel across

the screen in a flick of the wrist when desired. One or both parameters for the

m option can be omitted, but if only one is given, it will be interpreted as the

acceleration. If no parameters or the flag default is used, the system

defaults will be set

p Controls pixel color values. The parameters are the color map entry number

in decimal, and a color specification. The root background colors may be

changed on some servers by altering the entries for BlackPixel and

X Window System User's Guide 473

XSet (continued) Display and Keyboard Preferences

WhitePixel. Although these are often 0 and 1, they need not be. Also, a

server may choose to allocate those colors privately, in which case an error

will be generated. The map entry must not be a read-only color, or an error

will result.

r Controls the autorepeat. If a preceding dash or the off flag is used,

autorepeat will be disabled. If no parameters or the on flag is used,

autorepeat will be enabled.

s Controls the screen saver parameters. The s option accepts up to two numer-
ical parameters (time and cycle), a blank/noblank flag, an

expose/noexpose flag, an on/off flag, or the default flag. If no

parameters or the default flag is used, the system will be set to its default

screen saver characteristics. The on/off flags simply turn the screen saver

functions on or off. The blank flag sets the preference to blank the video (if

the hardware can do so) rather than display a background pattern, while

noblank sets the preference to display a pattern rather than blank the video.

The expose flag sets the preference to allow window exposures (the server

can freely discard window contents), while noexpose sets the preference to

disable screen saver unless the server can regenerate the screens without

causing exposure events. The time and cycle parameters for the screen

saver function determine how long the server must be inactive for screen sav-
ing to activate, and the period to change the background pattern to avoid burn

in, respectively. The arguments are specified in seconds. If only one numeri-
cal parameter is given, it will be used for the time.

q Gives you information on the current settings. (In Release 3, the query

option can also be used.)

These settings will be reset to default values when you log out.

See Also

X, Xserver, xmodmap, xrdb, xsetroot

Authors

Bob Scheifler, MIT Laboratory for Computer Science;

David Krikorian, MIT Project Athena (Xll version).

474 X Window System User's Guide

- Set Root Window Characteristics-x

Name

xsetroot - root window parameter setting utility.

Syntax

xsetroot[options]

Description

xsetroot allows you to tailor the appearance of the root (background) window on a display. You

can experiment with xsetroot until you find a look that you like, then put the xsetroot command

that produces it into your X startup file. If you do not specify any options or you specify -def,

the window is reset to its defaults. The -def option can be specified along with other options

and only the non-specified characteristics will be reset to the default state.

Options

xsetroot accepts the following options.

Only one of the background color/tile changing options (-solid, -gray, -grey, -bitmap,

or -mod) may be specified at a time, color can be specified as a color name or an RGB

value.

-he lp Displays a brief description of the allowable options.

-def Resets unspecified attributes to the default values; the background to the gray

mesh background and the pointer to the hollow X pointer. If you specify def

and other options, only the non-specified options are reset to their defaults.

-cursor cursorfilemaskfile

Specifies the cursor shape to use as the root window pointer. The cursor-

file and maskfile are bitmaps made with the bitmap client. Refer to

Chapter 6, Graphics Utilities, for more information on creating bitmaps. The

mask file may need to be all black until you are accustomed to the way masks

work. The default root window pointer is an X cursor.

-cursor_name standard_cursor_name

Changes the root window cursor to one of the standard cursors from the cur-
sor font See Appendix D for a list and pictures of the Standard Cursors. To

specify a cursor name as an argument to a command line option, the XC_ pre-
fix must be stripped from the name. (This option is available as of Release 4.)

-bitmap filename

Uses the bitmap specified in the file to set the window pattern. The entire

background is made up of repeated tiles of the bitmap. You can make your

own bitmap files using the bitmap client or you can use those available with

X, in the directory fusr/include/Xll/bitmaps. The default is gray mesh.

-mod x y Makes a plaid-like grid pattern on your screen, x and y are integers ranging

from 1 to 16. Zero and negative numbers are taken as 1.

X Window System User's Guide 475

xsetroot (continued) Set Root Window Characteristics

-gray or -grey

Creates a grey background.

-f g color Sets the foreground color of the root window. Foreground and background

colors are meaningful only in combination with -cursor, -bitmap, or

-mod. The default is black.

-bg color Sets the background color of the root window. Foreground and background

colors are meaningful only in combination with -cursor, -bitmap, or

-mod. The default is white.

-rv Reverses the foreground color and the background color when used with

another option such as -mod. -rv without another specified option returns

the root (background) window to the default state.

-solid color

Sets the root window color. The default is gray mesh.

-name string

Sets the name of the background window to string. There is no default

value. Usually, a name is assigned to a window so that the window manager

can use a text representation when the window is converted to an icon. This

option also allows a client to refer to the root window by name.

-display [host]:server[. screen]

Allows you to specify the host, server, and screen of the root window, host

specifies the machine, server specifies the server number, and screen

specifies the screen number. For example,

% xsetroot -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, screen 0 is

assumed; the server and colon (:) are necessary in all cases.

See Also

X, xset, xrdb

Author

Mark Lillibridge, MIT Project Athena.

476 X Window System User's Guide

- Define Standard Colormaps '

Name

xstdcmap - X standard colormap utility.

Syntax

xstdcmap [options]

Description

Available as of Release 4, the xstdcmap utility can be used to selectively define standard color-

map properties. It is intended to be run from a user's X startup script to create standard color-

map definitions in order to facilitate sharing of scarce colormap resources among clients.

Where at all possible, colormaps are created with read-only allocations.

Options

The following options may be used with xstdcmap:

-display host[: server][. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xstdcmap -display your_node:0.1

specifies screen 1 of server 0 on the machine your_node. Either or both the

host and screen elements to the display specification can be omitted. If

host is omitted, the local machine is assumed. If screen is omitted, screen

0 is assumed (and the period is unnecessary). The colon and server are

necessary in all cases.

-all Specifies that all six standard colormap properties should be defined on each

screen of the display. Not all screens will support visuals under which all six

standard colormap properties are meaningful, xstdcmap will determine the

best allocations and visuals for the colormap properties of a screen. Any pre-
viously existing standard colormap properties will be replaced.

-best Specifies that the RGB_BEST_MAP should be defined.

-blue Specifies that the RGB_BLUE_MAP should be defined.

-default Specifies that the RGB_DEFAULT_MAP should be defined.

-delete map Specifies that a standard colormap property should be removed, map may be

one of: default, best, red, green, blue, or gray.

-gray Specifies that the RGB_GRAY_MAP should be defined.

-green Specifies that the RGB_GREEN_MAP should be defined.

-help Specifies that a brief description of the command line arguments should be

printed on the standard error. This will be done whenever an unhandled argu-
ment is given to xstdcmap.

X Window System User's Guide 477

XStdcmap (continued) Define Standard Colormaps

- red Specifies that the RGB_RED_MAP should be defined.

-verbose Specifies tliat xstdcmap should print logging information as it parses its input

and defines the standard colormap properties.

See Also

x

Author

Donna Converse, MIT X Consortium.

478 X Window System User's Guide

-Window Terminal Emulator ^

Name

xterm - window terminal emulator.

Syntax

xterm [options]

Description

The xterm program is a terminal emulator for the X Window System. It provides DEC VT102

and Tektronix 4014 compatible terminals for programs that can't use the window system

directly. If the underlying operating system supports terminal resizing capabilities (for

example, the SIGWINCH signal in systems derived from BSD 4.3), xterm will use the facilities to

notify programs running in the window whenever it is resized.

The VT102 and Tektronix 4014 terminals each have their own window so that you can edit text

in one and look at graphics in the other at the same time. To maintain the correct aspect ratio

(height/width), Tektronix graphics will be restricted to the largest box with a 4014's aspect

ratio that will fit in the window. This box is located in the upper left area of the window.

Although both windows can be displayed at the same time, one of them is considered the active

window for receiving keyboard input and terminal output. This is the window that contains the

text cursor and whose border highlights whenever the pointer is in either window. The active

window can be chosen through escape sequences, the VT Options menu in the VT102 window,

and the Tek Options menu in the 4014 window.

The Release 4 version of xterm provides four menus that allow you to manipulate the VT102

and Tektronix windows: Main Options, VT Options, Tek Options, and VT Fonts. The first three

menus are available (with slight variations) in Release 3, but have the names xterm, Modes, and

Tektronix. The VT Fonts menu is available as of Release 4.

Options

xterm accepts all of the standard X Toolkit command line options along with the additional

options described below. Note that if the option begins with a + instead of a -, the option is

restored to its default value. (Specifying the default with +option can be useful for overrid-
ing the opposite value in an ̂ resources file or other prior resource specification.)

-help Causes xterm to print out a verbose message describing its options.

-132 Causes the VT102 DECCOLM escape sequence, which switches between 80

and 132 column mode, to be recognized, enabling the xterm window to resize

properly. By default, the DECCOLM escape sequence is ignored. (See

Appendix C for more information on xterm escape sequences.)

(This option can be turned on and off from the xterm VT Options menu,

described below.)

-ah/+ah -ah specifies that xterm should always highlight the text cursor and window

borders. By default, xterm will display a hollow text cursor whenever the

focus is lost or the pointer leaves the window. +ah sets the default.

X Window System User's Guide 479

Xterm (continued) Window Terminal Emulator

-b innerborder

Specifies the width of the inner border (the distance between the outer edge

of the characters and the window border) in pixels. The default is two pixels.

-C Specifies that the xterm window should receive console output This is not

supported on all systems.

-cc characterclassrange: value[,...]

Sets classes indicated by the given ranges for use in selecting by words. See

"Specifying Character Classes" below.

-cn/+cn -en indicates that newlines should not be cut in line mode selections.

+cn indicates that newlines should be cut in line mode selections, (-en and

+cn are available as of Release 4.)

-cr color Specifies the color to use for the text cursor. The default is to use the same

foreground color that is used for text

-cu/+cu -cu enables the curses fix. Several programs that use the curses(3x) cursor

motion package have some difficulties with VT 102-compatible terminals.

The bug occurs when you run the more program on a file containing a line

that is exactly the width of the window and which is followed by a line begin-
ning with a tab. The leading tabs are not displayed. This option causes the

tabs to be displayed correctly.

+cu indicates that xterm should not work around this curses bug.

(This option can be turned on and off from the VT Options menu, described

below.)

-e command [arguments]

Specifies the command (and its arguments) to be run in the xterm window. It

also sets the window title and icon name to be the name of the program being

executed if neither -T or -n are given on the command line. The -e option,

command and the arguments must appear last on the xterm command line, for

example, xterm -rv -e more bigf ile &.

-fb font Uses the specified font as the bold font This font must be the same height

and width as the normal font. If only one of the normal or bold fonts is speci-
fied, it is used as the normal font and the bold font is produced by overstrik-

ing this font. The default is to overstrike the normal font

- j/+ j - j indicates that xterm should do jump scrolling. Normally, text is scrolled

one line at a time; this option allows xterm to move multiple lines at a time so

that it doesn't fall as far behind. The use of jump scrolling is strongly recom-
mended since it makes xterm much faster when scanning through large

amounts of text. The VT100 escape sequences for enabling and disabling

smooth scroll and the Enable Jump Scroll item of the VT Options menu can

also be used to toggle this feature.

The + j option specifies that xterm not do jump scrolling.

480 X Window System User's Guide

Window Terminal Emulator (continued) xterm

(This option can be turned on and off from the VT Options menu, described

below.)

-1/+1 -1 logs xterm input/output into a file called XtermLog.xxxx where xxxx rep-
resents the process ID number. To display your data, turn off logging using

the xterm menu, then type cat XtermLog.xxxx at the xterm window

prompt and the output file is sent to your xterm window. Logging allows you

to keep track of the sequence of data and is particularly helpful while debug-
ging code.

+1 specifies that xterm not do logging.

(This option can also be turned on and off from the VT Options menu,

described below.)

-If file Specifies the file in which the data is written to rather than the default Xterm-
Log.xxxx where xxxx is the process identification of xterm (the file is created

in the directory that xterm is started in or the home directory for a login

xterm). If file begins with a " I ", then the rest of the string is assumed to

be a command to be executed by the shell and a pipe is opened to the process.

-ls/+ls -Is indicates that the shell that is started in the xterm window be a login

shell (i.e., the first character of argv[0] will be a dash, indicating to the shell

that it should read the user's .login or .profile).

+ls indicates that the shell that is started should not be a login shell (i.e., it

will be a normal "subshell.")

-mb/+mb -mb turns on the margin bell. Default is bell off.

+mb indicates that the margin bell should not be rung.

(This option can be turned on and off from the VT Options menu, described

below.)

-me milliseconds

Specifies the maximum time between multi-click selections. (Available as of

Release 4.)

-ms color Sets the color of the pointer. The default is to use the foreground color.

-nb number Sets the distance at which the margin bell rings for the right margin. Default

is 10 characters.

-rw/+rw -rw turns on the reverse-wraparound mode that allows the cursor to wrap-
around from the leftmost column to the rightmost column of the previous line.

Allows you to backspace to the previous line and overstrike data or erase data

with the spacebar.

+rw indicates that reverse-wraparound should not be enabled.

(This option can be turned on and off from the VT Options menu, described

below.)

X Window System User's Guide 481

xterm (continued) Window Terminal Emulator

-Seen Specifies the last two letters of the name of a pseudo-terminal to use in slave

mode, plus the number of the inherited file descriptor. The option is parsed

"%c%c%d". This allows xterm to be used as an input and output channel for

an existing program and is sometimes used in specialized applications.

-s Allows xterm to scroll asynchronously with the display, meaning that the

screen does not have to be kept completely up to date while scrolling, xterm

saves data in memory which is displayed later. This allows xterm to run fas-
ter when network latencies are high and is useful when running xterm across

a large internet or many gateways.

+s indicates that xterm should scroll synchronously.

-sb/+sb -sb indicates that some number of lines that are scrolled off the top of the

window should be saved and that a scrollbar should be displayed at startup so

those lines can be viewed.

+sb indicates that a scrollbar should not be displayed at startup.

(This option can be turned on and off from the VT Options menu, described

below.)

-sf/+sf -sf indicates that the Sun function key escape codes should be generated for

function keys.

+sb indicates that the standard escape codes should be generated for function

keys. This is the default.

-si disables repositioning the cursor at the bottom of the scroll region when

the process sends output.

+si indicates that the cursor should be repositioned at the bottom of the

scroll region on output.

(This option can be turned on and off from the VT Options menu, described

below.)

-sk/+sk -sk causes the cursor to be repositioned at the bottom of the scroll region

when a key is pressed.

+sk indicates that pressing a key while using the scrollbar should not cause

the cursor to be repositioned at the bottom of the scroll region.

(This option can be turned on and off from the VT Options menu, described

below.)

-si number Specifies the maximum number of lines to be saved that are scrolled off the

top of the window. Default is 64 lines.

-t/+t -t causes the startup xterm window to be the Tektronix window rather than

the VT102 window.

+t causes the startup window to be the VT102 window. This is the default.

482 X Window System User's Guide

Window Terminal Emulator (continued) xterm

-tm string Specifies a series of terminal setting keywords followed by the characters that

should be bound to those functions, similar to the stty program. (In Release 3,

this is ignored when -L is given since getty resets the terminal. The -L

option is not supported in Release 4.) Allowable keywords include: intr, quit,

erase, kill, eof, eol, swtch, start, stop, brk, susp, dsusp, rprnt, flush, weras, and

Inext. Control characters may be specified as "char (e.g., *c or "u), and"? may

be used to indicate delete.

-tn name Specifies the name of the terminal type to be set in the TERM environment

variable. This terminal type must exist in the termcap(5~) database and should

have li# and con entries.

-ut/+ub -ut indicates that xterm shouldn't write a record into the the system log file

letclutmp.

+ut indicates that xterm should write a record into the system log file

letclutmp.

-vb/+vb -vb causes your terminal window to flash whenever an event occurs that

would ordinarily cause your terminal bell to ring.

+vb indicates that a visual bell should not be used.

(This option can be turned on and off from the Main Options menu, described

below.)

-wf/+wf -wf indicates that xterm should wait for the window to be mapped the first

time before starting the subprocess so that the initial terminal size settings

and environment variables are correct. It is the application's responsibility to

catch subsequent terminal size changes.

+wf indicates that xterm should not wait before starting the subprocess.

The following X Toolkit options are commonly used with xterm:

-geometry geometry

xterm takes this geometry specification for the VT102 window. The -geom-
etry option can be (and often is) abbreviated to -g, unless there is a con-
flicting option that begins with "g." The argument to the geometry option

(geometry) is referred to as a "standard geometry string," and has the form

wi dthxhei gh t±xoff±yoff.

-display [host]:server[. screen]

By default, xterm obtains the host, server, and screen to use from the environ-
ment variable DISPLAY. However, you can also specify them using the

-display option, host specifies which machine to create the window on,

server specifies the server number, and screen specifies the screen num-
ber. For example,

xtorm -display your_node:0.1

X Window System User's Guide 483

xterm (continued) Window Terminal Emulator

specifies that an xterm be created on screen 1 of server 0 on the machine

your_/jode. If the host is omitted, the local machine is assumed. If the

screen is omitted, screen 0 is assumed; the server and colon (:) are necessary

in all cases.

-bd color Sets the color of the border. Default of the highlighted border is black.

Default of the unhighlighted border is gray.

-bg col or Sets the background color of the xterm window. Default is white.

-bw pixels Specifies the width of the xterm window border in pixels. Default is one

pixel.

-f g col or Sets the color of the text (foreground). Default is black.

-fn font Uses the specified font instead of the default font (fixed). You can use any

fixed-width font.

-iconic Causes xterm to display an xterm icon rather than an xterm window when it

starts up.

-name name Specifies the application name under which resources are to be obtained,

rather than the default executable filename, name should not contain "." or

"*" characters.

-title string

Specifies the window title string, which may be displayed by window manag-
ers if the user so chooses. The default title is the command line specified

after the -e option, if any, otherwise the application name.

-rv Reverses the foreground and background colors.

(This option can be turned on and off from the VT Options menu, described

below.)

-xrm resourcestring

Specifies a resource string to be used with this instance of the application.

This is especially useful for setting resources that do not have command line

option equivalents.

The following command line arguments are provided for compatibility with older versions

(prior to Release 3). They may not be supported in the next release as the X Toolkit provides

standard options that accomplish most of the same tasks. The -L option has been eliminated in

Release 4.

-L Indicates that xterm is being started by init. In this mode, xterm does not try

to allocate a new pseudo-terminal as init has already done so. (xterm

presumes that its file descriptors are already open on a slave pseudo-termi-
nal.) In addition, the system program getty is run rather than the user's shell.

This option is only used by init.

484 X Window System User's Guide

Window Terminal Emulator (continued) xterm

This option has been super-ceded by the xdm program. Furthermore, -L

should never be specified by users when starting terminal windows. This

option has been eliminated in Release 4.

% geometry Specifies the preferred size and location of the Tektronix window. It is short-
hand for specifying the tekGeometry resource.

^geometry Specifies the preferred position of the icon. It is shorthand for specifying the

iconGeometry resource. The width and height values of the geometry

string are optional.

-n string Specifies the icon name for the xterm window. It is shorthand for specifying

the *iconName resource. Note that this is not equivalent to the Toolkit

option -name. The default icon name is the name of a program run with the

-e option, if any, otherwise the application name.

-r Indicates that reverse video should be simulated by swapping the foreground

and background colors. It is equivalent to -rv.

-w pixels Specifies the width in pixels of the border surrounding the window. It is

equivalent to -bw.

-T string Specifies the title for the xterm window. It is equivalent to -title.

Resources

The program understands all of the core X Toolkit resource names and classes as well as:

iconGeometry (class IconGeometry)

Specifies the preferred size and position of the application when iconified. It

is not necessarily obeyed by all window managers.

termName (class TermName)

Specifies the terminal type name to be set in the TERM environment variable.

title (class Title)

Specifies a string that may be used by the window manager when displaying

this application.

ttyModes (class TtyModes)

Specifies a string containing terminal setting keywords and the characters to

which they may be bound. (In Release 3, this resource is ignored when -L is

given since getty resets the terminal. The -L option has been eliminated in

Release 4.) Allowable keywords include: intr, quit, erase, kill, eof, eol,

swtch, start, stop, brk, susp, dsusp, rprnt, flush, weras, and Inext. Control

characters may be specified as "char (e.g., "c or ~u), and "? may be used to

indicate delete. This is very useful for overriding the default terminal settings

without having to do an stty every time an xterm is started.

utmplnhibit (class Utmplnhibit)

Specifies whether or not xterm should try to record the user's terminal in

/etc/utmp.

X Window System User's Guide 485

Xterm (continued) Window Terminal Emulator

sunFunctionKeys (class SunFunctionKeys)

Specifics whether or not Sun Function Key escape codes should be generated

for function keys instead of standard escape sequences.

The following resources are specified as part of the vt 10 0 widget (class VT10 0):

allowSendEvents (class AllowSendEvents)

Specifies whether or not synthetic key and button events (generated using the

X protocol SendEvent request) should be interpreted or discarded. The

default is false meaning they are discarded. Note that allowing such events

creates a very large security hole. (Available as of Release 4.)

alwaysHighlight (class AlwaysHighlight)

Specifies whether or not xterm should always display a highlighted text cur-
sor. By default, a hollow text cursor is displayed whenever the pointer moves

out of the window or the window loses the input focus.

boldFont (class Font)

Specifies the name of the bold font to use instead of overstriking the normal

font

c!32 (class C132)

Specifies whether or not the VT102 DECCOLM escape sequence should be

honored. The default is false.

charClass (class CharClass)

Specifies comma-separated lists of character class bindings of the form

[1 ow-]hi gh: val ue. These are used in determining which sets of characters

should be treated the same when doing cut and paste. See "Character

Classes" below.

curses (class Curses)

Specifies whether or not the last column bug in the cursor should be worked

around. The default is false.

background (class Background)

Specifies the color to use for the background of the window. The default is

white.

foreground (class Foreground)

Specifies the color to use for displaying text in the window. Setting the class

name instead of the instance name is an easy way to have everything that

would normally appear in the "text" color change color. The default is black.

cursorColor (class Foreground)

Specifies the color to use for the text cursor. The default is black.

eightBitlnput (class EightBitlnput)

Specifies whether or not eight-bit characters should be accepted. The default

is true. (Available as of Release 4.)

486 X Window System User's Guide

Window Terminal Emulator (continued) xterm

font (class Font)

Specifies the name of the normal font.

f ontl (class Fontl)

Specifies the name of the first alternate font. This font is toggled using the

Tiny menu item on the VT Fonts menu. (Available as of Release 4.)

f ont2 (class Font2)

Specifies the name of the second alternate font. This font is toggled using the

Small menu item on the VT Fonts menu. (Available as of Release 4.)

fonts (class Font3)

Specifies the name of the third alternate font. This font is toggled using the

Medium menu item on the VT Fonts menu. (Available as of Release 4.)

font 4 (class Font 4)

Specifies the name of the fourth alternate font This font is toggled using the

Large menu item on the VT Fonts menu. (Available as of Release 4.)

geometry (class Geometry)

Specifies the preferred size and position of the VT102 window.

internalBorder (class BorderWidth)

Specifies the number of pixels between the characters and the window border.

The default is 2.

jumpScroll (class JumpScroll)

Specifies whether or not jump scroll should be used. The default is true.

logFile (class Logf ile)

Specifies the name of the file to which a terminal session is logged. The

default is XtermLog. xxxx (where xxxx is the process ID of xterm).

logging (class Logging)

Specifies whether or not a terminal session should be logged. The default is

false.

loglnhibit (class Loglnhibit)

Specifies whether or not terminal session logging should be inhibited. The

default is false.

loginShell (class LoginShell)

Specifies whether or not the shell to be run in the window should be started as

a login shell. The default is false.

marginBell (class MarginBell)

Specifies whether or not the bell should be run when the user types near the

right margin. The default is false.

multiClickTime (class MultiClickTime)

Specifies the maximum time in milliseconds between multi-clock select

events. The default is 250 milliseconds. (Available as of Release 4.)

X Window System User's Guide 487

Xterm (continued) Window Terminal Emulator

multiScroll (class MultiScroll)

Specifies whether or not scrolling should be done asynchronously. The

default is false.

nMarginBell (class Column)

Specifies the number of characters from the right margin at which the margin

bell should be run, when enabled.

pointerColor (class Foreground)

Specifies the color of the pointer. The default is xtDef aultForeground

color.

pointerColorBackground (class Background)

Specifies the background color of the pointer. The default is XtDefault-

Background color. (Available as of Release 4.)

pointerShape (class Cursor)

Specifies the name of the shape of the pointer. The default is "xterm."

reverseVideo (class ReverseVideo)

Specifies whether or not reverse video should be simulated. The default is

false.

reverseWrap (class ReverseWrap)

Specifies whether or not reverse-wraparound should be enabled. The default

is false.

saveLines (class SaveLines)

Specifies the number of lines to save beyond the top of the screen when a

scrollbar is turned on. The default is 64.

scrollBar (class ScrollBar)

Specifies whether or not the scrollbar should be displayed. The default is

false.

scrolllnput (class ScrollCond)

Specifies whether or not output to the terminal should automatically cause the

scrollbar to go to the bottom of the scrolling region. The default is true.

scrollKey (class ScrollCond)

Specifies whether or not pressing a key should automatically cause the

scrollbar to go to the bottom of the scrolling region. The default is false.

scrollLines (class ScrollLines)

Specifies the number of lines that the scroll-back and scroll-f orw

actions should use as a default. The default value is 1. (Available as of

Release 4.) (See "Actions.")

signallnhibit (class Signallnhibit)

Specifies whether or not the entries in the Main Options menu for sending sig-
nals to xterm should be disallowed. The default is false.

488 X Window System User's Guide

Window Terminal Emulator (continued) xterm

tekGeometry (class Geometry)

Specifies the preferred size and position of the Tektronix window.

teklnhibit (class Teklnhibit)

Specifies whether or not Tektronix mode should be disallowed. The default is

false.

tekSmall (class TekSmall)

Specifies whether or not the Tektronix mode window should start in its smal-
lest size if no explicit geometry is given. This is useful when running xterm

on displays with small screens. The default is false. (Available as of Release

4.)

tekStartup (class TekStartup)

Specifies whether or not xterm should start up in Tektronix mode. The default

is false.

titelnhibit (class Titelnhibit)

Specifies whether or not xterm should remove ti or te termcap entries (used

to switch between alternate screens on startup of many screen-oriented pro-
grams) from the TERMCAP string.

translations (class Translations)

Specifies the key and button bindings for menus, selections, "programmed

strings," etc. See "Actions" below.

visualBell (class VisualBell)

Specifies whether or not a visible bell (i.e., flashing) should be used instead of

an audible bell when Control-G is received. The default is false.

waitForMap (class WaitForMap)

Specifies whether or not xterm should wait for the initial window map before

starting the subprocess. The default is false. (Available as of Release 4.)

The following resources are specified as part of the tek4 014 widget (class Tek4 014):

width (class Width)

Specifies the width of the Tektronix window in pixels.

height (class Height)

Specifies the height of the Tektronix window in pixels.

f ontLarge (class Font)

Specifies the large font to use in the Tektronix window. (Available as of

Release 4.) This font is toggled using the Large Characters item on the Tek

Options menu.

font2 (class Font)

Specifies font number 2 to use in the Tektronix window. (Available as of

Release 4.) This font is toggled using the #2 Size Characters item on the Tek

Options menu.

X Window System User's Guide 489

Xterm (continued) Window Terminal Emulator

font3 (class Font)

Specifies font number 3 font to use in the Tektronix window. (Available as of

Release 4.) This font is toggled using the #3 Size Characters item on the Tek

Options menu.

fontSmall (class Font)

Specifies the small font to use in the Tektronix window. (Available as of

Release 4.) This font is toggled using the Small Characters item on the Tek

Options menu.

As of Release 4, the resources that can be specified for the various menus are described in the

documentation for the Athena SimpleMenu widget. The name and classes of the entries in each

of the menus are listed below.

The mainMenu (title Main Options) has the following entries:

securekbd (class SmeBSB)

Invokes the secure () action.

allowsends (class SmeBSB)

Invokes the allow-send-events (toggle) action.

logging (class SmeBSB)

Invokes the set-logging (toggle) action.

redraw (class SmeBSB)

Invokes the redraw () action.

linel (class SmeLine)

A separator.

suspend (class SmeBSB)

Invokes the send-signal (suspend) action on systems that support job

control.

continue (class SmeBSB)

Invokes the send-signal (cont) action on systems that support job con-
trol.

interrupt (class SmeBSB)

Invokes the send-signal (int) action.

hangup (class SmeBSB)

Invokes the send-signal (hup) action.

terminate (class SmeBSB)

Invokes the send-signal (term) action.

kill (class SmeBSB)

Invokes the send-signal (kill) action.

Iine2 (class SmeLine)

A separator.

490 X Window System User's Guide

Window Terminal Emulator (continued) Xterm

quit (class SmeBSB)

Invokes the quit () action.

The vtMenu (title VT Options) has the following entries:

scrollbar (class SmeBSB)

Invokes the set-scrollbar (toggle) action.

jumpscroll (class SmeBSB)

Invokes the set-jumpscroll (toggle) action.

reversevideo (class SmeBSB)

Invokes the set-reverse-video (toggle) action.

autowrap (class SmeBSB)

Invokes the set-autowrap (toggle) action.

reversewrap (class SmeBSB)

Invokes the set-reversewrap (toggle) action.

autolinefeed (class SmeBSB)

Invokes the set-autolinef eed (toggle) action.

appcursor (class SmeBSB)

Invokes the set-appcursor (toggle) action.

appkeypad (class SmeBSB)

Invokes the set-appkeypad (toggle) action.

scrollkey (class SmeBSB)

Invokes the set-scroll-on-key (toggle) action.

scrollttyoutput (class SmeBSB)

Invokes the set-scroll-on-tty-output (toggle) action.

allow!32 (class SmeBSB)

Invokes the set-allow!32 (toggle) action.

cursesemul (class SmeBSB)

Invokes the set-cursesemul (toggle) action.

visualbell (class SmeBSB)

Invokes the set-visualbell (toggle) action.

marginbell (class SmeBSB)

Invokes the set-marginbell (toggle) action.

altscreen (class SmeBSB)

This entry is currently disabled.

linel (class SmeLine)

A separator.

softreset (class SmeBSB)

Invokes the soft-reset () action.

X Window System User's Guide 491

xterm (continued) Window Terminal Emulator

hardreset (class SmeBSB)

Invokes the hard-reset () action.

Iine2 (class SmeLine)

A separator.

tekshow (class SmeBSB)

Invokes the set-visibility (tek, toggle) action.

tekmode (class SmeBSB)

Invokes the set-terminal-type (tek) action.

vthide (class SmeBSB)

Invokes the set-visibility (vt, of f) action.

The font Menu (title VT Fonts) has the following entries:

f ontdef ault (class SmeBSB)

Invokes the set-vt-f ont (d) action.

fontl (class SmeBSB)

Invokes the set-vt-f ont (1) action.

f ont2 (class SmeBSB)

Invokes the set-vt-f ont (2) action.

fonts (class SmeBSB)

Invokes the set-vt-f ont (3) action.

font4 (class SmeBSB)

Invokes the set-vt-f ont (4) action.

f ontescape (class SmeBSB)

Invokes the set-vt-f ont (e) action.

fontsel (class SmeBSB)

Invokes the set-vt-f ont (s) action.

The tekMenu (title Tek Options) has the following entries:

tektextlarge (class SmeBSB)

Invokes the set-tek-text (1) action.

tektext2 (class SmeBSB)

Invokes the set-tek-text (2) action.

tektextS (class SmeBSB)

Invokes the set-tek-text (3) action.

tektextsmall (class SmeBSB)

Invokes the set-tek-text (s) action.

linel (class SmeLine)

A separator.

492 X Window System User's Guide

Window Terminal Emulator (continued) xterm

tekpage (class SmeBSB)

Invokes the tek-page () action.

tekreset (class SmeBSB)

Invokes the tek-reset () action.

tekcopy (class SmeBSB)

Invokes the tek-copy () action.

Iine2 (class SmeLine)

A separator.

vtshow (class SmeBSB)

Invokes the set-visibility (vt, toggle) action.

vtmode (class SmeBSB)

Invokes the set-terminal-type (vt) action.

tekhide (class SmeBSB)

Invokes the set-visibility (tek, toggle) action.

The following resources are useful when specified for the Athena Scrollbar widget (scroll-

Bar, class ScrollBar):

thickness (class Thickness)

Specifies the width in pixels of the scrollbar.

background (class Background)

Specifies the color to use for the background of the scrollbar.

foreground (class Foreground)

Specifies the color to use for the foreground of the scrollbar. The "thumb"

of the scrollbar is a simple checkerboard pattern alternating pixels for fore-
ground and background color.

The Release 3 version of xterm uses the menu widget, which accepts the following resources:

menuBorder (class MenuBorder)

Specifies the size in pixels of the border surrounding menus. The default is 2.

menuFont (class Font)

Specifies the name of the font to use for displaying menu items.

menuPad (class MenuPad)

Specifies the number of pixels between menu items and the menu border. The

default is 3.

Emulations

The VT102 emulation is fairly complete, but does not support the blinking character attribute

nor the double-wide and double-size character sets, termcap entries that work with xterm

include "xterm", "vt!02", "vtlOO" and "ansi". xterm automatically searches the termcap

file in this order for these entries and then sets the TERM and the TERMCAP environment vari-

ables. Note that the "xterm" termcap entry distributed with X is not automatically installed.

X Window System User's Guide 493

Xterm (continued) Window Terminal Emulator

You must add it to letcltermcap yourself.

Many of the special xterm features (like logging) may be modified under program control

through a set of escape sequences different from the standard VT102 escape sequences. (See

Appendix E, xterm Control Sequences, in this guide.)

The Tektronix 4014 emulation is also fairly good. Four different font sizes and five different

line types are supported. The Tektronix text and graphics commands are recorded internally by

xterm and may be written to a file by sending the COPY escape sequence (or through the Tek-
tronix menu; see below). The name of the file will be "copYyy-MM-dd. hh: mm: ss", where

yy, MM, dd, hh, mm and ss are the year, month, day, hour, minute and second when the COPY

was performed (the file is created in the directory xterm is started in, or the home directory for a

login xterm).

Pointer Usage

Once the VT102 window is created, xterm allows you to select text and copy it within the same

or other windows.

The selection functions are invoked when the pointer buttons are used with no modifiers, and

when they are used with the Shift key. The assignment of the functions described below to

keys and buttons may be changed through the resource database; see "Actions" below.

Pointer button one (usually the left) is used to save text into the cut buffer. Move the cursor to

the beginning of the text, and then hold the button down while moving the cursor to the end of

the region and release the button. The selected text is highlighted and is saved in the global cut

buffer and made the PRIMARY selection when the button is released. Double-clicking selects

by words. Triple-clicking selects by lines. Quadruple-clicking goes back to characters, etc.

Multiple-click is determined by the time from button up to button down, so you can change the

selection unit in the middle of a selection. If the key/button bindings specify that an X selec-
tion is to be made, xterm will leave the selected text highlighted for as long as it is the selection

owner.

Pointer button two (usually the middle) 'types' (pastes) the text from the PRIMARY selection, if

any, otherwise from the cut buffer, inserting it as keyboard input.

Pointer button three (usually the right) extends the current selection. (You can swap "right"

and "left" everywhere in the rest of this paragraph.) If pressed while closer to the right edge of

the selection than the left, it extends/contracts the right edge of the selection. If you contract

the selection past the left edge of the selection, xterm assumes you really meant the left edge,

restores the original selection, then extends/contracts the left edge of the selection. Extension

starts in the selection unit mode that the last selection or extension was performed in; you can

multiple-click to cycle through them.

By cutting and pasting pieces of text without trailing new lines, you can take text from several

places in different windows and form a command to the shell, for example, or take output from

a program and insert it into your favorite editor. Since the cut buffer is globally shared among

different applications, you should regard it as a 'file' whose contents you know. The terminal

emulator and other text programs should be treating it as if it were a text file, i.e., the text is del-
imited by new lines.

494 X Window System User's Guide

Window Terminal Emulator (continued) xterm

The scroll region displays the position and amount of text currently showing in the window

(highlighted) relative to the amount of text actually saved. As more text is saved (up to the

maximum), the size of the highlighted area decreases.

Clicking button one with the pointer in the scroll region moves the adjacent line to the top of

the display window.

Clicking button three moves the top line of the display window down to the pointer position.

Clicking button two moves the display to a position in the saved text that corresponds to the

pointer's position in the scrollbar.

Unlike the VT102 window, the Tektronix window does not allow the copying of text. It does

allow Tektronix GIN mode, and in this mode the cursor will change from an arrow to a cross.

Pressing any key will send that key and the current coordinate of the cross cursor. Pressing but-
ton one, two, or three will return the letters T, cm', and V, respectively. If the Shift key is

pressed when a pointer button is pressed, the corresponding upper case letter is sent To distin-
guish a pointer button from a key, the high bit of the character is set (but this bit is normally

stripped unless the terminal mode is RAW; see tty(4) for details).

Menus

The Release 4 version of xterm has four different menus, titled Main Options, VT Options, Tek

Options, and VT Fonts. The first three menus are available in Release 3 under the names xterm,

Modes, and Tektronix. The VT Fonts menu is available as of Release 4.

Many of the menu items have been also been renamed in Release 4; however, most items have

not changed in functionality. The following sections describe the items available on the

Release 3 and 4 menus. In the sections describing the various menu items, if an item has sim-
ply been renamed, the Release 3 name appears in parentheses after the Release 4 name.

Each menu pops up under the correct combinations of key and button presses. Most menus are

divided into two sections, separated by a horizontal line. The top portion contains various

modes that can be specified. A check mark appears next to a mode that is currently active.

Selecting one of these modes toggles its state. The bottom portion contains command entries;

selecting one of these performs the indicated function. The menus are described in detail in the

following sections.

Main Options Menu (Release 3: xterm Menu)

The Main Options menu (formerly xterm) is displayed when the Control key and pointer button

one are simultaneously pressed in an xterm window. The modes section contains items that

apply to both the VT102 and Tektronix windows. The modes can also be set by command line

options when invoking xterm, or by entries in a resource startup file like ^resources (see Chap-
ter 9, Setting Resources). The menu selections enable you to change your mind once xterm is

running.

All of the commands on this menu (except for Redraw Window) send a signal that is intended to

affect the xterm process (Send INT Signal, Send TERM Signal, etc.). Given that your operating

system may recognize only certain signals, every menu item may not produce the intended

function.

X Window System User's Guide 495

Xterm (continued) Window Terminal Emulator

Four of these commands (Send HUP Signal, Send TERM Signal, Send KILL Signal, and Quit)

send signals that are intended to terminate the xterm window. In most cases, you can probably

end an xterm process simply by typing some sequence (such as Control-D or exit) in the win-
dow. Of course, the menu options may be helpful if the more conventional ways of killing the

window fail.

Main Options Menu Mode Toggles (On/Off)

Visual Bell Causes your terminal window to flash whenever an event occurs that

would ordinarily cause your terminal bell to ring. This item appears

on the equivalent Release 3 menu (the xterm menu) only. In Release

4, it has been renamed Enable Visual Bell and moved to the VT Options

menu.

Secure Keyboard Ensures that all keyboard input is directed only to xterm. Used when

typing in passwords or other sensitive data in an unsecure environ-
ment. (See "Security" later in this reference page.)

Allow SendEvents (Release 4 only)

Causes synthetic key and button events (generated using the X proto-
col SendEvent request) to be interpreted. Note that allowing such

events creates a very large security hole.

Log to File (Release 3: Logging)

Logs xterm input/output into a file in your home directory called

XtermLog.xxxxx where xxxxx represents the process ID number of the

xterm process. Logging allows you to keep track of the sequence of

data and, therefore, is particularly helpful while debugging code.

To display the data contained in the log file, at the xterm window

prompt, type:

more XtermLog.xxxxx

The output file is sent to your xterm window.

Be sure to turn Log to File off before displaying the log file in the

xterm window. When Log to File is on, anything in the window is

appended to the end of the log file. If you display the log file while

logging is on, you will get into a continuous loop, much as if you

typed cat * > file.

To find out the exact name of the log file, list the contents of your

home directory, looking for a log file with an appropriate time and

date. Note that if you turn logging on in multiple xterm windows,

there will be multiple log files.

Main Options Menu Commands

Redraw Window (Release 3: Redraw)

Redraws the contents of the window. (If you are using the uwm win-
dow manager, you can also do this with the Redraw selection of the

uwm WindowOps menu. Or you can refresh the entire screen with the

496 X Window System User's Guide

Window Terminal Emulator (continued) Xterm

xrefresh client or the Refresh Screen selection of the WindowOps

menu. See Appendix B, Using the uwm Window Manager.)

Send STOP Signal (Release 3: Suspend program)

Suspends a process (sends the SIGTSTP signal to the process group of

the process running under xterm, usually the shell). If your system

supports job control, you may also be able to suspend the process by

typing Control-Z. If your system does not support job control, this

menu item won't work either.

Send CONT Signal (Release 3: Continue program)

Continues a process that has been suspended (technically speaking,

this menu item sends the SIGCONT signal to the process group of the

process running under xterm, usually the shell). The Send CONT Sig-
nals item is especially useful on systems with job control if you acci-
dentally type Control-Z and suspend a process.

Send INT Signal (Release 3: Interrupt program)

Interrupts a process (sends the SIGINT signal to the process group of

the process running under xterm, usually the shell).

Send HUP Signal (Release 3: Hangup program)

Hangs up the process (sends the SIGHUP signal to the process group of

the process running under xterm, usually the shell). This usually ends

up killing the xterm process, and the window disappears from the

screen.

Send TERM Signal (Release 3: Terminate program)

Terminates the process (sends the SIGTERM signal to the process

group of the process running under xterm, usually the shell). This

usually ends up killing the xterm process, and the window disappears

from the screen.

Send KILL Signal (Release 3: Kill program)

Kills the process (sends the SIGKILL signal to the process group of the

process running under xterm, usually the shell). This ends up killing

the xterm process, and the window disappears from the screen.

Quit Like Send HUP Signal, Quit sends the SIGHUP signal to the process

group of the process running under xterm, usually the shell. This

usually ends up killing the xterm process, and the window disappears

from the screen.

Quit is separated from the earlier commands by a horizontal line, so

it's easier to point at. Sending a SIGHUP signal with Quit is also

slightly more gentle to the system than using Send KILL Signal.

See signal(3C) in the UNIX Programmer's Manual for more information on what each signal

does.

X Window System User's Guide 497

Xterm (continued) Window Terminal Emulator

VTOptions Menu (Released: Modes Menu)

The VT Options menu (formerly Modes) menu sets various modes in the VT102 emulation and

is displayed when the Control key and pointer button two are pressed in the VT102 window.

In the command section of this menu, the soft reset entry will reset scroll regions. This can be

convenient when some program has left the scroll regions set incorrectly (often a problem when

using VMS or TOPS-20). The full reset entry will clear the screen, reset tabs to every eight

columns, and reset the terminal modes (such as wrap and smooth scroll) to their initial states

just after xterm has finish processing the command line options.

VT Options Menu Mode Toggles (On/Off)

Most of these modes can also be set by command line options when invoking xterm, or by

entries in a resource startup file like Xresources (see Chapter 9, Setting Resources). The menu

selections enable you to change your mind once xterm is running.

Enable Scrollbar (Release 3: Scrollbar)

Causes a scrollbar to appear on the left-hand side of the xterm win-
dow. Off by default.

Enable Jump Scroll (Release 3: Jump Scroll)

Causes the window to move text several lines at a time rather than line

byline. On by default.

Enable Reverse Video (Release 3: Reverse Video)

Reverses the foreground and background colors. Off by default.

Enable Auto Wraparound (Release 3: Auto Wraparound)

Wraps the text or data to the next line automatically when the cursor

reaches the window border on input. On by default.

Enable Reverse Wraparound (Release 3: Reverse Wraparound)

Allows the cursor to wrap around from the leftmost column to the

rightmost column of the previous line. Allows you to backspace to the

previous line and overstrike data or erase data with the space bar. Off

by default.

Enable Auto Linefeed (Release 3: Auto Linefeed)

Generates a linefeed automatically. This is useful if you are using a

program that generates a carriage return without dropping down a line

on your screen. Off by default. (This option is usually not needed on

UNIX systems.)

Enable Application Cursor Keys (Release 3: Application Cursor Mode)

Generates ANSI escape sequences rather than standard cursor move-
ment when you use the arrow keys. This option may be useful when

working with certain applications. Off by default.

The following table lists the ANSI characters generated by application

cursors.

498 X Window System User's Guide

Window Terminal Emulator (continued) xterm

Cursor Key Reset Set

(Arrow) (Cursor) (Application)

Up ESC [A ESCOA

Down ESC[B ESC OB

Right ESC[C ESCOC

Left ESC[D ESCOD

Enable Application Keypad (Release 3: Application Keypad Mode)

Generates a control function rather than a numeric character when you

use the numeric keypad. Off by default.

Scroll to Bottom on Key Press

Indicates that pressing a key while using the scrollbar causes the cur-
sor to be repositioned at the bottom of the scroll region. For example,

if you have scrolled up the window to see past history, as soon as you

begin typing your next command the cursor jumps to the bottom of the

screen. Off by default.

Scroll to Bottom on Tty Output

Indicates that receiving output to the window (or pressing a key, if

stty echo has been specified), while using the scrollbar causes the

cursor to be repositioned at the bottom of the scroll region. In Release

4, on by default. (In Release 3, off by default; on automatically if the

window has a scrollbar.) This mode can be toggled off, but is gener-
ally desirable to have.

Allow 80/132 Column Switching (Release 3: Allow 80/132 switching)

Allows xterm to recognize the DECCOLM escape sequence, which

switches the terminal between 80 and 132-column mode. The DEC-

COLM escape sequence can be included in a program (such as a

spreadsheet) to allow the program to display in 132-column format.

See Appendix E, xterm Control Sequences, for more information. Off

by default.

Enable Curses Emulation (Release 3: Curses Emulation)

Enables the curses fix. Several programs that use the curses cursor

motion package have some difficulties with VT102-compatible termi-
nals. The bug occurs when you run the more program on a file con-
taining a line that is exactly the width of the window and that is fol-
lowed by a line beginning with a tab. The leading tabs may disappear.

This mode causes the tabs to be displayed correctly. Off by default.

Enable Visual Bell Causes your terminal window to flash whenever an event occurs that

would ordinarily cause your terminal bell to ring. This item appears as

X Window System User's Guide 499

Xterm (continued) Window Terminal Emulator

Visual Bell on the Release 3 xterm menu. In Release 4, it has been

renamed Enable Visual Bell and moved to the VT Options menu.

Enable Margin Bell (Release 3: Margin Bell)

Turns on the margin bell. Off by default.

Tek Window Showing Shows the current contents of the Tektronix window; you cannot input

to that window until you choose Switch to Tek Mode. Off by default.

This item is a mode toggle on the equivalent Release 3 menu (Modes).

In

Release 4, it has been renamed and moved to the commands section,

as described below.

Show Alternate Screen (Release 3: Alternate Screen)

Informs you that you are looking at the alternate screen. You cannot

select this mode from the menu. If a check mark appears beside this

mode, you are viewing the alternate screen. Off by default.

VT Options Menu Commands

These commands can only be invoked from the menu; there are no alternative ways to perform

the same functions.

Do Soft Reset (Release 3: Soft Reset)

Resets the terminal scroll region from partial scroll (a portion of the

window) to full scroll (the entire window). Use this command when a

program has left the scroll region set incorrectly.

Do Full Reset (Release 3: Full Reset)

Clears the window, resets tabs to every eight columns, and resets the

terminal modes such as auto wraparound and jump scroll to their ini-
tial states.

Show Tek Window (Release 3: Tek Window Showing)

Shows the current contents of the Tektronix window; you cannot input

to that window until you choose Switch to Tek Mode. Off by default.

The Release 3 item appeared in the mode toggles section of the menu;

the item has been renamed and moved to the commands section in

Release 4.

Switch to Tek Mode (Release 3: Select Tek Mode)

Brings up a Tektronix window. You can input to this window.

Hide VT Window Removes the VT window but does not destroy it. It can be brought

back by choosing Select VT Mode from the Tek Options menu.

Tek Options Menu (Released: Tektronix Menu)

The Tek Options menu (formerly Tektronix) sets various modes in the Tektronix emulation, and

is displayed when the Control key and pointer button two are pressed in the Tektronix window.

The current font size is checked in the modes section of the menu. The PAGE entry in the com-
mand section clears the Tektronix window.

500 X Window System User's Guide

Window Terminal Emulator (continued) xterm

Tek Options Menu Mode Toggles (On/Off)

These modes can only be set from the Tek Options menu.

Large Characters Selecting one of these four options sets the point size of text

#2 Size Characters displayed in the Tektronix window. The four options are

#3 Size Characters mutually exclusive.

Small Characters

VT Window Showing Shows the current contents of the VT102 window; you cannot input

to that window until you choose Switch to VT Mode. This item is a

mode toggle on the equivalent Release 3 menu (Tektronix). In

Release 4, it has been renamed and moved to the commands section,

as described below.

Tek Options Menu Commands

PAGE Clears the Tektronix window.

RESET Closes down the Tektronix window.

COPY Writes a file of the Tektronix text and graphics commands.

Show VT Window (Release 3: VT Window Showing)

Shows the current contents of the VT102 window; you cannot input

to that window until you choose Switch to VT Mode. The Release 3

item appeared in the mode toggles section of the menu; the item has

been renamed and moved to the commands section in Release 4.

Switch to VT Mode (Release 3: Select VT Mode)

Makes the associated VT102 window active for input.

Hide Tek Window Removes the Tektronix window but does not destroy it. It can be

brought back by choosing Switch to Tek Mode from the VT Options

Menu menu.

VT Fonts Menu (Release 4)

Added in Release 4, the VT Fonts menu enables you to change the VT102 display font dynami-
cally. The menu is displayed when the Control key and pointer button three are pressed in the

VT102 window. All items on the menu toggle different display fonts. The items are mutually

exclusive. A checkmark appears on the menu next to the current font

Default Selecting one of these five options sets the point size of text

Tiny displayed in the VT102 window. The Default font

Small is the font specified when the xterm was run.

Medium

Large

Escape Sequence Allows you to select a font previously toggled using an escape

sequence. See Chapter 5, Font Specification, for the escape

sequence to use.

X Window System User's Guide 501

Xterm (continued) Window Terminal Emulator

Selection Allows you to toggle a font whose name you've previously selected

with the pointer or using the select button of the xfontsel client. See

Chapter 5, Font Specification, for more information.

Security

X environments differ in their security consciousness. MIT servers, run under xdm, are capable

of using a "magic cookie" authorization scheme that can provide a reasonable level of security

for many people. If your server is only using a host-based mechanism to control access to the

server (see xhost), then if you enable access for a host and other users are also permitted to run

clients on that same host, there is every possibility that someone can run an application that

will use the basic services of the X protocol to snoop on your activities, potentially capturing a

transcript of everything you type at the keyboard. This is of particular concern when you want

to type in a password or other sensitive data. The best solution to this problem is to use a better

authorization mechanism that host-based control, but a simple mechanism exists for protecting

keyboard input in xterm.

The Main Options menu (see "Menus" above) contains a Secure Keyboard entry which, when

enabled, ensures that all keyboard input is directed only to xterm (using the GrabKeyboard

protocol request). When an application prompts you for a password (or other sensitive data),

you can enable Secure Keyboard using the menu, type in the data, and then disable Secure Key-
board using the menu again. Only one X client at a time can secure the keyboard, so when you

attempt to enable Secure Keyboard it may fail. In this case, the bell will sound. If the Secure

Keyboard succeeds, the foreground and background colors will be exchanged (as if you

selected the Enable Reverse Video entry in the VT Options menu); they will be exchanged again

when you exit secure mode. If the colors do not switch, then you should be very suspicious that

you are being spoofed. If the application you are running displays a prompt before asking for

the password, it is safest to enter secure mode before the prompt gets displayed, and to make

sure that the prompt gets displayed correctly (in the new colors), to minimize the probability of

spoofing. You can also bring up the menu again and make sure that a check mark appears next

to the entry.

Secure Keyboard mode will be disabled automatically if your xterm window becomes iconified

(or otherwise unmapped), or if you start up a reparenting window manager (that places a title

bar or other decoration around the window) while in Secure Keyboard mode. (This is a feature

of the X protocol not easily overcome.) When this happens, the foreground and background

colors will be switched back and the bell will sound in warning.

Character Classes

Clicking the middle mouse button twice in rapid succession will cause all characters of the

same class (e.g., letters, white space, punctuation) to be selected. Since different people have

different preferences for what should be selected (for example, should filenames be selected as

a whole or only the separate subnames), the default mapping can be overridden through the use

of the charClass (class CharClass) resource.

502 X Window System User's Guide

Window Terminal Emulator (continued) xterm

This resource is simply a list of range: value pairs where the range is either a single number

or low-high in the range of 0 to 127, corresponding to the ASCII code for the character or char-
acters to be set. The value is arbitrary, although the default table uses the character number

of the first character occurring in the set

The default table is:

static int charClass [128] = {

/* NUL SOH STX ETX EOT ENQ ACK BEL

32, 1, 1, 1, 1, 1, 1, 1.

/* BS HT NL VT NP CR SO SI */

1, 32, 1, 1, 1, 1. 1, 1,

/* OLE DC1 DC2 DCS DC4 NAK SYN ETB */

1. 1, 1, 1, 1, 1, 1, 1,

/* CAN EM SUB ESC FS GS RS US */

1, 1, 1, 1, 1, 1, 1, 1,

/* SP j " # $ I & ' */

32, 33, 34, 35, 36, 37, 38, 39,

/* () i + -
, . / */

40, 41, 42, 43, 44, 45, 46, 47,

/* 0 1 2 3 4 5 6 7 */

48, 48, 48, 48, 48, 48, 48, 48,

/* 8 9 : ; "; = > .

48, 48, 58, 59, 60, 61, 62, 63,

/* @ A B C D E F */

64, 48, 48, 48, 48, 48, 48, 48,

/* :"": I J K : M N 0 */

48, 48, 48, 48, 48, 48, 48, 48,

/* P Q R S T U V ,-, */

48, 48, 48, 48, 48, 48, 48, 48,

/* X Y Z [\] * */

48, 48, 48, 91, 92, 93, 94, 4?,

/* \ a b c d e f g */

96, 48, 48, 48, 48, 48, 48, 48,

/* h i j k 1 nr n 0 */

48, 48, 48, 48, 48, 48, 48, 48,

P q c s t u V w */

48, 48, 48, 48, 48, 48, 48, 48,

/* X y Z { 1 } - DEL */

48, 48, 48, 123, 124, 125, 126, 1} ;

For example, the string "33:48,37:48,45-47:48,64:48" indicates that the exclamation mark,

percent sign, dash, period, slash, and ampersand characters should be treated the same way as

characters and numbers. This is very useful for cutting and pasting electronic mailing

addresses and UNIX filenames.

Actions (Release 4)

It is possible to rebind keys (or sequences of keys) to arbitrary strings for input, by changing the

translations for the vtlOO or tek4014 widgets. Changing the translations for events other

X Window System User's Guide 503

Xterm (continued) Window Terminal Emulator

than key and button events is not expected, and will cause unpredictable behavior. In Release

4, the following actions are provided for using with the vtlOO or tek4014 translations

resource:

bell([percent])

Rings the keyboard bell at the specified percentage above or below the base volume.

ignore()

Ignores the event but checks for special pointer position escape sequences.

insert()

A synonym for insert-seven-bit ().

insert-seven-bit()

Inserts the 7-bit USASCII character or string associated with the keysym that was pressed.

insert-eight-bit()

Inserts the 8-bit ISO Latin-1 character or string associated with the keysym that was

pressed.

insert-selection(sourcename [, . . .])

Inserts the string found in the selection or cut buffer indicated by sourcename. Sources

are checked in the order given (case is significant) until one is found. Commonly-used

selections include: PRIMARY, SECONDARY, and CLIPBOARD. Cut buffers are typically

named CUT_BUFFERO through CUT_BUFFER7.

keymap (name)

Dynamically defines a new translation table whose resource name is name with the suffix

Keymap (case is significant). The keymap name None restores the original translation

table.

popup-menu(menuname)

Displays the specified popup menu. Valid names (case is significant) include: main-

Menu, vtMenu, f ontMenu, and tekMenu.

secure ()

Toggles the secure keyboard mode described in the Security section, and is invoked from

the Secure Keyboard entry in mainMenu.

select-start()

Begins text selection at the current pointer location. See the section on "Pointer Usage"

for information on making selections.

select-extend()

Tracks the pointer and extends the selection. It should only be bound to motion events.

select-end(destname [, . . .])

Puts the currently selected text into all of the selections or cutbuffers specified by dest-
name.

select-cursor-start ()

Similar to select-start, except that it begins the selection at the current text cursor

position.

504 X Window System User's Guide

Window Terminal Emulator (continued) xterm

select-cursor-end(destname [, . . .])

Similar to select-end, except that it should be used with select-cursor-start.

set-vt-font(d/l/2/3/4/e/s [,normalfont [, boldfont]])

Sets the font or fonts currently being used in the VT102 window. The first argument is a

single character that specifies the font to be used: d or D indicates the default font (the font

initially used when xterm was started); 1 through 4 indicate the fonts specified by the

fontl through font 4 resources; e or E indicates the normal and bold fonts that may be

set through escape codes (or specified as the second and third action arguments, respec-
tively); and i or I indicates the font selection (as made by programs such as xfontsel) indi-
cated by the second action argument

start-extend()

Similar to select-start except that the selection is extended to the current pointer

location.

start-cursor-extend()

Similar to select-extend except that the selection is extended to the current text cur-
sor position.

string(string)

Inserts the specified text string as if it had been typed. Quotation is necessary if the string

contains whitespace or non-alphanumeric characters. If the string argument begins with

the characters "Ox", it is interpreted as a hex character constant.

scroll-back(count [,units])

Scrolls the text window backward so that text that had previously scrolled off the top of the

screen is now visible. The count argument indicates the number of units (which may

be page, half page, pixel, or line) by which to scroll.

scroll-forw(count [,units])

Scrolls is similar to scroll-back except that it scrolls the other direction.

allow-send-events(on/off/toggle)

Sets or toggles the allowSendEvents resource and is also invoked by the

allowsends entry in mainMenu.

set-logging(on/off/toggle)

Toggles the logging resource and is also invoked by the logging entry in the main-

Menu.

redraw()

Redraws the window and is also invoked by the redraw entry in mainMenu.

send-signal (sigrname)

Sends the signal named by signame (which may also be a number) to the xterm subprocess

(the shell or program specified with the -e command line option) and is also invoked by

the suspend, continue, interrupt, hangup, terminate, and kill entries in

mainMenu. Allowable signal names are (case is not significant): suspend, tstp (if sup-
ported by the operating system), cont (if supported by the operating system), int, hup, term,

and kill.

X Window System User's Guide 505

Xterm (continued) Window Terminal Emulator

quit ()

Sends a SIGHUP to the subprogram and exits. It is also invoked by the quit entry in

mainMenu.

set-scrollbar(on/off/toggle)

Toggles the scrollbar resource and is also invoked by the scrollbar entry in vt-

Menu.

set-jumpscroll(on/off/toggle)

Toggles the jumpscroll resource and is also invoked by the jumpscroll entry in

vtMenu.

set-reverse-video(on/off/toggle)

Toggles the reverseVideo resource and is also invoked by the reversevideo entry

in vtMenu.

set-autowrap(on/off/toggle)

Toggles automatic wrapping of long lines and is also invoked by the autowrap entry in

vtMenu.

set-reversewrap(on/off/toggle)

Toggles the reverseWrap resource and is also invoked by the reversewrap entry in

vtMenu.

set-autolinefeed(o/j/of"f"/toggle)

Toggles automatic insertion of linefeeds and is also invoked by the autolinef eed entry

in vtMenu.

set-appcursor(on/off/toggle)

Toggles the application cursor key mode and is also invoked by the appcursor entry in

vtMenu.

set-appkeypad(on/off/toggle)

Toggles the application keypad mode and is also invoked by the appkeypad entry in vt-
Menu.

set-scroll-on-key(on/off/toggle)

Toggles the scrollKey resource and is also invoked from the scrollkey entry in vt-
Menu.

set-scroll-on-tty-output(on/off/toggle)

Toggles the scrollTtyOutput resource and is also invoked from the scrollt-

tyoutput entry in vtMenu.

set-allow!32(on/off/toggle)

Toggles the c!32 resource and is also invoked from the allow!32 entry in vtMenu.

set-cursesemul(on/off/toggle)

Toggles the curses resource and is also invoked from the cursesemul entry in vt-
Menu.

506 X Window System User's Guide

Window Terminal Emulator (continued) Xterm

set-visual-bell(on/off/toggle)

Toggles the visual Be 11 resource and is also invoked by the visualbell entry in

vtMenu.

set-marginbell(on/off/toggle)

Toggles the marginBell resource and is also invoked from the marginbell entry in

vtMenu.

set-altscreen(on/off/toggle)

Toggles between the alternative and current screens.

soft-reset()

Resets the scrolling region and is also invoked from the soft reset entry in vtMenu.

hard-reset()

Resets the scrolling region, tabs, window size, and cursor keys and clears the screen. It is

also invoked from the hardreset entry in vtMenu.

set-terminal-type(type)

Directs output to either the vt or tek windows, according to the type string. It is also

invoked by the tekmode entry in vtMenu and the vtmode entry in tekMenu.

set-visibility(vt/tek, on/off/toggle)

Controls whether or not the vt or tek windows are visible. It is also invoked from the

tekshow and vthide entries in vtMenu and the vtshow and tekhide entries in

tekMenu.

set-tek-text(large/2/3/'small)

Sets font used in the Tektronix window to the value of the resources tektextlarge,

tektext2, tektextS, and tektextsmall according to the argument. It is also by

the entries of the same names as the resources in tekMenu.

tek-page()

Clears the Tektronix window and is also invoked by the tekpage entry in tekMenu.

tek-reset()

Resets the Tektronix window and is also invoked by the tekreset entry in tekMenu.

tek-copy()

Copies the escape codes used to generate the current window contents to a file in the cur-
rent directory beginning with the name COPY. It is also invoked from the tekcopy entry

in tekMenu.

The Tektronix window also has the following action:

gin-press (1/L/m/M/r/R)

Sends the indicated graphics input code.

The default bindings in the VT102 window are:

X Window System User's Guide 507

xterm (continued) Window Terminal Emulator

Shift <KeyPress> Prior: scroll-back(1,halfpage)\n\

Shift <KeyPress> Next: scroll-forw(1,halfpage)\n\

Shift <KeyPress> Select: select-cursor-start()\

select-cursor-end (PRIMARY, CUT_BUFFERO) \n\

Shift <KeyPress> Insert : insert-selection (PRIMARY, CUT_BUFFERO) \n\

-Meta <KeyPress>: insert-seven-bit()\n\

Meta <KeyPress> : insert-eight-bit()\n\

Ctrl ~Meta <BtnlDown>: popup-menu(mainMenu)\n\

~Meta <BtnlDown>: select-start()\n\

"Meta <BtnlMotion> select-extend()\n\

Ctrl ~Meta <Btn2Down>: popup-menu(vtMenu)\n\

~Ctrl -Meta <Btn2Down>: ignore()\n\

-Ctrl "Meta <Btn2Up>: insert-selection (PRIMARY, CUT_BUFFERO) \n\

Ctrl ~Meta <Btn3Down>: popup-menu(fontMenu)\n\

-Ctrl "Meta <Btn3Down>: start-extend()\n\

~Meta <Btn3Motion> select-extend()\n\

-Ctrl 'Meta <BtnUp>:

<BtnDown>: bell(O)

The default bindings in the Tektronix window are:

~Meta <KeyPress> insert-seven-bit()\n\

Meta <KeyPress> insert-eight-bit()\n\

Ctrl "Meta <BtnlDown> popup-menu(mainMenu)\n\

Ctrl ~Meta <Btn2Down> popup-menu(tekMenu)\n\

Shift "Meta <BtnlDown> gin-press(L)\n\

~Meta <BtnlDown> gin-press(1)\n\

Shift "Meta <Btn2Down> gin-press(M)\n\

'Meta <Btn2Down> gin-press(m)\n\

Shift ~Meta <Btn3Down> gin-press(R)\n\

-Meta <Btn3Down> gin-press(r)

Below is a sample how of the keymap () action is used to add special keys for entering com-
monly-typed works:

*VT100.Translations: toverride <Key>F13: keymap(dbx)

*VT100.dbxKeymap.translations: \

<Key> F14: keymap(None)\n\

<Key> F17: string("next") string(OxOd)\n\

<Key> F18: string("step") string(OxOd)\n\

<Key> F19: string("continue") string(OxOd)\n\

<Key> F20: string("print ") insert-selection(PRIMARY,CUT_BUFFERO)

Actions (Releases)

It is possible to rebind keys (or sequences of keys) to arbitrary strings for input, by changing the

translations for the vtlOO or tek4014 widgets. Changing the translations for events other

than key and button events is not expected, and will cause unpredictable behavior.

508 X Window System User's Guide

Window Terminal Emulator (continued) xterm

The actions available for key translations are:

insert () Processes the key in the normal way; i.e., inserts the ASCII character code

corresponding to the keysym found in the keyboard mapping table into the

input stream.

string(string)

Rebinds the key or key sequence to the string value; that is, inserts the string

argument into the input stream. Quotation is necessary if the string contains

whitespace or non-alphanumeric characters. If the string argument begins

with the characters "Ox", it is interpreted as a hex character constant and the

corresponding character is sent in the normal way.

keymap (name)

Takes a single string argument naming a resource to be used to dynamically

define a new translation table; the name of the resource is obtained by

appending the string Keymap to name. The keymap name None restores

the original translation table (the very first one; a stack is not maintained).

Upper/lower case is significant.

insert-selection (na/ne[,na/ne]...)

Retrieves the value of the first (leftmost) named selection that exists or cut

buffer that is non-empty and inserts the value into the input stream, name is

the name of any selection, for example, PRIMARY or SECONDARY, or the

name of a cut buffer: CUT.BUFFERO, ..., CUT_BUFFER7. Upper/lower case

is significant.

For example, a debugging session might benefit from the following bindings:

*VT100.Translations: #override <Key>F13: keymap(dbx)

*VT100.dbxKeymap.translations: \

<Key>F14: keymap(None) \n\

<Key>F17: string("next") string(OxOd) \n\

<Key>F18: string("step") string(OxOd) \n\

<Key>F19: string("continue") string(OxOd) \n\

<Key>F20: string ("print") insert-selection(PRIMARY, CUT_BUFFERO)

Within the VT100 widget the key and button bindings for selecting text, pasting text, and

activating the menus are controlled by the translation bindings. In addition to the actions listed

above under Key Translations, the following actions are available:

mode-menu () Posts one of the two mode menus, depending on which button is pressed.

select-start()

Unselects any previously selected text and begins selecting new text

select-extend()

Continues selecting text from the previous starting position.

start-extend()

Begins extending the selection from the farthest (left or right) edge.

X Window System User's Guide 509

xterm (continued) Window Terminal Emulator

select-end (name[,name]...)

Ends the text selection, name is the name of a selection, or the name of a cut

buffer into which the text is to be copied, xterm will assert ownership of all

the selections named and will copy the text into each of the cut buffers.

Upper/lower case is significant.

ignore () Quietly discards the key or button event

bell([volume])

Rings the bell at the specified vol ume increment above/below the base vol-
ume.

The default bindings are:

<KeyPress>: insert()\n\

Ctrl "Meta <BtnlDown>: mode-menu()\n\

'Meta <BtnlDown>: select-start()\n\

"Meta <BtnlMotion>; select-extend()\n\

Ctrl "Meta <Btn2Down>: mode-menu()\n\

'Ctrl "Meta <Btn2Down>: ignore()\n\

"Meta <Btn2Up>: insert-selection (PRIMARY, CUT_BUFFERO) \n\

'Ctrl 'Meta <Btn3Down>: start-extend()\n\

"Meta <Btn3Motion>: select-extend()\n\

"Meta <BtnUp>: select-end (PRIMARY, CUT_BUFFERO) \n\

<BtnDown>: bell(0)

An Obsolete Feature: Starting xterm from Init

Warning: This feature is now obsolete. It is not supported in Release 4. If Release 3 is run-
ning at your site, this method may still be in use. However, sites using this method should

switch to xdm instead.

On operating systems such as BSD 4.3 and Ultrix, the server and initial login window are nor-
mally started automatically by w//(8).

By convention, the pseudo-terminal with the highest minor device number (e.g., devttyqf and

devptyqf) is renamed for the lowest display number (e.g., devttyvO and devptyvO). Machines

that have more than one display can repeat this process using ttyqe for ttyvl, and so on.

Once the pseudo-terminals are in place, a line similar to the following may be added to letclttys

(replacing Xqvss with the appropriate server and putting it all on one line):

ttyvO "/usr/bin/Xll/xterm -L -geom 80x24+1+1 -display :0"

xterm on secure window="/usr/bin/Xll/Xqvss :0"

Sites that used to run X10 should note that the colon in the server display number is required.

Although the release will install both the X server and xterm in lusrlbinlXll by default, many

sites choose to make a copy of both of these programs on the root partition (usually in /etc) so

that they may still be used even if the partition containing lusrlbinlXll isn't mounted.

510 X Window System User's Guide

Window Terminal Emulator (continued) xterm

Some versions of init have relatively small program name buffer sizes and treat all sharp signs

as comment delimiters. Sites that wish to list large numbers of options on the xterm line will

need to write a small shell script to execute the long xterm line. The best solution, of course, is

to use xdm.

Other Features

xterm automatically highlights the window border and text cursor when the pointer enters the

window (selected) and unhighlights them when the pointer leaves the window (unselected). If

the window is the focus window, then the window is highlighted no matter where the pointer is.

In VT102 mode, there are escape sequences to activate and deactivate an alternate screen buf-
fer, which is the same size as the display area of the window. When activated, the current

screen is saved and replaced with the alternate screen. Saving of lines scrolled off the top of

the window is disabled until the normal screen is restored. The termcap entry for xterm allows

the visual editor vi to switch to the alternate screen for editing, and restore the screen on exit.

In either VT102 or Tektronix mode, there are escape sequences to change the name of the win-
dows and to specify a new log file name.

Environment

xterm sets the environment variables TERM and TERMCAP properly for the size window you

have created. It also uses and sets the environment variable DISPLAY to specify which bitmap

display terminal to use. The environment variable WINDOWID is set to the X window ID num-
ber of the xterm window.

Bugs

The class name is XTerm instead of Xterm.

The -L option is no longer needed since the display manager, xdm, handles logging in much

more cleanly. No more trying to match colors in letclttys or worrying about an unwanted login

window. (The -L option has been removed in Release 4.)

xterm will hang forever if you try to paste too much text at one time. It is both producer and

consumer for the pty and can deadlock.

Variable-width fonts are not handled reasonably.

This program still needs to be rewritten. It should be split into very modular sections, with the

various emulators being completely separate widgets that don't know about each other. Ideally,

you'd like to be able to pick and choose emulator widgets and stick them into a single control

widget.

The focus is considered lost if some other client (e.g., the window manager) grabs the pointer;

it is difficult to do better without an addition to the protocol.

There needs to be a dialog box to allow entry of the log file name and the COPY filename.

Many of the options are not resettable after xterm starts.

The Tek widget does not support key/button re-binding.

X Window System User's Guide 511

Xterm (continued) Window Terminal Emulator

See Also

X, resize, pty(4), tty(4); Appendix E, xterm Control Sequences

Authors

Far too many people, including:

Loretta Guarino Reid (DEC-UEG-WSL), Joel McCormack (DEC-UEG-WSL), Terry Weissman

(DEC-UEG-WSL), Edward Moy (Berkeley), Ralph R. Swick (MIT-Athena), Mark Vande-

voorde (MIT-Athena), Bob McNamara (DEC-MAD), Jim Gettys (MIT-Athena), Bob Scheifler

(MIT X Consortium), Doug Mink (SAO), Steve Pitschke (Stellar), Ron Newman (MIT-

Athena), Jim Fulton (MIT X Consortium), Dave Serisky (HP).

512 X Window System User's Guide

xwd

-Window Image Dumper-

Name

xwd - place window images in a dump file.

Syntax

xwd [options]

Description

xwd stores window images in a specially formatted window dump file. This file can then be

read by various other X utilities for redisplay, printing, editing, formatting, archiving, image

processing, etc. The target window is selected by clicking the mouse in the desired window.

The keyboard bell is rung once at the beginning of the dump and twice when the dump is com-
pleted.

Options

-help Prints out the 'Usage:' command syntax summary.

-nobdrs Specifies that the window dump should not include the pixels that compose

the X window border. This is useful when the window contents are included

in a document as an illustration.

-out file Allows you to specify the output file on the command line. The default out-
puts to the standard output (stdout).

-xy Applies to color displays only. The -xy option selects 'XV pixmap format

dumping instead of the default 'Z' pixmap format.

-root Makes a dump of the entire root window.

-add val ue Specifies a signed value to be added to every pixel.

-frame Indicates that the window manager frame should be included when manually

selecting a window. (Available as of Release 4.)

-display [host] : server[. screen]

Allows you to specify the host, server and screen to connect to. host is the

machine, server is the server number and screen is the screen number.

For example,

xwd -display your_node:0.1 &

specifies screen 1 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon (:) are necessary in all cases.

Files

XWDFile.h X Window Dump File format definition file.

See Also

X, xdpr, xpr, xwud

X Window System User's Guide 513

XWd (continued) Window Image Dumper

Author

Tony Delia Fera, Digital Equipment Corp., MIT Project Athena;

William F. Wyatt, Smithsonian Astrophysical Observatory.

514 X Window System User's Guide

xwininfo

-Window Information Utility-

Name

xwininfo - window information utility for X.

Syntax

xwininfo [options]

Description

xwininfo is a utility for displaying information about windows. Depending on which options

are choosen, various information is displayed. If no options are choosen, -stats is assumed.

The user has the option of selecting the target window with the mouse (by clicking any mouse

button in the desired window) or by specifying its window id on the command line with the

-id option. Or instead of specifying the window by its id number, the -name option may be

used to specify the window by name. There is also a special -root option to quickly obtain

information on the root window.

Options

-display [host] : server[. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xwininfo -display your_node:0.1 &

specifies screen 1 of server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, screen 0 is

assumed; the server and colon (:) are necessary in all cases.

-help Prints out the 'Usage:' command syntax summary.

-id id Allows the user to specify a target window id on the command line rather

than using the mouse to select the target window. This is very useful in

debugging X applications where the target window is not mapped to the

screen or where the use of the mouse might be impossible or interfere with

the application.

-name name Allows the user to specify that the window named name is the target window

on the command line rather than using the mouse to select the target window.

-root Specifies that the root window is the target window. This is useful in situa-
tions where the root window is completely obscured.

-frame Causes window manager frames not to be ignored when manually selecting

windows. (Available as of Release 4.)

-int Specifies that all X window ids should be displayed as integer values. The

default is to display them as hexadecimal values.

-tree Causes the root, parent, and children windows' ids and names of the selected

window to be displayed.

X Window System User's Guide 515

xwininfo (continued) Window Information Utility

-stats Causes various attributes of the selected window having to do with its loca-
tion and appearence to be displayed. Information displayed includes the

location of the window, its width, height, depth, border width, class, and map

state, colormap ID (if any), backing-store hint, and the location of its comers.

If xwininfo is run with no options, -stats is assumed.

-bits Causes the display of various attributes pertaining to the selected window's

raw bits and how the selected window is to be stored to be displayed. Infor-
mation displayed includes the selected window's bit gravity, window gravity,

backing store hint, backing planes value, backing pixel, and whether or not

the window has save-under set

-events Causes the selected window's event masks to be displayed. Both the event

mask of events wanted by some client and the event mask of events not to

propagate are displayed.

-size Causes the selected window's sizing hints to be displayed. Information

displayed includes: for both the normal size hints and the zoom size hints the

user supplied location if any; the program supplied location if any; the user

supplied size if any; the program supplied size if any; the minimum size if

any; the maximum size if any; the resize increments if any; and the minimum

and maximum aspect ratios if any.

-wm Causes the selected window's window manager hints to be displayed. Infor-
mation displayed may include whether or not the application accepts input,

what the window's icon window # and name is, where the window's icon

should go, and what the window's initial state should be.

-metric Causes all individual height, width, and x and y positions to be displayed in

millimeters, as well as number of pixels, based on what the server thinks the

resolution is. Geometry specifications that are in +x+y form are not changed.

-english Causes all individual height, width, and x and y positions to be displayed in

inches (and feet, yards, and miles if necessary), as well as number of pixels.

-metric and -english may be used at the same time.

-all A quick way to ask for all information possible.

Examples

The following is a sample summary taken with no options specified.

xwininfo ==> Please select the window you wish

==> information on by clicking the

==> mouse in that window.

xwininfo ==> Window id: OxSOOOOf (xterm)

==> Upper left X: 0

==> Upper left Y: 0

516 X Window System User's Guide

Window Information Utility (continued) xwininfo

==> Width: 578

==> Height: 316

==> Depth: 1

==> Border width: 1

==> Window class: InputOutput

==> Colormap: 0x80065

==> Window Bit Gravity State: NorthWestGravity

==> Window Window Gravity State: NorthWestGravity

==> Window Backing Store State: NotUseful

==> Window Save Under State: no

==> Window Map State: IsUnviewable

==> Window Override Redirect State: no

==> Corners: +0+0 -572+0 -572-582 +0-582

Bugs

Using -stats and -bits together shows some redundant information.

See Also

X, xprop

Author

Mark Lillibridge, MIT Project Athena.

X Window System User's Guide 517

xwud X

"Window Image Displayer -

Name

xwud - X window image displayer.

Syntax

xwud [options]

Description

xwud is an X Window System window image undumping utility, xwud allows X users to dis-
play a window image saved in a specially formatted dump file, such as one produced by xwd.

The Release 4 version of xwud allows you to specify the coordinates at which this image is

displayed using the -geometry option. If you are using the Release 3 version of xwud, the

window image will appear at the coordinates of the original window from which the dump was

taken.

Options

-help Prints out a short description of the allowable options.

-in file Allows the user to explicitly specify the input file on the command line. The

default is to take input from standard input.

-display [host] : server[. screen]

Allows you to specify the host, server and screen to connect to. host speci-
fies the machine, server specifies the server number, and screen specifies

the screen number. For example,

xwud -display your_node:0.1

specifies screen 1 on server 0 on the machine your_node. If the host is

omitted, the local machine is assumed. If the screen is omitted, the screen 0

is assumed; the server and colon (:) are necessary in all cases.

-geometry geometry

The xwud window is created with the specified size and location determined

by the supplied geometry specification. The -geometry option can be (and

often is) abbreviated to -g, unless there is a conflicting option that begins

with "g." The argument to the geometry option (geometry) is referred to as

a "standard geometry string," and has the form widthx-

height±xoff±yoff. (This option is available for use with xwud as of

Release 4.)

Typically, you will only want to specify the position and let the size default to

the actual size of the image.

-bg col or If a bitmap image (or a single plane of an image) is displayed, this option can

be used to specify the color to display for the "0" bits in the image. (Avail-
able as of Release 4.)

-f g col or If a bitmap image (or a single plane of an image) is displayed, this option can

be used to specify the color to display for the "1" bits in the image. (Avail-
able as of Release 4.)

5/8 X Window System User's Guide

Window Image Displayer (continued) XWUd

-new Forces creation of a new colormap for displaying the image. If the image

characteristics happen to match those of the display, this can get the image on

the screen faster, but at the cost of using a new colormap (which on most dis-
plays will cause other windows to go technicolor). (Available as of Release

4.)

-noclick Clicking any button in the window will terminate the application, unless this

option is specified. Termination can always be achieved by typing 'q', 'Q', or

Ctrl-c. (Available as of Release 4.)

-plane number

Selects a single bit plane of the image to display. Planes are numbered with

zero being the least significant bit. This option can be used to figure out

which plane to pass to xpr for printing. (Available as of Release 4.)

-raw Forces the image to be displayed with whatever color values happen to cur-
rently exist on the screen. This option is mostly useful when undumping an

image back onto the same screen that the image originally came from, while

the original windows are still on the screen, and results in getting the image

on the screen faster. (Available as of Release 4.)

-rv If a bitmap image (or a single plane of an image) is displayed, this option

forces the foreground and background colors to be swapped. This may be

needed when displaying a bitmap image which has the color sense of pixel

values "0" and "1" reversed from what they are on your display. (Available

as of Release 4.)

-std map_type

Causes the image to be displayed using the specified Standard Colormap.

The property name is obtained by converting the type to upper case, prepend-

ing "RGB_", and appending "_MAP". Typical types are best, default,

and gray. See xstdcmap for one way of creating Standard Colormaps.

(Available as of Release 4.)

-vis vis_type_or_ID

Allows you to specify a particular visual or visual class. The default is to

pick the "best" one. A particular class can be specified: StaticGray,

Grayscale, StaticColor, Pseudocolor, DirectColor,or True-

Color. Or Match can be specified, meaning use the same class as the

source image. Alternatively, an exact visual ID (specific to the server) can be

specified, either as a hexadecimal number (prefixed with "Ox") or as a deci-
mal number. Finally, "default" can be specified, meaning to use the same

class as the colormap of the root window. Case is not significant in any of

these strings. (Available as of Release 4.)

-inverse Applies to monochrome window dump files only. If selected, the window is

undumped in reverse video. This is mainly needed because the display is

'write white', whereas dump files intended eventually to be written to a

printer are generally 'write black'. (Available in Release 3 only.)

X Window System User's Guide 519

XWUd (continued) Window Image Displayer

Files

XWDFile.h X Window Dump File format definition file.

Bugs in Release 3

Does not attempt to do color translation when the destination screen does not have a colormap

exactly matching that of the original window.

See Also

X, xdpr, xpr, xstdcmap, xwd

Author

Release 4 version by Bob Scheifler, MIT X Consortium;

Release 3 version by Tony Delia Fera, Digital Equipment Corp. and MIT Project Athena, and

William F. Wyatt, Smithsonian Astrophysical Observatory.

520 X Window System User's Guide

Part Four:

Appendices

This part of the book contains useful reference information.

System Management

The uwm Window Manager

The OSF/Motif Window Manager

Standard Cursors

Release 3 and 4 Standard Fonts

xterm Control Sequences

Standard Bitmaps

Translation Table Syntax

Glossary

Index

A

System Management

This appendix discusses various tasks involved in X Window System man-
agement, mostly from the UNIX point of view.

In This Chapter:

Including X in Your Search Path 526

Setting the Terminal Type 526

A Startup Shell Script 527

What Should Go in the Script 527

Starting X 531

Starting X with the Display Manager, xdm (Release 4) 531

Getting Started with xdm on a Single Display 532

Setting Up the Configuration File and Other Special Files 532

The Standard Login Session 535

Customizing xdm 536

The Xservers File 537

The Xsession File and .xsession Scripts 538

The Xresources File 538

The Error Log File 539

The xdm-pid File (Release 4 Only) 539

Xstartup and Xreset 539

Security and the authorize Resource (Release 4 Only) 539

Stopping xdm and the Server 540

X Terminals and the XDM Control Protocol (Release 4) 540

Release 3 xdm 541

Release 3 Special Files and the Config File 541

Customizing the Release 3 xdm 542

Managing Multiple Displays: the Release 3 Xservers File 543

Release 3 .xsession Scripts 544

Releases Xresources File 544

Release 3 Xstartup and Xreset 544

Starting X with xinit 545

An Older Method of Starting X: /etc/ttys 545

Server Access Control 547

Host-based Access and the xhost Client 547

User-based Access: xdm and the ./authority File (Release 4) 548

Font Management 549

Console Messages 550

Log Files 550

Changing the Color Name Database 550

A

System Management

X exists in so many incarnations and runs on so many different versions of UNIX (not to men-
tion other operating systems) that it is difficult to be definitive about system management.

This appendix discusses several topics relevant to setting up the standard version of X (with

UNIX) and keeping it running smoothly. The range of subjects discussed is somewhat broad.

Here's an overview.

This appendix primarily focuses on ways in which you can set up X to run automatically:

" xdm, the display manager.

" xinit.

" By an older (and now obsolete) method, running xterm from letclttys.

In addition to information relating to starting X, we've also included brief discussions of

other topics relevant to X system management:

" Including X in your search path.

" Setting the terminal type for xterm.

" Managing fonts.

" Addressing security issues and access control.

" Redirecting console messages.

" Maintaining log files.

" Changing the color name database.

Given the various incarnations of X and UNIX, you should be sure to check your system's

documentation for additional (or contrary) details.

System Management 525

Including X in Your Search Path

The various X clients are normally stored in the directory lusrlbinlXll. In order to invoke

them by name like any other UNIX program, you need to make this directory part of your

search path.*

This is normally done from your .cshrc (C shell) or .profile (Bourne shell) file, using a com-
mand similar to the following:

Bourne Shell:

PATH=. :/usr/ucb:/bin:/usr/bin:/usr/bin/Xll -.Other directories;

export PATH

C Shell:

set path=(. /usr/ucb /bin /usr/bin /usr/bin/Xll Other directories)

The exact list of directories will differ from system to system. You should be aware that

directories are searched in order from left to right, so a command with the same name in an

earlier directory will be found and used before one in a later directory. Many users take

advantage of this fact to run customized versions of programs by putting "." (the current

directory) or a local tools directory first in their search path. This works fine, but you should

be aware that this provides a security loophole that can be taken advantage of by an experi-
enced system cracker. It's much safer to put "." at the end of your path, or eliminate it

entirely.

If you have already logged in before adding the above line to your .profile or .cshrc file, you

should log out and log in again, or type in the path-setting command at your prompt, so that it

takes effect for your current session.

Setting the Terminal Type

Several termcap entries work with xterm, including "xterm," Uvtl02," "vtlOO," and "ansi."

The xterm program automatically searches the termcap file for these entries (in this order)

and sets the TERM and TERMCAP environment variables according to the entry it finds.

We've found that the termcap entry called "xterm," which comes with the standard X distri-
bution, provides very reliable emulation. We suggest you copy this entry from the xterm

source directory (the file is called termcap) and add it as the first entry in the letcltermcap file

on your system. This will allow you to set your terminal type to xterm.

*This topic isn't really part of system management, but since we assume most people know how to do it, we didn't

want to clutter up Chapter 2 with unnecessary discussion. On the other hand, the information is critical for those who

don't already know it, so we wanted to put it somewhere!

526 X Window System User's Guide

A Startup Shell Script

It's a basic principle of UNIX to "let the computer do the work." Accordingly, you'd no

doubt like to run various X clients automatically whenever you log in.

The best way to do this is to create a script that runs the clients you want. Depending on how

X is set up on your system, you can execute this script in one of two ways:*

" If xdm is running X, name the script jcsession and put it in your home directory. When

you log in, xdm will automatically execute your jcsession script.

" If you are starting X with jam/, name the script jcinitrc and put it in your home directory.

Then put the command xinit at the end of your .login file, ja'm'f normally starts the server

and runs a single xterm as a client, but if a file called jcinitrc exists in your home direc-
tory, ja'm'f starts the server and executes jcinitrc.

Methods of starting X automatically with xinit or xdm are discussed later in this appendix.

What Should Go in the Script

With some variation depending on the specific environment, in most cases your startup script

should:

" Set the DISPLAY environment variable.

" Load your resources file with xrdb.

" Start the window manager.

" Start other clients you want on your default display, such as xterm, oclock, xload, etc.

" Run a console xterm process in the foreground; terminating this process will terminate

the login session.

The script can be either a C shell or Bourne shell script. We've included a sample script in

Bourne shell syntax.!

In writing a script, keep in mind this limitation: running xterm from inside a shell script only

works if the script executes quickly-or does not terminate at all.

The problem involves the way that xterm sets up its controlling terminal (Idevltty}. If the

xterm's parent process has died by the time the xterm gets around to doing this, then Idevltty

is redefined properly. If the parent has not died, however, xterm uses the parent's controlling

terminal as its own. If the parent dies at any time after that, Idevltty will become undefined

for that xterm (and all processes spawned by it).

*If you are still starting the X server from the letclttys file, as described later in this appendix, this will bring up an

xterm window with a login prompt. In this case, you can run the script to start other clients from your .login file.

Note, however, that this method of starting the X server is not supported in Release 4.

"{"Thanks to Dave Curry for his help in preparing this sample.

System Management 527

A C shell script that starts up a few xterms and then exits will probably work because the

xterm's parent process (the script) has exited by the time the xterms start defining their

/dev/tty. If, however, there is a sleep or another command that takes a long time in the script

after the line invoking the xterm, the parent may still be around when the xterm defines

/dev/tty. Then, when the script finally exits, /dev/tty becomes undefined for those xterms.

If you want to use a C shell script, this problem can be avoided by enclosing commands in

parentheses. This causes the shell to fork an extra time before executing the command, and

thus disassociates the process from the controlling terminal before the process begins.

Whether you are using a C shell or Bourne shell script, you should make the last command in

the script be one that opens a window, and run that command in the foreground. Then the

script will not terminate until that final foreground command terminates-that is, when you

kill the window. In this case, all the xterms will have the script's controlling tty, but since the

script is guaranteed to hang around, this causes no problem.

Regardless of how and in what environment you're starting X, it is advisable to set the DIS-
PLAY variable inside the script, since otherwise the clients won't know which display to con-
nect to. (Normally, xterm sets the DISPLAY variable. Since you are invoking the other cli-
ents not from a shell in an xterm window, but from a standard shell, it will not automatically

be set.)

Though without explicit settings, both xdm and xinit will automatically set DISPLAY to

unix: 0 . 0 (or some variation thereof), this default setting limits the remote hosts that can

connect to the local system. (If every system has the same DISPLAY variable, it becomes

rather difficult to run programs on a remote host!) We suggest you set the DISPLAY expli-
citly, determining the appropriate host name with the hostname command, as shown in the

script below.

Note that the hostname command is a BSD command. For a System V equivalent, see your

UNIX documentation. Note also that in this script, sed is used to strip domained-based host-

names such as isla.ora.com back to their initial term, the actual system name. If you are run-
ning in a standalone environment, this is not necessary.

Example A-l shows a startup Bourne shell script, which would open windows on the display,

as shown in Figure A-l. You can use this script even if you normally use the C shell for

interactive use. Note that the comments should probably not be present in the working script.

While they are ignored, they do slow down execution, and on a loaded system can cause X to

start up improperly.

Example A-1. Startup Bourne shell script

l!/bin/sh

Get hostname, strip the domain name if there is one

cpu='hostname | sed -e 's/\..*//''

If no DISPLAY is set, set one.

if [-z $DISPLAY]

then

DISPLAY=$cpu:0

fi

528 X Window System User's Guide

Example A-1. Startup Bourne shell script (continued)

I Special-case the "bogus" non-network display names and

make sure we can always execute remote clients

case $DISPLAY in

unix:0.0 Iunix:0 I:0.0|:0)DISPLAY="$cpu:0";;

esac

export DISPLAY

I Load resource definitions from ./resources

xrdb -Dhostname=$cpu $HOME/./resources

Set keyclick off and invoke the screen saver after

t seven minutes of idleness

xset c off s 420

t Start the twm window manager

twm &

t Now start up some xterms

Start an xterm in bottom left corner

xterm -geometry 80x35+0-0 -display $DISPLAY &

t xterm next to it across the bottom

xterm -geometry 80x35+500-0 -display $DISPLAY &

remote xterm in regular size just above, but below console xterm

at top

rsh ora xterm -geometry -0-0 -display $DISPLAY &

Now start up other clients

digital xclock in upper right corner

xclock -digital -update 1 -geometry -0+0 &

xcalc just below it; xclock 30 pixels high on sun, so offset by 30

xcalc -geometry -0+30 &

fxload 235 pixels below that, at bottom of xcalc

xload -geometry -0+265 &

#xbiff down another 120 pixels

xbiff -geometry -0+385 &

f Start a console xterm window.

This is the only xterm that should be run in the foreground.

t Killing this window will shut down X.

Use the following line with xinit; comment out if you use xdm

exec xterm -C -display $DISPLAY -geometry 80x5+0+0

f Uncomment this line if you use xdm

exec xterm -C -Is -display $DISPLAY -geometry 80x5+0+0

System Management 529

IS xterm 01 Bxtern

Figure A-1. Display after running sample script

Note that all programs that create windows (and hence don't run quickly and then go away)

are run in the background, with the exception of the final xterm window. This will cause the

script to simulate the behavior of the console xterm normally started by xinit or xdm.

The -C option specified with the console xterm window redirects messages sent to Idevlcon-

sole to that xterm window. This option is only supported in some implementations of X; see

your documentation. For additional information, see the section "Console Messages" later in

this appendix.

You may want to start the console xterm window as an icon, using the -iconic option, so

you're less likely to terminate the window inadvertently and end the session. If you do this,

you should specify the position of the icon in your resource file. The following resource

entry would place the icon at coordinates 50,50:

xterm*iconGeometry: +50+50

In the example, though, we simply make the window only five lines high, so that we can still

see console messages, but won't be tempted to use it for most purposes.

Note that if you are using xdm, you want to run the final xterm with the -Is option, to make

that window be your login shell. If you are using xinit, you should definitely not use this

option! Since xinit is invoked from the end of the .login file (instead of directly by xdm

before login), you will end up in an infinite loop.

Note that windows are actually arranged in a "tiled" fashion, with two large xterms side by

side on the bottom of the screen, a smaller one (connected to a remote system) above, and the

"desk accessories" lined up in the upper left corner. This leaves some room free for new win-
dows or for invoking the Twm menu on the root window. This is ideal for our purposes,

which are mainly editing, formatting, and testing examples for books. Depending on what

you do, another arrangement might be better.*

*Note that this file was developed for and run on a Sun workstation. Differences in pixel sizes may make the coordi-
nates and sizes of various windows come out differently on other hardware.

530 X Window System User's Guide

Starting X

In Chapter 2 Getting Started, we described how to start X manually. However, on a single-

user workstation (or perhaps on several connected displays), it is likely that you might want

X to come up automatically. In many commercial X ports, this may already have been done

for you.

This section describes three ways to run X automatically. The first method involves the dis-
play manager, xdm, which can run X on a single display or several connected displays. Since

the display manager is the recommended method of running X and is extremely flexible,

we're including a fairly detailed discussion of it. The second method is to use xinit, which

was introduced in Chapter 2. For those who are still running Release 3, we've included a dis-
cussion of a third method that runs X from letclttys (on BSD 4.3 systems only). This method

has been phased out in Release 4.

Starting X with the Display Manager, xdm (Release 4)

Introduced in Release 3, the display manager, xdm, offers an alternative to running X with

xinit (or by the obsolete method, from letclttys}. xdm is designed to run the X server from the

/etc/re system startup file. In its most basic implementation, the display manager emulates a

login or getty on a standard terminal, keeping the server running, prompting for a user's name

and password, and managing a standard login session.

However, xdm has far more powerful and versatile capabilities. Users can design their own

login sessions, using jcsession files. You can also customize special xdm files to manage sev-
eral connected displays (both local and remote), and to set system-wide and user-specific X

resources.

A not so obvious limitation of xdm is that it does not work well if you are using other window

systems (in addition to X). If you want to use multiple window systems on the same hard-
ware, you should continue to use xinit for the time being. Future releases of xdm should

overcome these limitations.

The functionality of xdm has been expanded in Release 4, though many features have not

changed since Release 3. The following sections describe the Release 4 version of xdm.

Release 4 specific features are noted. If you are running Release 3, also read the section

"Release 3 xdm" later in this appendix.

First, we'll give you the basics of using xdm to run X on a single display and then give you

some tips on how to design your own user session and manage multiple displays.

System Management 531

Getting Started with xdm on a Single Display

To have xdm run X on a single display, the system administrator should perform three simple

tasks:

1. Set up the xdm configuration file and other special files, as described in the next section.

2. Put the line lusrlbinlXlllxdm at the end of /etc/re or other similar system startup file.

3. It's also a good idea to turn off the "console" in letclttys on a single-user workstation,

although this is discretionary. (As we'll see, the display manager provides its own login

window. Turning off the console prevents the standard UNIX prompt from being simulta-
neously displayed on the full screen when xdm is started. Keep in mind this will also pre-
vent system messages from being sent to the console but they should still be saved in

/usr/adm/messages.) How you'd turn off the "console" depends on the version of UNIX

you are running. The procedure and the system file you edit may differ from system to

system. See the getty($) and i/u'r(8) reference pages in your UNIX documentation for

details.

Once you perform these steps, as long as UNIX is running, xdm should keep the X server run-
ning, allow users to log on and off, and manage a simple login session.

The following sections describe the steps you need to get started with xdm in greater detail.

Setting Up the Configuration File and Other Special Files

In order to run X, xdm uses a configuration file and several special files that specify such

things as the server, basic login session, and an error log file.

Be aware that xdm should be able to work in a very rudimentary fashion without any special

files. However, a problem with Release 4 may require that at least two of the special files be

present (namely, xdm-config and Xservers). These limitations should be removed by patches

to the release. If this bug has been patched and xdm finds no special files, it will still start the

server and a login xterm window. This default action can be very helpful, because it allows

you to log in even if the special files have been inadvertently removed or corrupted.

Despite the potential to work in a rudimentary fashion without special files, xdm was not

intended to be run in this way. For most purposes, system administrators will want to use and

very likely customize the special files to have xdm run X in a manner more suitable for the

particular system.

The configuration file and some prototypical special files can be found in the config directory

under the xdm source directory. (Starting from the top of the XI1 source tree, the directory is

mit/clients/xdm/config.) Table A-l lists some of the more commonly used special files for

Release 4:

532 x Window System User's Guide

Table A-1. xdm Special Files

File What it specifies

xdm-config Configuration parameters.

Xservers List of displays to manage.

xdm-errors xdm error log file.

xdm-pid Contains ID of the xdm parent process

(Release 4 only).

Xresources Resources to load (with xrdb).

Xsession Default login session.

Xstartup Startup procedure.

Xreset Reset procedure.

As you can see, the file xdm-pid has been added in Release 4; it represents new functionality.

The Xstartup and Xreset files can still be used to affect xdm in Release 4, but there are no

default files. We'll discuss these and some of the other special files in greater detail later in

this appendix.

Each of the special files can be specified by an xdm command line option. However, it's

more efficient to specify the files-other than the single xdm configuration file-as resources

and put those resources in the configuration file itself. The configuration file shipped with the

standard version of X is called xdm-config. The Release 4 version of this file is shown in

Figure A-2:

DisplayManager.servers: /usr/lib/Xll/xdm/Xservers

DisplayManager.errorLogFile: /usr/lib/Xll/xdm/xdm-errors

DisplayManager.pidFile: /usr/lib/Xll/xdm/xdm-pid

DisplayManager*resources: /usr/lib/Xll/xdm/Xresources

DisplayManager*session: /usr/lib/Xll/xdm/Xsession

DisplayManager._0.authorize: true

DisplayManager*authorize: false

Figure A-2. Default xdm-config file, Release 4

The following three xdm-config file entries have been added in Release 4:

DisplayManager.pidFile: /usr/lib/Xll/xdm/xdm-pid

DisplayManager._0.authorize: true

DisplayManager*authorize: false

These entries represent new xdm functionality, which will be discussed later in this appendix.

If you are using Release 3, these entries are not applicable. (See "Release 3 xdm" for the

appropriate xdm-config file.)

In effect, most of the entries in the default configuration file are just pointers to the other spe-
cial files xdm uses. Notice also that, in most cases, the configuration file has the same syntax

as any resource file. Release 4 introduces a variation from traditional resource syntax, which

appears in the following line:

DisplayManager. 0.authorize: true

System Management 533

when you specify a display name on the command line). This is because dots and colons

have special meaning for the resource manager. (Dots separate resource variable compo-
nents; a colon signals the end of the variable and the beginning of the value field. See Chap-
ter 9, Command Line Options for more information.) Underscores allow a display name to

be treated as a single resource variable component This syntax variance is applicable only

to Release 4. The Release 3 version of xdm compensates for resource syntax

anomalies-display name components are separated by dots.

In addition to the variables set in the default xdm-config file, you can specify several other

display manager resources in the configuration file. See the xdm reference page in Part Three

of this guide for a complete list of resource variables.

To get started using xdm, the system administrator should make a directory (lusrlliblXlllxdm

is suggested) and copy these default special files into it

" xdm-config.

" Xresources.

" Xsession.

As we'll see later, each of the standard files can be customized but in many cases the defaults

will be sufficient to run X on a single display.*

Next, the system administrator should create an Xservers file containing an entry for the local

display. As we've said, if the Release 4 xdm has been updated with all relevant patches, the

Xservers file is not necessary for xdm to run X on a single display. However, if you are run-
ning Release 4 without the relevant patches, xdm has a bug that requires you to set up an

Xservers file before xdm can work properly. (The bug also requires an xdm-config file be

present.) Since setting up an Xservers file is fairly simple to do and a good way to avoid

potential problems, we recommend that you do so before placing the xdm command in one of

the system startup files.

Most workstations can be run using an Xservers file made up of this line:

:0 local /usr/bin/Xll/X

This Xservers file is probably adequate for most workstations. However, if X does not run

properly on your single display, you should edit the Xservers file. See "The Xservers File"

later in this appendix and the xdm reference page in Part Three of this guide for more infor-
mation about file syntax.

*For our purposes, we are talking about the default special files provided with the standard release of X. Keep in

mind that you can rewrite the resource definitions in the xdm-config file to specify files of any name (in any directory)

as the so-called special files. (The configuration file also can have any name you like and be stored in any directory).

If you use a filename other than xdm-config, you need to specify that filename (and its explicit path) with the

-conf ig option after the xdm command. See the xdm reference page in Part Three of this guide for more informa-
tion.)

534 X Window System User's Guide

The Standard Login Session

Once you copy the special files to lusrlliblXlllxdm and create a single-entry Xservers file, if

you want xdm simply to run the X server on the local display, prompt for username and pass-
word, and run a simple login session, you should be able simply to add this line to the end of

the /etc/re file:

/usr/bin/Xll/xdm

(Depending on your version of UNIX, you may want to add this line to /etc/rc.local, Ietclrc2

or some other file. Consult your operating system documentation. Regardless of the file to

which it is added, the display manager should be the last process run.)

After this simple modification, when UNIX is put into multi-user mode, xdm automatically

starts the X server and keeps it running.

xdm also takes over the login procedure for displays specified in the Xservers file, supplying

username and password prompts normally provided by the getty and login programs. With-
out modification, xdm provides the login window pictured in Figure 2-2 of Chapter 2, Getting

Started.

This login procedure is controlled by the authentication widget (part of the xdm program),

which in effect "authenticates" the user and password. You can customize the login window

by setting resources for the authentication widget in the Xresources file. (These resources

must be set in the Xresources file in the directory lusrlliblXlllxdm to take effect. They can-
not be set in a resources file in a user's home directory, since that file is not loaded into the

resource manager until after the login procedure.) Among the customizable features are the

login greeting (by default, Welcome to the X Window System), the size and position of the

window, and colors and fonts of the text displayed or typed in the window. See the xdm ref-
erence page in Part Three of this guide for a complete list of resources.

Each time a user successfully logs on, xdm looks for a file called jcsession in the user's home

directory. If that file exists and is an executable script, xdm runs it as the user's login session.

The jcsession file should follow the general guidelines for startup scripts described earlier in

this appendix.

If you've just set up xdm, users may not have written jcsession scripts. If xdm finds no jcses-

sion file in a user's home directory, it provides a default session, consisting of the following

commands (excerpted from the standard Xsession file):

resources=$HOME/.Xresources

xrdb -load $resources

twm &

exec xterm -geometry 80x24+10+10 -Is

This default session has three elements: First, xdm checks the user's home directory for a file

called Xresources. If that file exists, it is loaded into the resource manager with xrdb. Sec-
ond, the window manager, twm, is started. Third, the console xterm window is started with a

login shell (-Is) in the foreground.

After this basic session has been started, the screen looks something like Figure 2-3 and the

user is ready to work.

System Management 535

Customizing xdm

The display manager can do far more than run the simple session described above. Any of

the special files can be edited to customize the display manager for your site. For example,

by editing the Xservers file, you can set up xdm to run multiple displays, such as X

terminals.*

Remember that, if xdm has been modified with the proper Release 4 patches, none of the spe-
cial files (not even the xdm-config file) is absolutely necessary to run X on a single display.

In a worst case scenario-if all the special files are removed or corrupted-xdm has reason-
able defaults that will allow you to log in and work. Depending on your system configura-
tion, you may elect not to use some of the special files. For example, the Release 4 xdm

works well without Xstartup and Xreset files in many environments. As we've said, if no

Xsession is specified, xterm is executed, etc. (If you decide not to use one of the special files

listed in the default xdm-config file, remember to remove the pointer to it from the file!)

What the special files provide is the flexibility to configure xdm for your site, perhaps running

X on several displays, each possibly with a different default session, different resources for

the authentication widget, etc.

If you examine the default configuration file, you'll notice most of the resources are specified

with loose bindings. This means that the specified resource (for example, Xsession) will

apply to all displays being run by xdm. By using tight bindings in the configuration file, you

can also specify resources that only take effect on a specific display. To specify a resource

for a particular display, just insert the name of the display between DisplayManager and

the final resource variable. For example, say xdm is running X on a workstation (named : 0)

and a connected X terminal (visual: 0). You could specify two different default sessions

by using resource definitions (in the configuration file) similar to the following:

DisplayManager._0.session: /usr/lib/Xll/xdm/Xsession . ws

DisplayManager.visual_0.session: /usr/lib/Xll/xdm/Xsession.visual

Note that an xdm resource specification uses an underscore in place of the colon in a display

name. (As discussed earlier, the use of underscores has been introduced in Release 4. The

Release 3 syntax is discussed in the section "Release 3 xdm" later in this appendix.) You

should match the display name syntax for resources intended to be used on the same display.

For example, you might have the following resources variable settings to match the

session resource specifications above:

DisplayManager._0.resources: /usr/lib/Xll/xdm/Xresources.ws

DisplayManager.visual_0.resources: /usr/lib/Xll/xdm/Xresources.visual

The following sections discuss some possible customizations of the default special files.

With the vast number of possible system configurations and user preferences, you should

consult the xdm reference page in Part Three of this guide for more information.

*Generally, this modification is required for xdm to run sessions on X terminals. However, as we'll see, an increas-
ing number of X terminals do not require an Xservers file entry in order to be controlled by xdm. See "X Terminals

and the XDM Control Protocol (Release 4)" later in this appendix.

536 X Window System User's Guide

The Xservers File

The Release 4 xdm source directory contains two sample Xservers files, Xservers.ws and

Xservers.fs, which illustrate file entries for workstations and file servers (such as X

terminals), respectively. To run xdm on a single workstation, you should create an Xservers

file using the Xservers.ws file as a guide. As we'll see later, in most circumstances, you must

edit the Xservers file to specify additional displays for xdm to manage.

Each entry in the Xservers file usually has three or four elements: the display name, an

optional display class, the display type, and the server program name (and its arguments, typ-
ically the display number). (Since an X terminal runs its own server, the final argument can

be a comment, such as "Joe's X terminal.") Possible display types are described on the xdm

reference page in Part Three of this guide.

Most workstations have a single display numbered 0 of the type local, as illustrated by the

typical Xservers file entry for a workstation:

:0 local /usr/bin/Xll/X

The display class part of the Xservers entry is new as of Release 4. The sample entry above

does not contain a display class, but it would normally be the second part, between the dis-
play name and type, as in the following:

:0 display_class local /usr/bin/Xll/X

The display class is determined by the machine you are using and should be provided by the

hardware vendor. The use of the display class is related to an underlying feature of the

Release 4 xdm, the X Display Manager Control Protocol (XDMCP), which is described later

in this appendix. For now, suffice it to say that, in most circumstances, you do not have to

supply a class name within an Xservers file entry.

For xdm to run sessions on most X terminals, you must add specifications for these displays

to the Xservers file, using the sample file Xservers.fs from the xdm source directory as a tem-
plate. For instance, say you have two X terminals hooked up to a workstation. (As of

Release 4, most X terminals are of the display type foreign. In Release 3, most X terminals

are of the display type transient.) Your Xservers file might look like this:

:0 local /usr/bin/Xll/X

visual:0 foreign Lucy's Visual

ncd:0 foreign Ricky's NCD16

Notice that the final element of each X terminal entry is a comment. Using this Xservers file,

xdm provides login windows on the two X terminals, as well as the workstation, and runs a

session for any user who logs on.

If you edit the Xservers file while the server is running, xdm will not be aware of the changes.

You can make xdm reread the Xservers file (or another file specified by the resource

DisplayManager. servers) by sending the xdm parent process a SIGHUP. Use the

UNIX kill command with the -HUP option (for SIGHUP) and the process ID number of xdm.

It's likely there will be multiple xdm processes, since the program forks a child process for

every display it's managing. As of Release 4, the ID of the parent process is stored in the file

specified by the resource DisplayManager .pidFile-usually lusrlliblXlllxdmlxdm-

pid.

System Management 537

% kill -HDP process-ID

If a new entry has been added, the display manager starts a session on that display. If an

entry has been removed, the display manager terminates any session on that display without

notice and no new sessions will be started.

Once you edit the Xservers file to reflect the different displays you want to manage, you can

enter other display-specific resources in the configuration file.

Be aware that communication problems can arise between the display manager and many

autonomous displays (primarily X terminals). If the main display is powered off or reset,

xdm may not detect that the server has been stopped and restarted, and thus may not send new

login windows to connected displays. In the spring of 1989, the X Consortium proposed a

standard protocol between displays and display managers that would avert these problems.

The X Display Manager Control Protocol (XDMCP) has been adopted and is implemented by

the Release 4 xdm, but not all X terminals implement it yet. We'll discuss the goals of this

protocol at greater length in "X Terminals and the XDM Control Protocol" later in this

appendix. For now, be aware that the XDMCP will eventually eliminate the need for

Xservers file entries for X terminals. Currently, however, chances are that your X terminal

does not understand the XDMCP and requires an Xservers file entry.

The Xsession File and .xsesslon Scripts

Depending on the needs of your site, you can edit the Xsession file to make the default ses-
sion anything you want. You can specify an alternative window manager, perhaps even use

another program to load resources, and execute any combination of clients.

Another strength of xdm is that it provides for each user to design his own jcsession file. See

"A Startup Shell Script" earlier in this appendix for more information on writing a jcsession

file.

Be aware that if you're testing a jcsession script and it doesn't work, by default xdm will not

let you log in (using the normal method) to fix it. However, xdm does provide an escape

hatch for these situations, which is explained in "The Xresources File" below.

The Xresources File

The Xresources file is where you should specify resources for the authentication widget. See

the xdm reference page in Part Three of this guide for a complete list of resource variables.

As of Release 4, the default Xresources file contains the following event translations, which

allow users to log in if a jcsession script doesn't work:

xlogin*login.translations: #override\

<Key>Fl: set-session-argument(failsafe) finish-field()\n\

<Key>Return: set-session-argument() finish-field()

This translation table specifies that if you type the Fl key (rather than Return) after your

password when logging in, a "failsafe" session, consisting of a simple login xterm window,

will be executed. This will enable you to edit the non-functioning jcsession file. See the

xdm reference page in Part Three of this guide for more information. (See Chapter 9, Setting

Resources, and Appendix H, Translation Table Syntax, for a discussion of event translations.)

538 X Window System User's Guide

The Error Log File

xdm errors are normally printed to the console. It's wise to redirect them to a file. The

default configuration file sets the resource DisplayManager.errorLogFile to

lusrlliblXlllxdmlxdm-errors. The xdm-errors file can be very helpful if you are testing vari-
ous xdm configurations.

The xdm-pid File (Release 4 Only)

Added to xdm as of Release 4, the xdm-pid file stores the ID number of the xdm parent pro-
cess. If you edit the Xservers file while the server is running, xdm will not be aware of the

changes. You can make xdm reread the xdm-conftg file and the Xservers file (or another file

specified by the resource DisplayManager. servers) by sending the xdm parent pro-
cess a SIGHUP.

To make xdm aware of changes to the Xservers file, use the UNIX kill command with the

-HUP option (for SIGHUP) and the process ID number of xdm stored in the xdm-pid file. (See

'The Xservers File" earlier in this appendix for an example.)

Xstartup and Xreset

As stated previously, the Xstartup and Xreset files mentioned in Table A-l can still be used to

affect xdm in Release 4, but there are no default files; thus, they are not specified in the

default configuration file.

The Xstartup file is intended to be a script that is run as root before starting the user session.

You might want to write a script containing commands to make fake entries in /etc/utmp,

mount users' home directories from file servers, display a message of the day, or abort the

session if logins are not currently allowed.

The Xreset file is intended to be a script that is run as root after a user session has been ended.

You might want to write a script to undo the effects of commands in Xstartup, perhaps

removing fake entries from /etc/utmp, or unmounting directories from file servers.

See the xdm reference page for more information about the Xstartup and Xreset files.

Security and the authorize Resource (Release 4 Only)

In addition to pointers to several special files, the xdm-conftg file contains the following

resource specifications:

DisplayManager._0.authorize: true

DisplayManager*authorize: false

Available as of Release 4, the authorize resource represents a new method of security for

X, which xdm can be set up to provide. The first resource specification above sets a user-

based server access scheme to work on the local display. The second one turns the scheme

off on all other displays. These defaults should be compatible with running X on the local

display and most X terminals that might be connected to it. See "User-based Access: xdm

and the .Xauthority File" later in this appendix and the xdm reference page in Part Three of

this guide for more about authorization.

System Management 539

Stopping xdm and the Server

By default, xdm automatically restarts the server if the server is killed. If you don't want this

boomerang effect, set the following resource in the xdm-config file:

DisplayManager.DISPLAY.terminateServer: true

Then if you kill the server and all xdm processes, X will exit.

X Terminals and the XDM Control Protocol (Release 4)

The X Display Manager Control Protocol (XDMCP), introduced at Release 4, facilitates the

connection of X terminals to remote hosts via xdm. From a user's standpoint, the main

advantage of XDMCP is that it allows you to turn an X terminal off and on again, while

maintaining the connection to the remote host. When you turn on an X terminal, xdm should

automatically display a login window. The exchange of information between the X terminal

and the remote host is invisible to the user. In fact, XDMCP and xdm are intended to make X

terminals as easy to use as traditional character terminals. Under the X Display Manager

Control Protocol, an X terminal basically requests a connection to a remote host, is recog-
nized by the host, and is sent a login prompt by xdm.

Prior to the adoption of this protocol, xdm was not equipped to reconnect to X terminals that

had been turned off and on again. In most cases, X terminals had to be left on at all times. If

a terminal was turned off, it was often necessary to kill the associated xdm process; xdm

would then restart itself and reestablish the connection, again displaying the login window.

XDMCP is intended to solve problems like this. Be aware, however, that the X terminals in

question must be programmed to interpret XDMCP or modified to do so. At the time of

Release 4, virtually no X terminals in the market supported XDMCP. Protocol-compatible X

terminals should become available in increasing numbers by the fall of 1990. If you're using

an older X terminal, chances are that the programs controlling it must be upgraded to com-
municate via XDMCP.

If you are using X terminals at your site, the way you set up xdm partially depends on

whether the terminals can communicate via the XDMCP. If a terminal can't communicate in

this way, the Xservers file must include an entry for it and the terminal must be left on at all

times to maintain the connection to the host via xdm. If a terminal can communicate via the

protocol, no Xservers file entry is necessary and the terminal can be turned on and off, while

still maintaining the connection to the host. Refer your X terminal documentation to find out

whether it's XDMCP compatible.

The XDMCP helps clarify the actual purpose of the Xservers file. The file is actually a list of

displays to which xdm must perpetually maintain a connection. By contrast, the XDMCP is a

dynamic mechanism whereby connections are made when requested by a display, such as a

workstation or a newer X terminal, that can communicate via the protocol.

XDMCP also affects the Xservers file entry for the host. If you are running Release 4, it is

recommended that the Xservers file entry for the host include a display class name, which

should be provided by the hardware manufacturer. You can use this name in the xdm-config

file to specify resources by display class, rather than by individual display.

540 X Window System User's Guide

Release 3 xdm

The Release 3 version of xdm is somewhat simpler to get started with, albeit somewhat less

powerful, than the Release 4 version. This section highlights the Release 3 specifics. We

assume you have already read the preceding sections describing the Release 4 version.

The Release 3 xdm provides sample files that are probably adequate to run X on most works-
tations. (A sample Xservers file intended for use on a workstation is included in the Release

3 xdm source directory.) In order to have xdm run X on a single display, simply perform the

following three steps:

1. Create a directory called lusrlliblXlllxdm, Copy the default versions of the files from the

config directory under the xdm source directory into the new directory.

2. Put the line lusrlbinlXlllxdm at the end of /etc/re or other similar system startup file.

3. It's also a good idea to turn off the "console" in letclttys on a single-user workstation,

although this is discretionary. (Since the display manager provides its own login window,

turning off the "console" prevents the standard UNIX prompt from being simultaneously

displayed on the full screen when xdm is started. Keep in mind this will also prevent sys-
tem messages from being sent to the console, but they should still be saved in

/usr/adm/messages.) How you'd turn off the "console" depends on the version of UNIX

you are running. The procedure and the system file you edit may differ from system to

system. See the getty($) and init(&) reference pages in your UNIX documentation for

details.

Once you perform these steps, so long as UNIX is running, xdm should keep the X server run-
ning, allow users to log on and off, and manage a simple login session.

The Release 3 xdm should be able to run X on a single workstation without any special files,

though it was not intended to be used in this manner. If xdm finds no special files, it will still

start the server and a login xterm window. This default action can be very helpful, because it

allows you to log in even if the special files have been inadvertently removed or corrupted.

For most purposes, however, system administrators will want to use and very likely custom-
ize the special files to have xdm run X in a manner more suitable for the particular system.

Release 3 Special Files and the Config File

The Release 3 xdm recognizes most of the same special files and resources as the Release 4

version (see Table A-l), with the following exceptions: the xdm-pid file and the authori-
zation resource setting are available in Release 4 only.

The Release 3 version of the xdm-config file is shown in Figure A-3:

System Management 541

DisplayManager.servers: /usr/lib/Xll/xdm/Xservers

DisplayManager.errorLogFile: /usr/lib/Xll/xdm/xdm-errors

DisplayManager*resources: /usr/lib/Xll/xdm/Xresources

DisplayManager*startup: /usr/lib/Xll/xdm/Xstartup

DisplayManager*reset: /usr/lib/Xll/xdm/Xreset

DisplayManager*session: /usr/lib/Xll/xdm/Xsession

Figure A-3. Default xdm-config file, Release 3

The Release 3 default Xservers file, in Figure A-4, is probably adequate for most worksta-
tions.

:0 local /usr/bin/Xll/X :0

Figure A-4. Typical Xservers file for a workstation, Release 3

However, if X does not run properly on your single display, you should edit the Xservers file

to reflect the local display name. You must also edit the Xservers file to specify additional

displays for xdm to manage. See "Managing Multiple Displays: the Release 3 Xservers File"

later in this appendix.

Customizing the Release 3 xdm

Like the Release 4 version, the Release 3 version special files provide the flexibility to con-
figure xdm for your site, perhaps running X on several displays, each possibly with a different

default session, different resources for the authentication widget, etc. (If you decide not to

use one of the special files listed in the default xdm-config file, remember to remove the

pointer to it from the file!)

Most of the resources specified in the default configuration file have loose bindings, indicat-
ing that the resource applies to all displays being run by xdm. By using tight bindings in the

configuration file, you can also specify resources that only take effect on a particular display.

To specify a resource for a particular display, just insert the name of the display between

DisplayManager and the final resource variable. For example, say xdm is running X on

a workstation (: 0) and a connected X terminal (visual: 0). You could specify two differ-
ent default sessions by using resource definitions (in the configuration file) similar to the fol-
lowing:

DisplayManager..0.session: /usr/lib/Xll/xdm/Xsession.ws

DisplayManager.visual.0.session: /usr/lib/Xll/xdm/Xsession.visual

Note that an xdm resource specification uses a dot in place of the colon in a display name.

(This is different from the syntax expected by Release 4, in which underscores are used

between the parts of a display name.) You should match the display name syntax for

resources intended to be used on the same display. For example, you might have the follow-
ing resources variable settings to match the session resource specifications above:

DisplayManager..0.resources: /usr/lib/Xll/xdm/Xresources.ws

DisplayManager.visual.0.resources: /usr/lib/Xll/xdm/Xresources.visual

542 x Window System User's Guide

The following sections describe Release 3 specific features that may affect customization and

discuss possible customization of some of the default special files. You should first have

read the sections on customizing the Release 4 version of xdm earlier in this appendix. With

the vast number of possible system configurations and user preferences, you should also con-
sult the xdm reference page in Part Three of this guide for more information.

Managing Multiple Displays: the Release 3 Xservers File

If you are running Release 3, you must edit the Xservers file to specify additional displays for

xdm to manage.

In Release 3, each entry in the Xservers file has three elements: the display name, the display

type, and the server program name (and its arguments, in most cases the display number).

(Since an X terminal uses a remote server, the third argument can be a comment, such as

"Ethel's X terminal.")

Most workstations have a display numbered 0 of the type local, so the Xservers file should

look like this:

:0 local /usr/bin/Xll/X :0

You can also add specifications for additional displays, such as X terminals. In Release 3, X

terminals have the display type transient. (In Release 4, this has been changed to foreign.)

To add a single X terminal, you might create a file similar to the following:

:0 local /usr/bin/Xll/X :0

visual:0 transient Andy's Visual

Notice that the third element of the X terminal entry is a comment. Using this Xservers file,

xdm provides login windows on the workstation and the X terminal, and runs login sessions

for any users who log in.

Be aware that communication problems can arise between the display manager and many

displays. If the main display is powered off or reset, xdm may not detect that the server has

been stopped and restarted, anc thus may not send new login windows to connected displays.

The X Display Manager Control Protocol, introduced in Release 4, is designed to avert these

problems. (See "X Terminals and the XDM Control Protocol (Release 4)" earlier in this

appendix for more information.) However, if you are still running Release 3, the safest way

to keep xdm running X on an X terminal is to leave the terminal on.

If you edit the Xservers file while the server is running, xdm will not be aware of the changes.

You can make xdm reread the Xservers file (or another file specified by the resource

DisplayManager.servers) by sending the xdm parent process a SIGHUP. Use the

UNIX kill command with the -HUP option (for SIGHUP) and the ID number of xdm's parent

process, as in the following example:

% kill -HUP process-ID

It's likely there will be multiple xdm processes, since the program forks a child process for

every display it's managing. As a general rule, send the signal to the lowest numbered xdm

process. (As we've seen, in Release 4, the xdm-pid special file contains the relevant process

ID number.)

System Management 543

If a new entry has been added, the display manager starts a session on that display. If an

entry has been removed, the display manager terminates any session on that display without

notice and no new sessions will be started.

If the xdm connection to an X terminal is interrupted, you should also be able to reestablish it

by sending a SIGHUP to the xdm parent process.

Once you edit the Xservers file to reflect the different displays you want to manage, you can

enter other display-specific resources in the configuration file.

Release 3 .xsession Scripts

Be warned that if you're testing a jcsession script and it doesn't work, by default xdm will not

let you log in (under the same login name) to fix it. While the default Release 4 version of

xdm provides an escape hatch for these situation, the Release 3 version does not. We strongly

suggest that you set one up using 'The Xresources File."

Release 3 Xresources File

To give users a way to log in if a jcsession script doesn't work, place the following event

translations in the Xresources file:

xlogin*login.translations: #override\

<Key>Fl: set-session-argument(failsafe) finish-field()\n\

<Key>Return: set-session-argument() finish-field()

This translation specifies that if you type the Fl key (rather than Return) after your password

when logging in, a "failsafe" session, consisting of a simple login xterm window, will be exe-
cuted. This will enable you to edit the non-functioning jcsession file. [This translation table

has been added to the default Xresources file in Release 4.]

The Xresources file is also where you should specify resources for the authentication widget.

See the xdm reference page in Part Three of this guide for a complete list of resource vari-
ables. (See Chapter 9, Setting Resources, and Appendix H, Translation Table Syntax, for a

discussion of event translations.)

Release 3 Xstartup and Xreset

The Release 3 version of xdm includes default Xstartup and Xreset files that contain nothing

more than a comment. You can use these files to specify custom startup and reset proce-
dures. See "Xstartup and Xreset" under the discussion of the Release 4 xdm, earlier in this

appendix. Also see the xdm reference page in Part Three of this guide for more information

about the Xstartup and Xreset files.

X Window System User's Guide

Starting X with xinit

The xinit program is used to start the server and a first client program, by default an xterm

window. Starting X manually with xinit is described in Chapter 2, Getting Started. You can

also use xinit to start X automatically.

The easiest way to do this is to run xinit from your .login or .profile file. (If you are using

System V, this may be the only reliable way to run xinit.)

xinit will look in your home directory for a file called jcserverrc to run as a shell script to

start up the server. If there is no such script, xinit will start the server X on the display : 0.

xinit will also look in your home directory for a file called jcinitrc to run as a login script,

such as the one described earlier in this appendix. If no such script is found, it will execute a

login xterm window.

With System V only, you might try to run xinit from the terminal initialization file /etc/init-

tab. This file is analogous to the BSD 4.3 letclttys. The letclinittab file normally has an entry

for each serial port on a system, plus several entries that are used during the boot process.

Note that the concept of pseudo-terminals, or ptys (which X relies on) is foreign to System V.

All System V servers will have had to do some system hacking to add support for ptys. How

this is done will vary from system to system. As a result, we're going to beg off on describ-
ing inittab in detail, and refer you to your system documentation. Again, it is also possible

that there will be problems with the controlling tty.

See the xinit reference page in Part Three of this guide for more information.

An Older Method of Starting X: /etc/ttys

For Release 3, this method was supported only for backwards compatibility with older

releases of X. As of Release 4, it is not supported. In either case, system administrators

should switch to xinit or xdm.

On BSD 4.3-derived systems, you can start X automatically from the letclttys terminal initial-
ization file.* This file normally contains a list of terminals on which a login prompt should

be printed by the getty program. For X, this file can be used instead to start xterm for a

pseudo-terminal. A typical line to start X from the /etc/ttys file might have the following

format:

*Nole that the technique described here will not work on earlier BSD systems, Xenix, or other systems which use the

pre-BSD 4.3 ttys format.

System Management 545

BSD 4.3 /etcAtys

devname command ttytype

I I

ttyvO "/etc/xterm -L -geometry -1+1 -display :0" xterm

on secure window="/usr/bin/Xll/X :0 -c -1" IStart X

I I

status comment

Field Function in letclttys

devname The name of the special file in the dev directory that corresponds to the device.

For X, the

pseudo-terminal with the highest minor device number (e.g. Idevlttyqf and

Idevlptyqf) is normally renamed /dev/ttyvO and IdevlptyvO. For systems with

more than one display, the next highest pty is used for the second display, and so

on.

command The command to be run by init. This is normally getty, but can be another com-
mand, such as the command to start a window system. In this example, xterm is

run with the -L option, which causes getty to be run in the xterm window rather

than the shell. (The -L option is not supported in Release 4.) The window is

placed in the top right corner of the screen. Since spaces and tabs are used to

separate fields in letclttys, the entire command must be quoted.

Note that some implementations of init have relatively small program name buf-
fer sizes, so you may find you can't list many xterm options. In addition,

because the # character is used as a comment symbol in letclttys, you may have

difficulty specifying colors (say for an xterm window background) using the hex-
adecimal color syntax. If you run into either of these problems, you may want to

write a small program that runs xterm with the desired arguments, and have init

run that instead.

ttytype The name of the terminal attached to the line. This should be the name as

defined in the letcltermcap terminal database. In the example above, it is speci-
fied as xterm.

Note that the presence of the terminal type field in the BSD 4.3 ttys replaces the

letclttytype file that was used for this purpose in earlier BSD versions.

status The word on if the command is to be executed, or off if it is not Additional flags

may be specified after on or off. The word secure must be present to allow root

to log in on a particular terminal. The flag window=" command" specifies a

window system command to be executed by init before it starts xterm. This

should be the command to start the X server, as shown in the example.

comment Comments can appear anywhere in the file. They are introduced by #, and are

terminated by a newline.

546

X Window System User's Guide

Server Access Control

X runs in a networked environment. Because of X's design, your workstation is no longer

your private preserve, but hypothetically, can be accessed by any other host on the network.

This is the true meaning of the server concept: your display can serve clients on any system,

and clients on your system can display on any other screen.

The possibilities for abuse are considerable. However, there are two access control mecha-
nisms, one host-based and one user-based. The host-based scheme involves a system file

(letclXn.hosts} and can be controlled using the xhost client. The user-based scheme involves

authorization capabilities provided by the display manager, xdm, as of Release 4, and

depends upon the newly introduced X Display Manager Control Protocol (XDMCP). As

we'll see, since most X terminals cannot interpret the XDMCP at this time, the usefulness of

this latter access control mechanism is currently somewhat limited.

These two access control methods are discussed briefly in the following sections. For more

information, see the Xserver, xhost, xdm, and xauth reference pages in Part Three of this

guide.

Host-based Access and the xhost Client

The letclXn.hosts file (where n is the number of the display) contains a list of systems that are

allowed to access the server. By default, this file contains only the name of the local host.

Edit this file so that it contains the list of systems you want to have access to your server on a

regular basis.

The xhost client can be used to give (or deny) systems access to the server interactively, pos-
sibly overriding the contents of letclXn.hosts. (The xhost client can also be run from a startup

script.) Note that this is really only sufficient for a single-user workstation environment,

however.

Specifying a host name (with an optional leading plus sign) allows the host to access the

server, and specifying a host name with a leading minus sign prevents a previously allowed

host from accessing the server. Multiple hosts can be specified on the same line. Running

xhost without any arguments prints the current hosts allowed to access your display.

For example, to add the hosts Jupiter and saturn, and remove neptune:

% xhost +jupiter saturn -neptune

It is possible to remove the current host from the access list. Be warned that you can't undo

this without logging out

Note that when a remote system is denied access to your display, it means two things: that a

person working on the remote system can't display on your screen, and that you can't use

that remote system for running clients you want displayed on your screen.

System Management 547

User-based Access: xdm and the .Xauthority File (Release 4)

As of Release 4, the display manager and its control protocol (XDMCP) provide a user-based

access control mechanism, which can be used to supplement or replace the host-based access

mechanism discussed in the previous section. The Release 4 xdm can be set up to provide

user authorization on a particular display (see "Security and the authorize Resource" earlier

in this appendix). If authorization is enabled, when you log in, xdm places a machine-read-
able access code, known as a magic cookie, in a file called Xauthority in your home direc-
tory, xdm also makes this magic cookie available to the server.

The magic cookie defined in a user's Xauthority file is basically a secret code shared by the

server and a particular user logged in on a particular display. When the user runs a client on

the local display, the server checks to see whether the client program has access to the magic

cookie. All processes started by the user in question have that access, and thus the server

allows the client to be run on the display. Basically, under the magic cookie authorization

scheme, a display becomes user-controlled. (Once xdm creates an Xauthority file for a user,

each time the user logs on, xdm merges in authorization codes (magic cookies).)

The access afforded by magic cookies is not as broad as that afforded by the host-based

mechanism. When a system relies entirely on host-based access, any machine on the list of

approved hosts can connect to the system. Thus, generally, any user logged on to an

approved host can access any display connected to the system. This is somewhat feeble secu-
rity. User-based access control is a little safer.

Be aware, however, that, currently, user-based access control cannot provide security for all

X terminal users. This method of access control relies on the X Display Manager Control

Protocol and few X terminals in the current market are programmed to understand the proto-
col. However, user-based access can be used effectively on workstations running Release 4

and on many of the newer X terminals.

The security mechanism provided by the magic cookie is evident in a situation in which

another user tries to run a client on your machine. The server requires the client run by the

other user to have access to the magic cookie shared exclusively between you and the server.

The other user cannot provide the proper authorization code, and thus cannot run a client on

your host.

Of course, in many cases, users in a network will want to run clients on several machines

(while displaying the client window on their local displays). This can be done if a user sup-
plies authorization information associated with his local machine (or X terminal display) to

the remote host X developers have provided a new client, xauth, to allow users to transfer

this information. Basically, xauth is a utility to manipulate Xauthority files.

The most common use for xauth is to extract a user's authorization information for the cur-
rent display, copy it to another machine, and merge it into the server's authorization records

on the remote machine, as in the following:

% xauth extract - $DISPLAY | rah ho«t2 xauth merge -

The dash (-) arguments indicate that extracted authorization records should be written to the

standard output and that the xauth merge function should accept records from standard input.

This command supplies the remote server with authorization information, allowing the user

548 X Window System User's Guide

to run a remote shell on that host See the xauth reference page in Part Three of this guide for

more information.

If an installation is using remote file sharing, such as NFS, then sharing authorization records

may not be an issue. If every user has a single home directory that is accessible to all

machines, the machines have access to the necessary ̂ authority files at all times. In such an

environment, users should be able to run programs on any of the networked machines without

using xauth.

When user-based access control fails (for example, when a null or invalid magic cookie is

offered to the server), host-based access takes over. To be more specific, say for example a

user is logged on at an X terminal that is not XDMCP compatible, and thus the user has no

^authority file (i.e., magic cookie). If that user tries to open a window on the remote console

display, the client window cannot access a magic cookie. (The host interprets this as a null

cookie.) Then host-based access control takes over. If the user in question is working on a

system authorized in the letclXn.hosts file, he should be authorized to run a client on the con-
sole display.

Font Management

In Release 3, the X Consortium adopted the Bitmap Display Format (BDF) as the (non-exclu-
sive) standard font format. BDF font files must be compiled to produce SNF (Server Natural

Format) font files, which can be used by the server. (These font files have a .snf ex tension.)

The standard fonts shipped with X should already be compiled. If you add BDF font files to

the system, the files must be converted to SNF format using the program bdftosnf. The

showsnf program displays the SNF font file so you can check that it compiled properly. See

the bdftosnf and showsnf reference pages in Part Three of this guide for details.

Once a new font is moved to the directory you want (perhaps /usr/lib/Xll/fonts/misc), you

must add the font to the font database (fonts.dir file) used by the server. To do this, run

mkfontdir with the directory as an argument, as in the following:

% rnkfontdir /usr/lib/Xll/fonts/misc

An entry for the new font is added to \hefonts.dir file. You should also edit the fonts.alias

file if you want to add an alias for the new font.

Then the server must be made aware of the new font. The command:

% xset fp rehash

makes the server reread the font databases and alias files in the current font path.

If you are using a server other than the standard release, the server developer should provide

a program to convert BDF font files to a format appropriate for the server.

System Management 549

Console Messages

On a single-user workstation, it is likely that the screen used for running X is also used as the

system console.

If X is started manually, the console will be the first window to appear on the screen. But if

X is started from your .login file, console messages from the kernel may sometimes appear on

the screen, overlaying the X windows. They make a nasty mess of the screen, but the display

can be refreshed and the console message erased by running the client xrefresh (described in

Part Three).

Some implementations of X support a -C option to xterm that redirects messages sent to

Idevlconsole to that xterm window. If this option is supported, you should add the -C option

to the console xterm in your startup file. After this window is mapped (displayed on the

screen), all such messages are displayed there.

Log Files

The X server creates log files useful in fixing a problem that might occur. These files are

located in lusrladm.

You should make provisions to trim these files periodically. As with all log files, you can do

this automatically with an entry in the crontab file.

Changing the Color Name Database

The X Window System comes with a predefined set of colors, listed in the file

lusrlliblXlllrgb.txt. You can use these color names to specify colors either on the command

line or in a resources file. If you have the X sources, you can customize the color name data-
base using the following procedure.

1. Edit the rgb.txt source file, which is located in the mitlrgb directory, to change or add

colors. The format of a line in the rgb.txt file is:

red green blue color_name

The red, green, and blue values are integers in the range 0 to 255; the color name is case

insensitive, but must not include any special symbols. A typical entry in the rgb.txt file

is:

127 255 212aquamarine

See Chapter 8, Command Line Options, for more about color specifications.

550 x Window System User's Guide

2. Run the rgb program using the makefile also located in the mitlrgb directory. This pro-
gram converts the text file (rgb.txt) to a UNIX dbm(V) format file (rgb.dir), which is used

as the color database. Just type:

% make

3. Then install the new rgb.dir file in lusrlliblXll by typing:

% make install

If the color name database gets corrupted in some way (e.g., written to accidentally), the

server may not be able to find any colors with which to display. On a black and white works-
tation, you may get error messages similar to the following:

X Toolkit Warning: Cannot allocate colormap entry for White

X Toolkit Warning: Cannot allocate colormap entry for Black

X Toolkit Warning: Cannot allocate colormap entry for white

X Toolkit Warning: Cannot allocate colormap entry for black

If you get errors of this sort, perform steps 2 and 3 in the procedure described above. This

will overwrite the corrupted rgb.dir file.

System Management 551

B

The uwm Window Manager

This appendix describes uwm, the Release 3 standard window manager,

which has been moved to the user-contributed distribution in Release 4. It

covers both the basics of using uwm and how to customize it

In This Chapter:

Starting the Window Manager 556

The WindowOps Menu 556

Creating New Terminal Windows 558

Refreshing the Screen 559

Redrawing a Window 560

Moving Windows and Icons 560

Resizing Windows 561

Shuffling the Window Stack: Raise, Lower, CircUp, CircDown 563

Raising Windows (bringing in front of others) 564

Lowering Windows (sending behind others) 564

Circulating Windows 565

Displaying Windows as Icons 565

Changing Keyboard Focus 567

Freezing and UnFreezing the Server 568

Restarting the Window Manager 568

Removing a Window 569

Exiting the Window Manager 569

Button Control of Window Manager Functions 569

Using uwm to Place Other Clients 570

The Preferences Menu 571

Customizing uwm 572

Setting .uwmrc Variables 575

Button/Key Bindings 576

Function Names 576

Keys 576

Context577

Mouse Buttons 577

Action 578

Defining Menus 579

Submenus 580

Slip off menus 581

Executing System Commands from a Menu 581

Cut Buffer Strings 582

Color Menus 584

A Complete Revamp of uwm 585

B

The uwm Window Manager

If you are running Release 3 of X (or an earlier release), the standard window manager is

uwm, the universal window manager, uwm allows you to perform all of the basic window

manipulation functions, such as:

" Sizing and positioning client windows on the screen interactively.

" Creating additional xterm terminal windows.

" Refreshing your screen.

" Moving windows around the screen.

" Changing the size of windows.

" Lowering windows (sending them to the back of others).

" Raising windows (bringing them to the front of others).

" Converting windows to icons and icons to windows.

" Removing windows.

The uwm window manipulation functions can be invoked in three ways:

" Using the WindowOps menu.

" By combinations of keyboard keys and pointer buttons.

" Automatically, when a client is started (to allow you to size and place the client window

on the screen).

The window manager also has a second menu, the Preferences menu, that allows you to set

various keyboard and pointer preferences.

Be aware also that you can customize nearly every feature of uwm by modifying a window

manager startup file called .uwmrc, kept in your home directory. You can change the key-
stroke and pointer button combinations used to invoke window manager functions, modify

the default uwm menus, create new menus, etc.

7770 uwm Window Manager 555

The first half of this appendix discusses the default window manipulation functions provided

by uwm. The second half discusses how to customize the window manager to suit your

needs. First, however, let's take a look at starting uwm.

Starting the Window Manager

You start uwm from the command line by typing:

% uwm &

in an xterm window. If xdm (the display manager) is starting X on your system, the uwm

window manager is probably started automatically when you log on. (See the discussions of

xdm in Chapter 2, Getting Started, and Appendix A, System Management.) When uwm is

started, nothing visible will happen, but your terminal will beep once to indicate that uwm is

running on the current screen.

Note also that you can run xterm or other X clients without running a window manager, uwm

allows you to size and place client windows on the screen, but you can also use command

line options to do this. However, there is no way to change the size or location of windows

on the screen without a window manager.

The WindowOps Menu

The uwm WindowOps menu gives you access to many of the most frequently used window

manipulation functions. In the standard version of uwm shipped by MIT, you bring up this

menu by moving the pointer to the root window and holding down the middle pointer button.

The WindowOps menu and the menu pointer appear as shown in Figure B-l.

Note that the last two items, KillWindow and Exit, appear on the menu as of Release 3. If you

are running Release 2, your menu will not include these items. (However, the items that

appear on both Release 2 and Release 3 menus are identical in functionality; our discussions

of these common menu items apply to either release.)

Another Release 3 feature is that the "hand" pointer is used to indicate the window to be

acted upon (resized, refreshed, etc.). In Release 2, this function was performed by the "target

circle" pointer. The figures in this appendix depict Release 3 pointers, but the Release 2 and

3 pointers function in the same way.

556 x Window System User's Guide

/o UWITlot

YfiB fflBtK Is .-"'*' '''"". B

% xclockS

New Window /
°/
RefreshScreen j \ /"

Redraw

Move

Resize

Lower

Raise

CircUp

CircDown

Autolconify

Lowerlconify

Newlconify

Focus

Freeze

UnFreeze

Restart

KillWindow

Exit

V

Figure B-1. WindowOps menu

The following pages explain the functions of the uwm WindowOps menu. Remember that all

of the window manager functions are customizable. Items can be added to or deleted from

this menu (and the Preferences menu) by modifying the .uwmrc window manager startup file,

as described in the section "Customizing uwm" later in this appendix. This appendix

describes the window manager as it is shipped with the standard release of the X Window

System from the MIT X Consortium.

To bring up the WindowOps menu, move the pointer to the root window and hold down the

middle button on the pointer. To select a menu item, continue to hold down the middle but-
ton and move the pointer to the desired menu item. A horizontal band, or highlighting bar,

follows the pointer. When you've highlighted the desired menu item, release the button. The

selected function will be executed. Note that you must keep the pointer within the menu as

you drag down to make a choice, or the menu will disappear and you'll have to start over.

Some of the functions on the menus can be invoked simply by pressing a combination of

pointer buttons and keyboard keys. We discuss these "keyboard shortcuts" as appropriate

when discussing each menu function, and summarize them in Table B-1 later in this appen-
dix. These shortcuts all make use of the "Mcta" modifier key. See Chapter 11, Setup Clients,

for a discussion of how to determine which key on your keyboard serves as the Meta key.

(For the Sun-3 keyboard, for example, Meta is either of the keys labeled "Left" or "Right.")

The uwm Window Manager 557

Creating New Terminal Windows

You can create new xterm terminal windows from the WindowOps menu. To create a termi-
nal window:

1. Bring up the WindowOps menu.

2. Select New Window with the menu pointer and release the pointer button. An upper-left

corner cursor appears on your screen. This corner cursor tracks pointer movement. You

now have three options:

" Making a Default-Size Window. Move the corner cursor to the position desired for

the upper-left corner of the window and click the left pointer button. A default-size

(80 x 24) window appears on your screen as shown in Figure B-2.

uwm&

xclock&

%|

Figure B-2. A default-size xterm window

Making a Custom-Size Window. Move the corner cursor to the desired position for

the upper-left corner of the new window. Press and hold down the middle pointer

button. Notice that the upper-left comer cursor is now fixed at that position and that a

lower-right corner cursor appears.

While holding down the middle button, move the corner cursor to the desired position

for the lower-right corner of the window. The window size, as you change it, appears

in the upper-left corner of your screen. Release the button. A window of the width

and height you specified with the pointer appears. See Figure B-3.

555 X Window System User's Guide

uwm&

xclock&

Figure B-3. A custom-size xterm window

Making a Maximum-Height Window. Move the corner to the desired position and

click the right button. A default-width by maximum-height (to the bottom of the

screen) window appears. See Figure B-4.

Refreshing the Screen

Refreshing your screen means redrawing its contents. This is useful if system messages from

outside the X window system appear on the screen, overlaying its contents. To refresh your

screen:

1. Bring up the WindowOps menu.

2. Select RefreshScreen with the menu pointer. The screen redraws itself. You can use the

xrefresh client to achieve the same effect. Simply type xre fresh at the prompt in any

xterm window.

The uwm Window Manager 559

uwm&

xclock&

F/grure S-4. >* maximum-height xterm window

Redrawing a Window

The Redraw menu item redraws (or refreshes) an individual window. To redraw a window:

1. Bring up the WindowOps menu.

2. Select Redraw with the menu pointer. The pointer changes to the hand pointer.

3. Move the hand pointer to the window you want to redraw.

4. Click the left or middle button to redraw the window.

Moving Windows and Icons

The Move menu item moves a window or icon to a new location. When you use this func-
tion, an outline, not the entire window or icon, tracks the pointer movement to the new loca-
tion. See Figure B-5. To move a window:

1. Bring up the WindowOps menu.

2. Select Move with the menu pointer. The pointer changes to the hand pointer.

560

X Window System User's Guide

3. Move the hand pointer to the desired window or icon. Hold down the middle button. The

pointer changes to the cross pointer and a window outline appears. This outline tracks

the pointer movement.

4. Move the cross pointer with the window outline to the desired location on your screen.

5. Release the middle button. The window will move to the new location.

uwm&

xclock&

Figure B-5. Moving windows or icons

You can also move a window or icon simply by moving the pointer to the window or icon

you want to move, then pressing the right pointer button while holding down the Meta key.

The pointer at first changes to a small image of an icon. You can now let go of the Meta key.

Then, as you drag the pointer while holding down the button, the pointer changes to a cross,

while the window or icon changes to outline form. Drag the outline to the new location, and

let go of the right button. The window will be redrawn in the new location.

Resizing Windows

The Resize menu item resizes an existing window. See Figure B-6. To resize a window:

1. Bring up the WindowOps menu.

2. Select Resize with the menu pointer. The pointer changes to the hand pointer.

The uwm Window Manager 561

3. Move the hand pointer to the window you want to resize. Place it near the border you

want to move. The opposite border remains in its current position.

4. Hold down the middle button. The pointer changes to the cross pointer.

5. Move the window's border to obtain the desired window size. As you resize the window,

a digital readout appears opposite the pointer showing the window size in pixels. (For the

xterm client, size is in characters and lines.) Release the middle button.

uwm&

xclock&

Figure B-6. Resizing a window

You can also resize a window without using the menu. Move the pointer so that it is within

the window you want to resize, placing the pointer near the window border you want to

change. With one hand, press and hold down the Meta key on the keyboard. With the other

hand, press and hold down the middle pointer button. The pointer starts as an icon pointer,

but as you drag the pointer, it changes to a cross and a window outline appears. Move the

pointer to resize the window. When the window is the proper size, release the middle button

and the Meta key.

Resizing an xterm window will not change the dimensions of the text currently in the win-
dow. (If you make the window smaller, for instance, some of the text may be obscured.)

However, if the operating system supports terminal resizing capabilities (for example, the

SIGWINCH signal in systems derived from BSD 4.3), xterm will use these facilities to notify

programs running in the window whenever it is resized. As you continue to work, perhaps

starting an editing session, the program will use the entire window. If you resize during an

562 X Window System User's Guide

editing session, the text editing program may not know about the new size, and may operate

incorrectly. Simply quitting out of the editor and starting another session should solve this

problem.

If your resized xterm window does not seem to know its new size, you may be working with

an operating system that does not support terminal resizing capabilities. Refer to the discus-
sion of the resize client in Chapter 4, The xterm Terminal Emulator, (and to the resize refer-
ence page in Part Three of this guide) for alternative solutions.

Shuffling the Window Stack: Raise, Lower, CircUp, CircDown

Under the X Window System, windows can overlap each other. When windows overlap, one

or more windows may be fully or partially hidden behind other windows (see Figure B-7).

You can think of these windows as being stacked on top of each other much the way papers

are stacked on a desk, uwm can control the stacking order of the windows. Stacking func-
tions include: raising a window to the top of the stack, making all of it visible; lowering a

window to the bottom of the stack (possibly obscuring it by other windows); circulating the

bottom window to the top and lowering every other window one level; or circulating the top

window to the bottom and raising every other window one level.

uwm&

xclock&

% xterm&

%

%|

Figure B-7. One xterm window overlapping another

The uwm Window Manager 563

Raising Windows (bringing in front of others)

The Raise menu item places a window at the top of a window stack. See Figure B-8. To

bring a window to the front:

1. Bring up the WindowOps menu.

2. Select Raise with the menu pointer. The pointer changes to the hand pointer.

3. Move the hand pointer to the desired window.

4. Click the left or middle button. The window is raised to the top of the stack.

C

-

% uwm&

% xclock& [j^nj; ̂^22

New Window
%

RefreshScreen

Redraw

Move

Resize

i Lower

....

CircUp

1 j % xterm& CircDown

Autolconify

Lowertconify

Newlconify

Focus

Freeze

UnFreeze

Restart

KillWindow

Exit

Figure B-8. Raising a window

Lowering Windows (sending behind others)

The Lower menu item places a window at the bottom of a window stack. To place a window

at the bottom:

1. Bring up the WindowOps menu.

2. Select Lower with the menu pointer. The pointer changes to the hand pointer.

3. Move the hand pointer to the appropriate window.

4. Click the left or middle button. The desired window is placed behind all windows except

the root window.

564 X Window System User's Guide

Circulating Windows

The CircUp and CircDown menu items circulate the windows in a stack. CircUp raises the bot-
tom window to the top and lowers every other one by one level. CircDown lowers the top

window to the bottom and raises every other window by one level. CircUp and CircDown

only affect overlapping windows.

To circulate the windows in a stack:

1. Bring up the WindowOps menu.

2. Select CircUp or CircDown.

Note that both CircUp and CircDown circulate every window stack if there is more than one

stack of windows on the screen.

Here's how to change the stacking order using keyboard shortcuts:

" To raise a window, move the pointer so that the cursor is within the window you want to

raise. With your other hand, hold down the Mela key on the keyboard. Then click the

right pointer button. The window is raised.

" To lower a window, move the pointer so that the cursor is within the window you want to

lower. With your other hand, hold down the Meta key on the keyboard. Then click the

left pointer button. The window is lowered.

" To circulate all windows, you can use any of the above key and pointer button combina-
tions with the pointer in the root window. However, you do not place the cursor within

any particular window (e.g., leave the cursor in the root window). The windows cycle

through the stack, raising the bottom window to the top and lowering every other window

one level.

Displaying Windows as Icons

If you want to make more space available on your screen, you can convert a window into an

icon. An icon is a small symbol that represents the window. You also can convert the icon

back into a window.

There are three menu items on the default WindowOps menu used to iconify and deiconify:

Autolconify, Lowerlconify, and Newlconify. All three iconify a window or deiconify an icon.

In addition, Lowerlconify and Newlconify interactively move the icon or window to a new

location. See Figure B-9 and Figure B-10.

To convert a window to an icon or an icon to a window:

1. Bring up the WindowOps menu.

2. Select Newlconify with the menu pointer. The pointer changes to the hand pointer.

3. Move the hand pointer to the desired window or icon.

7770 uwm Window Manager 565

% uwm&

% xterm&

I New Window /

I RefreshScreen ; h> \ /

I Redraw

*

\ Raise

- i CircUp

1 % xclock& CircDown

i °/° Autolconify

Lowerlconify

Too!!;

Freeze

Un Freeze

Restart

1 KillWindow

iExit

Figure B-9. The login window is about to become an icon

4. Hold down the left button and move the pointer to the desired location. The window or

icon tracks the pointer to the new location.

5. Release the left button. The window is converted to an icon or the icon to a window in

the new location.

While the pointer rests in the icon, you can edit the icon name by typing in the appropriate

name or characters. Use the Delete key to delete unwanted characters.

Newlconify can also be used to display an icon as its original window. Follow the same pro-
cedure as to iconify a window, but start with an icon, and turn it into a window.

To iconify or deiconify a window using keyboard shortcuts, move the pointer so that the cur-
sor is within the window you want to iconify. With one hand, press and hold down the Meta

key on the keyboard. With the other hand, press and hold the left pointer button and drag the

window. The window converts to an icon-sized outline. Drag the outline to the desired posi-
tion, and then release the pointer button and the Meta key. The full icon appears in the speci-
fied position.

To bring back the window (deiconify it), move the pointer so that the cursor is within the

icon. Then hold down the Meta key and click the middle pointer button. The window

appears back in its original position. Or hold down the Meta key and use the left pointer but-
ton while dragging the window outline to a new location, just as you did to iconify the

window in the first place.

566

X Window System User's Guide

] New Window /

j RefreshScreen .] \ y ,-

1 Redraw

{ Raise gaaamam

I CircUp I login ̂

I % xclock& CircDown mmmmai^ .

o Autolconify

Lowerlconify

Freeze

UnFreeze

Restart

KillWindow

lExit

V

J

Figure B-10. The login window is about to be deiconified

Changing Keyboard Focus

Normally, keyboard input goes to whichever window the pointer is currently in. The Focus

option causes keyboard input to go only to a selected window (the focus window) regardless

of the position of the pointer.

Focusing can be useful if you are working in one window for an extended period of time, and

want to move the pointer out of the way. It also prevents the annoying situation in which you

inadvertently knock the pointer out of the window while typing. (This can be very important

for touch typists who look infrequently at the screen while typing!)

To choose a focus window:

1. Bring up the WindowOps menu.

2. Select Focus with the menu pointer. The pointer changes to the hand pointer.

3. Move the hand pointer to the window you want to choose as the focus window.

4. Click the middle button to choose the window.

The uwm Window Manager 567

The focus window becomes highlighted with a dark border.

In order to take the focus away from the selected window (and reactivate "pointer focus"),

you must give the focus back to the root window. To do this, select Focus again, and click

anywhere on the root window. The keyboard focus will once again follow the pointer into

any window.

Freezing and UnFreezing the Server

The X server normally responds to requests from clients in a first-come first-served order.

There are times when you want one client (such as the window manager) to get priority treat-
ment. For example, if there are many active X clients, or if you are running X across a slow

network, you may find that uwm responds sluggishly while performing tasks such as moving

or resizing a window. If you select Freeze, the window manager "grabs the server," so that

no other clients have access. All events and requests to display to the screen by other clients

are queued, or "saved up," and will be performed when the server is unfrozen.

To freeze the server:

1. Bring up the WindowOps menu.

2. Select Freeze with the menu pointer.

Since only the window manager has access to the server, window manager operations will go

much more quickly. When you are finished moving or resizing windows (or whatever it was

you wanted the window manager to do more quickly), select Unfreeze to resume normal

operation.

Restarting the Window Manager

The Restart menu item restarts the window manager. This may occasionally become neces-
sary if the window manager functions improperly. To stop and restart the window manager

1. Bring up the WindowOps menu.

2. Select Restart with the menu pointer.

You may also want to restart the window manager if you edit your .uwmrc configuration file

to change the functionality of uwm. For more information, see the section "Customizing

uwm" later in this appendix.

Note that when the window manager is stopped, all icons revert to windows. This happens

because the window manager is what allows windows to be iconified. When the window

manager is restarted, you can iconify the windows again.

568 X Window System User's Guide

Removing a Window

The KillWindow menu item terminates a client window. Like other methods of 'killing' a pro-
gram (such as the xkill client), the KillWindow menu item can adversely affect underlying

processes.

Most windows can be removed in ways that do not harm relevant processes. For example,

you can generally remove an xterm window by typing the same command you use to log off

the system. KillWindow is intended to be used primarily after more conventional methods to

remove a window have failed.

To remove a stubborn window:

1. Bring up the WindowOps menu.

2. Select KillWindow with the menu pointer. The pointer changes to the hand pointer.

3. Move the hand pointer into the window you want to terminate.

4. Click any pointer button.

The window is removed.

Refer to the section on xkill in Chapter 7, Other Clients, for a more complete discussion of

the hazards of killing a client and a summary of alternatives.

Exiting the Window Manager

The Exit menu item stops the window manager. You may want to stop uwm in order to start

another window manager. To stop uwm:

1. Bring up the WindowOps menu.

2. Select Exit with the menu pointer.

The window manager is stopped. All icons revert to windows.

Button Control of Window Manager Functions

Table B-l summarizes the keyboard shortcuts for window management functions. The first

column lists the desired function; the second, the required location for the pointer; and the

third, the button-key combination. In this column, "click" means to press and immediately

release the specified pointer button; "down" means to press and hold the pointer button, and

"drag" means to move the pointer while holding down the pointer button. In all cases, you

can let go of the keyboard key as soon as you have pressed the appropriate pointer button.

Note that these key "bindings" can be changed in your .uwmrc file as described later in this

appendix. The combinations described in Table B-l work for the default.uwmrc file.

The uwm Window Manager 569

Table B-1. Keyboard Shortcuts for Window Manager Functions

Function Pointer Location Keyboard Shortcut

Move Window or icon Meta key, right pointer button down and drag.

Resize Window Meta key, middle pointer button down and drag.

Raise Window or icon Meta key, right pointer button click .

Lower Window or icon Meta key, left pointer button click.

Circulate up Root Meta key, right pointer button click.

Circulate down Root Meta key, left pointer button click.

Circulate down Anywhere Meta-Shift key combination, left pointer button

click.

Iconify and move Window or icon Meta key, left pointer button down and drag.

Deiconify and move Icon Meta key, middle pointer button click.

WindowOps menu Root Meta key, middle pointer button down.

WindowOps menu Anywhere Meta-Shift key combination, middle pointer

button down.

Preferences menu Anywhere Meta-Shift key combination, middle pointer

button down (must display WindowOps with

Meta-Shift middle down and slip off).

Using uwm to Place Other Clients

As described in Chapter 2, Getting Started, you can start another client simply by typing its

name at the command line prompt in an xterm window. Some clients have a default size

and/or location. A preferred size and location can also be specified in your ̂ resources file,

as described in Chapter 9, Setting Resources.

When you start a client, you can also use the -geometry command line option described in

Chapter 8, Command Line Options, to size and locate the window, overriding any defaults

that the client has.

If none of these geometry specifications has been provided, uwm steps in and requires you to

interactively size and locate the windows. You have already seen the process of interactively

sizing and positioning a window in Chapter 2, when we discussed how to start a second xterm

or an xclock window.

First, the pointer turns into a corner shape and the name of the client appears in the upper-left

corner of the screen followed by the digital size readout 0x0.

To place the default-size client, move the pointer to the desired upper-left corner position for

the new client. Click the left pointer button.

To both size and place the client, move the pointer to the desired upper-left corner position;

press and hold down the middle pointer button. The pointer changes to a lower-right corner

shape. Move the pointer to the desired window size. Release the pointer button.

570 X Window System User's Guide

The Preferences Menu

The Preferences menu is generally included in the version of uwm provided with most sys-
tems. The Preferences menu lists options for setting bell volume, keyclick volume, whether

or not the Caps Lock key works, and the pointer tracking speed.* See Figure B-11.

% uwm&

%xterm& ,

[\

1 Bell Loud

i Bell Normal

; % xclock& Bell Off

1 % Click Loud

Click Soft

Click Off

Lock On

Lock Off

Mouse Fast

Mouse Normal

; Mouse Slow

Figure B-11. Preferences menu

Without customizing the window manager, the only way to display the Preferences menu is

to first display the WindowOps menu by an alternative method. Instead of placing the pointer

on the root window and holding down the middle pointer button, place the pointer anywhere

on the screen, hold down both the Shift and Meta keys, and press the middle pointer button.

(See Chapter 11, Setup Clients, for a discussion of how to determine which key on your key-
board serves as the Meta key.) The WindowOps menu is displayed.

You can let go of the Shift and Meta keys, but keep holding down the middle pointer button.

Then drag the pointer off the right or left side of the WindowOps menu and the Preferences

menu will be displayed.

"The pointer tracking speed controls how much the pointer moves on the screen when you move the pointer. Experi-
ment with each setting and see which you are most comfortable with.

The uwm Window Manager 571

Menus displayed in this way are called slip off menus and are discussed in greater detail in

the section "Customizing uwm." This section also describes how to set up the window man-
ager to display the Preferences menu more easily.

To make selections on the Preferences menu, bring up the menu and select a setting with the

menu pointer. There is no visible change to the menu, but the new setting is made. Note that

another button or combination might be used to display the Prefences menu at your site. If

you cannot access the Preferences menu, this menu is included in the sample .uwmrc file at

the end of this appendix.

Customizing uwm

As we've seen, uwm allows you to manipulate windows in a variety of ways. In addition,

you can modify every function of the uwm window manager. The function itself will remain

the same (for example, you will still move a window by holding down a key and pointer but-
ton simultaneously and dragging the pointer), but the keys and/or menu items used to invoke

the function may be completely different.

The flexibility of uwm allows you to redesign the WindowOps and Preferences menus by

reordering, adding and removing items, and changing key/button combinations, and to create

entirely new menus. The operation of the window manager, as distributed, is controlled by a

text file called default.uwmrc, which is generally installed in the directory lusrlliblXllluwm.

You can customize uwm by editing a copy of this file, called .uwmrc, in your home directory.

By customizing this file, you can:

" Define your own uwm menus.

" Bind functions to keyboard key/pointer button combinations.

" Issue command strings to the shell.

The .uwmrc file has three parts:

" A variables section, which contains various settings, such as the font with which menus

should be displayed, the volume of the keyboard bell, and so on.

" A key bindings section, which defines the keys, pointer buttons, and key and pointer but-
ton combinations that will be used to invoke each window manager function (including

the display of menus).

" A menus section, which defines the contents of the menus.

As users gain experience with the window manager, each can create a file called .uwmrc in

his or her home directory. This file can extend default.uwmrc, resetting variables, changing a

key binding or adding a menu item-or it can replace it completely, changing the way the

window manager operates. As one of its creators remarked, this flexibility makes uwm "the

bane of trade show demonstrators and the joy of experienced users."*

*Joel Gancarz. "UWM: A User Interface for X Windows," in USENIX Conference Proceedings, Summer 1986,

p. 431.

572 x Window System User's Guide

Rather than abstractly explaining the syntax of these various sections in a .uwmrc file, let's

plunge right in, by looking at the default.uwmrc file from the MIT XI1 distribution. This is

shown in Example B-l. (Note that if you are using a commercial version of X, this file may

be significantly different. However, in that case, you most likely have a user's guide specific

to your system-perhaps even a customized version of this one!)

Example B-1. The default.uwmrc file from the MIT distribution

I Copyright (c) 1987 by the Massachusetts Institute of Technology.

t

f This is a startup file for uwm that produces an xwm lookalike,

I but adds two useful menus. It is patterned on the public

distribution ../lib/X/uwm/jg.uwmrc file by Jim Gettys.

t

resetbindings

resetvariables

resetmenus

noautoselect

delta=5

freeze

grid

zap

pushabsolute

push=l

hiconpad=5

viconpad=5

hmenupad=3

vmenupad=0

iconfont=fixed

menufont=fixed

resizefont=fixed

volume=0

t FUNCTION KEYS CONTEXT MOUSE BUTTON ACTIONS

f .newiconify= meta : window | icon : delta left

f . raise= meta : window | icon : delta left

f . lower= meta : window | icon : left up

f . raise= meta : window : middle down

f . resize= meta : window : delta middle

f . iconify= meta : icon : middle up

f . raise= meta : window | icon : right down

f .move= meta : window | icon : delta right

f . circledown= meta : root : left down

f . circleup= meta : root : right down

f . circledown= m | s : ; left down

f .menu= : root : middle down "WindowOps"

f .menu= m | s ; : middle down "WindowOps"

f .menu= m | s : ; middle down "Preferences'

f .circleup= m I s : : right down

f . iconif y= m | c : window | icon left down

f . newiconif y= m|l : window | icon left down

f . raise= mil : window | icon left up

f .pushright= m|l : window | icon right down

f .pushleft= m| c : window | icon right down

f .pushup= mil : window | icon middle down

f .pushdown= m I c : window I icon middle down

The uwm Window Manager 573

Example B-1. The default.uwmrc file from the MIT distribution (continued)

f.raise= mil :window I icon: left up

f.pushright= mil :window|icon: right down

f ,pushleft= m|c :window|icon right down

f .pushup= mil :window I icon : middle down

f.pushdown= m|c :window I icon: middle down

menu = "WindowOps" {

New Window: ! "xtermfi"

Ref reshScreen : f . refresh

Redraw: f . redraw

Move : f .move

Resize : f . resize

Lower : f . lower

Raise : f . raise

CircUp: f .circleup

CircDown : f . circledown

Autolconif y : f . iconify

Lowerlconif y : f . newiconif y

Newlconif y : f .newiconify

Focus : f . focus

Freeze : f .pause

UnFreeze : f . continue

Restart: f . restart

"" ii . f .beep

KillWindow: f .kill

"i ii . f .beep

Exit: f .exit

menu = "Preferences"

Bell Loud: "xset b 7&"

Bell Normal: "xset b 3&"

Bell Off: "xset b off&"

Click Loud: "xset c 8&"

Click Soft: "xset c on&"

Click Off: "xset c off&"

Lock On: "xset led on&"

Lock Off: "xset led off&

Mouse Fast: "xset m 4 2&"

Mouse Normal: "xset m 2 5&"

Mouse Slow: "xset m 1 1&"

If you wish to change the operation of the window manager, you shouldn't change the

default.uwmrc file. Instead, copy it to your home directory, under the name .uwmrc, and

make changes to that copy. Or else, if you are planning only small changes, you can create a

.uwmrc file from scratch. Settings in default.uwmrc and your own local .uwmrc file are

cumulative (unless you explicitly override default.uwmrc as explained in the next section), so

all you need to enter in your .uwmrc are values you wish to change.

574 X Window System User's Guide

Setting .uwmrc Variables

The first section of the file sets global variables. Some variables are Boolean-that is, their

presence or absence "toggles" some attribute of the window manager-while others have the

form:

variable^value

where value is either a number or a text string.

An example of a Boolean variable is autoselect, which, if present, causes the pointer to

automatically appear in the first menu item whenever a menu is invoked. Note however that

there are inconsistencies in the way uwm specifies Boolean variables. Some, like reset-

variables, take effect if present; they must be deleted from the file or commented out by

placing a sharp sign (#) at the start of the line if you don't want them to take effect. Others,

such as normal! (which makes sure that icons aren't placed partially offscreen when

created), have an opposite toggle (nonormali), which must be used if you want the oppo-
site effect. If two corresponding on/off toggles are both mistakenly placed in a file, which-
ever is specified later in the file takes effect.

An example of a text string variable is:

menufont=fixed

which names the font that should be used in all menus. (See Appendix E, Release 3 and 4

Standard Fonts, for lists and illustrations of fonts in the standard XI1 distribution.)

An example of a numeric variable is:

volume=4

which sets the volume of the keyboard bell on a scale ranging from 0 to 7.

The available variables are described in detail on the uwm reference page in Part Three of

this guide, so we won't go into detail on each of them here. Three variables that are worthy

of note, though, are resetvariables, reset-bindings, and resetmenus. You

may recall that settings in your local .uwmrc file are cumulative with those in the

default.uwmrc file. That is, you need define only changed or added variable values, function

bindings or menus if you are happy with the basic operations set forth in default.uwmrc. If,

however, you want to start with a clean slate, you should use one or more of the three reset

variables which reset, respectively, the three sections of the .uwmrc file. If specified, these

variables should always head the list of variables.

One additional note of syntax that is not obvious from the default.uwmrc example shown

above: variable definitions need not be written on separate lines; instead, they can be

separated by a semicolon and space. For example:

resetvariables; resetbindings; resetmenus

The uwm Window Manager 575

Button/Key Bindings

The second section of the .uwmrc file specifies which combination of keys and buttons (and

in which context) will be used to invoke each predefined u\vm function. Let's see how this

works, by looking at the first two lines of the function binding section of default.uwmrc.

FUNCTION KEYS CONTEXT MOUSE BUTTON ACTIONS

f.newlconify= meta :window|icon: delta left

The first line we've shown is just a comment line, which labels each of the fields in the line

below. The first field is separated from the others by an equals sign; subsequent fields are

separated by colons. In default.uwmrc, fields are separated by tabs for clarity, making the

colons (falsely) appear to be delimiters only for the context field; they could instead follow

each other without intervening whitespace.

Let's talk about each of the fields in turn.

Function Names

The first field in a key binding contains the name of a function, followed by an equals sign.

uwm has a number of predefined functions. Each of these functions has a name beginning

with "f .". The meaning of most of these functions should be fairly obvious to you from the

name, if not from your experience using the window manager. For example, f. resize is

used to resize a window, f .move to move a window, or f . iconif y to change a window

to an icon.

Others are less obvious. The function shown in the example, f .newiconify, is used to

turn a window into an icon, or an icon into a window, and then to move it to a new location.

Notice the function f. beep, which appears coupled with a set of empty quotes rather than a

menu selection. This line in the .uwmrc creates a blank line on the WindowOps menu, to iso-
late the KillWindow and Exit selections from the others. If you select the blank line, the key-
board beeps.

Each of the functions is described in detail on the reference page for uwm in Part Three of

this guide.

Keys

The second field lists keys, if any, which must be held down while invoking the specified

function, uwm recognizes a small number of keys (discussed more fully in Chapter II, Setup

Clients), the most common of which are shift, control, lock and meta. These names must be

entered in the .uwmrc file in lower case, and can be abbreviated s, c, 1, and m.

If two keys must be held down at once, the names should be separated by a vertical bar (I).

For example, c | s would mean that the Control and Shift keys should be pressed simulta-
neously. It is not permissible to bind a function to three keys at once. If the field is left

blank, no key needs to be pressed while invoking the function.

x Window System User's Guide

Control, Shift and Lock should be familiar to most users. But what is a "Meta" key? There

isn't a key by that name on many keyboards-instead, Meta is a user-definable Control key

that can be mapped to an actual key on the physical keyboard using the xmodmap client as

described in Chapter 11. Most implementations of X will include a mapped Meta key. Type

xmodmap without any arguments to display the map. The default.uwmrc specifies the Meta

key in many keyboard bindings. On workstations without a special key corresponding to

Meta, you will have to use xmodmap to find out or change the definition of Meta to some-
thing reasonable.

Meta could be mapped to the Control key, although this could potentially lead to conflicts

with applications that want to use the Control key. In particular, certain functions of xedit

will operate strangely or not at all if Meta is mapped to Control.

If you want to map the Meta key, it is best to choose a keyboard key that's within easy reach

and is not used frequently for other applications (perhaps an Alt or Funct key). Left- or right-

handedness could also be a factor in choosing a Meta key.

The developers of uwm warn against binding functions to the Shift key alone, since they say

certain applications use it as a Control key. If you use it in uwm, it will perform both func-
tions simultaneously, which is likely to be confusing. For the same reason, you should not

bind functions to buttons without modifier keys, except in the context of the root window.

Context

The third field defines the context-the location the pointer must be in before the function

can be invoked. This field may be blank, or may contain one or more of: window, icon, or

root Multiple context specifications should be separated by vertical bars.

If the context is blank, it means that the pointer can be anywhere. If root is specified, it

means that the pointer must be in the root (background) window, and not in any other win-
dow or icon. If the context is window or icon, the pointer must be in a window or icon for

the function to be invoked.

The context field makes perfect sense if you consider our sample function binding:

f.newiconify= meta :window|icon: delta left

f .newiconif y turns a window into an icon, or an icon into a window, and then moves it

to a new location. The pointer must be in a window or an icon for the function to be used.

Mouse Buttons

The fourth field defines the state of the pointer buttons used to invoke the function.

uwm is designed to be used with a three-button pointer, and keeps separate track of when the

button is pressed and when it is released. It can also tell when the pointer is moved.

Accordingly, a button specification has two parts:

The uwm Window Manager 577

" The name of a button: left, middle or right. These must be in lower case, and can be

abbreviated 1, m and r.

" The state of the button: down, up (just released), or delta (held down while the pointer is

moving). The distance in pixels the pointer must be moved in order to trigger the delta

state is set by the delta variable, and is set to 5 in default.uwmrc. The actual transla-
tion of pixels to distance will vary from system to system, and you will probably want to

experiment to find a value that you are comfortable with. The context for the delta state

is the context at the point the button was first pressed, not its position at the time it has

moved a delta number of pixels.

The button name and state can be specified in either order.

Going back to our sample function binding:

f,newiconify= meta :window|icon: delta left

you can now understand that the f .newiconify function is invoked by moving the

pointer to either a window or an icon, pressing the Meta key and the left pointer button, and

dragging the pointer in any direction.

All of the other function definitions should be equally readable to you. Go back for a

moment and review the bindings shown in the default.uwmrc file in Example B-l.

You'll notice that it is possible to bind the same function to more than one set of keys, but-
tons and/or contexts. For example, the WindowOps menu can be invoked anywhere by press-
ing the Meta and Shift keys together with the middle button on the pointer. But when the

pointer is in the root window, the WindowOps menu can be invoked by pressing only the

middle button on the pointer. The reason for this becomes obvious if you realize that when

the pointer is on a window or an icon, the middle pointer button alone might have some other

meaning to the application running in that window. In order to avoid conflict with other

applications, uwm uses the more complex key/button combination. But when the pointer is

in the root window, there is no possibility of conflict, and it can take a more forgiving

approach.

Action

The fifth field, labeled "Action," is typically used only for the f .menu function, which

allows you to invoke menus. The fifth field specifies the name of a menu, whose contents are

defined in the third section of the .uwmrc file. If the menu name contains quotes, special

characters, parentheses, tabs, or blanks, it must be enclosed in double quotes. For consis-
tency, you may want to always quote menu names. For example:

f.menu= :root: middle down: "WindowOps"

f.menu= m|s :: middle down: "WindowOps"

f.menu= m|s :: middle down: "Preferences"

578 X Window System User's Guide

Defining Menus

The third section of a .uwmrc file contains menu definitions. These definitions have the for-

mat:

menu = menu_name {

item name : action

The menu name must exactly match a name specified with the f . menu function.

Each item on the menu is given a label (i tem_name), which will appear on the menu. This

is followed by a colon and the action to be performed. The action may be one of uwm's func-
tions, or if prefixed by a ! character, it can be a system command to be executed, as if in an

xterm window. As shown in Example B-2, the WindowOps menu defined in default.uwmrc

shows both types of action.

Example B-2. The WindowOps menu

menu = "WindowOps" {

New Window: ! "xtermS"

Ref reshScreen : f . refresh

Redraw : f . redraw

Move : f .move

Resize : f . resize

Lower : f . lower

Raise : f . raise

CircUp: f .circleup

CircDown : f . circledown

Autolconify : f . iconify

Lowerlconify : f .newiconif y

Newlconify : f . newiconif y

Focus : f . focus

Freeze : f .pause

UnFreeze : f .continue

Restart: f . restart

it ii . f .beep

KillWindow: f .kill

f .beep

Exit: f . exit

New Window is accomplished by running another instance of xterm. The other functions are

accomplished simply by invoking one of uwm's predefined functions.

The Preferences menu shown in Example B-3 simply invokes xset with a number of different

options:

The uwm Window Manager 579

Example B-3. The Preferences menu

menu = "Preferences"

Bell Loud: "xset b 7&"

Bell Normal: "xset b 3&"

Bell Off: "xset b off&"

Click Loud: "xset c 8&"

Click Soft: "xset c on&"

Click Off: "xset c off&"

Lock On: "xset led on&"

Lock Off: "xset led off&'

Mouse Fast: "xset m 4 2&"

Mouse Normal "xset m 2 5&"

Mouse Slow: "xset m 1 1&"

Submenus

Frankly, we consider the menus defined by the default.uwmrc file to be rather awkward and

far from complete. Among other things, the WindowOps menu has too many infrequently-

used functions mixed right in with those you need all the time.

For the moment, let's assume that we want to leave the variable definitions and function key

bindings alone, but want to redefine the menus. We might create a local .uwmrc file that con-
tained a menu definition like the one shown in Example B-4.

Example B-4. Window operations divided into two menus

resetmenus

menu = "WindowOps" {

Move: f.move

Resize: f.resize

Raise: f.raise

Lower: f.lower

(De)Iconify: f.iconify

New window: !"xterm -sb&"

Refresh screen: f.refresh

Restart window manager f.restart

f.beep

KillWindow: f.kill

f.beep

More Window Operations f.menu:"More Window Operations'

menu = "More Window Operations" {

(De)Iconify and move: f.newiconify

Circulate windows up: f .circleup

Circulate windows down: f.circledown

Focus keyboard on window: f.focus

Freeze server: f.pause

Unfreeze server: f.continue

f.beep

Exit: f.exit

550 X Window System User's Guide

We've consolidated the three original menu items to iconify and deiconify into two, called

(De)lconify and (De)lconify and Move. The latter corresponds to the Newlconify choice on the

standard uwm menu.

To get from one menu to another, we simply define f. menu as the action for one item on the

menu. No key, button or context is defined, so we go right to the next menu when selecting

that item.

Slip off menus

In Example B-4, there was no keyboard binding for the More Window Operations menu. That

menu could only be invoked by selecting it from the WindowOps menu. Another way to

divide the window into two would be to give both the same key/button/context binding, as

shown in Example B-5.

Example B-5. Window operations as two pull-right menus

resetbindings

Note that if you resetbindings, you must recreate all desired

operations. If you are doing this kind of thing, you'd best copy

the entire default.uwmrc to your home .uwmrc and edit it

f.menu= :root: middle down : "WindowOps"

f.menu= :root: middle down : "More Window Operations"

f.menu= m|s :: middle down : "WindowOps"

f.menu= m|s :: middle down : "More Window Operations"

If two menus have the same context and buttons, you can cause the second (or third, if more

than two are defined) to appear simply by selecting nothing from the first, and, while continu-
ing to hold down the specified pointer button (you can let go of the key), sliding the pointer

off the menu to the right or left. The first menu will be replaced by the second.

Slip off menus may be awkward to control. If the labels of menu items are short, the menu

can be too narrow, and hence difficult to use: you spend much more time sliding off menus

unintentionally than you do selecting items. You can either train yourself to make pointer

movements exactly perpendicular, or you can add horizontal menu padding as suggested in

the revamp of uwm at the end of this appendix.

Executing System Commands from a Menu

We mentioned above that it is possible to specify a system command as a menu action simply

by placing an exclamation point in front of the string to be executed. As we saw, the menus

defined in default.uwmrc use this mechanism to create a new xterm window.

It is easy to cook up a menu that contains a miscellany of useful commands, as shown in

Example B-6.

The uwm Window Manager 581

Example B-6. A Useful Commands menu

f.menu= :root: middle down : "Useful Commands"

menu = "Useful Commands" {

Analog clock: "xclock -geometry 162xl62-10+10&"

Digital clock: "xclock -digital -geometry 162x37-10+174&

Edit File: "xterm -e vi"

Calculator: "xcalc -geometry 126x230-180+10&"

Mailbox: "xbiff -geometry 65x65-353+10&"

Display keyboard mappings: "xmodmapS"

As you can quickly see, you can run any window-based programs directly, but you need to

run other programs using xterm's -e option (discussed in Chapter 4, The xterm Terminal

Emulator). You are limited only by your imagination in what commands you might want to

put on a menu. Each command runs in its own window, but that isn't necessarily the case, as

we'll see in a moment.

Cut Buffer Strings

Another useful feature of wwrn's menus is that you can define the action for a menu item to be

the insertion of a string into the server's cut buffer. As discussed in Chapter 4, The xterm

Terminal Emulator, you can use this cut buffer to cut and paste text between certain client

windows. (See Chapter 4 for a more complete discussion of cut buffers.) You can also use

the cut buffer from within uwm to define strings that will be placed in the cut buffer, ready for

pasting into a window.

This feature is useful for specifying command strings that you want to have executed in an

existing xterm window.

A string prefixed with a vertical bar will be loaded into the cut buffer with no trailing new-

line. This means that you can paste the string into a window and keep typing to add to the

command line.

A string prefixed with a caret will be terminated with a newline, which means that if it is a

command, and you paste it at the shell prompt in an xterm window, it will be executed imme-
diately.

For example, we could add the following lines to our "Useful Commands" menu, as shown in

Example B-7.

x Window System User's Guide

Example B-7. Useful commands using cut buffer strings

menu = "Useful Commands" {

Check disk space: ~"df"

Remote login: I "rlogin"

}

The last item on the menu uses I instead of *, so that when the string is pasted into an xterm

window, you can type in the name of the system to connect to. (If you tended to connect to a

number of different systems on a regular basis, you could also just create a submenu with the

names of various systems as menu items, and execute the correct command to log in to each

system from there.)

Of course, cut buffer strings are not just useful for pasting in commands at the shell prompt.

You could also associate editing macros or frequently-used text with menu items for use with

a text editor.

Unfortunately, as of Release 3, there is a serious limitation to pasting strings from a uwm

menu, related to the discussion of cut buffers versus text "selections" in Chapter 4. The win-
dow manager uses a cut buffer only; most Release 3 clients, notably xterm, use selections.

With the default keyboard translations (Chapter 9), the contents of a selection are pasted

before the contents of a cut buffer. Thus, if you've been copying and pasting text from an

xterm window, the PRIMARY (default) selection probably contains text. If you then choose

the Check disk space item from the uwm menu, that menu item is stored in the cut buffer, but

does not replace the PRIMARY selection. Whrn you go to paste Check disk space into an

xterm window, you get the text from the PRIMARY selection instead (previously cut from an

xterm window).

To solve this problem, you can use the xcutsel client to copy the text from the cut buffer into

the selection. In an xterm window, type:

% xcutsal &

and then position the xcutsel window using the pointer. When you are having trouble pasting

text yanked from a window manager menu because of a previous text selection, click on the

Copy 0 to Primary command button in the xcutsel window. This command copies text in the

cut buffer (specifically CUT_BUFFER "0") to the PRIMARY selection. You should then be

able to paste the text yanked from the uwm menu successfully.

Note that if the PRIMARY selection is currently empty, the text in the cut buffer will be

pasted instead, and this problem will not occur. For more information on the xcutsel client,

see Chapter 4, The xterm Terminal Emulator, and the xcutsel reference page in Part Three of

this guide.

7770 uwm Window Manager 583

Color Menus

So far, we've assumed that all menus are black and white. But you can also create color

menus. You can even assign different colors to the menu title, the highlighting bar (the hori-
zontal band that follows the pointer within the menu and shows which item is selected) and

the individual selections on the menu.

Colors are added to menus using the following syntax:

menu = 'menu name" (title_fg:title_bg:highlight_fg: highlight_bg) {

"item name": (itent_fg: item_bg) : "action"

Up to four different colors can be defined for the overall menu:

title_fg The foreground color of the menu title (i.e., the color of the lettering).

titl e_bg The background color of the menu title.

highl±ght_fg The foreground color of the highlighting bar (i.e., the color of the

lettering within the bar).

highlight Jog The background color of the highlighting bar.

Two colors can be defined for each menu item:

i t em_fg The foreground color of the item (i.e., the color of the lettering).

i t em_bg The background color of the item.

Colors can be specified either with color names or hex strings, as described in Chapter 8,

Command Line Options.

Here's a color menu that works well on a Sun-3 workstation. Keep in mind that the colors in

the color database may look different on different servers.

menu - "WindowOps" (darkslategrey:plum:darkslategreyrplum) {

Move: (slateblue:lightblue):f.move

Resize: (slateblue:lightblue):f.resize

Raise: {slateblue:lightblue):f.raise

Lower: (slateblue:lightblue):f.lower

(De)Iconify: (slateblue:lightblue):f.iconify

New window: (slateblue:lightblue):!"xterm&"

Refresh screen: (slateblue:lightblue):f.refresh

Restart window manager: (slateblue:lightblue):f.restart

}

The total number of colors that can be allocated by the window manager for its own use is

specified by the maxcolors variable. If you try to use more than maxcolors colors, the

584 X Window System User's Guide

additional colors will default to the colors of the root window. This can also happen if the

server runs out of free colormap entries.

Some releases of uwm include a color menu bug. If all menu items in the file are specified in

color, all menus default to black and white. One quick fix is to leave the final item on the

final menu in the file in black and white. More recent versions of uwm have corrected the

problem.

A Complete Revamp of uwm

Using the various techniques described in this appendix, we've modified the default.uwmrc

file to create an interface we think is more helpful to the average user.

Our modified .uwmrc file, shown in Example B-8, sets up four slip off menus, each with a

slightly different focus. In effect, we've split the original WindowOps menu into two, called

WindowOps and More Window Operations, renaming and modifying many of the selections,

adding a few of our own, and putting the less frequently used ones on the second menu. The

third menu offers some Useful Commands to place other clients, including xclock and xcalc,

and to execute system commands, such as dfand rlogin. The final menu is a slightly modi-
fied Preferences menu, which sets different keyclick volumes, leds, and pointer speeds than

the default.

You can test our .uwmrc (following) or just use it as a touchstone to create your own.

Example B-8. Modified .uwmrc file

resetbindings; resetvariables; resetmenus

noautoselect

delta=5

freeze

grid

zap

pushabsolute

push=l

hiconpad=l6

viconpad=l6

hmenupad=22

vmenupad=l

iconfont=fg-l6

menufont=fixed

resizefont=fixed

volume=0

f FUNCTION KEYS CONTEXT MOUSE BUTTON ACTIONS

f . newiconi fy = met a : window | icon delta left

f . raise= met a : window | icon delta left

f . lower = met a : window | icon left up

f . raise= met a : window : middle down

f . resize = met a : window : delta middle

f . iconi fy= meta : icon : middle up

f . raise= met a : window | icon right down

f . move= meta : window | icon delta right

f . ci rcledown = m | s : : left down

The uwm Window Manager 585

Example B-8. Modified .uwmrc file (continued)

f . circledown= met a root left down

f . circleup= met a root right down

f . menu= root middle down "WindowOps"

f .menu= root middle down "More Window Operations'

f .menu= root middle down "Useful Commands"

f . menu= root middle down "Preferences"

f . menu= m| s : middle down "WindowOps"

f . menu= m| s : middle down "More Window Operations'

f . menu= m| s : middle down "Useful Commands"

f .menu= m | s : middle down "Preferences"

f . ci rcleup= m | s : right down

f . iconify= m| c window | icon left down

f. newiconi fy= m|l window | icon left down

f . raise= m|l window | icon left up

f .push right = m|l window | icon right down

f . pushlef t= m | c window | icon right down

f .pushup= m|l window | icon middle down

f . pushdown= m| c window | icon middle down

menu = "WindowOps" {

Move: f .move

Resize : f . resize

Raise: f . raise

Lower: f . lower

(De) Iconi fy : f . iconify

New window: ! "xterm -sb &"

Refresh screen: f . refresh

Restart window manager: f . restart

" " : f . beep

Kill window: f .kill

menu = "More Window Operations" {

Iconify and move: f.newiconi fy

Circulate windows up: f.circleup

Circulate windows down: f.circledown

Focus keyboard on window: f. focus

Freeze server: f.pause

Unfreeze server: f.continue

Create color window: !"xterm -d unix:0.1 -fg darkslategrey

-bg lightblue -bd plum -bw 5s"

f.beep

Exit: f.exit

I

menu = "Useful Commands" {

Analog clock: !"xclock -hd darkslategrey -hi darkslategrey

-fg mediumorchid -bg lightblue -bd plum -bw 5

-geometry 162x162-10+106"

Digital clock !"xclock -digital -fg darkslategrey -bg lightblue

-bd plum -bw 5 -geometry 162x37-10+174&"

Calculator: !"xcalc -geometry 126x230-180+10S"

Mailbox: !"xbiff -bg lightblue -fg lightslategrey -bd plum

-bw 3 -geometry 65x65-353+104"

Display keyboard mappings: !"xmodmap&"

Check disk space: ""df"

Remote login: |"rlogin"

556 X Window System User's Guide

Example B-8. Modified .uwmrc file (continued)

menu = "Preferences" {

Bell Loud: ! "xset b 7&"

Bell Normal: ! "xset b 3<»"

Bell Off: !"xset b offs"

Click Loud: ! "xset c 9s"

Click Soft: ! "xset c 26"

Click Off: ! "xset c of ft"

Lock On: ! "xset led Is"

Lock Off: !"xset -led Is

Mouse Fast: ! "xset m 4 5&"

Mouse Normal: ! "xset m 2 5S"

Mouse Slow: ! "xset m 1 li"

The uwm Window Manager 587

c

The OSF/Motif Window Manager

This appendix describes the OSF/Motif" window manager, mwm, one of the

more popular window managers in the X market today. It describes both the

basics of using mwm and how to customize it.

In This Chapter:

Getting Started with mwm 591

Starting mwm 592

Selecting the Window to Receive Input 592

Manipulating Windows with the mwm Window Frame 594

Moving a Window: The Title Area 594

Minimizing (Iconifying) and Maximizing a Window 596

The Minimize Button 596

The Maximize Button 597

Raising a Window 598

Resizing a Window 599

The Window Menu Button: Display a Menu or Close the Window 602

Manipulating Windows Using the Window Menu 602

Changing the Window Location: Move 604

Resizing the Window: Size 605

Iconifying the Window: Minimize 605

Changing to the Maximum Size: Maximize 606

Moving a Window to the Bottom of the Stack: Lower 606

Removing a Window: Close 606

Restoring a Maximized Window or an Icon: Restore 607

Manipulating Icons 607

Manipulating Icons Using the Window Menu 607

The Root Menu 608

Customizing mwm 610

Activating Changes to the Window Manager 611

The system.mwmrc File 612

mwm Functions . .. 614

Menu Specifications 615

Key Bindings 616

Button Bindings 617

Customizing the Root Menu 619

Creating New Menus 620

Cascading Menus 620

Setting mwm Resources 622

Component Appearance Resources 623

mwm-Specific Appearance and Behavior Resources 624

Client-Specific Resources 624

Setting the Focus Policy 625

Using an Icon Box 626

c

The OSF/Motif Window Manager

Getting Started with mwm

The Motif window manager (mwm) is one of the more popular window managers available in

the X market. Developed by Ellis Cohen of the Open Software Foundation, mwm is the win-
dow manager component of OSF/Motif, OSF's graphical user interface (GUI), mwm allows

you to perform all of the standard window manipulation functions. You can:

" Create additional xterm windows.

" Change the size of windows.

" Move windows around the screen.

" Raise windows (move them to the front of others).

" Lower windows (move them to the back of others).

" Convert windows to icons and icons to windows.

" Refresh your screen.

" Remove windows.

Like twm, the Motif window manager allows you to invoke window manipulation functions

in a variety of ways:

" Using the window "frame" and various features available on it: the Minimize (iconify)

button, Maximize button, title area, Window Menu, etc.

" Using the Root Menu.

" Using keyboard keys, pointer buttons, and key and button combinations.

mwm attempts to create a three-dimensional appearance, which is somewhat more aesthetic

than the look provided by many other window managers. You'll probably notice that win-
dow frames, various command buttons, icons, etc., appear to be raised to varying heights

above screen level. This illusion is created by subtle shading and gives many display fea-
tures a "beveled" look, similar to the beveled style of some mirrors.

The OSF/Motif Window Manager 591

This appendix is intended primarily for those using the default version of mwm, Release 1.0.

If mwm has been customized at your site or you are running a different version, the principles

should be basically the same, but the window manipulation functions may be invoked in dif-
ferent ways. From time to time, we'll mention how commands or functionality might vary,

depending on your version of mwm.

If you have never used a window manager before, first read Chapter I, An Introduction to the

X Window System, for a conceptual overview of what a window manager does.

In this appendix, we'll take a look at the standard window manipulation functions provided

by mwm and the wide variety of methods for invoking them. Then we'll consider how to cus-
tomize various features of mwm. Perhaps the most useful customization that can be per-
formed involves selecting a keyboard focus policy, either pointer focus or click-to-type

(referred to as explicit) focus. (Keyboard focus is described in Chapter 1, An Introduction to

the X Window System.) By default, mwm uses explicit (click-to-type) focus.

First, however, let's start with some basics: how to start mwm; and how to select the window

to receive input, also known as the active window. Then we'll take a look at perhaps the

most distinguishing feature of mwm: the frame it places around all windows on the display.

Starting mwm

As described in Chapter 2, Getting Started, you can start a window manager from the com-
mand line in an xterm window. The following command line starts mwm:

% mwm &

If xdm (the display manager) or another session manager is starting X on your system, mwm

is probably started automatically when you log on. If mwm is already running, all windows

will be surrounded by the characteristic window frame, pictured in Figure C-l.

If mwm is not running, start it using the command line above. While mwm is starting up, the

root window pointer changes to an hour glass that appears to be filling up with sand. When

the hour glass is full, all windows will become framed, indicating that mwm is running.

Selecting the Window to Receive Input

By default, you select the window to receive input (the active window) by clicking the first

pointer button anywhere within the window. As we've said, this focus policy is called

click-to-type, or explicit. Whether mwm is started automatically or you started it by typing in

an xterm window, you must then click in a window in order to enter text.

Once you focus input to a window, all text typed appears in that window, regardless of where

you move the pointer. In order to type in another window, you must transfer focus to that

window by clicking the first pointer button within it. Later in this appendix, we'll describe

how to make the keyboard focus follow pointer movement.

592 X Window System User's Guide

Figure C-1. mwm is running on the display

When you focus input on a window, the window frame changes color. Depending on the ver-
sion of mwm you are running and the color resources specified for your system, the frame

may change from black to white, from grey to white, etc. In any case, the active window's

frame will be a different color than the frames of all other windows on the display. (In some

versions, be aware that the black window frame of non-active windows obscures the titlebar

text, which also appears in black. Only the title of the active window is visible in these

cases.)

Notice that if you are working with a stack of windows that overlap, selecting a window as

the active window automatically raises that window to the top of the stack. (As we'll see

when we look at customization, this behavior is controlled by an mwm resource variable

called autoFocusRaise, which is true by default.)

The OSF/Motif Window Manager 593

Manipulating Windows with the mwm Window Frame

Figure C-2 shows an xterm window "framed" by mwm. The window frame itself and several

features of it are tools that allow you to manipulate the window using the pointer.

Window Menu title area Minimize (iconify)

button button

title bar Maximize button

Figure C-2. An xterm window running with the OSF/Motif window manager

The following sections describe the features of the mwm window frame and the functions

they perform. Later, we'll take a look at menu items and keyboard shortcuts that also per-
form these functions.

Be aware that mwm also allows you to manipulate icons using simple pointer actions, menu

items, and keyboard shortcuts. An icon is a small symbol that (generally) represents a win-
dow in an inactive state. (See Chapter 1, Introduction to the X Window System, for more

information about icons.) After we learn the various window manipulation functions, we'll

look at the section "Manipulating Icons."

Moving a Window: The Title Area

When you select a window as the focus window, the name of the application is displayed

within the title area. The title area allows you to move the window, using the following

steps:

1. Place the pointer within the title area. The pointer changes to the arrow cursor.

2. Press and hold down the first pointer button.

3. Move the window by dragging the pointer. Figure C-3 shows one being moved in this

way. When you begin to move the window, the pointer changes to a cross arrow pointer

594 X Window System User's Guide

and a window outline appears. This outline tracks the pointer's movement. In the center

of the screen, a small, rectangular box also appears, displaying the x and y coordinates of

the window as you move it

4. Drag the cross arrow pointer with the window outline to the desired location on your

screen.

5. Release the first pointer button. The window will move to the selected location.

Figure C-3. Moving a window by dragging the title area

The title area is the largest section of the horizontal bar that spans the top of the window

frame. This horizontal bar is known as the titlebor. Notice that whenever you move the

pointer into the titlebar, the pointer changes to the arrow cursor.

In addition to the title area, the titlebar features three command buttons: one on the left and

two on the right. These command buttons are described in the following sections.

The OSF/Motif Window Manager 595

Minimizing (Iconifying) and Maximizing a Window

The two command buttons on the right side of the titlebar are the Minimize and Maximize

buttons. The Minimize command button converts a window to an icon. As mentioned previ-
ously, an icon is a small symbol that represents a window in an inactive state.

The Maximize command button can be used to enlarge a window to the size of the root win-
dow, and once the window has been enlarged, to convert it back to its original size.

The Minimize Button

The Minimize command button, immediately to the right of the title area, is identified by a

tiny square in its center. This button allows you to convert the window to an icon (iconify it),

using the following steps:

1. Place the pointer within the Minimize command button. The pointer simply has to rest

within the button's outer border, not within the tiny square identifying it,

2. Click the first pointer button. The window is iconified. Figure C-4 shows a window being

converted to an icon in this way.

Figure C-4. Converting a window to an icon with the Minimize button

596 X Window System User's Guide

By default, icons are displayed in the bottom left corner of the root window, mwm can also

be set up to place icons in another location, to allow you to place them interactively using the

pointer, or to organize icons within a window known as an icon box. Later in this appendix,

we'll discuss the specifications necessary to set up an icon box.

If you've used other window managers, you may notice that icon symbols generated by mwm

are larger and more decorated than those generated by many other window mangers. This is

one of the aesthetic advantages of mwm. Figure C-5 shows an example.

xterm

Figure C-5. xterm window icon under mwm

To convert the icon back to a window (deiconify it), place the pointer on the icon and double

click, using the first pointer button. The window is redisplayed in the position it appeared

before it was iconfied. (See the section "Manipulating Icons" for a summary of functions.)

The Maximize Button

To the right of the Minimize command button (in the upper right corner of the window), the

Maximize command button is identified by a larger square in its center. The Maximize but-
ton allows you to enlarge the window to the size of the root window, and once it has been

enlarged, to convert it back to its original size.

To maximize a window, use the following steps:

1. Place the pointer within the Maximize command button. The pointer simply has to rest

within the button's outer border, not within the square identifying it.

2. Click the first pointer button. The window is maximized. Figure C-6 shows how it's

done.

The OSF/Motif Window Manager 597

Figure C-6. Maximizing a window

The large window should function in the same way it did before it was maximized. Theoreti-
cally, you can maximize an xterm window to have a single, very large terminal screen. How-
ever, be aware that certain programs you may run within an xterm, such as the vi text editor,

do not always work properly within a window of this size (even if you've used the resize

client, as described in Chapter 4, The xterm Terminal Emulator). The Maximize function is

more safely used with an application that displays a graphic image or performs a simple func-
tion, such as xclock.

Also, some client programs that do not support resizing, such as the Release 3 version of

xcalc, cannot be maximized correctly. In the case of xcalc, the frame surrounding the calcu-
lator application is maximized, but the actual calculator remains the same size.

The Maximize button is a toggle. To convert a maximized window back to its original size,

click on the Maximize button again with the first pointer button.

Raising a Window

Windows often overlap on the screen. You can raise a window that is obscured by other

windows to the top of the stack using the m\vm frame. To raise a window:

598 X Window System User's Guide

1. Place the pointer on any part of the window frame, except the command buttons (Mini-
mize, Maximize, and the button in the upper left corner of the titlebar, which as we'll see,

brings up the Window Menu).

2. Click the first pointer button. The window is raised to the top of the stack.

When you are using explicit (click-to-type) focus and the other default mwm resources, this

action also selects the window to receive input, i.e., makes the window the active window.

Resizing a Window

One of the most distinctive and useful features of the mwm window frame is not at all obvi-

ous. The entire frame (other than the title area and the command buttons) is designed to

allow you to resize the window using the pointer. Notice that the frame is divided by small

lines into eight sections: four long borders (two horizontal and two vertical) and four

corners. Figure C-7 shows these sections of the window frame.

IB corner

vertical border

horizontal border

Figure C-7. The outer frame is divided into four long borders and four comers

If you place the pointer within a window and then move it into one of the long horizontal or

vertical borders, you'll notice the pointer changes to a new shape: an arrow (pointing toward

the window border), with a short line perpendicular to it. This short line represents the win-
dow border. Try moving the pointer in this fashion in one of the windows on your display to

get a better idea of what the pointer looks like. If you move the pointer from within a win-
dow into the outer border at one of the corners, the pointer will become an arrow pointing

diagonally at a small comer symbol, as pictured in Figure C-8. Figure C-9 shows all of the

possible resize pointers.

Once the pointer changes to one of these shapes, you can move the border (or corner) of the

window. Resizing from one of the long borders only allows you to change one dimension of

the window: a horizontal border can only be moved up or down, changing the height; a verti-
cal border can only be moved left or right, changing the width.

7770 OSF/Motif Window Manager 599

Figure C-8. Window with resizing pointer

Figure C-9. Resizing pointer symbols

600 X Window System User's Guide

Resizing from a corner offers the most flexibility. You can move a corner in any direction

you choose, changing both dimensions of the window if you want. For example, you can

drag the lower right corner of a window down and to the right to enlarge the window in both

dimensions.

You determine the size and shape of the window by choosing the border or corner you want

to extend (or contract) and moving it the desired amount using the following steps:

1. Move the pointer from within the window to the border or corner you want to move. The

pointer changes to one of the symbols pictured in Figure C-9.

2. Press and hold down the first pointer button and drag the window border or corner in the

direction you want. As you resize the window, an image of the moving border(s) tracks

the pointer movement. Also, in the center of the display, a small rectangular window

shows the dimensions of the window as they change (in characters and lines for xterm

windows, in pixels for most other clients).

3. Resize the window as desired.

4. Release the first pointer button. The window is redisplayed in the new shape. (The bor-
der image and window geometry tracking box disappear.)

Figure C-10 shows a window being "stretched" from the lower right corner.

Figure C-10. Dragging the comer to make a window larger

The OSF/Motif Window Manager 601

The Window Menu Button: Display a Menu or Close the Window

The command button on the left side of the titlebar is used to bring up the Window Menu,

which provides seven items that manipulate the window and its icon. The following sections

describe how to bring up the Window Menu and invoke its various functions.

This command button also has another function. Double-clicking the first pointer button on

the Window Menu command button kills the client program and closes the window. Be

aware that, like other methods of 'killing' a program (such as the xkill client), double-

clicking on the Window menu item can adversely affect underlying processes. Refer to the

section on xkill in Chapter 7, Other Clients, for a more complete discussion of the hazards of

killing a client and a summary of alternatives.

You can customize mwm so that double-clicking performs no function by setting a resource

variable, wMenuButtonClick2, to false. See the sections "Setting mwm Resources"

and "mwm-Specific Appearance and Behavior Resources" later in this appendix, and the

mwm reference page in your OSF/Motif documentation for details.

Manipulating Windows Using the Window Menu

The command button on the left side of the titlebar is used to display the Window Menu. The

Window Menu can actually be displayed from a window or an icon. As we'll see, certain

menu functions apply only to one or the other. This section describes using the Window

Menu to manipulate a window. (The section "Manipulating Icons," later in this appendix,

describes the use of Window Menu items, pointer commands, and other shortcuts on icons.)

Six of the seven items on the Window Menu (all but Lower) allow you to perform functions

that can also be performed by simple pointer actions on the mwm window frame. All of the

items can also be requested using keyboard shortcuts, known as accelerators, because they

facilitate the action.

Since manipulating a window using the frame is very simple and accessible, you will proba-
bly not use the Window Menu often. You may want to use the menu to Lower a window,

since this function cannot be performed by a simple pointer action on the frame. (If you

learn the keyboard shortcuts for this menu item, you may not need the Window Menu to

manipulate windows at all.) You may find the menu more helpful in manipulating icons, as

described later in this chapter. In any case, learning the functions of the Window Menu is

helpful in orienting yourself within the Motif environment.

The Window Menu can be displayed either from a window or from its icon. The Window

Menu command button is in the upper left corner of the window frame and is identified by a

narrow rectangle in its center. You can display the Window Menu from a window by moving

the pointer to the command button and either:

" Clicking the first pointer button.

" Pressing and holding down the first pointer button.

602 X Window System User's Guide

(You can also display the menu using keyboard shortcuts described at the end of this section.)

The menu is displayed. If you've clicked the first pointer button to display the menu (the eas-
ier method), the first item that is available for selection is highlighted by a box. Figure C-ll

shows the default Window Menu, which has been displayed by clicking the first pointer but-
ton in the menu command button.

Sjze A1M-F8

Minimize AR+F9

Maximize Ait-i-FlO

Lower A1I+F3

AJI+F4

Figure C-11. The Window Menu

Notice that the first item available for selection (indicated by the surrounding box) is Move.

The first item on the menu, Restore, is used to change an icon back into a window or a maxi-
mized window back to its original size; therefore, it is not useful at this time. The fact that

Restore is not selectable is also indicated by the fact that it appears in a lighter typeface.

Notice also that one letter of each menu item is underlined. This letter represents a unique

abbreviation for the menu item, called a mnemonic, and is useful in selecting the item.

Once the menu is displayed, you can select an item in the following ways:

" If you displayed the menu by pressing and holding down the first pointer button, drag the

pointer down the menu to the desired item and release the first button.

" If you displayed the menu by clicking the first pointer button, either:

-Move the pointer onto the item and click the first button.

-Type the unique abbreviation (the underlined letter). (Though several of the abbre-
viations are capital letters, you should type the lower-case equivalent.)

The OSF/Motif Window Manager 603

The following sections explain how each of the Window Menu items works.

To remove the menu without making a selection, move the pointer off of the menu and

release or click the first pointer button, as appropriate.

Notice also that a keyboard shortcut follows each command. The keyboard shortcuts allow

you to perform all of the functions without having to display the menu. All of the keyboard

shortcuts for the menu items involve the Alt key and a function key. (Alt is a logical key-
name that may be associated with a physical key of another name. If you cannot locate the

Alt key on your keyboard, see Chapter 11, Setup Clients, for a discussion of the xmodmap

client.)

There are also keyboard shortcuts to display the Window Menu. Once you place the pointer

anywhere in the window, either of the following key combinations will cause the menu to be

displayed: Shift-Escape or Meta-space. (Like Alt, Meta is a logical keyname recognized by

X programs. There is no key marked "meta" on the keyboard. Rather another key, such as

the Compose Character key on the DECstation 3100 keyboard, functions as Meta. See Chap-
ter 11, Setup Clients, for more information about the Meta key.)

In the following sections, we assume you have displayed the Window Menu by clicking the

first pointer button on the menu command button. (If you display the menu by pressing and

holding down the first pointer button, instructions to click a pointer button can be roughly

translated to mean release the button.)

Changing the Window Location: Move

To move a window:

1. Bring up the Window Menu.

2. Select the Move item by clicking on it with the first pointer button, or by typing the letter

m. The menu disappears. The pointer changes to the cross arrow pointer and appears in

the center of the window.

3. Move the window by dragging the pointer. When you begin to move the window, a win-
dow outline appears. This outline tracks the pointer's movement. In the center of the

screen, a small rectangular box also appears, displaying the x and y coordinates of the

window as you move it

4. Drag the cross arrow pointer with the window outline to the desired location on your

screen.

5. Click the first pointer button. The window will move to the selected location.

To cancel the Move function, keep the pointer stationary and click the first button.

The Move function can also be invoked using the keyboard shortcut AH-F7.

604 X Window System User's Guide

Resizing the Window: Size

To resize a window:

1. Bring up the Window Menu.

2. Select the Size item by clicking on it with the first pointer button, or by typing the letter

s. The menu disappears. The pointer changes to the cross arrow pointer and appears in

the center of the window.

3. Move the pointer from within the window to the border or corner you want to move. The

pointer changes to one of the symbols pictured in Figure C-9.

4. Once the pointer has become one of the resize pointers, you can drag the window border

or corner in the direction you want. As you resize the window, an image of the moving

border(s) tracks the pointer movement. Also, in the center of the display, a small rectan-
gular window shows the dimensions of the window as they change (in characters and

lines forxterm windows, in pixels for most other clients).

5. Resize the window as desired.

6. Click the first pointer button. The window is redisplayed in the new shape. (The border

image and window geometry tracking box disappear.)

The Size function can also be invoked using the keyboard shortcut AU-F8.

To cancel the Size function, don't move the pointer near any of the borders; just click the first

pointer button.

Iconifying the Window: Minimize

To iconify a window:

1. Bring up the Window Menu.

2. Select the Minimize item by clicking on it with the first pointer button, or typing the letter

n.

3. The window is converted to an icon.

The Minimize function can also be invoked using the keyboard shortcut Alt-F9.

The easiest way to convert an icon back to a window is to place the pointer on the icon and

double click with the first button.

The OSF/Motif Window Manager 605

Changing to the Maximum Size: Maximize

To make a window as large as the root window:

1. Bring up the Window Menu.

2. Select the Maximize item by clicking on it with the first pointer button, or typing the letter

X.

3. The window is enlarged to the size of the root window.

The Maximize function can also be invoked using the keyboard shortcut Alt-FlO.

Moving a Window to the Bottom of the Stack: Lower

The Lower menu item allows you to send a window to the bottom of the window stack. This

is the only Window Menu function that cannot be performed simply by clicking the pointer on

the window frame. To lower a window:

1. Bring up the Window Menu.

2. Select the Lower item by clicking on it with the first pointer button, or typing the letter 1.

3. The window is moved behind others on the display to the bottom of the window stack.

Though this function cannot be performed by clicking the pointer on the frame, it can be

invoked using the keyboard shortcut AU-F3.

Removing a Window: Close

The Close menu item terminates the client window and the window is removed from the dis-

play. This powerful command is separated from the other menu items by a horizontal line to

prevent you from inadvertently closing a window.

Be aware that, like other methods of 'killing' a program (such as the xkill client), the Close

menu item can adversely affect underlying processes. Most windows can be removed in

ways that do not harm relevant processes. For example, you can generally remove an xterm

window by typing the same command you use to log off the system. Refer to the section on

xkill in Chapter 7, Other Clients, for a more complete discussion of the hazards of killing a

client and a summary of alternatives.

Like xkill, Close is intended to be used primarily after more conventional methods to remove

a window have failed.

To remove a stubborn window:

1. Bring up the Window Menu.

2. Select the Close item by clicking on it with the first pointer button, or typing the letter c.

3. The window is removed.

606 X Window System User's Guide

The Close function can also be invoked using the keyboard shortcut AU-F4.

Restoring a Maximized Window or an Icon: Restore

The Restore menu item allows you to restore an icon to a window or a maximized window to

its original size. To restore a maximized window:

1. Bring up the Window Menu.

2. Select the Restore item by clicking on it with the first pointer button, or by typing the

letter r.

3. The window is restored to its original size.

The Restore function can also be invoked using the key x>ard shortcut AH-F5.

Restore can also be used to convert an icon back to a window, as described in the section

"Manipulating Icons Using the Window Menu" below.

Manipulating Icons

In addition to manipulating windows, mwm provides several easy methods for manipulating

icons. The following functions can be invoked using simple pointer button actions on an

icon:

Move Hold down the first pointer button and drag the icon to the desired posi-
tion. Then release the button.

Raise Click on the obscured icon with the first pointer button. The icon is

raised to the top of the stack.

Restore (Deiconify) To convert an icon back to a window, double-click on the icon with the

first pointer button.

Manipulating Icons Using the Window Menu

You can also display the Window Menu from an icon and invoke menu items that affect it To

display the menu, just place the pointer on the icon and click the first button. (You can also

use either of these keyboard shortcuts: Shift-Escape or Meta-space.)

The Window Menu displayed from an icon is virtually identical to the menu displayed from a

window; it contains all of the same items, but only five of the seven are selectable. (When

displayed from a window, six of the seven items are selectable.) The five selectable items

are: Restore, Move, Maximize, Lower, and Close. These items perform manipulations on an

icon analogous to those performed on a window (see "Manipulating Windows Using the

Window Menu" earlier in this appendix).

The OSF/Motif Window Manager 607

Two menu items, Size and Minimize, appear in a lighter typeface, indicating they are not

available for selection. Size cannot be selected because, unlike a window, an icon cannot be

resized. Obviously, Minimize cannot be used to iconify an icon.

Table C-1 summarizes the Window Menu functions when invoked from an icon. For instruc-
tions on selecting an item and performing the various functions, read "Manipulating Win-
dows Using the Window Menu" earlier in this appendix. Note that the keyboard shortcuts

(accelerators) for the commands are also the same as those described for windows.

Table C-1. Window Menu Actions on an Icon

Menu Item Function Shortcut

Restore Converts the icon back to a window. Alt+FS

Move Moves the icon on the display. AU+F7

Size Not available for selection. n/a

Minimize Not available for selection. n/a

Maximize Converts an icon to a window the size of the Alt+FlO

root window.

Lower Sends an icon to the bottom of the win- Alt+FS

dow/icon stack.

Close Exits the client, removing the icon. AU+F4

Later in this appendix, we'll discuss using mwm resources to set up an icon box, a window for

organizing icons on the display. Using an icon box changes the way you work with the Win-
dow Menu from an icon and introduces another menu item, Packlcons, which reorganizes

icons in the icon box. See "Using an Icon Box" later in this chapter for details.

The Root Menu

The Root Menu is mwm's main menu. It provides commands that can be thought of as affect-
ing the entire display and is analogous to the Twm menu describe in Chapter 3. To display

the Root Menu, move the pointer to the root window and press and hold down the first pointer

button. The default Root Menu appears in Figure C-12.

608 X Window System User's Guide

Figure C-12. The mwm Root Menu

When you display the Root Menu, the pointer changes to the arrow pointer. As you can see,

the default Root Menu offers only five items. To select an item, use the following steps:

1. As you continue to hold down the first pointer button, move the pointer onto the the

desired item name. (If you accidentally move the pointer off the menu, it will still remain

displayed, as long as you continue to hold the first button down.) As you move the

pointer onto an item, notice that a rectangular box is displayed around the item to high-
light it

2. Once the pointer _ is positioned on the item you want, release pointer button one. The

action is performed d.

The functions performed by the default Root Menu are described below.

New Window By default, this command runs an xterm window on the display speci-
fied by the DISPLAY environment variable, generally the local display.

When you create a new window (by using the menu or typing the com-
mand in an xterm), the new window automatically becomes the active

window.

Shuffle Up If windows and/or icons are stacked on your display, this command

moves the bottom window or icon in the stack to the top (raises it).

Shuffle Down If windows and/or icons are stacked on your display, this command

moves the top window or icon in the stack to the bottom (lowers it).

The OSF/Motif Window Manager 609

Refresh This command is used to refresh the display screen, that is, redraw its

contents. Refresh is useful if system messages appear on the screen,

overlaying its contents. (The xrefresh client can be used to perform the

same function. Simply type xrefresh on an xterm command line.)

Restart... Stops and restarts mwm. This is useful when you've edited the .mwmrc

configuration file, which specifies certain mwm features, and want to

activate the changes. Since this function is potentially more dangerous

than the other Root Menu options, it is separated from the other options

by a horizontal line.

When you select Restart, a dialog box appears in the center of the

screen with command buttons asking you to either Restart mwm or Can-
cel the request Click on the appropriate command button using the first

pointer button.

If you select Restart mwm, the window manager process is stopped.

The screen will momentarily go blank. The new mwm process will be

started immediately. While the new mwm process is starting, an hour-
glass symbol is displayed in the center of the otherwise blank screen.

The hourglass appears to be filling up with sand until the window man-
ager is running and the windows again are displayed on the screen.

Keep in mind that you can add, change, or remove menu items using the mwm configuration

file, .mwmrc, in your home directory. We'll discuss customizing the Root Menu later in this

appendix.

Customizing mwm

The Motif window manager is one of the more flexible window managers available in the X

market today. As we've seen, mwm provides a wide variety of methods for manipulating

windows. In addition, virtually every feature of mwm can be customized. You can change

the appearance of window frames, icons, and menus, the functions available on the Root

Menu and the Window Menu, the keyboard focus policy, how icons are arranged on the dis-
play, as well as the appearance of client applications running under OSF/Motif. As we'll see,

you can also create additional menus, displayed from the root window, to perform manipula-
tions on the display as a whole.

Customization of mwm is controlled in two ways:

" Through a special file, called .mwmrc, in your home directory.

" Through mwm resources you can enter in your ̂ resources file.

The default operation of mwm is largely controlled by a system-wide file, called sys-

tem.mwmrc, which establishes the contents of the Root Menu and Window Menu, how menu

functions are invoked, and what key and button combinations can be used to manipulate win-
dows. To modify the behavior of mwm, you can edit a copy of this file in your home direc-
tory. The version of this file in your home directory should be called .mwmrc. We'll take a

610 X Window System User's Guide

look at the system.mwmrc and ways to edit your own .mwmrc file to make the window man-
ager work more effectively for you.

In addition to the flexibility provided by the .mwmrc file, mwm provides dozens of applica-
tion resources that you can set! It's neither practical or necessary to discuss all of those

resources here. (You could spend quite a long time customizing mwm, if you had the time

and inclination.) We'll just consider some basic categories into which mwm resources can be

divided and also look at some of the more useful resources. See Chapter 9, Setting

Resources, for syntax rules and information about loading resources into the server so that

they will be accessible to client programs. See the mwm reference page in your OSF/Motif

documentation for descriptions of all available resources.

In the remainder of this appendix, we're going to demonstrate the basics of customizing

mwm and suggest what we think are helpful modifications. (This is still quite a lot to absorb.)

To illustrate, we'll discuss how to customize the following features of mwm:

" The menus and how menu functions are invoked.

" The keyboard focus policy.

" How icons are organized (namely, how to set up a window known as an icon box, in

which icons on the display can be organized).

Before we can customize the mwm menus or the ways in which their functions are invoked,

we need to take a closer look at the system.mwmrc file. First, however, let's consider an

important topic: how to make the window manager aware of customizations.

Activating Changes to the Window Manager

Be aware that if you edit your .mwmrc or Xresources file to change the way mwm works, the

changes will not take effect automatically. Whether you change resource settings, edit your

.mwmrc file, or both, you must restart mwm for the changes to take effect.

If you edit your resources file, you must first make the server aware of the new resource spec-
ifications by using the xrdb client. Generally, you will enter the following command at the

prompt in an xterm window:

% xrdb -load .Xraaources

The settings in the current version of your Xresources file will replace the resource settings

previously stored in the resource database. You can merely append new settings to the old

ones using the xrdb -merge option. See Chapter 9, Setting Resources, for more informa-
tion.

Once you've loaded the new resource settings, you can restart mwm. This can be done using

the Restart item of the Root Menu, as described earlier in this appendix. When mwm has

been restarted, it should reflect any changes made to the .mwmrc and Xresources files.

The OSF/Motif Window Manager 611

The system.mwmrc File

The following example shows the system.mwmrc file shipped with OSF/Motif Release 1.0. If

you've used other window managers, this file may seem a bit more complicated than other

configuration files, but the complexity is deceptive.

If you wish to change the operation of mwm, you shouldn't change the system.mwmrc file.

Instead, copy it to your home directory, under the name .mwmrc, and make changes to that

copy.

Example C-1. The system.mwmrc file, Release 1.0

I

DEFAULT mwm RESOURCE DESCRIPTION FILE (system.mwmrc)

i

f menu pane descriptions

*

f Root Menu Description

Menu RootMenu

"Root Menu" f.title

No-label f.separator

"New Window" f.exec "xterm

"Shuffle Up" f.circle_up

"Shuffle Down f.circle_down

"Refresh" f.refresh

no-label f.separator

"Restart ..." f.restart

Default Window Menu Description

Menu DefaultWindowMenu MwmWindowMenu

"Restore" Alt<Key>F5 f.normalize

"Move" Alt<Key>F7 f.move

"Size" Alt<Key>F8 f.resize

"Minimize" Alt<Key>F9 f.minimize

"Maximize" Alt<Key>F10 f.maximize

"Lower" Alt<Key>F3 f.lower

no-label f.separator

"Close" Alt<Key>F4 f.kill

key binding descriptions

I

Keys DefaultKeyBindings

{

Shift<Key>Escape icon|window f.post_wmenu

Meta<Key>space icon|window f.post_wmenu

Meta<Key>Tab root|icon|window f.next_key

Meta Shift<Key>Tab root|icon|window f.prev_key

612 X Window System User's Guide

Example C-1. The system.mwmrc file, Release 1.0 (continued)

Meta<Key>Escape root|icon|window f.next_key

Meta Shift<Key>Escape root|icon|window f.prev_key

Meta Ctrl Shift<Key>exclam root|icon 1 window f.set_behavior

Meta<Key>F6 window f.next_key transient

Meta<Key>Down root|icon|window f.circle down

f Meta<Key>Up root|icon|window f.circle_up

button binding descriptions

f

Buttons DefaultButtonBindings

<BtnlDown> frame|icon f.raise

<Btn2Down> frame|icon f.post_wmenu

<BtnlDown> root f.menu RootMenu

Meta<BtnlDown> window|icon f. lower

Meta<Btn2Down> window|icon f.resize

Meta<Btn3Down> window I icon f.move

Buttons ExplicitButtonBindings

<BtnlDown> frame|icon f.raise

<Btn2Down> frame|icon f.post_wmenu

<Btn3Down> frame|icon f. lower

<BtnlDown> root f.menu RootMenu

Meta<BtnlDown> window|icon f. lower

Meta<Btn2Down> window|icon f.resize

Meta<Btn3Down> window|icon f.move

I

Buttons PointerButtonBindings

<BtnlDown> frame|icon f.raise

<Btn2Down> frame|icon f. post_wmenu

<Btn3Down> frame|icon f. lower

<BtnlDown> root f.menu RootMenu

If (Mwm*passButtons == False)

Meta<BtnlDown> window|icon f.raise

f Else

<BtnlDown> window f.raise

f Meta<BtnlDown> window|icon f.lower

Meta<Btn2Down> window|icon f.resize

Meta<Btn3Down> window|icon f.move

f END OF mwm RESOURCE DESCRIPTION FILE

t

The system.mwmrc file can be divided into three sections:

" Menu specifications.

" Key bindings.

" Button bindings.

The OSF/Motif Window Manager 613

Comment lines are introduced by the number sign (#).

The menu section of the system.mwmrc file defines the contents of the Root Menu and the

Window Menu. Menu item labels are paired with predefined mwm functions.

A binding is a mapping between a user action (such as a keystroke) and a function, in this

case a window manager function. The key bindings section specifies keyboard keys that can

be used to invoke some of the pre-defined window manager functions. The button bindings

section specifies pointer buttons or key/button combinations that can be used to invoke vari-
ous functions.

Each section of the system.mwmrc file matches the following basic template:

Section_Type Section_Title

{

definitions

I

For example, the basic syntax of a menu specification is as follows:

Menu menu_name . . .

{

menu items defined

Menu is the 5ectio/i_rype. The other possible section types are Keys and Buttons.

The Section_ Title is somewhat arbitrary. In this case, it corresponds to the title of a

menu. In the key and button sections, it is simply a title assigned to a group of bindings.

However, the Section_Title can be very significant. As we'll see, a section title can be

used as the value of a resource variable in your ̂ resources file. Menu titles are often refer-
enced elsewhere in the .mwmrc file. The menu_name is generally paired with a pointer but-
ton action (in the button bindings section of the .mwmrc file) to allow you to use a particular

button to display the menu.

The syntax of the actual menu items, key bindings, and button bindings requires further

explanation. But first, let's take a look at some of the predefined window manager functions.

mwm Functions

m\vm has a number of predefined functions. Each of these functions has a name beginning

with "f . ". Several functions appear in the system.mwmrc file, paired with the method by

which the function can be invoked: by menu item, pointer button action, keystroke(s), or key

and pointer button combinations.

The meaning of most of these functions should be fairly obvious to you from the name, if not

from your experience using the window manager. For example, f . resize is used to resize

a window, f . move to move a window, or f . minimi ze to change a window to an icon.

Others are less obvious. The function f . post_wmenu is used to display (or post) the Win-
dow Menu. Notice the function f .separator, which appears in the menu definition

coupled with the instruction no -label rather than with a menu item. This line in the

614 X Window System User's Guide

.mwmrc creates a divider line on a menu. For example, such a divider line is used to isolate

the Restart . . . item from the other items on the Root Menu.

As we'll see, the function f . menu is used to associate a menu with the key or button bind-
ing that is used to display it The f .menu function takes a required argument: the menu

name. This function can also be used to define a submenu.

Each of the functions is described in detail on the reference page for mwm in your OSF/Motif

documentation.

Menu Specifications

The first section of the system.mwmrc file contains specifications for the Root Menu and Win-
dow Menu. As we've said, the basic syntax of a menu specification is as follows:

Menu menu_name . . .

{

menu items defined

Menu items are defined in slightly different ways for the Root Menu and the Window Menu.

The following text in the system.mwmrc file creates the Root Menu:

Root Menu Description

Menu RootMenu

{

"Root Menu" f. title

No-label f. separator

"New Window" f.exec "xterm &"

"Shuffle Up" f.circle_up

"Shuffle Down" f .circle_down

"Refresh" f. refresh

no-label f .separator

"Restart..." f. restart

}

The syntax for defining Root Menu items is very simple. Each item is defined by a line of this

format:

"label" function

When you pair a label with a menu function, that label appears as a menu item. You can

invoke the function by selecting the item from the menu using the pointer. For example, the

line:

"Refresh" f. refresh

sets up the Refresh menu item, which can be selected from the Root Menu as discussed ear-
lier in this appendix. (Again, the function performed is obvious from the function name.) As

we'll see later, it's easy to add items to the Root Menu by adding lines of label/function pairs.

Because Window Menu items can be invoked in a variety of ways, the syntax for defining

items is more complicated. The following text defines the Window Menu:

The OSF/Motif Window Manager 615

f Default Window Menu Description

Menu DefaultWindowMenu MwmWindowMenu

{

"Restore" _R Alt<Key>F5 f. normalize

"Move" _M Alt<Key>F7 f.move

"Size" _S Alt<Key>F8 f. resize

"Minimize" _n Alt<Key>F9 f. minimize

"Maximize" _x Alt<Key>F10 f. maximize

"Lower" _L Alt<Key>F3 f. lower

no-label f. separator

"Close" _C Alt<Key>F4 f.kill

}

The syntax of each menu item is as follows:

"label" mnemonic accelerator function

(The mnemonic and accelerator fields are optional.) Like the Root Menu, each item on the

Window Menu can be invoked by selecting its label with the pointer. In addition, there are

two shortcuts defined for invoking the function, a mnemonic and an accelerator. As you may

recall, a mnemonic is a unique letter abbreviation for the menu item label. On the menu,

mnemonic abbreviations are underlined; thus an underscore precedes each mnemonic defini-
tion in the system.mwmrc file. Once the Window Menu is displayed, you can select an item by

typing its mnemonic abbreviation. Similarly, you can invoke the function without displaying

the menu, simply by typing the accelerator keys (by default, the Alt key plus a function key).

Now let's see how one of the Window Menu definition lines fits this template:

"Move" _M Alt<Key>F7 f.move

The menu item label is Move. Selecting the item invokes the f.move function. The

mnemonic "m" or the accelerator key combination AH-F7 can also be used to invoke the

function.

Key Bindings

The second section of the system.mwmrc file binds keystroke combinations to window man-
ager functions.

Like the menu definintion section, the key bindings section of the file is titled and bracketed:

Keys Section_Title

(

key bindings defined

The section type is Keys. The section title in the system.mwmrc file is Def aultKey-

Bindings. This title can also be specified as the value of the mwm resource key-

Bindings in your Xresources file. However, since these bindings are used by default, this

is not necessary.

Using the section title as a resource becomes significant when you want to create an alterna-
tive set of bindings. Hypothetically, you could add another set of bindings with a different

title to your .mwmrc file. Then specify this title as the value of the keyBindings resource

x Window System User's Guide

in your Xresources file. If you add the following resource specification to your Xresources

file, MyButtonBindings replace Def aultButtonBindings for all client applica-
tions running with mwm:

Mwm*keyBindings: MyButtonBindings

If you want to use different sets of bindings for different applications, you can add an appli-
cation name between the parts of the resource specification. For example, if you want My-
ButtonBindings to apply only loxterm windows running with mwm, you could enter the

following resource line:

Mwm*xterm*keyBindings: MyButtonBindings

Then Def aultButtonBindings would still apply to all applications other than xterm.

A non-obvious principle behind a key/function (or button/function) binding is that in order

for the keys (or buttons) to invoke the function, the pointer must be in a certain location.

This location is known as the context. For mwm, the most commonly used contexts are:

root, frame, window, and icon. The window context refers to the entire window,

including the frame. (There are a few more specific contexts, such as border, but they are

not used in the system.mwmrc file. See the mwm reference page in your OSF/Motif docu-
mentation for details.)

Some functions can be invoked if the pointer is in more than one context. For example, as

we've seen, you can display the Window Menu from either a window or an icon using the

keyboard shortcuts Meta-space or Shift-Escape. The action involved is f .post_wmenu

and the window and the icon are the pointer contexts from which this action can be per-
formed. These keyboard shortcuts are defined in the key bindings section of the sys-

tem.mwmrc file as follows:

Shift<Key>Escape icon[window f,post_wmenu

Meta<Key>space icon|window f.post_wmenu

Upon examining these lines, we can discern the template for a key binding:

[modifier_keys]<KGy>key_name context function

Each binding can have one or more modifier keys (modifiers are optional) and must have a

single primary key (signaled by the word <Key> in angle brackets) to invoke the function. In

the first specification, Shift is the modifier and Escape is the primary key. In the second spec-
ification, Meta is the modifier and space is the primary key. Both specifications have two

acceptable pointer contexts: either a window or an icon. And both bindings are mapped to

the same action, f. post_wmenu, which displays the Window Menu.

Button Bindings

The key bindings section of the file is also titled and bracketed:

Buttons Section_Title

(

button bindings defined

The OSF/Motif Window Manager 617

The section type is Buttons. The system.mwmrc file contains three sets of button bindings

with the section titles:

DefaultButtonBindings

ExplicitButtonBindings

PointerButtonBindings

Button bindings clearly illustrate the need to coordinate your ̂resources and .mwmrc files.

The three sets of button bindings correspond to three possible settings for the resource

buttonBindings. The default setting for the resource is:

Mwm*buttonBindings: DefaultButtonBindings

specifying that the DefaultButtonBindings are used.

You can specify that one of the other sets of button bindings is to be used by setting this

resource in your Xresources file. For example, if you add the following specification to your

resource file:

Mwm*buttonBindings: ExplicitButtonBindings

mwm will use those bindings that come under the heading ExplicitButtonBindings

in the .mwmrc file.

Be aware that if you do specify different button bindings, the value of the resource must

exactly match the title associated with the bindings, or the bindings will not take effect.

The syntax for a button binding specification is very similar to that of a key binding:

[modifier_key}<button_event> context function

Each binding can have one or more modifier keys (modifiers are optional) and must have a

single button event (enclosed in angle brackets) to invoke the function. The motion that

comprises each button event should be fairly obvious. (A list of acceptable button events

appears on the mwm reference page in your OSF/Motif documentation.)

Now let's see how the button binding syntax relates to the default button bindings in the sys-
tem.mwmrc file:

Buttons DefaultButtonBindings

{

<BtnlDown> frame|icon f.raise

<Btn2Down> frame|icon f.post_wmenu

<BtnlDown> root f.menu~ RootMenu

Meta<BtnlDown> window|icon f.lower

Meta<Btn2Down> window|icon f.resize

Meta<Btn3Down> window|icon f.move

}

The first specification is familiar. It indicates that the event of pressing down the first pointer

button while the pointer is in a window frame or an icon performs the action of raising the

window or icon, respectively.

Most of the other default button bindings reveal ways to perform mwm functions that were

not covered in the first half of this appendix. Upon closer examination, you should be able to

figure out these bindings and what they do. The second binding reveals still another way to

display the Window Menu, by pressing the second pointer button on a window frame or an

icon.

618 X Window System User's Guide

The third binding is also familiar, and illustrates the use of the f. menu function. As previ-
ously mentioned, the f. menu function is used to associate a menu with the key or button

binding that is used to display it The following binding specifies that the Root Menu is

displayed by pressing and holding down the first pointer button on the root window:

<BtnlDown> root f.menu RootMenu

Notice that the function requires an argument, the menu name (RootMenu), which also

appears in the first line of the menu definition. This correspondence is required-f . menu

needs to know which menu to display.

The other default button bindings perform useful (though not obvious) functions. Each speci-
fies holding down the Meta key and simultaneously pressing a different pointer button while

the pointer is on a window or icon. Holding down the Meta key and pressing the first pointer

button on a window or icon lowers the window or icon to the bottom of the stack. Holding

down the Meta key and pressing the second or third pointer button enables you to resize or

move the object, respectively.

Customizing the Root Menu

You can add items to the Root Menu simply by adding lines of the format:

"label" function

within the menu definition section of your .mwmrc file.

The f . exec function allows you to execute system commands from a menu. In the default

Root Menu, the New Window command uses the f .exec function to execute the system

command xterm &.

Root Menu Description

Menu RootMenu

"Root Menu" f .title

No-label f. separator

"New Window" f.exec "xterm &'

"Shuffle Up" f.circle_up

"Shuffle Down" f.circle_down

"Refresh" f. refresh

no-label f.separator

"Restart. , f. restart

To create a menu item labeled Clock that opens an xclock window on your display, simply

add a line to your .mwmrc file, as shown here:

Root Menu Description

Menu RootMenu

"Root Menu" f .title

No-label f. separator

"New Window" f.exec "xterm &"

"Clock" f.exec "xclock &

"Shuffle Up" f.circle_up

"Shuffle Down1 f.circle_down

"Refresh" f. refresh

The OSF/Motif Window Manager 619

no-label f.separator

"Restart..." f.restart

You can also edit (or remove) existing menu items. For example, if you want to run a termi-
nal emulator program other than xterm, you can edit the menu item definition in your .mwmrc

file. Say you want to run the hpterm terminal emulator (developed by Hewlett-Packard), you

would edit your menu specification to look like this:

Root Menu Description

Menu RootMenu

{

"Root Menu" f.title

No-label f.separator

"New Window" f.exec "hpterm &'

"Shuffle Up" f.circle_up

"Shuffle Down" f.circle_down

"Refresh" f.refresh

no-label f.separator

"Restart..." f.restart

Creating New Menus

Keep in mind that mwm also allows you to specify entirely new menus in your .mwmrc file.

A new menu can be separate from all existing menus, or it can be a submenu of an existing

menu. (Submenus are described in the following section, "Cascading Menus.")

If you want to create a new, independent menu, it must conform to the menu specification

syntax discussed earlier. Items must invoke predefined window manager functions.

The .mwmrc file must also specify how the menu will be displayed and in what context. This

involves associating a key or button with the f .menu function. Say you've specified a new

menu, titled GamesMenu, that runs various game programs, each in its own window. (The

f. exec function would be used to define each item.) The following button binding speci-
fies that pressing the second pointer button on the root window causes the Games Menu to be

displayed:

<Btn2Down> root f.menu GamesMenu

Cascading Menus

mwm also allows you to create submenus, generally known as cascading menus because they

are displayed to the right side of (and slightly lower than) another menu. You define a sub-
menu just as you would any other, using the syntax rules discussed earlier. The following

lines create a Utilities Menu that invokes several "desktop" clients and one game:

Menu UtilitiesMenu

{

"Utilities Menu" f.title

No-label f.separator

"Clock" f.exec "xclock &"

"System Load" f.exec "xload &"

620 X Window System User's Guide

"Calculator" f.exec "xcalc &"

"Manpage Browser' f.exec "xman &"

"Tetris" f.exec "xtetris &

In order to make this a submenu of the Root Menu, you need to add an f. menu function to

the Root Menu. This f. menu function must be coupled with the correct submenu title:

Root Menu Description

Menu RootMenu

"Root Menu" f.title

No-label f.separator

"New Window" f.exec "xterm &'

"Shuffle Up" f.circle_up

"Shuffle Down1 f.circle_down

"Refresh" f.refresh

"Utilities" f.menu UtilitiesMenu

no-label f.separator

"Restart. . ." f.restart

After you specify the preceding menus in your .mwmrc file (and restart mwm), display the

Root Menu. It will feature a new item, labeled Utilities. Since this item is actually a pointer to

a submenu, it will be followed by an arrow pointing to the right, as in Figure C-13.

New Window

Shuffle Up

Shuffle Down

Refresh

Utilities

Figure C-13. An arrow pointing to the right indicates a submenu

If you drag the pointer down the Root Menu to the Utilities item, the submenu will appear to

cascade to the right. Figure C-14 shows it appearing.

If you release the pointer button, both menus will remain displayed and the Utilities item and

the first item on the Utilities Menu will be highlighted by a box. You can then select an item

from the Utilities Menu by moving the pointer to the item and clicking the first button.

The OSF/Motif Window Manager 621

New Window

Shuffle Up

Shuffle Down

Refresh

Utilities -"*

System Load

Calculator

Manpage Browset

Tetris

Figure C-14. Utilities submenu of the Root Menu

Keep in mind that you can create several submenus beneath a single menu and that menus

can cascade several levels, though such complexity is not necessarily desirable.

Setting mwm Resources

The Motif window manager provides dozens of resources that control the appearance and

functionality of the window manager, its component features, and other clients running with

it mwm resources should be entered in your ^resources file and take effect when the

resources have been loaded into the server and mwm has been started or restarted. See Chap-
ter 9, Setting Resources, for syntax information and instructions on how to load resources

using the xrdb client. See "Activating Changes to the Window Manager" for information

about running mwm with the new resource settings.

mwm resources are considered to fall into three categories:

1. mwm component appearance resources. These resources set the characteristics of

mwm's component features, such as the window frame, menus, and icons.

2. mwm-specific appearance and behavior resources. These resources set characteristics

of the window manager client, such as focus policy, key and button bindings, and so

forth.

3. Client-specific resources. These mwm resources can be used to set the appearance and

behavior of a particular client or class of clients.

622

X Window System User's Guide

Under these categories fall dozens of mwm resources. The sheer number of resources makes

it impractical for all of them to be discussed here. (You could spend quite a long time cus-
tomizing mwm in this way, if you had the time and inclination!) In the following sections, we

discuss the three categories of resources in somewhat greater detail. We'll then take a look at

two of the more powerful and useful resources, keyboardFocusPolicy and use-

iconBox, which set the focus policy and set up mwm to use an icon box, respectively. For a

comprehensive list of available resources, see the mwm reference page in your OSF/Motif

documentation.

Component Appearance Resources

The Motif window manager can be considered to be made up of components: client window

frames, menus, icons, and what are known as feedback boxes. An example of a feedback box

is the box that appears so that you can confirm or cancel a Restart command from the Root

Menu. (See 'The Root Menu" earlier in this appendix.)

Certain resources allow you to specify the appearance of one or all of these mwm component

features. In specifying the resource setting, you can use the name of one of the features as

part of the resource name. For example, one of the most useful component appearance

resources is background, which, as we know from Chapter 8, specifies the background

color. You can specify a resource that sets the background color of any of the mwm compo-
nents. The following resource specification sets the background color of all client window

frames to light blue:

Mwm*client*background: lightblue

Table C-2 summarizes the resource name that corresponds to each of the mwm components:

Table C-2. Resource Names Corresponding to mwm Components

Component Resource name

Menu menu

Icon icon

Client window frame client

Feedback box feedback

Thus, to set the background color of feedback boxes to sea green, you'd use the following

resource:

Mwm*feedback*foreground: seagreen

Of course, if you omit any specific component from the resource specification, it applies to

all components. Thus, the following specification sets the background color of all window

frames, feedback boxes, icons, and menus to light grey:

Mwm*foreground: lightgrey

The OSF/Motif Window Manager 623

mwm-Specific Appearance and Behavior Resources

The mwm-specific resources control aspects of what you probably think of as the window

manager application itself, features such as the focus policy, whether windows are placed on

the display automatically or interactively, which set(s) of button and key bindings are used,

whether an icon box is used, and so forth.

The syntax of mwm-specific resource specifications is very simple: the mwm class name con-
nected by a loose binding to the resource variable name,* shown here:

Mwm*clientAutoPlace: false

This resource establishes the behavior that the user will interactively place client windows on

the display. (The default is true, meaning mwm places them automatically.)

Two of the mwm-specific resources bring up an issue of coordination between the

^resources and .mwmrc files. Remember, the default .mwmrc file contains three sets of but-
ton bindings:

DefaultButtonBindings

ExplicitButtonBindings

PointerButtonBindings

These three sets of button bindings correspond to three possible settings for the resource vari-
able buttonBindings. If your resource file contains the following setting:

Mwm*buttonBindings: ExplicitButtonBindings

mwm will use those bindings that come under the heading ExplicitButtonBindings

in the .mwmrc file.

Similarly, the resource variable keyBindings should be coordinated to match the key

bindings in the .mwmrc file. Since the default .mwmrc file has only one set of key bindings,

named DefaultKeyBindings, and the keyBindings resource also sets this by

default, coordination should not be an issue unless you create a new set of key bindings with

a different name.

Two of the most useful and powerful mwm-specific resources set the keyboard focus policy

and specify that icons be stored in an icon box. We'll discuss the use and advantages of these

resources later in this appendix.

Client-Specific Resources

Some mwm resources can be set to apply to certain client applications or classes of applica-
tions. These resources generally have the form:

Mwm*application*resource_variable:

where application can be an instance name or a class name.t Be aware that the appli-
cation name is optional. If you omit an application name, the resource applies to all clients.

*Loose and tight bindings are described in Chapter 9, Setting Resources.

tinstance and class names are described in Chapter 9, Setting Resources.

624 X Window System User's Guide

Many of the client-specific resources provide what might be considered advanced customiza-
tion. For example, a combination of resources allows you to specify your own bitmap as the

image for a client icon. The average user will probably not need most of these resources.

One client-specific resource users might be interested in is called f ocusAutoRaise. This

resource, true by default, causes the active window (the window receiving input focus) to be

raised to the top of the stack. If you are using explicit (click-to-type) focus (also the default),

this behavior is clearly very desirable. However, if you change the focus policy to pointer

focus (as we'll describe in the following section), having f ocusAutoRaise on can make

the display seem chaotic.

When pointer focus is active, as you move the pointer across the display, the focus changes

from window to window based on the location of the pointer, often a desirable feature. How-
ever, if f ocusAutoRaise is still true, each time the pointer moves into a window, the

window will be moved to the front of the display. Simply moving the pointer across a

screenful of windows can create a distracting shuffling effect! If you set the focus policy to

pointer, we suggest you also set f ocusAutoRaise to false, as in the following example:

Mwm*focusAutoRaise: false

Since an application name is omitted from this resource specification, it applies to all clients.

To change the behavior only for the class ofxterm windows, you could specify:

Mwm*XTerm*focusAutoRaise: false

Of course, suppressing f ocusAutoRaise with pointer focus is just our preference. You

may want to experiment a while to see how you like working with it.

Setting the Focus Policy

The most common resource users will probably want to set controls mwm's keyboard focus

policy. By default, mwm has explicit (or click-to-type) focus, which is set using the follow-
ing resource:

Mwm*keyboardFocusPolicy: explicit

To change the keyboard focus policy from explicit to pointer focus (that is, focus follows the

movement of the pointer), enter the following line in your Xresources file:

Mwm*keyboardFocusPolicy: pointer

The OSF/Motif Window Manager 625

Using an Icon Box

One of the most interesting (and desirable) features mwm can provide is a window in which

icons can be organized on the display. This window is known as an icon box, and is pictured

in Figure C-15 below.

Figure C-15. An icon box

As we'll see, in addition to organizing icons neatly on the display, the icon box also provides

a few window manipulation functions.

You can set up mwm to provide an icon box automatically by specifying the following

resource in your ^resources file:

Mwm*useIconBox: true

If this resource is included in your ̂ resources file (and the resources have been loaded as

described in Chapter 9, Setting Resources'), mwm will provide an icon box when it is started

(or restarted). Other resources can be used to customize the size, appearance and location of

the icon box, as well as the window's title. By default, the icon box is six icons wide by one

icon high (the size of individual icons depends on other mwm resources) and is located in the

lower left hand corner of the display.

The horizontal and vertical scrollbars within the icon box suggest a significant, albeit non-

obvious, feature. Icons can extend beyond the visible bounds of the icon box. If more than

six icons are present in the default size box, you can view them using the scrollbars. (See

Chapter 4, The xterm Terminal Emulator, for instructions on using scrollbars.) Keep in mind

that if icons do extend beyond the visible bounds of the box, the appearance of the scrollbars

will indicate it.

The presence of an icon box changes the way icons are used on the display. If you are using

mwm without an icon box, only those windows that have been iconified are represented by

icons on the display. If you are using mwm with an icon box, all windows on the display are

represented by icons that are stored in the box, whether or not the windows are in an iconfied

state.

626

X Window System User's Guide

When a client window is started, the window appears on the display and a corresponding

icon appears in the icon box. However, an icon that represents a window currently visible on

the display has a different appearance than an actual icon (that is, an iconified window). An

icon corresponding to a window currently on the display appears flatter and less defined than

the image of an iconified window. The former probably has fewer lines in its outer border. If

you set up mwm to use an icon box, the differing appearance of these two types of icons

should be obvious.

Somewhat similar to a menu item in a lighter typeface, the flatter, less defined icon suggests

that it is not available to be chosen. In a sense, this is true. Since the flat icon is not an iconi-
fied window, but merely an image, it is not available to be converted back to a window. The

icon box in Figure C-15 contains two iconified windows (xclock and the first xterrri) and four

icons representing windows currently visible on the display.

You can perform some manipulations by clicking on icons in the icon box. If you double

click on an iconified window using the first pointer button, the icon is converted back to a

window. If you double click on an icon representing an active window on the display, the

corresponding window is raised to the front of the display.

However, an icon box limits the way you can work with the Window Menu. (It also changes

one of the menu's options.) If you are using an icon box, you cannot display the Window

Menu from an individual icon and manipulate that icon.* Instead, when you display the

menu from the icon box, the menu commands apply to the box itself (which is actually a win-
dow). You can display the menu from the icon box using any of the methods described in the

section "Manipulating Windows Using the Window Menu" earlier in this appendix. For

example, if you use the keyboard shortcut Meta-space, the menu is displayed above the Win-
dow Menu command button in the upper left hand corner of the icon box frame.

When displayed from the icon box, the Window Menu Close item is replaced by an item

called Packlcons (mnemonic "p", accelerator Alt+F12f). Packlcons rearranges the icons in

the box to fill in empty slots. This is useful when icons are removed from the box or the box

is resized.

When you remove a window, the corresponding icon is removed from the box, leaving an

empty slot. Packlcons will move any icons that are to the right of the slot one space to the

left to fill the hole. If you resize the icon box, Packlcons will arrange the icons to fit the new

window in an optimal way. For instance, say we resize the icon box in Figure C-15 so that it

is only three icons wide, but twice as high, as in Figure C-16. The first three icons from the

box appear; the second three are obscured, ft

*mwm is documented to display the Window Menu from an icon if you press the third pointer button. However, this

does not seem to work according to the specifications. The 1.1 version of mwm, scheduled for release in June of

1990, may provide this functionality.

tObviously, if your keyboard has only ten function keys, you cannot use the Alt+F12 accelerator.

tfWhen you resize the icon box, you'll notice the resize action has a tendency to jump the width or height of an icon

at a time. The box must be resized exactly to fit a number of icons wide and a number high, though there are no ob-
vious limitations as to the numbers. Basically, you can have an icon box of any size, even one icon high and wid

and display the other icons using the scrollbars.

The OSF/Motif Window Manager 627

Figure C-16. In the resized icon box, only three icons are visible

Notice the horizontal scrollbar at the bottom of the window, indicating that the other three

icons are still to the right of these and thus not viewable in the resized box. If you place the

pointer on the scrollbar, hold down the first button and drag the scrollbar to the right, the hid-
den icons will be revealed.

In order to rearrange the icons to better fill the new shape box, use the Packlcons menu item.

Figure C-17 shows the icon box after you've selected Packlcons.

Figure C-17. Packlcons menu item rearranges icons in resized box

628 X Window System User's Guide

If you want to reorganize icons in the box yourself, without Packlcons, this is also possible.

You can actually move icons into adjacent empty slots using the pointer. Just hold down the

first pointer button on the icon and drag it into the next slot. If you first make the icon box

larger, so that there are several empty spaces, you'll find you can radically reorganize icons.

Once you've arranged them as you like, you resize the box to fit the icons-or perhaps make

it even smaller and view the obscured icons using the scrollbars.

7770 OSF/Motif Window Manager 629

D

Standard Cursors

This appendix shows the standard cursor images that can be used by X

programs.

D

Standard Cursors

Table D-1 lists the cursors available in the standard distribution of X from MIT; the cursor

shapes themselves are pictured in Figure D-1. The cursor shapes in the standard distribution

are the same in Release 3 and Release 4.

To specify a cursor as an argument to a command line option, as the value of a resource vari-
able, etc., strip the xc_ prefix from the symbol name. For example, to specify the

XC_sailboat cursor as the xterm pointer, you could enter the command:

% xt«nn -xxm 'xterm*pointerShape: sailboat'

Each cursor has an associated numeric value (to the right of the symbol name in the table).

You may notice that the values skip the odd numbers. Each cursor is actually comprised of

two font characters: the character that defines the shape (pictured in Figure D-1), and a mask

character (not shown) that sets the cursor shape off from the root (or other) window. (More

precisely, the mask selects which pixels in the screen around the cursor are disturbed by the

cursor.) The mask is generally the same shape as the character it underlies, but is one pixel

wider in all directions.

To get an idea of what masks look like, display the entire cursor font using the command:

% xfd -fn cursor

Standard Cursors 633

Table D-1. Standard Cursor Symbols

Symbol Value Symbol Value

XC_X_cursor 0 XC_ll_angle 76

XC_arrow XC_lr_angle

XC_based_arrow_down 4 XC_man 80

XC_based_arrow_up 6 XC_middlebutton 82

XCJboat XC_mouse 84

XC_bogosity 10 XC__pencil 86

XC_bottom_left_corner 12 XC_pirate 88

XC_bottom_right_corner 14 XC_plus 90

XC_bottom_side 16 XC_question_arrow 92

XC_bottom_tee 18 XC_right_ptr 94

XC_box_spiral 20 XC_right_side 96

XC_center_ptr XC_right_tee 98

XC_circle 24 XC_rightbutton 100

XC_clock 26 XC_rtl_logo 102

XC_coffee_mug 28 XC_sailboat 104

XC_cross 30 XC_sb_down_arrow 106

XC_cross_reverse 32 XC_sb_h_double_arrow 108

XC_crosshair 34 XC_sb_left_arrow 110

XC_diamond_cross 36 XC_sb_right_arrow 112

XC_dot 38 XC_sb_up_arrow 114

XC_dotbox 40 XC_sb_v_double_arrow 116

XC_double_arrow 42 XC_shuttle 118

XC_draft_large 44 XC_sizing 120

XC_draft_small 46 XC_spider 122

XC_draped_box 48 XC_spraycan 124

XC_exchange 50 XC_star 126

XC_fleur 52 XC_target 128

XC_gobbler 54 XC_tcross 130

XC_gumby 56 XC_top_left_arrow 132

XC_handl 58 XC_top_left_corner 134

XC_hand2 60 XC_top_right_corner 136

XC_heart 62 XC_top_side 138

XC_icon 64 XC_top_tee 140

XC_iron_cross 66 XC_trek 142

XC_left_jptr 68 XC_ul_angle 144

XC_left_side 70 XC_umbrella 146

XC_left_tee 72 XC_ur_angle 148

XC leftbutton 74 XC_watch 150

XC xterm 152

634 X Window System User's Guide

Hh m

K-

A

4

O T

Figure D-1. The Standard Cursors

Standard Cursors 635

E

Release 3 and 4 Standard Fonts

This appendix shows the standard display fonts available in Release 4 of the

MIT X distribution. The images contained in this appendix are window

dumps created with our own program, called xshowfonts, the code for which

is included.

E

Release 3 and 4 Standard Fonts

This appendix includes pictures of some representative fonts from the standard X distribution

in Releases 3 and 4. Not every font may be supported by particular server vendors, and some

vendors may supplement the set.

The standard Release 3 and 4 fonts are stored in three directories:

Directory Contents

lusrlliblXl 1 Ifontslmisc Six fixed-width fonts (also available in Release 2),

the cursor font, other miscellaneous fonts.

lusrlliblXl 1 /fonts/75 dpi Fixed- and variable-width fonts, 75 dots per inch.

lusrlliblXl 1 /fonts/100dpi Fixed- and variable-width fonts, 100 dots per inch.

Tables E-l through E-3 list the fonts in each of the three Release 4 font directories. Tables

E-4 through E-6 list the fonts in each of the three Release 3 font directories. The first column

lists the name of the file in which the font is stored (without the .snf extension); the second

column lists the actual font name. See Chapter 5, Font Specification, for information about

font naming conventions.

PICTURES of the different font families supplied in the MIT XI1 distribution appear on sub-
sequent pages. We show just the fonts in the 75dpi directory. The 100dpi directory contains

the same fonts stored in the 75dpi directory, but for 100 dots per inch monitors. Keep in

mind that all of the fonts in the 75dpi and 100dpi directories are available in 8,10,12,14,18

and 24-point sizes. Each page shows fonts of various sizes, weights, and styles. We include

the source for xshowfonts.c, the program we wrote to make these displays, at the end of the

chapter.* We also show you, using xfd, one example of each of the unique character sets

available.

All of the characters in each font are shown actual size, as they would appear on a 900 x

1180 pixel, 10" x 13.5" screen (Sun). On a screen with different pixel density, these fonts

would appear a different size.

*If you don't want to type this program in, you can obtain the source from uuneLuu.net via anonymous ftp or uucp.

See the Preface for more information.

Release 3 and 4 Standard Fonts 639

Fonts that begin with many blank characters are shown with most leading blanks removed.

Therefore, you can't always get the character number of each cell in the font by counting

from the first cell we have shown. Use jfd to quickly determine the code for a particular cell.

Table E-1. Fonts in the misc Directory, Release 4

Filename Font name

7xl3B.snf -misc-fixed-bold-r-normal-13- 120-75-75-c-70-iso8859-1

8xl3B.snf -misc-fixed-bold-r-normal -13-120-75-75-c-80-iso8859-l

9xl5B.snf -misc-fixed-bold-r-normal - 15- 140-75-75-c-90-iso8859-1

6xl3B.snf -misc-fixed-bold-r-semicondensed -13-120-75-75-c-60-iso8859-l

6xl0.snf -misc-fixed-medium-r-normal - 10-100-75-75-c-60-iso8859-l

7xl3.snf -misc-fixed-medium-r-normal-13- 120-75-75-c-70-iso8859-1

8xl3.snf -misc-fixed-medium-r-normal-13- 120-75-75-c-80-iso8859-1

k!4.snf -misc-fixed-medium-r-normal-14- 130-75-75-c- 140-jisx0208.1983-0

7xl4.snf -misc-fixed-medium-r-normal -14- 130-75-75-c-70-iso8859-1

7xl4rk.snf -misc-fixed-medium-r-normal-14-130-75-75-c-70-jisx0201.1976-0

9xl5.snf -misc-fixed-medium-r-normal-15- 140-75-75-c-90-iso8859-1

10x20.snf -misc-fixed-medium-r-normal -20-200-75-75-c- 100-iso8859-1

SxS.snf -misc-fixed-medium-r-normal-8-80-75-75-c-50-iso8859-l

6x9.snf -misc-fixed-medium-r-normal -9-90-75-75-c-60-iso8859-1

6xl2.snf -misc-fixed-medium-r-semicondensed -12-110-75-75-c-60-iso8859-l

6x13.snf -misc-fixed-medium-r-semicondensed -13- 120-75-75-c-60-iso8859-1

clB6x!0.snf -schumacher-clean-bold-r-normal - 10-100-75-75-c-60-iso8859-l

clBSxlO.snf -schumacher-clean-bold-r-normal -10- 100-75-75-c-80-iso8859-1

clB6x!2.snf -schumacher-clean-bold-r-normal - 12-120-75-75-c-60-iso8859-l

clB8x!2.snf -schumacher-clean-bold-r-normal - 12-120-75-75-c-80-iso8859-l

clB8x!3.snf -schumacher-clean-bold-r-normal - 13-130-75-75-c-80-iso8859-l

c!B8x!4.snf -schumacher-clean-bold-r-normal -14- 140-75-75-c-80-iso8859-1

clB9x!5.snf -schumacher-clean-bold-r-normal -15-150-75-75-c-90-iso8859-1

clB8x!6.snf -schumacher-clean-bold-r-normal -16-160-75-75-c-80-iso8859-l

clB8x8.snf -schumacher-clean-bold-r-normal -8-80-75-75-c-80-iso8859-1

clI6x!2.snf -schumacher-clean-medium-i-normal - 12-120-75-75-c-60-iso8859-l

clI8x8.snf -schumacher-clean-medium-i-normal -8-80-75-75-c-80-iso8859-1

clRSxlO.snf -schumacher-clean-medium-r-normal - 10-100-75-75-c-50-iso8859-l

clR6x!0.snf -schumacher-clean-medium-r-normal - 10-100-75-75-c-60-iso8859-l

clR7x!0.snf -schumacher-clean-medium-r-normal - 10-100-75-75-c-70-iso8859-l

clRSxlO.snf -schumacher-clean-medium-r-normal -10- 100-75-75-c-80-iso8859-1

c!R6x!2.snf -schumacher-clean-medium-r-normal - 12-120-75-75-c-60-iso8859-l

c!R7x!2.snf -schumacher-clean-medium-r-normal-12-120-75-75-c-70-iso8859-l

c!R8x!2.snf -schumacher-clean-medium-r-normal-12-120-75-75-c-80-iso8859-1

clR6x!3.snf -schumacher-clean-medium-r-normal - 13-130-75-75-c-60-iso8859-l

c!R8x!3.snf -schumacher-clean-medium-r-normal - 13-130-75-75-c-80-iso8859-l

c!R7x!4.snf -schumacher-clean-medium-r-normal - 14-140-75-75-c-70-iso8859-l

clR8x!4.snf -schumacher-clean-medium-r-normal -14- 140-75-75-c-80-iso8859-1

c!R9x!5.snf -schumacher-clean-medium-r-normal - 15-150-75-75-c-90-iso8859-l

clR8x!6.snf -schumacher-clean-medium-r-normal - 16-160-75-75-c-80-iso8859-l

640 X Window System User's Guide

Table E-1. Fonts in the misc Directory, Release 4 (continued)

Filename Font name

clR4x6.snf -schumacher-clean-medium-r-nonnal -6-60-75-75-c-40-iso8859-1

clR5x6.snf -schumacher-clean-medium-r-nonnal -6-60-75-75-c-50-iso8859-1

clR6x6.snf -schumacher-clean-medium-r-normal -6-60-75-75-c-60-iso8859-1

clR5x8.snf -schumacher-clean-medium-r-normal -8-80-75-75-c-50-iso8859-1

clR6x8.snf -schumacher-clean-medium-r-nonnal -8-80-75-75-c-60-iso8859-1

clR7x8.snf -schumacher-clean-medium-r-normal -8-80-75-75-c-70-iso8859-1

clRSxS.snf -schumacher-clean-medium-r-noimal-8-80-75-75-c-80-iso8859-l

8xl6.snf -sony-fixed-medium-r-normal-16-120-100- 100-c-80-iso8859-l

8xl6rk.snf -sony-fixed-medium-r-normal-16-120-100-100-c-80-jisx0201.1976-0

12x24.snf -sony-fixed-medium-r-normal-24-170-100- 100-c-120-iso8859-1

12x24rk.snf -sony-fixed-medium -r-normal -24-170-100-100-c-120-jisx0201.1976-0

olcursor.snf -sun-open look cursor 12-120-75-75-p-160-sunolcursor-l

olgllO.snf -sun-open look glyph 10-100-75-75-p-101-sunolglyph-l

olgl!2.snf -sun-open look glyph 12-120-75-75-p-113-sunolglyph-l

olgll4.snf -sun-open look glyph 14-140-75-75-p-128-sunolglyph-l

olgl!9.snf -sun-open look glyph 19-190-75-75-p-154-sunolglyph-l

cursor.snf cursor

deccurs.snf decw$cursor

decsess.snf decw$session

nU2.snf ni!2

Table E-2. Fonts in the 75dpi Directory, Release 4

Filename Font name

courBOlO.snf -adobe-courier-bold-o-normal - 10- 100-75-75-m-60-iso8859- 1

courBO12.snf -adobe-courier-bold-o-normal - 12- 120-75-75-m-70-iso8859- 1

courBO14.snf -adobe-courier-bold-o-normal - 14- 140-75-75-m-90-iso8859- 1

courBO18.snf -adobe-courier-bold-o-normal - 18-180-75-75-m-l 10-iso8859-l

courBO24.snf -adobe-courier-bold-o-normal - 24-240-75-75-m- 1 50-iso8859- 1

courBOOS.snf -adobe-courier-bold-o-normal - 8-80-75-75-m-50-iso8859- 1

courBlO.snf -adobe-courier-bold-r-normal - 10-100-75-75-m-60-iso8859-l

courB12.snf -adobe-courier-bold-r-normal - 12- 120-75-75-m-70-iso8859- 1

courB 14.snf -adobe-courier-bold-r-normal - 14- 140-75-75-m-90-iso8859- 1

courBlS.snf -adobe-courier-bold-r-normal - 18-180-75-75-m-l 10-iso8859-l

courB24.snf -adobe-courier-bold-r-normal- 24-240-75-75-m-150-iso8859-l

courBOS.snf -adobe-courier-bold-r-normal - 8-80-75-75-m-50-iso8859- 1

courOlO.snf -adobe-courier-medium -o-normal - 10-100-75-75-m-60-iso8859-l

courO12.snf -adobe-courier-medium -o-normal - 12-120-75-75-m-70-iso8859-l

courO14.snf -adobe-courier-medium -o-normal - 14- 140-75-75-m-90-iso8859- 1

courOlS.snf -adobe-courier-medium-o-normal - 18-180-75-75-m-l 10-iso8859-l

courO24.snf -adobe-courier-medium -o-normal - 24-240-75-75-m- 1 50-iso8859- 1

Release 3 and 4 Standard Fonts 641

Table E-2. Fonts in the 75dpi Directory, Release 4 (continued)

Filename Font name

courOOS.snf -adobe-courier-medium-o-normal-8-80-75-75-m-50-iso8859-l

courRlO.snf -adobe-courier-medium-r-normal -10- 100-75-75-m-60-iso8859-1

courR12.snf -adobe-courier-medium-r-normal - 12-120-75-75-m-70-iso8859-l

courR14.snf -adobe-courier-medium-r-normal-14- 140-75-75-m-90-iso8859-1

courRlS.snf -adobe-courier-medium-r-normal - 18-180-75-75-m-l 10-iso8859-l

courR24.snf -adobe-courier-medium-r-normal-24-240-75-75-m-150-iso8859-1

courROS.snf -adobe-courier-medium-r-normal -8-80-75-75-m-50-iso8859-1

helvBOlO.snf -adobe-helvetica-bold-o-normal - 10- 100-75-75-p-60-iso8859-1

helvBO12.snf -adobe-helvetica-bold-o-normal - 12- 120-75-75-p-69-iso8859-1

helvBO14.snf -adobe-helvetica-bold-o-normal - 14-140-75-75-p-82-iso8859-l

helvBOlS.snf -adobe-helvetica-bold-o-normal - 18- 180-75-75-p- 104-iso8859-1

helvBO24.snf -adobe-helvetica-bold-o-normal - 24-240-75-75-p-138-iso8859-1

helvBOOS.snf -adobe-helvetica-bold-o-normal- 8-80-75-75-p-50-iso8859-l

helvBlO.snf -adobe-helvetica-bold-r-normal - 10- 100-75-75-p-60-iso8859-1

helvB12.snf -adobe-helvetica-bold-r-normal - 12-120-75-75-p-70-iso8859-l

helvB14.snf -adobe-helvetica-bold-r-normal -14- 140-75-75-p-82-iso8859-1

helvBlS.snf -adobe-helvetica-bold-r-normal - 18- 180-75-75-p-103-iso8859-1

helvB24.snf -adobe-helvetica-bold-r-normal -24-240-75-75-p-138-iso8859-1

helvBOS.snf -adobe-helvetica-bold-r-normal-8-80-75-75-p-50-iso8859-l

helvOlO.snf -adobe-helvetica-medium-o-normal - 10-100-75-75-p-57-iso8859-l

helvO12.snf -adobe-helvetica-medium-o-normal - 12-120-75-75-p-67-iso8859-l

helvO14.snf -adobe-helvetica-medium-o-normal-14-140-75-75-p-78-iso8859-l

helvOlS.snf -adobe-helvetica-medium-o-normal - 18-180-75-75-p-98-iso8859-l

helvO24.snf -adobe-helvetica-medium-o-normal -24-240-75-75-p-130-iso8859-1

helvOOS.snf -adobe-helvetica-medium-o-normal-8-80-75-75-p-47-iso8859-l

helvRlO.snf -adobe-helvetica-medium-r-normal - 10-100-75-75-p-56-iso8859-l

helvR12.snf -adobe-helvetica-medium-r-normal - 12-120-75-75-p-67-iso8859-l

helvR14.snf -adobe-helvetica-medium-r-normal -14- 140-75-75-p-77-iso8859-1

helvRlS.snf -adobe-helvetica-medium-r-normal -18- 180-75-75-p-98-iso8859-1

helvR24.snf -adobe-helvetica-medium-r-normal-24-240-75-75-p-130-iso8859-l

helvROS.snf -adobe-helvetica-medium-r-normal-8-80-75-75-p-46-iso8859-l

ncenBHO.snf -adobe-new century schoolbook-bold-i-normal - 10-100-75-75-p-66-iso8859-l

ncenBI12.snf -adobe-new century schoolbook-bold-i-normal-12-120-75-75-p-76-iso8859-l

ncenBI14.snf -adobe-new century schoolbook-bold-i-normal -14-140-75-75-p-88-iso8859-l

ncenBI18.snf -adobe-new century schoolbook-bold-i-normal-18-180-75-75-p-lll-iso8859-l

ncenBI24.snf -adobe-new century schoolbook-bold-i-normal-24-240-75-75-p-148-iso8859-l

ncenBIOS.snf -adobe-new century schoolbook-bold-i-normal-8-80-75-75-p-56-iso8859-l

ncenBlO.snf -adobe-new century schoolbook-bold-r-normal - 10-100-75-75-p-66-iso8859-l

ncenB12.snf -adobe-new century schoolbook-bold-r-normal -12-120-75-75-p-77-iso8859-l

ncenB14.snf -adobe-new century schoolbook-bold-r-normal -14-140-75-75-p-87-iso8859-l

ncenBlS.snf -adobe-new century schoolbook-bold-r-normal-18-180-75-75-p-113-iso8859-l

ncenB24.snf -adobe-new century schoolbook-bold-r-normal-24-240-75-75-p-149-iso8859-l

ncenBOS.snf -adobe-new century schoolbook-bold-r-normal-8-80-75-75-p-56-iso8859-l

ncenllO.snf -adobe-new century schoolbook-medium-i-normal-10-100-75-75-p-60-iso8859-l

642 X Window System User's Guide

Table E-2. Fonts in the 75dpi Directory, Release 4 (continued)

Filename Font name

ncenI12.snf -adobe-new century schoolbook-medium-i-normal-12-120-75-75-p-70-iso8859-l

ncenI14.snf -adobe-new century schoolbook-medium-i-normal - 14-140-75-75-p-81-iso8859-l

ncenllS.snf -adobe-new century schoolbook-medium-i-normal-18-180-75-75-p-104-iso8859-l

ncenI24.snf -adobe-new century schoolbook-medium-i-normal-24-240-75-75-p-136-iso8859-l

ncenlOS.snf -adobe-new century schoolbook-medium-i-normal-8-80-75-75-p-50-iso8859-l

ncenRlO.snf -adobe-new century schoolbook-medium-r-normal - 10-100-75-75-p-60-iso8859-l

ncenR12.snf -adobe-new century schoolbook-medium-r-normal-12-120-75-75-p-70-iso8859-l

ncenR14.snf -adobe-new century schoolbook-medium-r-normal-14- 140-75-75-p-82-iso8859-1

ncenR18.snf -adobe-new century schoolbook-medium-r-normal-18-180-75-75-p-103-iso8859-l

ncenR24.snf -adobe-new century schoolbook-medium-r-normal-24-240-75-75-p-137-iso8859-l

ncenROS.snf -adobe-new century schoolbook-medium-r-normal-8-80-75-75-p-50-iso8859-l

symblO.snf -adobe-symbol-medium-r-normal - 10-100-75-75-p-61-adobe-fontspecific

symb!2.snf -adobe-symbol-medium-r-normal -12- 120-75-75-p-74-adobe-fontspecific

symb!4.snf -adobe-symbol-medium-r-normal -14- 140-75-75-p-85-adobe-fontspecific

symblS.snf -adobe-symbol-medium-r-normal-18- 180-75-75-p-107-adobe-fontspecific

symb24.snf -adobe-symbol-medium-r-normal-24-240-75-75-p-142-adobe-fontspecific

symbOS.snf -adobe-symbol-medium-r-normal -8-80-75-75-p-51 -adobe-fontspecific

timBIlO.snf -adobe-times-bold-i-normal-10-100-75-75-p-57-iso8859-l

timBI12.snf -adobe-times-bold-i-normal -12- 120-75-75-p-68-iso8859-1

timBI14.snf -adobe-times-bold-i-normal-14- 140-75-75-p-77-iso8859-1

timBHS.snf -adobe-times-bold-i-normal -18-180-75-75-p-98-iso8859-l

timBI24.snf -adobe-times-bold-i-normal-24-240-75-75-p-128-iso8859-l

timBIOS.snf -adobe-times-bold-i-normal-8-80-75-75-p-47-iso8859-l

timBlO.snf -adobe-times-bold-r-normal - 10-100-75-75-p-57-iso8859-l

timB12.snf -adobe-times-bold-r-normal - 12- 120-75-75-p-67-iso8859-1

UmB14.snf -adobe-times-bold-r-normal -14- 140-75-75-p-77-iso8859-1

timBlS.snf -adobe-times-bold-r-normal - 18- 180-75-75-p-99-iso8859-1

timB24.snf -adobe-times-bold-r-normal - 24-240-75-75-p-132-iso8859-1

timBOS.snf -adobe-times-bold-r-normal -8-80-75-75-p-47-iso8859-1

timllO.snf -adobe-times-medium-i-normal-10- 100-75-75-p-52-iso8859-1

timI12.snf -adobe-times-medium-i-normal -12- 120-75-75-p-63-iso8859-1

timI14.snf -adobe-times-medium-i-normal -14- 140-75-75-p-73-iso8859-1

timllS.snf -adobe-times-medium-i-normal-18- 180-75-75-p-94-iso8859-1

timI24.snf -adobe-times-medium-i-normal-24-240-75-75-p-125-iso8859-l

timlOS.snf -adobe-times-medium-i-normal-8-80-75-75-p-42-iso8859-l

timRlO.snf -adobe-times-medium-r-normal - 10-100-75-75-p-54-iso8859-l

timR12.snf -adobe-times-medium-r-normal - 12-120-75-75-p-64-iso8859-l

timR14.snf -adobe-times-medium-r-normal - 14-140-75-75-p-74-iso8859-l

timRlS.snf -adobe-times-medium-r-normal - 18-180-75-75-p-94-iso8859-l

timR24.snf -adobe-times-medium-r-normal-24-240-75-75-p-124-iso8859-l

timROS.snf -adobe-times-medium-r-normal-8-80-75-75-p-44-iso8859-l

luBISlO.snf -b&h-lucida-bold-i-normal-sans-lO-100-75-75-p-67-iso8859-1

luBIS12.snf -b&h-lucida-bold-i-normal-sans-12-120-75-75-p-79-iso8859-l

luBISH.snf -b&h-lucida-bold-i-normal-sans-14- 140-75-75-p-92-iso8859-1

Release 3 and 4 Standard Fonts 643

Table E-2. Fonts in the 75dpi Directory, Release 4 (continued)

Filename Font name

luBISlS.snf -b&h-lucida-bold-i-normal-sans-18-180-75-75-p-119-iso8859-1

luBIS19.snf -b&h-lucida-bold-i-nonnal-sans-19-190-75-75-p-122-iso8859-l

luBIS24.snf -b&h-lucida-bold-i-normal-sans-24-240-75-75-p-151-iso8859-1

luBISOS.snf -b&h-lucida-bold-i-normal-sans-8-80-75-75-p-49-iso8859-l

luBS10.snf -b&h-lucida-bold-r-normal-sans-10-100-75-75-p-66-iso8859-l

luBS12.snf -b&h-lucida-bold-r-normal-sans-12-120-75-75-p-79-iso8859-l

luBSH.snf -b&h-lucida-bold-r-normal-sans-14- 140-75-75-p-92-iso8859-1

luBSlS.snf -b&h-lucida-bold-r-normal-sans-18-180-75-75-p-120-iso8859-1

luBS19.snf -b&h-lucida-bold-r-normal-sans-19-190-75-75-p-122riso8859-l

luBS24.snf -b&h-lucida-bold-r-normal-sans-24-240-75-75-p-152-iso8859-l

luBS08.snf -b&h-lucida-bold-r-normal-sans-8-80-75-75-p-50-iso8859-l

MSlO.snf -b&h-lucida-medium- -normal-sans-10-100-75-75-p-59-iso8859-l

luIS12.snf -b&h-lucida-medium- -normal-sans-12- 120-75-75-p-7 l-iso8859-1

luIS14.snf -b&h-lucida-medium- -normal-sans-14-140-75-75-p-82-iso8859-l

luISlS.snf -b&h-lucida-medium- -normal-sans-18-180-75-75-p-105-iso8859-l

luIS19.snf -b&h-lucida-medium- -normal-sans-19- 190-75-75-p-108-iso8859-1

luIS24.snf -b&h-lucida-medium- -normal-sans-24-240-75-75-p-136-iso8859-1

luISOS.snf -b&h-lucida-medium- -normal-sans-8-80-75-75-p-45-iso8859-l

luRSlO.snf -b&h-lucida-medium-r-normal-sans-10- 100-75-75-p-58-iso8859-1

luRS12.snf -b&h-lucida-medium-r-normal-sans-12- 120-75-75-p-71 -iso8859-1

luRS14.snf -b&h-lucida-medium-r-normal-sans-14- 140-75-75-p-81 -iso8859-1

luRSlS.snf -b&h-lucida-medium-r-normal-sans-18-180-75-75-p-106-iso8859-1

luRS19.snf -b&h-lucida-medium-r-normal-sans-19-190-75-75-p-108-iso8859-1

luRS24.snf -b&h-lucida-medium-r-normal-sans-24-240-75-75-p-136-iso8859-1

luRSOS.snf -b&h-lucida-medium-r-normal-sans-8-80-75-75-p-45-iso8859-l

lubBHO.snf -b&h-lucidabright-demibold-i-normal -10- 100-75-75-p-59-iso8859-1

lubBI12.snf -b&h-lucidabright-demibold-i-normal -12- 120-75-75-p-72-iso8859-1

lubBIH.snf -b&h-lucidabright-demibold-i-normal -14- 140-75-75-p-84-iso8859-1

lubBHS.snf -b&h-lucidabright-demibold-i-normal - 18- 180-75-75-p-107-iso8859-1

lubBI19.snf -b&h-lucidabright-demibold-i-normal - 19-190-75-75-p-l 14-iso8859-l

lubBI24.snf -b&h-lucidabright-demibold-i-normal -24-240-75-75-p- 143-iso8859-1

lubBIOS.snf -b&h-lucidabright-demibold-i-normal -8-80-75-75-p-48-iso8859-1

lubB10.snf -b&h-lucidabright-demibold-r-normal-10-100-75-75-p-59-iso8859-1

lubB12.snf -b&h-lucidabright-demibold-r-normal - 12-120-75-75-p-71-iso8859-l

lubBH.snf -b&h-lucidabright-demibold-r-normal-14- 140-75-75-p-84-iso8859-1

lubB18.snf -b&h-lucidabright-demibold-r-normal - 18-180-75-75-p-107-iso8859-1

lubB19.snf -b&h-lucidabright-demibold-r-normal - 19-190-75-75-p-l 14-iso8859-l

lubB24.snf -b&h-lucidabright-demibold-r-normal -24-240-75-75-p- 143-iso8859-1

lubBOS.snf -b&h-lucidabright-demibold-r-normal-8-80-75-75-p-47-iso8859-l

lubllO.snf -b&h-lucidabright-medium-i-normal - 10-100-75-75-p-57-iso8859-l

lubI12.snf -b&h-lucidabright-medium-i-normal -12- 120-75-75-p-67-iso8859-1

lubI14.snf -b&h-lucidabright-medium-i-normal-14-140-75-75-p-80-iso8859-l

lubllS.snf -b&h-lucidabright-medium-i-normal -18-180-75-75-p-102-iso8859-l

lubI19.snf -b&h-lucidabright-medium-i-normal -19-190-75-75-p-109-iso8859-l

644 X Window System User's Guide

Table E-2. Fonts in the 75dpi Directory, Release 4 (continued)

Filename Font name

lubI24.snf -b&h-lucidabright-medium-i-normal -24-240-75-75-p-136-iso8859-1

lublOS.snf -b&h-lucidabright-medium-i-nonnal -8-80-75-75-p-45-iso8859-1

lubRlO.snf -b&h-lucidabright-medium-r-normal - 10-100-75-75-p-56-iso8859-1

lubR12.snf -b&h-lucidabright-medium-r-normal -12- 120-75-75-p-68-iso8859-1

lubR14.snf -b&h-lucidabright-medium-r-normal -14- 140-75-75-p-80-iso8859-1

lubRlS.snf -b&h-lucidabright-medium-r-normal - 18-180-75-75-p-103-iso8859-l

lubR19.snf -b&h-lucidabright-medium-r-normal -19- 190-75-75-p- 109-iso8859-1

lubR24.snf -b&h-lucidabright-medium-r-normal-24-240-75-75-p-137-iso8859-l

lubROS.snf -b&h-lucidabright-medium-r-normal-8-80-75-75-p-45-iso8859-l

lutBSlO.snf -b&h-lucidatypewriter-bold-r-normal-sans-10- 100-75-75-m-60-iso8859-1

lutBS12.snf -b&h-lucidatypewriter-bold-r-normal-sans-12-120-75-75-m-70-iso8859-l

lutBS14.snf -b&h-lucidatypewriter-bold-r-normal-sans-14- 140-75-75-m-90-iso8859-1

lutBSlS.snf -b&h-lucidatypewriter-bold-r-normal-sans-18-180-75-75-m-110-iso8859-1

lutBS19.snf -b&h-lucidatypewriter-bold-r-normal-sans-19-190-75-75-m-110-iso8859-l

lutBS24.snf -b&h-lucidatypewriter-bold-r-normal-sans-24-240-75-75-m- 140-iso8859-1

lutBSOS.snf -b&h-lucidatypewriter-bold-r-nonnal-sans-8-80-75-75-m-50-iso8859-l

lutRSlO.snf -b&h-lucidatypewriter-medium-r-normal-sans-10-100-75-75-m-60-iso8859-l

lutRS12.snf -b&h-lucidatypewriter-medium-r-normal-sans-12-120-75-75-m-70-iso8859-l

lutRS14.snf -b&h-lucidatypewriter-medium-r-normal-sans-14- 140-75-75-m-90-iso8859-1

lutRS18.snf -b&h-lucidatypewriter-medium-r-normal-sans-18-180-75-75-m-110-iso8859-1

lutRS19.snf -b&h-lucidatypewriter-medium-r-normal-sans-19-190-75-75-m-110-iso8859-l

lutRS24.snf -b&h-lucidatypewriter-medium-r-normal-sans-24-240-75-75-m- 140-iso8859-1

lutRSOS.snf -b&h-lucidatypewriter-medium-r-normal-sans-8-80-75-75-m-50-iso8859-l

charBHO.snf -bitstream-charter-bold-i-normal-10-100-75-75-p-62-iso8859-l

charBI12.snf -bitstream-charter-bold-i-normal-12-120-75-75-p-74-iso8859-l

charBI14.snf -bitstream-charter-bold-i-normal -15- 140-75-75-p-93-iso8859-1

charBHS.snf -bitstream-charter-bold-i-normal -19-180-75-75-p-l 17-iso8859-l

charBI24.snf -bitstream-charter-bold-i-normal-25-240-75-75-p-154-iso8859-l

charBIOS.snf -bitstream-charter-bold-i-normal-8-80-75-75-p-50-iso8859-l

charBlO.snf -bitstream-charter-bold-r-normal -10- 100-75-75-p-63-iso8859-1

charB12.snf -bitstream-charter-bold-r-normal-12- 120-75-75-p-75-iso8859-1

charB14.snf -bitstream-charter-bold-r-normal - 15- 140-75-75-p-94-iso8859-1

charBlS.snf -bitstream-charter-bold-r-normal-19-180-75-75-p-l 19-iso8859-l

charB24.snf -bitstream-charter-bold-r-normal -25-240-75-75-p-157-iso8859-1

charBOS.snf -bitstream-charter-bold-r-normal-8-80-75-75-p-50-iso8859-l

charllO.snf -bitstream-charter-medium-i-normal - 10-100-75-75-p-55-iso8859-l

charI12.snf -bitstream-charter-medium-i-normal-12-120-75-75-p-65-iso8859-l

charI14.snf -bitstream-charter-medium-i-normal - 15-140-75-75-p-82-iso8859-l

charllS.snf -bitstream-charter-medium-i-normal-19- 180-75-75-p- 103-iso8859-1

charI24.snf -bitstream-charter-medium-i-normal -25-240-75-75-p-136-iso8859-1

charlOS.snf -bitstream-charter-medium-i-nonnal-8-80-75-75-p-44-iso8859-l

charRlO.snf -bitstream-charter-medium-r-normal - 10-100-75-75-p-56-iso8859-l

charR12.snf -bitstream-charter-medium-r-normal-12-120-75-75-p-67-iso8859-l

charR14.snf -bitstream-charter-medium-r-normal - 15-140-75-75-p-84-iso8859-l

Release 3 and 4 Standard Fonts 645

Table E-2. Fonts in the 75dpi Directory, Release 4 (continued)

Filename Font name

charRlS.snf -bitstream-charter-medium-r-normal - 19-180-75-75-p-106-iso8859-l

charR24.snf -bitstream-charter-medium-r-normal -25-240-75-75-p-139-iso8859-1

charROS.snf -bitstream-charter-medium-r-normal-8-80-75-75-p-45-iso8859-l

techB14.snf -dec-terminal-bold-r-normal - 14-140-75-75-c-80-dec-dectech

termB14.snf -dec-terminal-bold-r-normal - 14-140-75-75-c-80-iso8859-l

tech!4.snf -dec-terminal-medium-r-normal -14- 140-75-75-c-80-dec-dectech

term!4.snf -dec-terminal-medium-r-normal -14- 140-75-75-c-80-iso8859-1

Table E-3. Fonts in the 100dpi Directory, Release 4

Filename Font name

courBOOS.snf -adobe-courier-bold-o-normal - 1 l-80-100-100-m-60-iso8859-l

courBOlO.snf -adobe-courier-bold-o-normal - 14-100-1 00- 100-m-90-iso8859- 1

courBO12.snf -adobe-courier-bold-o-normal - 1 7- 120- 1 00- 1 00-m- 1 00-iso8859- 1

courBO14.snf -adobe-courier-bold-o-normal - 20- 140- 100-1 00-m- 1 10-iso8859-l

courBO18.snf -adobe-courier-bold-o-normal -25- 1 80- 100- 100-m- 1 50-iso8859- 1

courBO24.snf -adobe-courier-bold-o-normal -34-240- 100- 100-m-200-iso8859- 1

courBOS.snf -adobe-courier-bold-r-normal - 1 1-80- 100-1 00-m-60-iso8859-l

courBlO.snf -adobe-courier-bold-r-normal - 14-100-1 00- 100-m-90-iso8859- 1

courB12.snf -adobe-courier-bold-r-normal - 17- 120- 100- 100-m- 100-iso8859- 1

courB14.snf -adobe-courier-bold-r-normal - 20- 140- 100-1 00-m- 1 10-iso8859-l

courBlS.snf -adobe-courier-bold-r-normal -25-180- 1 00- 100-m- 1 50-iso8859- 1

courB24.snf -adobe-courier-bold-r-normal- 34-240-100-100-m-200-iso8859-l

courOOS.snf -adobe-courier-medium-o-normal - 1 1-80- 100-1 00-m-60-iso8859-l

courOlO.snf -adobe-courier-medium-o-normal - 14-100-100-100-m-90-iso8859-l

courO12.snf -adobe-courier-medium-o-normal - 17- 120- 100- 100-m- 100-iso8859- 1

courO14.snf -adobe-courier-medium-o-normal - 20- 140- 100-1 00-m- 1 10-iso8859-l

courOlS.snf -adobe-courier-medium-o-normal -25- 1 80- 1 00- 100-m- 1 50-iso8859- 1

courO24.snf -adobe-courier-medium-o-normal -34-240- 100- 100-m-200-iso8859- 1

courROS.snf -adobe-courier-medium-r-normal - 1 1-80- 100-1 00-m-60-iso8859-l

courRlO.snf -adobe-courier-medium-r-normal - 14-100-100-100-m-90-iso8859-l

courR12.snf -adobe-courier-medium-r-normal - 1 7- 120- 100- 100-m- 1 00-iso8859- 1

courR14.snf -adobe-courier-medium-r-normal - 20- 140- 100-1 00-m- 1 10-iso8859-l

courRlS.snf -adobe-courier-medium-r-normal - 25-180- 1 00- 100-m- 1 50-iso8859- 1

courR24.snf -adobe-courier-medium-r-normal -34-240- 100- 100-m-200-iso8859- 1

helvBOOS.snf -adobe-helvetica-bold-o-normal - 1 l-80-100-100-p-60-iso8859-l

helvBOlO.snf -adobe-helvetica-bold-o-normal - 14-100-1 00- 100-p-82-iso8859- 1

helvBO12.snf -adobe-helvetica-bold-o-normal - 17- 120- 100- 100-p-92-iso8859- 1

helvBO14.snf -adobe-helvetica-bold-o-normal -20- 140- 1 00- 1 00-p- 1 03-iso8859- 1

helvBOlS.snf -adobe-helvetica-bold-o-normal -25- 180- 100- 100-p- 1 38-iso8859- 1

helvBO24.snf -adobe-helvetica-bold-o-normal -34-240- 100- 100-p- 1 82-iso8859- 1

646 X Window System User's Guide

Table E-3. Fonts in the 100dpi Directory, Release 4 (continued)

Filename Font name

helvBOS.snf -adobe-helvetica-bold-r-normal - 1 l-80-100-100-p-60-iso8859-l

helvBlO.snf -adobe-helvetica-bold-r-normal -14-100-100- 100-p-82-iso8859-1

helvB12.snf -adobe-helvetica-bold-r-normal -17-120-100- 100-p-92-iso8859-1

helvB14.snf -adobe-helvetica-bold-r-normal -20-140-100- 100-p- 105-iso8859-1

helvBlS.snf -adobe-helvetica-bold-r-normal -25-180-100-100-p-13 8-iso8859-1

helvB24.snf -adobe-helvetica-bold-r-normal -34-240-100- 100-p-182-iso8859-1

helvOOS.snf -adobe-helvetica-medium-o-normal -1 l-80-100-100-p-57-iso8859-l

helvOlO.snf -adobe-helvetica-medium-o-normal - 14-100-100-100-p-78-iso8859-1

helvO12.snf -adobe-helvetica-medium-o-normal -17-120-100-100-p-88-iso8859-1

helvO14.snf -adobe-helvetica-medium-o-normal -20-140-100-100-p-98-iso8859-1

helvOlS.snf -adobe-helvetica-medium-o-normal -25-180-100- 100-p-130-iso8859-1

helvO24.snf -adobe-helvetica-medium-o-normal-34-240-100-100-p-176-iso8859-1

helvROS.snf -adobe-helvetica-medium-r-normal -11-80-100-100-p-56-iso8859-l

helvRlO.snf -adobe-helvetica-medium-r-normal-14-100-100-100-p-76-iso8859-l

helvR12.snf -adobe-helvetica-medium-r-normal - 17-120-100-100-p-88-iso8859-l

helvR14.snf -adobe-helvetica-medium-r-normal-20-140-100-100-p-100-iso8859-1

helvRlS.snf -adobe-helvetica-medium-r-normal -25 -180-100-100-p-130-iso8859-1

helvR24.snf -adobe-helvetica-medium-r-normal -34-240-100- 100-p- 176-iso8859-1

ncenBI08.snf -adobe-new century schoolbook-bold-i-normal - ll-80-100-100-p-66-iso8859-l

ncenBHO.snf -adobe-new century schoolbook-bold-i-normal - 14-100-100-100-p-88-iso8859-l

ncenBI12.snf -adobe-new century schoolbook-bold-i-normal - 17-120-100-100-p-99-iso8859-l

ncenBI14.snf -adobe-new century schoolbook-bold-i-normal-20-140-100-100-p-Ill-iso8859-l

ncenBHS.snf -adobe-new century schoolbook-bold-i-normal-25-180-100-100-p-148-iso8859-l

ncenBI24.snf -adobe-new century schoolbook-bold-i-normal-34-240-100-100-p-193-iso8859-l

ncenBOS.snf -adobe-new century schoolbook-bold-r-normal - ll-80-100-100-p-66-iso8859-l

ncenBlO.snf -adobe-new century schoolbook-bold-r-normal - 14-100-100-100-p-87-iso8859-l

ncenB12.snf -adobe-new century schoolbook-bold-r-normal - 17-120-100-100-p-99-iso8859-l

ncenB14.snf -adobe-new century schoolbook-bold-r-normal-20-140-100-100-p-113-iso8859-l

ncenB18.snf -adobe-new century schoolbook-bold-r-normal- 25-180-100-100-p-149-iso8859-l

ncenB24.snf -adobe-new century schoolbook-bold-r-normal-34-240-100-100-p-193-iso8859-l

ncenlOS.snf -adobe-new century schoolbook-medium-i-normal-Il-80-100-100-p-60-iso8859-l

ncenllO.snf -adobe-new century schoolbook-medium-i-normal-14-100-100-100-p-81-iso8859-l

ncenI12.snf -adobe-new century schoolbook-medium-i-normal - 17-120-100-100-p-92-iso8859-l

ncenI14.snf -adobe-new century schoolbook-medium-i-normal-20-140-100-100-p-104-iso8859-l

ncenllS.snf -adobe-new century schoolbook-medium-i-normal-25-180-100-100-p-136-iso8859-l

ncenI24.snf -adobe-new century schoolbook-medium-i-normal -34-240-100-100-p-182-iso8859-l

ncenROS.snf -adobe-new century schoolbook-medium-r-normal - Il-80-100-100-p-60-iso8859-l

ncenRlO.snf -adobe-new century schoolbook-medium-r-normal-14-100-100-100-p-82-iso8859-l

ncenR12.snf -adobe-new century schoolbook-medium-r-normal-17-120-100-100-p-91-iso8859-l

ncenR14.snf -adobe-new century schoolbook-medium-r-normal-20-140-100-100-p-103-iso8859-l

ncenRlS.snf -adobe-new century schoolbook-medium-r-normal-25-180-100-100-p-136-iso8859-l

ncenR24.snf -adobe-new century schoolbook-medium-r-normal-34-240-100- 100-p-181 -iso8859-1

symbOS.snf -adobe-symbol-medium-r-normal - 11-80-100-1 OO-p-61-adobe-fontspecific

symblO.snf -adobe-symbol-medium-r-normal -14-100-100- lOO-p-85-adobe-fontspecific

Release 3 and 4 Standard Fonts 647

Table E-3. Fonts in the 100dpi Directory, Release 4 (continued)

Filename Font name

symb!2.snf -adobe-symbol-medium-r-normal -17-120-100- 100-p-95-adobe-fontspecific

symb!4.snf -adobe-symbol-medium-r-normal -20-140-100- 100-p- 107-adobe-fontspecific

symblS.snf -adobe-symbol-medium-r-normal -25-180-100- 100-p- 142-adobe-fontspecific

symb24.snf -adobe-symbol-medium-r-normal-34-240-100- 100-p-191-adobe-fontspecific

timBI08.snf -adobe-times-bold-i-normal-11-80-100-100-p-57-iso8859-l

timBHO.snf -adobe-times-bold-i-normal-14-100-100- 100-p-77-iso8859-1

timBI12.snf -adobe-times-bold-i-normal-17-120-100- 100-p-86-iso8859-1

timBI14.snf -adobe-times-bold-i-normal -20-140-100- 100-p-98-iso8859-1

timBHS.snf -adobe-times-bold-i-normal-25-180-100-100-p-128-iso8859-1

timBI24.snf -adobe-times-bold-i-normal -34-240-100-100-p-170-iso8859-1

timBOS.snf -adobe-times-bold-r-normal - ll-80-100-100-p-57-iso8859-l

timBlO.snf -adobe-times-bold-r-normal-14-100-100- 100-p-76-iso8859-1

timB12.snf -adobe-times-bold-r-normal - 17-120-100- 100-p-88-iso8859-1

timB14.snf -adobe-times-bold-r-normal -20-140-100- 100-p- 100-iso8859-1

timB18.snf -adobe-times-bold-r-normal-25-180-100-100-p-132-iso8859-1

timB24.snf -adobe-times-bold-r-normal-34-240-100-100-p-177-iso8859-1

timlOS.snf -adobe-times-medium-i-normal-11-80-100-100-p-52-iso8859-l

timllO.snf -adobe-times-medium-i-normal -14-100-100-100-p-73-iso8859-1

timI12.snf -adobe-times-medium-i-normal-17-120-100- 100-p-84-iso8859-1

timI14.snf -adobe-times-medium-i-normal -20-140-100- 100-p-94-iso8859-1

timllS.snf -adobe-times-medium-i-normal -25-180-100- 100-p-125-iso8859-1

timI24.snf -adobe-times-medium-i-normal -34-240-100-100-p-168-iso8859-1

timR08.snf -adobe-times-medium-r-normal -ll-80-100-100-p-54-iso8859-l

timRlO.snf -adobe-times-medium-r-normal -14-100-100-100-p-74-iso8859-1

timR12.snf -adobe-times-medium-r-normal-17-120-100- 100-p-84-iso8859-1

timR14.snf -adobe-times-medium-r-normal-20-140-100-100-p-96-iso8859-l

timR18.snf -adobe-times-medium-r-normal-25-180-100-100-p-125-iso8859-1

timR24.snf -adobe-times-medium-r-normal-34-240-100-100-p-170-iso8859-l

luBISOS.snf -b&h-lucida-bold-i-normal-sans-l 1 -80-100- 100-p-69-iso8859-l

luBIS10.snf -b&h-lucida-bold-i-normal-sans-14-100-100-100-p-90-iso8859-l

luBIS12.snf -b&h-lucida-bold-i-normal-sans-17-120-100-100-p-108-iso8859-1

luBIS14.snf -b&h-lucida-bold-i-normal-sans-20-140-100-100-p-127-iso8859-1

luBISlS.snf -b&h-lucida-bold-i-normal-sans-25-180-100- 100-p-159-iso8859-1

luBIS19.snf -b&h-lucida-bold-i-normal-sans-26-190-100-100-p-166-iso8859-l

luBIS24.snf -b&h-lucida-bold-i-normal-sans-34-240-100-100-p-215-iso8859-l

luBSOS.snf -b&h-lucida-bold-r-normal-sans-11-80-100- 100-p-70-iso8859-1

luBS10.snf -b&h-lucida-bold-r-normal-sans-14-100-100- 100-p-89-iso8859-l

luBS12.snf -b&h-lucida-bold-r-normal-sans-17-120-100- 100-p- 108-iso8859-1

luBSH.snf -b&h-lucida-bold-r-normal-sans-20-140-100-100-p-127-iso8859-1

luBS18.snf -b&h-lucida-bold-r-normal-sans-25-180-100- 100-p-158-iso8859-1

luBS19.snf -b&h-lucida-bold-r-normal-sans-26-190-100- 100-p- 166-iso8859-1

luBS24.snf -b&h-lucida-bold-r-normal-sans-34-240-100-100-p-216-iso8859-1

luISOS.snf -b&h-lucida-medium-i-normal-sans-ll-80-100-100-p-62-iso8859-l

luISlO.snf -b&h-lucida-medium-i-normal-sans-14-100-100-100-p-80-iso8859-1

648 X Window System User's Guide

Table E-3. Fonts in the 100dpi Directory, Release 4 (continued)

Filename Font name

MS12.snf -b&h-lucida-medium-i-normal-sans-17-120-100-100-p-97-iso8859-1

luIS14.snf -b&h-lucida-medium-i-normal-sans-20-140-100- 100-p-114-iso8859-1

MSlS.snf -b&h-lucida-medium-i-normal-sans-25-180-100- 100-p-141 -iso8859-1

luIS19.snf -b&h-lucida-medium-i-normal-sans-26-190-100- 100-p- 147-iso8859-1

luIS24.snf -b&h-lucida-medium-i-normal-sans-34-240-100-100-p-192-iso8859-l

luRSOS.snf -b&h-lucida-medium-r-normal-sans-11 -80-100-100-p-63-iso8859-1

luRSlO.snf -b&h-lucida-medium-r-normal-sans-14-100-100-100-p-80-iso8859-1

luRS12.snf -b&h-lucida-medium-r-normal-sans-17-120-100- 100-p-96-iso8859-1

luRS14.snf -b&h-lucida-medium-r-normal-sans-20-140-100- 100-p-114-iso8859-1

luRS18.snf -b&h-lucida-medium-r-normal-sans-25-180-100- 100-p- 142-iso8859-1

luRS19.snf -b&h-lucida-medium-r-normal-sans-26-190-100- 100-p- 147-iso8859-1

luRS24.snf -b&h-lucida-medium-r-normal-sans-34-240-100- 100-p-191 -iso8859-1

lubBIOS.snf -b&h-lucidabright-demibold-i-nonnal - 1 l-80-100-100-p-66-iso8859-l

lubBHO.snf -b&h-lucidabright-demibold-i-normal - 14-100-100-100-p-84-iso8859-l

lubBI12.snf -b&h-lucidabright-demibold-i-normal - 17-120-100-100-p-101 -iso8859-1

lubBI14.snf -b&h-lucidabright-demibold-i-normal -20-140-100-100-p-119-iso8859-l

lubBHS.snf -b&h-lucidabright-demibold-i-normal-25-180-100-100-p-149-iso8859-l

lubBI19.snf -b&h-lucidabright-demibold-i-normal -26-190-100- 100-p-156-iso8859-1

lubBI24.snf -b&h-lucidabright-demibold-i-normal-34-240-100-100-p-203-iso8859-1

lubBOS.snf -b&h-lucidabright-demibold-r-normal-11-80-100-100-p-66-iso8859-1

lubBlO.snf -b&h-lucidabright-demibold-r-normal -14-100-100-100-p-84-iso8859-l

lubB12.snf -b&h-lucidabright-demibold-r-normal - 17-120-100-100-p-101 -iso8859-1

lubB14.snf -b&h-lucidabright-demibold-r-normal -20-140-100-100-p-118-iso8859-l

lubB18.snf -b&h-lucidabright-demibold-r-normal-25-180-100-100-p-149-iso8859-1

lubB19.snf -b&h-lucidabright-demibold-r-normal -26-190-100- 100-p-155-iso8859-1

lubB24.snf -b&h-lucidabright-demibold-r-normal -34-240-100- 100-p-202-iso8859-1

lubI08.snf -b&h-lucidabright-medium- -normal - 1 l-80-100-100-p-63-iso8859-l

lubllO.snf -b&h-lucidabright-medium- -normal-14-100-100-100-p-80-iso8859-1

lubI12.snf -b&h-lucidabright-medium- -normal-17-120-100- 100-p-96-iso8859-1

lubI14.snf -b&h-lucidabright-medium- -normal -20-140-100-100-p-113-iso8859-l

lubllS.snf -b&h-lucidabright-medium- -normal-25-180-100-100-p-142-iso8859-1

lubI19.snf -b&h-lucidabright-medium- -normal-26-190-100-100-p-148-iso8859-1

lubI24.snf -b&h-lucidabright-medium- -normal -34-240-100-100-p-194-iso8859-l

lubROS.snf -b&h-lucidabright-medium-r-normal-1 l-80-100-100-p-63-iso8859-l

lubRlO.snf -b&h-lucidabright-medium-r-normal - 14-100-100-100-p-80-iso8859-l

lubR12.snf -b&h-lucidabright-medium-r-normal -17-120-100- 100-p-96-iso8859-1

lubRH.snf -b&h-lucidabright-medium-r-normal -20-140-100-100-p-114-iso8859-l

lubR18.snf -b&h-lucidabright-medium-r-normal -25-180-100-100-p- 142-iso8859-1

lubR19.snf -b&h-lucidabright-medium-r-normal -26-190-100- 100-p- 149-iso8859-1

lubR24.snf -b&h-lucidabright-medium-r-normal-34-240-100-100-p-193-iso8859-1

lutBSOS.snf -b&h-lucidatypewriter-bold-r-normal-sans-11 -80-100-100-m-70-iso8859-1

lutBSlO.snf -b&h-lucidatypewriter-bold-r-normal-sans-14-100-100- 100-m-80-iso8859-1

lutBS12.snf -b&h-lucidatypewriter-bold-r-normal-sans-17-120-100- 100-m-100-iso8859-1

lutBS14.snf -b&h-lucidatypewriter-bold-r-normal-sans-20-140-100- 100-m- 120-iso8859-1

Release 3 and 4 Standard Fonts 649

Table E-3. Fonts in the 100dpi Directory, Release 4 (continued)

Filename Font name

lutBSlS.snf -b&h-lucidatypewriter-bold-r-normal-sans-25-180-100- 100-m-150-iso8859-1

lutBS19.snf -b&h-lucidatypewriter-bold-r-normal-sans-26-190-100-100-m-159-iso8859-1

lutBS24.snf -b&h-lucidatypewriter-bold-r-normal-sans-34-240-100- 100-m-200-iso8859-1

lutRS08.snf -b&h-lucidatypewriter-medium-r-normal-sans-11 -80-100- 100-m-70-iso8859-1

lutRS10.snf -b&h-lucidatypewriter-medium-r-normal-sans-14-100-100- 100-m-80-iso8859-1

lutRS12.snf -b&h-lucidatypewriter-medium-r-normal-sans-17-120-100-100-m-100-iso8859-l

lutRS14.snf -b&h-lucidatypewriter-medium-r-normal-sans-20-140-100-100-m-120-iso8859-1

lutRSlS.snf -b&h-lucidatypewriter-medium-r-normal-sans-25-180-100-100-m-150-iso8859-1

lutRS19.snf -b&h-lucidatypewriter-medium-r-normal-sans-26-190-100-100-m-159-iso8859-l

lutRS24.snf -b&h-lucidatypewriter-medium-r-normal-sans-34-240-100- 100-m-200-iso8859-1

charBIOS.snf -bitstream-charter-bold-i-normal - 1 l-80-100-100-p-68-iso8859-l

charBHO.snf -bitstream-charter-bold-i-normal -14-100-100- 100-p-86-iso8859-1

charBI12.snf -bitstream-charter-bold-i-normal - 17-120-100- 100-p-105-iso8859-1

charBI14.snf -bitstream-charter-bold-i-normal -19-140-100-100-p-117-iso8859-l

charBHS.snf -bitstream-charter-bold-i-normal -25-180-100- 100-p-154-iso8859-1

charBI24.snf -bitstream-charter-bold-i-normal -33-240-100- 100-p-203-iso8859-1

charBOS.snf -bitstream-charter-bold-r-normal - 11-80-100-100-p-69-iso8859-l

charBlO.snf -bitstream-charter-bold-r-normal-14-100-100-100-p-88-iso8859-1

charB12.snf -bitstream-charter-bold-r-normal -17-120-100- 100-p- 107-iso8859-1

charB14.snf -bitstream-charter-bold-r-normal -19-140-100-100-p-119-iso8859-l

charBlS.snf -bitstream-charter-bold-r-nonnal-25-180-100-100-p-157-iso8859-l

charB24.snf -bitstream-charter-bold-r-normal- 33-240-100-100-p-206-iso8859-l

charlOS.snf -bitstream-charter-medium-i-normal -11-80-100-100-p-60-iso8859-l

charllO.snf -bitstream-charter-medium-i-normal-14-100-100-100-p-76-iso8859-l

char!12.snf -bitstream-charter-medium-i-normal - 17-120-100-100-p-92-iso8859-l

charI14.snf -bitstream-charter-medium-i-normal-19-140-100- 100-p-103-iso8859-1

charllS.snf -bitstream-charter-medium-i-normal -25-180-100-100-p-136-iso8859-1

charI24.snf -bitstream-charter-medium-i-normal -33-240-100- 100-p- 179-iso8859-1

charROS.snf -bitstream-charter-medium-r-normal-1 l-80-100-100-p-61-iso8859-l

charRlO.snf -bitstream-charter-medium-r-normal -14-100-100- 100-p-78-iso8859-1

charR12.snf -bitstream-charter-medium-r-normal-17-120-100-100-p-95-iso8859-l

charR14.snf -bitstream-charter-medium-r-normal -19-140-100-100-p-106-iso8859-l

charRlS.snf -bitstream-charter-medium-r-normal-25-180-100-100-p-139-iso8859-l

charR24.snf -bitstream-charter-medium-r-normal-33-240-100-100-p-183-iso8859-l

techBH.snf -bitstream-tenninal-bold-r-normal - 18-140-100-100-c-l 10-dec-dectech

termB14.snf -bitstream-terminal-bold-r-normal - 18-140-100-100-c-l 10-iso8859-l

tech!4.snf -bitstream-terminal-medium-r-normal-18-140-100-100-c-l 10-dec-dectech

terml4.snf -bitstream-terminal-medium-r-normal -18-140-100-100-c-110-iso8859-1

650 X Window System User's Guide

Table E-4. Fonts in the misc Directory, Release 3

Filename Font name

6x10 6x10

6x12 6x12

8x13 8x13

8xl3B 8xl3bold

9x15 9x15

cursor cursor

6x13 fixed

Table E-5. Fonts in the 75dpi Directory, Release 3

Filename Font name

courBOlO -adobe-courier-bold-o-normal- - 10-100-75-75-m-60-iso8859-1

courBO12 -adobe-courier-bold-o-normal--12-120-75-75-m-70-iso8859-1

courBO14 -adobe-courier-bold-o-normal--14-140-75-75-m-90-iso8859-l

courBOlS -adobe-courier-bold-o-normal- -18-180-75-75-m-l 10-iso8859-l

courBO24 -adobe-courier-bold-o-normal- -24-240-75-75-m-150-iso8859-1

courBOOS -adobe-courier-bold-o-normal- -8-80-75-75-m-50-iso8859-1

courBlO -adobe-courier-bold-r-normal--10-100-75-75-m-60-iso8859-l

courB12 -adobe-courier-bold-r-normal- - 12-120-75-75-m-70-iso8859-1

courB14 -adobe-courier-bold-r-normal--14-140-75-75-m-90-iso8859-1

courBlS -adobe-courier-bold-r-normal- -18-180-75-75-m-l 10-iso8859-l

courB24 -adobe-courier-bold-r-normal--24-240-75-75-m-150-iso8859-1

courBOS -adobe-courier-bold-r-normal- -8-80-75-75-m-50-iso8859-1

courOlO -adobe-courier-medium-o-normal--10-100-75-75-m-60-iso8859-l

COUTO12 -adobe-courier-medium-o-normal--12-120-75-75-m-70-iso8859-1

COUTO14 -adobe-courier-medium-o-normal- - 14-140-75-75-m-90-iso8859-1

courOlS -adobe-courier-medium-o-normal- -18-180-75-75-m-l 10-iso8859-l

courO24 -adobe-courier-medium-o-normal- -24-240-75-75-m-150-iso8859-1

courOOS -adobe-courier-medium-o-normal- -8-80-75-75-m-50-iso8859-1

courRlO -adobe-courier-medium-r-normal- - 10-100-75-75-m-60-iso8859-1

courR12 -adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-l

courRH -adobe-courier-medium-r-normal- - 14-140-75-75-m-90-iso8859-1

courR18 -adobe-courier-medium-r-normal- -18-180-75-75-m-l 10-iso8859-l

courR24 -adobe-courier-medium-r-normal- -24-240-75-75-m-150-iso8859-1

courROS -adobe-courier-medium-r-normal- -8-80-75-75-m-50-iso8859-1

helvBOlO -adobe-helvetica-bold-o-normal- - 10-100-75-75-p-60-iso8859-1

helvBO12 -adobe-helvetica-bold-o-normal--12-120-75-75-p-69-iso8859-l

helvBO14 -adobe-helvetica-bold-o-normal--14-140-75-75-p-82-iso8859-1

helvBO18 -adobe-helvetica-bold-o-normal- -18-180-75-75-p- 104-iso8859-1

helvBO24 -adobe-helvetica-bold-o-normal- -24-240-75-75-p- 138-iso8859-1

helvBOOS -adobe-helvetica-bold-o-normal- -8-80-75-75-p-50-iso8859-1

Release 3 and 4 Standard Fonts 651

Table E-5. Fonts in the 75dpi Directory, Release 3 (continued)

Filename Font name

helvBlO -adobe-helvetica-bold-r-normal--10-100-75-75-p-60-iso8859-l

helvB12 -adobe-helvetica-bold-r-normal--12-120-75-75-p-70-iso8859-l

helvB14 -adobe-helvetica-bold-r-normal- -14- 140-75-75-p-82-iso8859-1

helvBIS -adobe-helvetica-bold-r-normal- -18-180-75-75-p- 103-iso8859-1

helvB24 -adobe-helvetica-bold-r-normal--24-240-75-75-p-138-iso8859-l

helvBOS -adobe-helvetica-bold-r-normal- -8-80-75-75-p-50-iso8859-1

helvOlO -adobe-helvetica-medium-o-normal- -10-100-75-75-p-57-iso8859-1

helvO12 -adobe-helvetica-medium-o-normal- -12-120-75-75-p-67-iso8859-1

helvO14 -adobe-helvetica-medium-o-normal- - 14-140-75-75-p-78-iso8859-1

helvOlS -adobe-helvetica-medium-o-normal- -18-180-75-75-p-98-iso8859-1

helvO24 -adobe-helvetica-medium-o-normal- -24-240-75-75-p-130-iso8859-1

helvOOS -adobe-helvetica-medium-o-normal- -8-80-75-75-p-47-iso8859-1

helvRlO -adobe-helvetica-medium-r-normal- -10- 100-75-75-p-56-iso8859-1

helvR12 -adobe-helvetica-medium-r-normal--12-120-75-75-p-67-iso8859-l

helvR14 -adobe-helvetica-medium-r-normal- -14-140-75-75-p-77-iso8859-l

helvRlS -adobe-helvetica-medium-r-normal- -18-180-75-75-p-98-iso8859-1

helvR24 -adobe-helvetica-medium-r-normal--24-240-75-75-p-130-iso8859-l

helvROS -adobe-helvetica-medium-r-normal- -8-80-75-75-p-46-iso8859-1

ncenBHO -adobe-new century schoolbook-bold-i-normal--10-100-75-75-p-66-iso8859-l

ncenBI12 -adobe-new century schoolbook-bold-i-normal--12-120-75-75-p-76-iso8859-l

ncenBI14 -adobe-new century schoolbook-bold-i-normal--14-140-75-75-p-88-iso8859-l

ncenBUS -adobe-new century schoolbook-bold-i-normal--18-180-75-75-p-lll-iso8859-l

ncenBI24 -adobe-new century schoolbook-bold-i-normal--24-240-75-75-p-148-iso8859-l

ncenBIOS -adobe-new century schoolbook-bold-i-normal- -8-80-75-75-p-56-iso8859-l

ncenBlO -adobe-new century schoolbook-bold-r-normal--10-100-75-75-p-66-iso8859-l

ncenB12 -adobe-new century schoolbook-bold-r-normal--12-120-75-75-p-77-iso8859-l

ncenB14 -adobe-new century schoolbook-bold-r-normal--14-140-75-75-p-87-iso8859-l

ncenBIS -adobe-new century schoolbook-bold-r-normal--18-180-75-75-p-113-iso8859-l

ncenB24 -adobe-new century schoolbook-bold-r-normal--24-240-75-75-p-149-iso8859-l

ncenBOS -adobe-new century schoolbook-bold-r-normal--8-80-75-75-p-56-iso8859-l

ncenllO -adobe-new century schoolbook-medium-i-normal--10-100-75-75-p-60-iso8859-l

ncenI12 -adobe-new century schoolbook-medium-i-normal--12-120-75-75-p-70-iso8859-l

ncenI14 -adobe-new century schoolbook-medium-i-normal- -14-140-75-75-p-81-iso8859-l

ncenllS -adobe-new century schoolbook-medium-i-normal--18-180-75-75-p-104-iso8859-l

ncenI24 -adobe-new century schoolbook-medium-i-normal--24-240-75-75-p-136-iso8859-l

ncenlOS -adobe-new century schoolbook-medium-i-normal--8-80-75-75-p-50-iso8859-l

ncenRlO -adobe-new century schoolbook-medium-r-normal--10-100-75-75-p-60-iso8859-l

ncenR12 -adobe-new century schoolbook-medium-r-normal--12-120-75-75-p-70-iso8859-l

ncenR14 -adobe-new century schoolbook-medium-r-normal--14-140-75-75-p-82-iso8859-l

ncenR18 -adobe-new century schoolbook-medium-r-normal--18-180-75-75-p- 103-iso8859-l

ncenR24 -adobe-new century schoolbook-medium-r-normal--24-240-75-75-p-137-iso8859-l

ncenROS -adobe-new century schoolbook-medium-r-normal--8-80-75-75-p-50-iso8859-l

timBIlO -adobe-times-bold-i-normal--10-100-75-75-p-57-iso8859-l

timBI12 -adobe-times-bold-i-normal- -12-120-75-75-p-68-iso8859-1

652 X Window System User's Guide

Table E-5. Fonts in the 75dpi Directory, Release 3 (continued)

Filename Font name

timBI14 -adobe-times-bold-i-normal--14-140-75-75-p-77-iso8859-l

timBIlS -adobe-times-bold-i-normal- -18-180-75-75-p-98-iso8859-1

timBI24 -adobe-times-bold-i-normal--24-240-75-75-p-128-iso8859-1

timBIOS -adobe-times-bold-i-normal- -8-80-75-75-p-47-iso8859-1

timBlO -adobe-times-bold-r-normal- - 10-100-75-75-p-57-iso8859-1

timB12 -adobe-times-bold-r-normal--12-120-75-75-p-67-iso8859-l

timB14 -adobe-times-bold-r-normal--14-140-75-75-p-77-iso8859-l

timBIS -adobe-times-bold-r-normal- -18-180-75-75-p-99-iso8859-1

timB24 -adobe-times-bold-r-normal--24-240-75-75-p-132-iso8859-l

timBOS -adobe-times-bold-r-normal- -8-80-75-75-p-47-iso8859-1

timllO -adobe-times-medium- -normal--10-100-75-75-p-52-iso8859-l

timI12 -adobe-times-medium- -normal--12-120-75-75-p-63-iso8859-l

timI14 -adobe-times-medium- -normal--14-140-75-75-p-73-iso8859-l

timllS -adobe-times-medium- -normal--18-180-75-75-p-94-iso8859-l

timI24 -adobe-times-medium- -normal- -24-240-75-75-p- 125-iso8859-1

timlOS -adobe-times-medium- -normal- -8-80-75-75-p-42-iso8859-l

timRlO -adobe-times-medium-r-normal-- 10-100-75-75-p-54-iso8859-1

timR12 -adobe-times-medium-r-normal--12-120-75-75-p-64-iso8859-l

timRU -adobe-times-medium-r-normal--14-140-75-75-p-74-iso8859-l

timR18 -adobe-times-medium-r-normal- -18-180-75-75-p-94-iso8859-1

timR24 -adobe-times-medium-r-normal- -24-240-75-75-p- 124-iso8859-1

timROS -adobe-times-medium-r-normal- -8-80-75-75-p-44-iso8859-1

charBHO -bitstream-charter-bold-i-normal--10-100-75-75-p-62-iso8859-1

charBI12 -bitstream-charter-bold-i-normal--12-120-75-75-p-74-iso8859-l

charBI14 -bitstream-charter-bold-i-normal--15-140-75-75-p-93-iso8859-l

charBUS -bitstream-charter-bold-i-normal- -19-180-75-75-p-117-iso8859-1

charBI24 -bitstream-charter-bold-i-normal--25-240-75-75-p-154-iso8859-1

charBIOS -bitstream-charter-bold-i-normal- -8-80-75-75-p-50-iso8859-1

charBlO -bitstream-charter-bold-r-normal--10-100-75-75-p-63-iso8859-l

charB12 -bitstream-charter-bold-r-normal--12-120-75-75-p-75-iso8859-l

charB14 -bitstream-charter-bold-r-normal--15-140-75-75-p-94-iso8859-l

charBIS -bitstream-charter-bold-r-normal--19-180-75-75-p-119-iso8859-l

charB24 -bitstream-charter-bold-r-normal--25-240-75-75-p-157-iso8859-1

charBOS -bitstream-charter-bold-r-normal- -8-80-75-75-p-50-iso8859-1

charllO -bitstream-charter-medium-i-normal--10-100-75-75-p-55-iso8859-l

char!12 -bitstream-charter-medium-i-normal--12-120-75-75-p-65-iso8859-l

charI14 -bitstream-charter-medium-i-normal- -15- 140-75-75-p-82-iso8859-1

charllS -bitstream-charter-medium-i-normal--19-180-75-75-p-103-iso8859-l

charI24 -bitstream-charter-medium-i-normal--25-240-75-75-p-136-iso8859-1

charlOS -bitstream-charter-medium-i-normal- -8-80-75-75-p-44-iso8859-1

charRlO -bitstream-charter-medium-r-normal--10-100-75-75-p-56-iso8859-l

charR12 -bitstream-charter-medium-r-normal-- 12-120-75-75-p-67-iso8859-1

charR14 -bitstream-charter-medium-r-normal--15-140-75-75-p-84-iso8859-l

charRlS -bitstream-charter-medium-r-normal--19-180-75-75-p-106-iso8859-l

Release 3 and 4 Standard Fonts 653

Table E-5. Fonts in the 75dpi Directory, Release 3 (continued)

Filename Font name

charR24 -bitstream-charter-medium-r-normal- -25-240-75-75-p- 139-iso8859- 1

charROS -bitstream-charter-medium-r-normal- -8-80-75-75-p-45-iso8859- 1

symblO dec-adobe-symbol-medium-r-nonnal--10-100-75-75-p-61-adobe-fontspecific

symb!2 dec-adobe-symbol-medium-r-normal- - 12-120-75-75-p-74-adobe-fontspecific

symb!4 dec-adobe-symbol-medium-r-normal- - 14- 140-75-75-p-85-adobe-fontspecific

symblS dec-adobe-symbol-medium-r-nonnal- - 1 8- 1 80-75-75-p- 107-adobe-fontspecific

symb24 dec-adobe-symbol-medium-r-normal- -24-240-75-75-p- 142-adobe-fontspecific

symbOS dec-adobe-symbol-medium-r-normal- -8-80-75-75-p-5 1-adobe-fontspecific

Table E-6. Fonts in the 100dpi Directory, Release 3

Filename Font name

charBIOS -bitstream-charter-bold- -normal- - 11-80-1 00-1 00-p-68-iso8859-l

charBHO -bitstream-charter-bold- -normal- -14-100-100-100-p-86-iso8859-l

charBI12 -bitstream-charter-bold- -normal- -17-120-100-100-p-105-iso8859-l

charBI14 -bitstream-charter-bold- -normal- -19-140-100-100-p-117-iso8859-l

charBUS -bitstream-charter-bold- -normal- -25-180-100-100-p-154-iso8859-l

charBI24 -bitstream-charter-bold- -normal- -33-240- 100- 100-p-203-iso8859-l

charBOS -bitstream-charter-bold-r-normal- -1 l-80-100-100-p-69-iso8859-l

charBlO -bitstream-charter-bold-r-normal--14-100-100-100-p-88-iso8859-l

charB12 -bitstream-charter-bold-r-normal- - 1 7- 1 20- 1 00- 1 00-p- 1 07-iso8859- 1

charB14 -bitstream-charter-bold-r-normal--19-140-100-100-p-119-iso8859-l

charBIS -bitstream-charter-bold-r-normal- -25-1 80- 100- 100-p- 1 57-iso8859-l

charB24 -bitstream-charter-bold-r-normal--33-240-100-100-p-206-iso8859-l

charlOS -bitstream-charter-medium- -normal- -11-80-1 00-1 00-p-60-iso8859-l

charllO -bitstream-charter-medium- -normal- -14-100-100-100-p-76-iso8859-l

charI12 -bitstream-charter-medium- -normal- -17-120-100-100-p-92-iso8859-l

charI14 -bitstream-charter-medium- -normal- -19-140-100-100-p-103-iso8859-l

charllS -bitstream-charter-medium- -normal- -25-180-100-100-p-136-iso8859-l

char!24 -bitstream-charter-medium- -normal- -33-240-100-100-p-179-iso8859-l

charROS -bitstream-charter-medium-r-normal- -1 l-80-100-100-p-61-iso8859-l

charRlO -bitstream-charter-medium-r-normal- -14-100-1 00- 100-p-78-iso8859- 1

charR12 -bitstream-charter-medium-r-normal- - 1 7- 1 20- 1 00- 1 00-p-95-iso8859- 1

charR14 -bitstream-charter-medium-r-normal--19-140-100-100-p-106-iso8859-l

charRlS -bitstream-charter-medium-r-normal- -25- 1 80- 100- 100-p- 1 39-iso8859- 1

charR24 -bitstream-charter-medium-r-normal- -33-240- 100- 100-p- 1 83-iso8859-l

654 X Window System User's Guide

S B M rH

i

M »o
1 ^ LO
CX
a-, a^l> f ji

IT] 1 m 1

o- LO
QQ S^
IN
C o^-

6] 1 w |

""H O

1
0 ̂H J5 iso8859-l LO

[x.

1

10

IN
1 iso8859-l m

r-

i

in

r-

1

r-H CN ^H CM \ o i
T-4 o
rH
1 i V1"1 1 o
 ^ 0
<T^ 1 i 1 *H >H rH *#

10 s ^ ^> £ ^r 1 *H c\j iH
1 rH CN

00 | CN GO | CM
COLO s? 1 W
LO I

PfN, i CnLr> O r^_ CO ^ CO
CO t ^
03 t

""H 1
«0

| i -H 1
W

1
 0
1 Li', JO CNJ o m CN
M 1 IT) (a tx 1 w r^
O ["--- , - 1
or- i i
'"H 1 "H i

ON 1 to OJ 1 1 1
1 rsj T ' o 5? in I

*M 5 '"O N.
TH 0, M
.- - s ^S B C1 r^ rH
^ ' QO LJ 1 I CO u 1 1

?5jo CJi LJ ^H (tt . 1 1
M u-i LOrH 7 S O Jj ^ S o 2 /H

CO ̂ 1 CO es 1
<30 1 00 CO <r\ I
00 7 ' ^J10 CO
tS1-0

*£ Cj 0 i^o
n f^ £7 *H ^ iH
" «"> M

rr7 T--I 1 i i -H r- ^
1 1
i 1 i I Si 0 I 1
oo O
 W LO CO O

gg§ 1 0 ?°o | M %AK
"^ | XJ* rr^ »H S
*Q> 1 ^7 rH PI

t S5^

r~H i °° 1
1 CO
^ i - I I <T> O 1 I
rn S ̂ rj i i grsO i 1 1 £r- o
i; i i '"'.j !NJ M
"rtc>s* 1 ̂ ^ 1 § ' *r 1
I r^. ̂ " £ !<H -H U-i <^« ^
1

c B G ft 1*H M o o S _j M
f n>i 1 [-- A | T7I n r- 1

S ' 'T1 H rO 0 1 ̂ M H»^ 1

(IS 1 |

ni "Hlrt 1 rrf I
«^>iO I j rs^

cU[7 i O .. ^">LO ! °

SjJo'H C r-^. 1^1 | 1 ^ J>^7 jf ^7 Q> 1 «tej tJ i73
VfunV TJ
^t^CSj CB 1 ̂«tcg ^f -H
as 1 T3 S^ I 0 M fft gPSi 1

"^7 ^

» r i i o rH

Cbii T- 1 0

^^ ^

Vi^ S
^ ! ? P?i 1

00
T-t B

i *s 1
^i? 1 i
"" i S ! ^» rH
" M

Ug| C»- 1 f c- CD 7! iH QJ

!1 «'H

0

«i £ 1 "HTg C -H

! 3 ?^ MT M M

IPsl 1
"^ *3 ^

5c> 3 ? rO 5 1 P

0 1 ̂ H 1 H
?|>5 ^ ̂ier-medium-o o!< *n»l -

S-90-
75-
75-m-SQ-
zsvft

0-noi-nal
-
10-10O-
75-
75-

ld-o-norxtal
-
-12-120

r
-bo
2
d-o
-norma
2 c: 0

0 "?

"i M

"H CD

3 "H

i M
3

"H 0 rnral
- 8-8C-75-75-m-5Ci-i3o8e K^normal~10-100-75-75- ld-r-norinal~12-120 r -bo

1
d-
r
-no
oia
1 c O

^ A

\

T3 M

rH

0 0)

XJ -H

M

^

<u 3

"H O

?5 i *
-d r
-med
i
urn-
r
-no
r

m ier-medium-r 0

N <LI dj w 0
i^ ̂ 'M 3 ?sl fe -H D »"»« fc 0
3 ?i* « ̂ a
uH-T-H 3

1.1-S8 >1 ^ ̂ 0
0 QJ 8 CD

1 § ? a) ^
»8? $ -Q Ojbe- uri«r-in«Jii ;ourier-m< -courier 3? O '
1 <D
<DX! O uricr-Jwld- ?c*urijei^b<: -courier e-cour i -Q
0 uricr-liold- ;ourler-bo -courier- e-cour 0 i
0 (D

cu rQ

£l O

H*-§ 0 r"G ' "LI TJ 0 T3 sr *£ o TJ

ffll XJ X! ^ 0
0 '1^5 O w

Ofl H3 ̂̂ d T3

1 ""S T3
irj nj <fl
i
i 1 i 1 ill sr 6-9
i 1 ̂ 1 1 ?l 1 1 i 1 3H« T3
CU (d

f * i i 1 1

Foundry: adobe

Family: courier

Release 3 and 4 Standard Fonts 655

.y

$?sl-g-?

??ilfl??
* i-S-S O T3

I I I I I

Foundry: adobe

Family: helvetica

656

X Window System User's Guide

-«4>><-««>>
«*<*iy
x\cMock-M<4»m-*-,vn«*>-l-M^!-l!-r-m-*,SS51-l
-adobi-ntto
ctntury
schoolkeok-rmdium-i-normal-
10-
100-
75-
7S-p-60-isotSS9-l

-adobe-new
century
schoolbook-medium-i-normal
-

22-
120-7
5-7
5-p-70-iso8859-
1

-adobe
-new
century
schoolbook
-medium
-i
-normal
-
14-1
40-75
-75
-p
-81
-iso8859
-1

-ado
6
e-new
century
scho
o

Ib
ook-medium-i-normal
-
18-1
80-
75-75-p-l
04-iso
8859-
1

-adobe-new
century
schoolbook-medium-i-normal
-
24-240-75-75-p-136-iso8859-l

-><*<-x<w
c«»ta«y
«di.4k..k-m«4i.»i-i-».»»inl-
l-I«-75-7J-,-50-ij.IIS»-l

-»dob«-ntwc«ntury
schoolbook-medium-r
-nor
m»l
-

10-
100-75-75-p-60-iso8859-
1

-adobe-new
century
schoolbook-medium-r-normal
-

1 2-
1 20-75-75-p-70-iso8859-
1

-adobe
-new
century
schoolbook
-medium
-r
-normal
-
14-140-75-75-p-82-iso8859-l

-adobe-new
century
schoolbook-medium-r-normal
-
18-180-75-75-p-103-isoS859-l

-adobe-new
century
schoolbook-medium-r-normal
-
24-240-
75-
75-p-
137-iso8859-
1

-arfo6e
-»««.-
ctxtvry
ick»tlt>ftk-t>fU-i
-normal-
-10-lOO-75-7S-p-66
-iit»S53
-t

-adobe-new
century
schoolbook-bold-i-normal
-
12-J20-75-75-p-76-iso8859-l

-adobe-new
century
schoolbook-bold-i-normal-
14-240-75-75-p-8S-iso8859-l

-adobe-new
century
schoolbook-bold-i-normal
-
18-180-75-75-p-lll-iso8859-l

-adobe
-new
century
schoolbook-bold-i-normal
-
24-240-75-75-p-148-iso8859-l

->dobc-ncw
century
fchoolbook-bold-r-norm>l-
10-100-75-75-p-SS-icot«5S-l

-adobe-new
century
schoolbook-bold-r-normal
-
12-120-75-75-p-77-iso8859-l

-adobe-new
century
school
book-
bold-r^normal
-
14-140-75-75-p-87-iso8859-l

-adobe-new
century
schoolbook-bold-r-normal
-
18-180-75-75-p-113-iso8859-l

-adobe-new
century
schoolbook-bold-r-normal
-
24-240-75-75-p-149-iso8859-l

Foundry: adobe

Family: new century schoolbook

Release 3 and 4 Standard Fonts 657

I'^C-iS-^ I |£-o--- S^'C-^Ni; I 2T.-o-n.SJ5 I

i'i^T^lif^TTbilisi *Hijn i j:

wmimmwffii

Foundry: b&h

Family: lucida

X Window System User's Guide

Foundry: b&h

Family: lucidabright

Release 3 and 4 Standard Fonts 659

O)

Oj

C3

C? £1)

H -tdoke -I
- adobe -times- medium -i-nan>ial--IO-fOQ-7S-7S-p -52- i$a8859- 1

-adobe, -tiwes -medium- i-normal - 12-1 20- 75-75-p-63 -iso8859-l

- adobe - times - medium - i- normal- -I4-l40-75-75-p-73- iso8859- 1

-adobe-times-medium-i-normal - 18-180- 75- 75-p-94-iso8859- 1

-adobe-times-medium-i-normal--24-240-75-75-p-125-iso885(.

-»dob* -(im« -medium -r-nonnjl --t-*0-7S -75 -p -44-iso**5S -i

- adobe- times -medium-it- normal- -10- 100 -75-75-p-54-iso8859-l

-adobe- times-medium- r-normal- -12-120-75-75- p- 64 -is 08859-1

- adob e-times -medium-r-normal - 14 - 140 -7 5 -7 5 -p -74 -is o 8 8 59 - 1

-adobe-times-medium-r -normal- 18-180-75-75-p-94-iso8859-l

-adobe-times-medium-r-normal--24-240-75-75-p-124-iso885S

-adobe-times-bold-i-narmal- -12-120- 75- 75-p-68-lso8859-I

-adote-tunes-bold-i-normcd- -14-140-75-75-p- 77-iso8859- 1

-adobe-times-bote-i-nonrwl--18-180-7S-7S-p-98-iso88S9-l

-adobe-times-bold-i-normal--24-240-75-75-p-128-iso8859-l

- *4 «k«-tine»- b»ld - r^ ncrnal- -«-»-7X-75- p-47- i

adobe - tinus - bold- r- normal --10-100-75-75-p-S7- if o8SS9 - 1

- adobe -times -bold-r -normal- -12-120-75-75-p-67 -iso8859 - 1

- adobe - times - bold- r- normal -- 14 - 140 - 75 - 75 - p - 77 - iso8859 - 1

to -adobe-times-bold-r -normal- 18-180-75-75-p-99-iso8859-l

-adobe-times-bold-r-normal~24-240-75~75-p-132-iso8859

o o

I I O

o p ^r
1
r\i I I O
i-H oo :i

I I

rsi I
in LO 7 £

1^ r^- o> |

I? I I ^ in i/> uS
un Ln c ^0 rs.
cc ";

lYrT ^ O I
00 I/

C

u I 00 ^ I I r F\
CO C7i ' I I to

i- H p- §00

i 00 O

LO CO <Ji cz

I ^ r-rH P I I
I I S-
5s KOO (0
on ^ O LO I

o I d iZ (- GO in I I s_

_w o fO fd o i o
I ' </> t/i
o "<- "12 o

I I L.

"o

* HJ

!^T w (A

o LO I L.

T!L c ** "fB I

re! O O Ifl

:± . 'I W c n

CL l I

OJ O O o
00 O i^f^ E C g
l I I I -O

E E I
" ^ o dn O 3 3

i, -i . Or< Q S ° c c ^ i

s?£;5 o i

T- '(-

SS i i :3. .!» ~O "O OJ ?,.«

ii??s-p <D <u 4-J
^trcxi i > T-J i!ir

'fS7 * A00 J. i i 3 Q. - " fg I (D o; a; ̂ ii b «0S

T§-< ^ ' _ r- w CO

i .ig-^1^ "H -H (U iS
i fl;
f Ho£f
72o.?» p I A?S JL
J; I O I ^ ^
71 ?> CijoQf^ EV^QJ
fto.-k a o o| g^ a> <u 4-' g L. o -M H^ ^" ̂ «_^
T i ^3^v"^ Isrl! Q. Q- rC i*-£'E

l^^ci =1 o ii. 2 I i ^g « S t ° QJ 2 > X

^

» I 4J <P

|?*S ̂ .o ^_ "5 «--r- Q. "H -M P -i"?4J HP
v «j i_ ir »«'£ °- S « ?

t g-i. LCQ. Q i ^ z ^
L 2 i c< -^ r> i-r CD -H -S-o U fC rt -2* ^ >. Cy (y '

i'C 5-H -OT3 U
a. o^ O w ^og-b * i'-"*" L
<O^J <K """ ' £ ^ a re!

2 3.0 C2. 3- "i- -P- ;3 "r- -p- 3

ca TCQ : CI U U p U U _

lllfi<3- s.^ ^ i: o u^ co IJ-S ̂ = 7 ^^T

fi4i|-co -g T3 "P" ^r=
"S U 3 I I _C I I ^

i i^ISS ?tf I I f3? i **S

Foundry: adobe Foundry: b&h

Family: symbol Family: lucidatypewriter

Release 3 and 4 Standard Fonts 661

Foundry: bitstream

Family: charter

662

X Window System User's Guide

O H

O |

H O

I O

O H

^3"

H O en H

in i

00 H 00 O)

00 kft

H | o oo

I CO co oo

I H -H o
i a

H I O -H

03 I 00 I

E H I O
O 00

M <d I I

O E in o

^3 Lj
^^ ^^m

I O in r^

'H C

I I o rx.

E^J ^^

"H

I I

-C H

H

CD O H

E A

I I £ H

rH H 5- fl

03 ns O £

C C C <-
I O

-H -H 5- C

E £ I I
E (-

^ h 3 I

CD 0) -H -O

"P -P T3 H
ID O

I I E n

E E i i

03 flJ -H H
rti 4

0) 0) C C

H M "H -H
E £

-P -M S- C-

CQ W Hj 0)

4J -P -p *J
I I

"H -H o o

A A 0) 0)

"o -o

I I I I

Foundry: bitstream Foundry: dec

Family: terminal Family: terminal

Release 3 and 4 Standard Fonts 663

""H 0^ |

I lij ,3

ff> 00 vo

Ifl 00 I

«o o u

40 i/l |

0-7" 10
H I [--

"H O I

»? I v£> IO

£??£ co I I O

CO U li} rH

o i r^^H

"lil I I

"Tc>£<N
o i r^ ^-«

Irtlil I I

i r^O i

V i O-D
iA<s> TH (^

IH.<P I m

I I O c

\f>f -H rti

I I -D

_ I I C

CO--1 "-; o

i d tl u

<? £ £ .-

*" fe £

O O (U

I

Foundry: misc

Family: fixed

664

X Window System User's Guide

en

in in

oo oo

00 CO

0 O

in

I coOO

LfiQco I

coco 0 u COCO '7 CO

co I I I I

_ T in i_n _ in u u u-> u

coco

coco u

O O I

I/I III

o O|f)Q I V "**

^k^^ k

QJ 0|0 0 i

££1.0.0

I I

^H G C r-4 -88-

Oi9

u c u u

I f I

^ i- i-^5

QJ QJ u QJ "

JI

U £ U U

C G

Foundry: Schumacher

Family: clean

Release 3 and 4 Standard Fonts 665

-
*^. C^- O i 0 1 til =^ -

A 2 H > l T W t ->
 --

1 II S - d. r*~, - - Ul «= -^ ^-

x:
- V < - 1 u 4 - -

+ "« ^ - y "-^ I H y $ -" -i

* "P N e- *>J5 «" III ni > -
' -

- o» ~ JH r^ 3- » * n < 1 - i -

~ GO X ti] f^ JHJ» " -1- D r - ' -N

n t^ u Cj ?* 3 + " C -

*J *o "fr \j« -e- B "^ ro Q "> ^ -

& Irt w >- u P 8 a © c w

1

<

^

m "%r < E- (0 ** \ X ® * p

=»*: CO X N X 0 VI Al a © @

> CM m OH ca. Q. v 1 &F> @ @ -

- i-H < © 8 CD ^ +1 C7 > ^ -

0 (ii c P! o »; SI o *

Encoding: adobe-fontspecific

666

X Window System User's Guide

Ill

Al

H

H VI

N Al

VI

[i] KT

+1

IB 10

ID u

"w- «0

n u N

N

0*

Encoding: dec-dectech

Release 3 and 4 Standard Fonts 667

N <w

©

X

O Ml

*

u O

"< <0

CO Crf

PQ

cx +1

Encoding: iso8859

668 X Window System User's Guide

CO

/N

AN

>*- Ml * CS3

+1 CO X X -K-

bo

i 1

-K

H

CO OO U w IS

ca oc:

D1 VK

(S)

Encoding: jisx0201.1976

Release 3 and 4 Standard Fonts 669

\ X

+1 O

0

-f

o 0

X Of

<H 0=

All

VII

A

/\ V

-H-

"£»"

Encoding: jisx0208.1983

670 X Window System User's Guide

Encoding: jisx0201.1976

Release 3 and 4 Standard Fonts 671

t 1 g

-W & a

,-u

r

r

ID Ral

Encoding: sunolglyph

672 X Window System User's Guide

" if If
X X \ \ 0
\ \ f f

+
\ t 0 0 - ¥ "= /\ HH X X 1 X»v

Encoding: SunOLcursor

Release 3 and 4 Standard Fonts 673

Example E-l is the source code for the xshowfonts program, which we used to create most of

the illustrations in this appendix. If you don't want to type it in, you can find instructions for

getting it online in the Preface.

Example E-1. xshowfont source listing

/* Dan Heller <argv@sun.com>, based on a design by Tim O'Reilly

*

* xshowfonts.c -

* Displays a set of fonts specified on the command line, from

* a pipe, or typed into stdin. Fonts can be specified as specific

* fonts or as wildcard character strings. A pixmap is created to

* display all the fonts. This is done by using the pixmap as the

* pixmap image for a label widget. Each font prints its own name

* in its own font style - - the -phrase option prints the phrase

* instead.

*

* All fonts are loaded first and scanned to determine the total

* width and height of the pixmap first. Then the fonts are

* reopened again to actually render the fonts into the pixmap.

* All this could be avoided by using XListFontsWithlnfo()

* rather than XListFonts(), but since the list is potentially

* very large, I didn't want to overload the server and client

* with all those fonts + a very large pixmap.

*

* Usage: xshowfonts

* -s sorts the fonts in alphabetical order before displaying

them.

* -v verbose mode for when input is redirected to stdin.

* -w width of viewport window

* -h height of viewport window

* -fg foreground_color

* -bg background_color

-phrase "text string" (otherwise, name of font is used)

-indicates to read from stdin. Piping doesn't require

the '-' argument. With no arguments, xshowfonts reads

* from stdin anyway.

*

* Neat ways to use the program:

* xshowfonts -fg green -bg black "*adobe*"

* xshowfonts -sort "*"

* xshowfonts -phrase "The quick brown fox jumps over the lazy

dog" "*times*"

* xlsfonts | xshowfonts -sort

* xshowfonts "*helvetica*"

*

* compile: (triple click and paste next line)

cc -0 -s xshowfonts.c -IXaw -IXt -IXmu -1X11 -o xshowfonts

*/

tinclude <stdio.h>

#include <Xll/Intrinsic.h>

tinclude <Xll/StringDefs.h>

tinclude <Xll/Xaw/Label.h>

tinclude <Xll/Xaw/Viewport.h>

struct _resrcs {

int sort;

674 X Window System User's Guide

Example E~1. xshowfont source listing (continued)

int verbose;

Pixel fg, bg;

char *phrase;

int view_width, view_height;

} Resrcs;

static XtResource resourcest] = {

{ "sort", "Sort", XtRBoolean, sizeof (int),

XtOffsetOf(struct _resrcs,sort), XtRImmediate,

False },

{ "verbose", "Verbose", XtRBoolean, sizeof (int),

XtOffsetOf(struct _resrcs,verbose), XtRImmediate,

False },

{ "foreground", "Foreground", XtRPixel, sizeof (Pixel),

XtOffsetOf(struct _resrcs,fg), XtRString,

XtDefaultForeground },

{ "background", "Background", XtRPixel, sizeof (Pixel),

XtOffsetOf(struct _resrcs,bg), XtRString,

XtDefaultBackground },

{ "phrase", "Phrase", XtRString, sizeof (String),

XtOffsetOf(struct _resrcs,phrase), XtRImmediate, NULL },

{ "view-width", "View-width", XtRInt, sizeof (int),

XtOffsetOf(struct _resrcs,view_width), XtRImmediate,

(char *)500 },

{ "view-height", "View-height", XtRInt, sizeof (int),

XtOffsetOf(struct _resrcs,view_height), XtRImmediate,

(char *)300 },

static XrmOptionDescRec options[] = {

{ "-sort", "sort", XrmoptionNoArg, "True" },

{ "-v", "verbose", XrmoptionNoArg, "True" },

{ "-fg", "foreground", XrmoptionSepArg, NULL },

{ "-bg", "background", XrmoptionSepArg, NULL },

{ "-phrase", "phrase", XrmoptionSepArg, NULL },

{ n-w", "view-width", XrmoptionSepArg, NULL },

{ "-h", "view-height", XrmoptionSepArg, NULL },

};

/ sort font according to the following parameters.

font specs we're interested in:

-fndry-fmly-wght-slant-*swdth-*adstyl-*pxlsz-ptsz-

foundry - sort by foundry first; similar ones are always

grouped together

weight - medium, demi-bold, bold

slant - roman, italic/obligue, reverse italic/obligue

(i or o, r, ri, ro)

ptsize - increase numerical order

f

font_cmp(fl, f2)

char **fl, **f2;

char fndryl[16], fmlyl[64], wghtl[32], slantl[3];

char fndry2[16], fmly2[64], wght2[32], slant2[3];

int n, m, ptsizel, ptsize2;

char *font_fmt_str = "-%["-]-%[--]-%["-]-%["-]-%*[~0-9]%

*d-%d-";

Release 3 and 4 Standard Fonts 675

Example E-1. xshowfont source listing (continued)

n = sscanf(*fl, font_fmt_str, fndryl, fmlyl, wghtl, slantl,

fiptsizel);

m = sscanf(*f2, font_fmt_str, fndry2, fmly2, wght2, slant2,

&ptsize2);

if (m < 5 II n < 5)

/* font not in correct format - just return font names

* in order */

return strcmp(*fl, *f2);

if (n = strcmp(fndryl, fndry2))

return n; /* different foundries - return alphabetical

* order */

if (n = strcmp(fmlyl, fmly2))

return n; /* different families - return alphabetical

* order */

if (n = strcmp(wghtl, wght2))

return -n; /* weight happens to be correct in reverse

* alpha order */

if (n = strcmp(slantl, slant2))

return n; /* slants happen to be correct in alphabetical

* order */

/* sort according to point size */

return ptsizel - ptsize2;

}

main(argc, argv)

int argc;

char *argv[];

{

Widget topLevel, vp;

char **list = (char **)NULL, **tmp;

char buf[128];

extern char **XListFonts();

extern int strcmp();

XFontStruct *font;

Pixmap pixmap;

GC gc;

Display *dpy;

int istty = isatty(O), redirect = listty, i, j, total = 0;

unsigned int w, width = 0, height = 0;

topLevel = Xtlnitialize(argv[0], argv[0], options,

XtNumber(options), Sargc, argv);

dpy = XtDisplay(topLevel);

XtGetApplicationResources(topLevel, SResrcs,

resources, XtNumber(resources) , NULL, 0) ;

if Uargvfl] || !strcmp(argv[1], "-")) {

printf("Loading fonts from input. ");

if (istty) {

puts("End with EOF or .");

redirect++;

} else

puts("Use -v to view font names being loaded.");

} else if (listty && strcmp(argv[1], "-"))

printf("%s: either use pipes or specify font names -

not both.\nn,

676 X Window System User's Guide

Example E-1. xshowfont source listing (continued)

argv[0]), exit(l);

while (*++argv I I redirect) {

if (Iredirect)

if { ! strcmp (*argv, "-"))

redirect++;

else

strcpy(buf, *argv) ;

if (redirect) {

if (istty)

printf ("Fontname: "), f flush (stdout) ;

if (!fgets(buf, sizeof buf, stdin) I I

!strcmp(buf, "An"))

break;

buf [strlen(buf)-l] = 0;

}

if (!buf[0]>

continue;

if (istty I I Resrcs .verbose)

printf ("Loading

tmp - XListFonts(dpy, buf, 32767, &i) ;

if (i == 0) {

printf ("couldn' t load font ");

if (listty && IResrcs. verbose)

printf ("

putchar (' \n') ;

continue;

}

if (istty || Resrcs. verbose)

printf ("%d font%s\n", i, i == 1? "" : "s");

if (llist) {

list = tmp;

total = i;

} else {

i += total;

if ('(list = (char **) XtRealloc (list, i *

sizeof (char *))))

XtError("Not enough memory for font names")

for (j = 0; total < i; j++, total++)

list [total] = tmptj];

if (total == 0)

puts ("No fonts?!"), exit(l);

printf ("Total fonts loaded: %d\n", total);

if (Resrcs . sort) {

printf ("Sorting fonts..."), f flush (stdout) ;

qsort(list, total, sizeof (char *), font_cmp) ;

putchar (' \nf) ;

}

/* calculate size for pixmap by getting the dimensions

* of each font */

puts ("Calculating sizes for pixmap.");

for (i = 0; i < total; i++) {

if (!(font = XLoadQueryFont (dpy, listfi]))) {

printf ("Can't load font: %s\n", list[i]);

continue;

Release 3 and 4 Standard Fonts 677

Example E-1. xshowfont source listing (continued)

if ((w = XTextWidth(font, list[i],

strlendist [i]))) > width)

width = w;

height += font->ascent + font->descent;

XFreeFont(dpy, font);

width += 6;

height += 6;

/* Create pixmap + GC */

printf("Creating pixmap of size %dx%d\n", width, height);

if (!(pixmap = XCreatePixmap(dpy, DefaultRootWindow(dpy),

width, height, DefaultDepth(dpy, DefaultScreen(dpy)))))

XtError("Can't Create pixmap");

if (!(gc = XCreateGC(dpy, pixmap, NULL, 0)))

XtError("Can't create gc") ;

XSetForeground(dpy, gc, Resrcs.bg);

XFillRectangle(dpy, pixmap, gc, 0, 0, width, height);

XSetForeground(dpy, gc, Resrcs.fg);

XSetBackground(dpy, gc, Resrcs.bg);

height = 0;

for (i = 0; i < total; i++) {

if (!(font = XLoadQueryFont(dpy, listfi])))

continue; /* it's already been reported */

XSetFont(dpy, gc, font->fid);

height += font->ascent;

if (Resrcs.phrase)

XDrawString(dpy, pixmap, gc, 0, height,

Resrcs.phrase, strlen(Resrcs.phrase));

else

XDrawString(dpy, pixmap, gc, 5, height, list[i],

strlendist [i])) ;

height += font->descent;

XFreeFont(dpy, font);

vp = XtVaCreateManagedWidget("viewport", viewportWidgetClass,

topLevel,

XtNallowHoriz, True,

XtNallowVert, True,

XtNwidth, Resrcs.view_width,

XtNheight, Resrcs.view_height,

NULL);

XtVaCreateManagedWidget("_foo", labelWidgetClass, vp,

XtNbitmap, pixmap,

NULL);

if (Iredirect)

XFreeFontNames(list);

XtRealizeWidget(topLevel);

XtMainLoopO ;

}

678 x Window System User's Guide

F

xterm Control Sequences

This appendix list the escape sequences that can be used to control features

of an xterm window or its terminal emulation.

In This Chapter:

xterm Control Sequences 681

Definitions 681

VT102Mode 681

Tektronix 4014 Mode . .. 688

F

xterm Control Sequences

A standard terminal performs many operations in response to escape sequences sent out by a

program. In emulating a terminal, xterm responds to those same terminal escape sequences.

Under UNIX, programs use the termcap or terminfo database to determine which escape

sequences to send out. For more information, see the standard UNIX man pages termcap(5)

or terminfo(5), or the Nutshell Handbook Termcap and Terminfo, available from O'Reilly &

Associates, Inc.

xterm Control Sequences

This appendix is based on two sources: the "Xterm Control Sequences" document, written

by Edward Moy, University of California, Berkeley, for the XW xterm; and XI1 updates pro-
vided to the X Consortium by Skip Montanaro, GE Corporate Research & Development.

Definitions

C A single (required) character.

Ps A single (usually optional) numeric parameter, composed of one of more digits.

Pm A multiple numeric parameter composed of any number of single numeric parameters,

separated byQ character(s).

Pt A text parameter composed of printable characters.

VT102 Mode

Most of these control sequences are standard VT102 control sequences. There are, however,

additional ones to provide control of xterm -dependent functions, like the scrollbar or window

size.

xterm Control Sequences 681

I BEL I Bell (Ctrl-G)

[is] Backspace (Ctrl-H)

| TAB | Horizontal Tab (Ctrl-I)

[LF] Line Feed or New Line (Ctrl-J)

[VT] Vertical Tab (Ctrl-K)

[FF] Form Feed or New Page (Ctrl-L)

[CR] Carriage Return (Ctrl-M)

[so] Shift Out (Ctrl-N) -> Switch to Alternate Character Set

[a] Shift In (Ctrl-O) -^ Switch to Standard Character Set

[ESC||BEL| Same as non-escaped BEL

|ESC|[BS] Same as non-escaped BS

|ESC|[HT] Same as non-escaped HT

|ESC|[NL] Same as non-escaped NL

|ESC||VT| Same as non-escaped VT

|ESC[|NP| Same as non-escaped NP

|ESC|[CR] Same as non-escaped CR

Same as non-escaped SO

Same as non-escaped SI

Same as non-escaped BEL

Same as non-escaped BS

Same as non-escaped HT

Same as non-escaped NL

Same as non-escaped VT

Same as non-escaped NP

Same as non-escaped CR

Same as non-escaped SO

Same as non-escaped SI

DEC Screen Alignment Test (DECALN)

Same as non-escaped BEL

Same as non-escaped BS

Same as non-escaped HT

Same as non-escaped NL

Same as non-escaped VT

Same as non-escaped NP

Same as non-escaped CR

Same as non-escaped SO

682 X Window System User's Guide

Same as non-escaped SI

Select GO Character Set (SCS)

C = [o] -» Special Character and Line Drawing Set

C - HI -» Alternate Character ROM Standard Set

C = [2] -> Alternate Character ROM Special Set

C = E -» United Kingdom (UK)

C = H -» United States (USASCII)

Select Gl Character Set (SCS)

C = [o] -» Special Character and Line Drawing Set

C = ffl -> Alternate Character ROM Standard Set

C = 5] -> Alternate Character ROM Special Set

C = [A] -> United Kingdom (UK)

C = B -> United States (USASCII)

Select G2 Character Set (SCS)

C = |(j] -> Special Character and Line Drawing Set

C = Q] -> Alternate Character ROM Standard Set

C=0 -» Alternate Character ROM Special Set

C = [X] -> United Kingdom (UK)

C = E -> United States (USASCII)

Select G3 Character Set (SCS)

C = \Q\ -» Special Character and Line Drawing Set

C = [J -> Alternate Character ROM Standard Set

C = \2\ -> Alternate Character ROM Special Set

C = [A] -> United Kingdom (UK)

C = SO -> United States (USASCII)

Save Cursor (DECSC)

Restore Cursor (DECRC)

Application Keypad (DECPAM)

Normal Keypad (DECPNM)

Index (IND)

Next Line (NEL)

Tab Set (HTS)

Reverse Index (RI)

Single Shift Select of G2 Character Set (SS2)

Single Shift Select of G3 Character Set (SS3)

Return Terminal ID (DECID)

xterm Control Sequences 683

Same as non-escaped BEL

Same as non-escaped BS

ESCHT Same as non-escaped HT

SEE Same as non-escaped NL

Same as non-escaped VT

Same as non-escaped NP

Same as non-escaped CR

Same as non-escaped SO

Same as non-escaped SI

Same as non-escaped BEL

Same as non-escaped BS

Same as non-escaped HT

Same as non-escaped NL

Same as non-escaped VT

Same as non-escaped NP

Same as non-escaped CR

Same as non-escaped SO

Same as non-escaped SI

Insert Ps (Blank) Character(s) (default = 1) (ICH)

Cursor Up Ps Times (default = 1) (CUU)

Cursor Down Ps Times (default = 1) (CUD)

Cursor Forward Ps Times (default = 1) (CUF)

Cursor Backward Ps Times (default = 1) (CUB)

Cursor Position [row;column] (default = [1,1]) (CUP)

Erase in Display (ED)

Ps = El -> Clear Below (default)

Ps = [fl -» Clear Above

^ = 0-> Clear All

Erase in Line (EL)

Ps = El -> Clear to Right (default)

Ps = ffl -> Clear to Left

PS = 0 -> Clear All

Insert Ps Line(s) (default = 1) (IL)

Delete Ps Line(s) (default = 1) (DL)

Delete Ps Character(s) (default = 1) (DCH)

Track mouse

684 X Window System User's Guide

lESCim^lcl Device Attributes (DAI)

Cursor Position [row;column] (default = [1,1]) (HVP)

ESC [P Tab Clear

Ps = \Q\ -» Clear Current Column (default)

^ = S-» Clear All

Mode Set (SET)

Ps = ffl -> insert Mode (IRM)

PJ = [2][()] -> Automatic Linefeed (LNM)

Mode Reset (RST)

^ = S -> Insert Mode (IRM)

PJ = \2\\Q\ -> Automatic Linefeed (LNM)

[Escj[[|/>m[rnj Character Attributes (SGR)

^m = El -> Normal (default)

fm ~ E -» Blink (appears as Bold)

Pm = \4\ -> Underscore

Pm = E-> Bold

Pm = [?] -> Inverse

Device Status Report (DSR)

/* = 5 -» Status Report @[E[Ql|n] -> OK

PJ = 6 -* Report Cursor Position (CPR) [row;column] as

Set Scrolling Region [top;bottom] (default = full size of window)

(DECSTBM)

Request Terminal Parameters (DECREQTPARM)

ESCPS ND string NP OSC Mode

ND can be any non-digit Character (it's discarded)

NP can be any non-printing Character (it's discarded)

string can be any ASCII printable string (max 511 characters)

/^ = [o] -» use string as a new icon name and title

Py = [I] -> use string as a new icon name only

PJ = [2] -> use string as a new title only

Py = @[6] -> use string as a new log file name

DEC Private Mode Set (DECSET)

JJ -El -> Apph'cation Cursor Keys (DECCKM)

^ = [2]^SetVT52Mode

^ = S -> 132 Column Mode (DECCOLM)

xtem? Control Sequences 685

Ps = B -> Smooth (Slow) Scroll (DECSCLM)

Ps = B -> Reverse Video (DECSCNM)

Ps = El -» Origin Mode (DECOM)

/J = 0 -» Wraparound Mode (DECAWM)

. = E -> Auto-repeat Keys (DECARM)

-» Send MIT Mouse Row & Column on Button Press

-» Enter TekTronix Mode (DECTEK)

-» Allow 80 0132 Mode

-» curses(5) fix

-» Turn On Margin Bell

-> Reverse-wraparound Mode

-» Start Logging

-» Use Alternate Screen Buffer

-» send VT200 Mouse Row & Column on Button

Press

send VT200 Hilite Mouse Row & Column on

Button Press

DEC Private Mode Reset (DECRST)

Ps = E ~* Normal Cursor Keys (DECCKM)

^ = 0 -> 80 Column Mode (DECCOLM)

^ = ffl -> Jump (Fast) Scroll (DECSCLM)

^ = 0 -> Normal Video (DECSCNM)

^ = S -» Normal Cursor Mode (DECOM)

ps= > No Wraparound Mode (DECAWM)

> No Auto-repeat Keys (DECARM)

ps= »Don't Send MIT Mouse Row & Column on Button Press

Ps = I4JIOJ -» Disallow 80 o 132 Mode

Ps = fflffl -» Turn Off Margin Bell

Ps = SB -> No Reverse-wraparound Mode

-+ Stop Logging

-»Use Normal Screen Buffer

Don't send Mouse Row & Column on Button Press

Don't send Hilite Mouse Row & Column on Button

Press

686 X Window System User's Guide

Restore DEC Private Mode

JJ=DQ -> Normal/Application Cursor Keys (DECCKM)

Ps = B -> 80/132 Column Mode (DECCOLM)

Ps = B -> Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

Ps = S -> Normal/Reverse Video (DECSCNM)

Ps = E -> Normal/Origin Cursor Mode (DECOM)

/» = [3 -» No Wraparound/Wraparound Mode (DECAWM)

Ps = B -> Auto-repeat/No Auto-repeat Keys (DECARM)

Ps = El -> Don't Send/Send MTT Mouse Row & Column on Button

Press

-> Disallow/Allow 80 o 132 Mode

-» Off/On curses(5) fix

-» Turn Off/On Margin Bell

-» No Reverse-wraparound/Reverse-wraparound Mode

-> Stop/Start Logging

Use Normal/Alternate Screen Buffer

Don't send/send VT200 Mouse Row & Column on

Button Press

Don't send/send VT200 Hilite Mouse Row &

Column on Button Press

Save DEC Private Mode

Ps = ffl -> Normal/Application Cursor Keys (DECCKM)

Pa = B -> 80/132 Column Mode (DECCOLM)

Ps = SI -» Jump (Fast)/Smooth (Slow) Scroll (DECSCLM)

^ = S -> Normal/Reverse Video (DECSCNM)

Ps = \6\ -> Normal/Origin Cursor Mode (DECOM)

Ps = [7] -> No Wraparound/Wraparound Mode (DECAWM)

Ps = S -> Auto-repeat/No Auto-repeat Keys (DECARM)

^ = S -»Don't Send/Send MIT Mouse Row & Column on Button

Press

Ps = SSI -> Disallow/Allow 80 o 132 Mode

Ps = SOD -» Off/On cur5^(5) fix

^ = fflffl -* Turn Off/On Margin Bell

Ps ~ SS -* No Reverse-wraparound/Reverse-wraparound Mode

Ps = \4§6\ -^> Stop/Start Logging

P, = S0 -> Use Normal/Alternate Screen Buffer

xterm Control Sequences 687

-> Don't send/send VT200 Mouse Row & Column on

Button Press

Ps - DOSES -> Don't send/send VT200 Hilite Mouse Row &

Column on Button Press

Set Text Parameters

Ps = S] -> Change Window Name and Title to Pt

Ps = [T| -> Change Window Name to Pt

Ps = \2\ -> Change Window Title to Pt

Ps = \4\\6\ -> Change Log File to Pt

Ps = SSI -> Change Font to /}

[isclfcl Full Reset (RIS)

|Esc|[n1 Locking Shift Select of G2 Character Set (LS2)

I ESC I Locking Shift Select of G3 Character Set (LS3)

Tektronix 4014 Mode

Most of these sequences are standard Tektronix 4014 control sequences. The major features

missing are the alternate (APL) character set and the write-thru and defocused modes.

[BEL] Bell (Ctrl-G)

[BS] Backspace (Ctrl-H)

[TAB] Horizontal Tab (Ctrl-I)

[LF] Line Feed or New Line (Ctrl-J)

[vr] Vertical Tab (Ctrl-K)

@ Form Feed or New Page (Ctrl-L)

[CR] Carriage Return (Ctrl-M)

[ESC][ETX] Switch to VT102 Mode

[ESC||ENQ| Return Terminal Status

lisclfijl PAGE (Clear Screen)

[EscjEre] COPY (Save Tektronix Codes to File)

[ESC[|CAN| Bypass Condition

[ESC][SUB] GIN mode

fEsclJFsl Special Point Plot Mode

[isclfos] Graph Mode (same as [os])

[isclfRs] Incremental Plot Mode (same as @)

[isclfus] Alpha Mode (same as [us])

[isclfsl Select Large Character Set

688 X Window System User's Guide

Select #2 Character Set

Select #3 Character Set

Select Small Character Set

Set Text Parameters

Ps = \Q\ -> Change Window Name and Title to Pt

Ps = [I] -> Change Icon Name to Pt

Ps = 0 -* Change Window Title to Pt

Ps - EE -* Change Log File to Pt

Normal Z Axis and Normal (solid) Vectors

Normal Z Axis and Dotted Line Vectors

Normal Z Axis and Dot-Dashed Vectors

Normal Z Axis and Short-Dashed Vectors

Normal Z Axis and Long-Dashed Vectors

Defocused Z Axis and Normal (solid) Vectors

Defocused Z Axis and Dotted Line Vectors

Defocused Z Axis and Dot-Dashed Vectors

Defocused Z Axis and Short-Dashed Vectors

Defocused Z Axis and Long-Dashed Vectors

Write-Thru Mode and Normal (solid) Vectors

Write-Thru Mode and Dotted Line Vectors

Write-Thru Mode and Dot-Dashed Vectors

Write-Thru Mode and Short-Dashed Vectors

Write-Thru Mode and Long-Dashed Vectors

Point Plot Mode

Graph Mode

Incremental Plot Mode

Alpha Mode

xterm Control Sequences 689

G

Standard Bitmaps

This appendix shows the bitmaps included with the standard distribution of

the X Window System. These can be used for setting window background,

cursor symbols, pixmaps, and possibly for application icon pixmaps.

Standard Bitmaps

A number of bitmaps are included with the standard distribution of the X Window System.

These bitmaps can be used for setting window background pixmaps and possibly for applica-
tion icon pixmaps.

By default, the standard bitmaps are located in the directory lusrlincludelXl 1 /bitmaps. Each

bitmap is in standard XI1 bitmap format in its own file. The bitmap application can be used

to view these bitmaps in larger scale and to edit them (though their permissions normally do

not allow overwriting).

You can use these bitmaps to set the background pattern of a window in any application that

allows it. For example, if you wanted to change the root window background pixmap, you

could do so using xsetroot as follows:

xsetroot -bitmap /usr/include/Xll/bitmaps/wide_weave

Note that the bitmaps that come in pairs, such as cntr_ptr and cntr__ptrmsk, are

intended for creating pointer shapes. See Chapter 11, Setup Clients, for information on spec-
ifying a bitmap as the root window pointer.

The 63 bitmaps pictured on the following pages are included in the Release 4 standard distri-
bution of X. Forty-one of these bitmaps are also available in the Release 3 standard distribu-
tion. Table G-l lists those bitmaps that have been added to the standard distribution in

Release 4.

Table G-1. Standard Bitmaps Available as of Release 4

calculator dropbar? dropbarS

escherknot hlines2 hlines3

key board 16 letters mailempty

mailemptymsk mailfull mailfullmsk

menu 10 menu 12 menu!6

menuS noletters plaid

terminal vlines2 vlines3

xlogoll

Standard Bitmaps 693

1x1 2x2 black Doxes calculator
ImHitl

" m 3S 55>
 :::::

cntr ptr cntr ptrmsk cross weave dimplel dimpled

t * HE

dot dropbar / dropbar 8 f lagdown
a a

" -&-

J3IU-

f lipped_gray gray grayl gray3 hlines2

hlines3 icon keyboard!6 left ptr lef t_ptrmsk

D o * T

letters light_gray mailempty mailemptymsk mailf ull

0 0

mailf ullmsk menulO menu!2 menul6 menuS

0 Q a a a

nole tters opendot opendotMask plaid right_ptr

0 " ?

right_ptrmsk root weave scales sipb star

ZJTB
^ *

SUB

starMask stipple target terminal tie fighter

* $ &

vlines2 vlines3 weird size wide weave wingdogs

'a & ft

xfd icon xlogoll xlogolB xlogo32 xlogo64

X X

Figure G-1. The Standard Bitmaps

694 X Window System User's Guide

escherknot mensetmanus woman

Figure G-1. The Standard Bitmaps (continued)

Standard Bitmaps 695

H

Translation Table Syntax

This appendix describes the basic syntax of translation table resources,

described in Chapters, Setting Resources.

In This Chapter:

Event Types and Modifiers 697

Detail Field 699

Modifiers 700

Complex Translation Examples 700

H

Translation Table Syntax

This appendix explains some of the more complex aspects of translation table syntax. It

probably gives more detail than the average user will need, but we've included it to help clar-
ify this rather complicated topic.

Event Types and Modifiers

The syntax of the translation table is sufficiently general to encompass a wide variety of

events and circumstances. Event translations can be specified to handle characteristic user

interface idioms like double clicking, dragging, or combining keyboard modifiers with

pointer button input. To specify translations that use these features, it is necessary to learn

more about the detailed syntax used to specify translations.

An activity susceptible to translation is a sequence of events and modifiers (that perform an

action). Events are specified in angle brackets and modifiers precede the event they modify.

The legal events that can be specified in a translation are as shown in Table H-l.

Table H-1. Event Types and Their Abbreviations

Event Name Event Type Abbreviations/Synonyms

KeyPress Keyboard Key,KeyDown

KeyUp Keyboard KeyRelease

ButtonPress Mouse Button BtnDown

ButtonRelease Mouse Button BtnUp

BtnlDown Mouse Button Press

BtnSDown

BtnlUp Mouse Button Release

BtnSUp

Translation Table Syntax 699

Table H-1. Event Types and Their Abbreviations (continued)

Event Name Event Type Abbreviations/Synonyms

MotionNotify Mouse Motion Mot ion, MouseMoved,

PtrMoved

ButtonMotion Motion w/any Button Down BtnMotion

ButtonlMotion Motion w/Button Down BtnlMotion

ButtonSMotion BtnSMotion

EnterNotify Mouse in Window Enter,EnterWindow

LeaveNotify LeaveWindow,Leave

Focusln Keyboard Input Focus

FocusOut

KeymapNotify Changed Key Map Keymap

ColormapNotify Changed Color Map Clrmap

Expose Related Exposure Events

GraphicsExpose GrExp

NoExpose NoExp

VisibilityNotify Visible

CreateNotify Window Management Create

DestroyNotify Destroy

UnmapNotify Unmap

MapNotify Map

MapRequest MapReq

ReparentNotify Reparent

ConfigureNotify Configure

ConfigureRequest ConfigureReq

GravityNotify Grav

ResizeRequest ResReq

CirculateNotify Circ

CirculateRequest CircReq

PropertyNotify Prop

SelectionClear Intra-client Selection SelClr

SelectionRequest SelReq

SelectionNotify Select

The possible modifiers of an event are listed in the table. The modifiers Modi through Mod5

are highly system-dependent, and may not be implemented by all servers.

700 X Window System User's Guide

Table H-2. Key Modifiers

Event Modifiers Abbreviation

Ctrl c

Meta m

Shift s

Lock 1

Any

ANY

None

Modi 1

Mod5 5

Detail Field

To provide finer control over the translation process, the event part of the translation can

include an additional "detail." For example, if you want the event to require an additional

keystroke, for instance, an A key, or a Ctrl-T, then that keystroke can be specified as a trans-
lation detail. The default detail field is ANY.

The valid translation details are event-dependent. For example, to specify the above example

for keypress events, you would use:

<Key>A

and:

Ctrl<Key>T

respectively.

Key fields can be specified by the keysym value, as well as by the keysym symbolic name.

For example, the keysym value of the Delete key is Oxffff. Keysym values can be deter-
mined by examining the file <Xlllkeysymdef.h> or by using the xmodmap client. (See Chap-
ter 11, Setup Clients, for information about xmodmap.) Unfortunately, with some translations

the keysym value may actually be required, since not all keysym symbolic names may be

properly interpreted.

Translatfon Table Syntax 701

Modifiers

Modifiers can be closely controlled to define exactly which events can be specified. For

example, if you want the action to be performed by pointer button clicks, but not by pointer

button clicks with the Control or Shift key down, these limitations can be specified. Simi-
larly, if you don't care if there are modifiers present, this can also be specified.

Table H-3 lists the available event modifiers.

Table H-3. Event Modifiers and their Meanings

Modifier Meaning

None <event> No modifiers allowed.

<event> Doesn't care. Any modifiers ok.

Modi Mod Modi and Mod2, plus any others

(i.e., anything that includes ml and m2).

!Modl Mod2<event> Modi and Mod2 but nothing else.

Modi ~Mod2<event> Modi and not Mod2.

Complex Translation Examples

The following translation specifies that function / is to be invoked when both the Shift key

and the third pointer button are pressed.

Shift<Btn3Down>: /()

To specify that both the Control and Shift keys are to be pressed use:

Ctrl Shift<Btn3Down>: /()

To specify an optional repeat count for an activity, put a number in parentheses after the

action. The number refers to the whole translation. To make the last example require a

double-click, with both Control and Shift keys pressed, use:

Ctrl Shift<Btn3Down>(2) : /()

The server distinguishes between single-clicks and double-clicks based on a pre-programmed

timing interval. If a second click occurs before the interval expires, then the event is inter-
preted as a double-click; otherwise the event is interpreted as two single-clicks. The variable

clickTime is maintained deep in the internals of X. Unfortunately, thus far there is no

way to set this time interval to match user preference. Currently it is set to be 200 mil-
liseconds.

A translation involving two or more clicks can be specified as (2+) in the previous example.

In general, a plus sign following the number n would mean n or more occurrences of the

event

702 X Window System User's Guide

Multiple events can be specified by separating them with commas on the translation line. To

indicate pressing button 1, pressing button 2, then releasing button 1, and finally releasing

button 2, use:

<BtnlDown>,<Btn2Down>,<BtnlUp>,<Btn2Up>: f()

Another way to describe this action in English would be to say "while button 1 is down, click

button 2." "Meaningless" pointer movement is generally ignored. In the previous case, for

example, if pointer motion occurred while the buttons were down, it would not interfere with

detection of the event Thus, inadvertent pointer jiggling will not thwart even the most com-
plex user-input sequences.

Translation Table Syntax 703

Glossary

X uses many common terms in unique ways. A good example is "children."

While most, if not all, of these terms are defined where they are first used in

this book, you will undoubtedly find it easier to refresh your memory by look-
ing for them here.

Glossary

access control list X maintains lists of hosts that are allowed access to each server con-

trolling a display. By default, only the local host may use the dis-
play, plus any hosts specified in the access control list for that dis-
play. The list is found in letclXn.hosts where n is the number of the

display. The access control list is also known as the host access list.

active window The window where the input is directed. With a "pointer focus"

window manager such as twm, you must put the pointer in a window

to make it the active window. The active window is sometimes

called the focus window.

ASCII American Standard Code for Information Interchange. This stan-
dard for data transmission assigns individual 7-bit codes to represent

each of a specific set of 128 numerals, letters, and control charac-
ters.

background Windows may have a background, consisting of either a solid color

or a tile pattern. If a window has a background, it will be repainted

automatically by the server whenever there is an Expose event on

the window. If a window does not have a background, it will be

transparent. See also foreground.

background color The color that determines the backdrop of a window, for example,

on monochrome displays, the root window background color is gray.

background window A shaded area (also called the root window) that covers the entire

screen and upon which other windows are displayed.

binding An association between a function and a key and/or pointer button.

twm allows you to bind its functions to any key(s) on the keyboard,

or to a combination of keys and pointer button (e.g., the Control key

and the middle button on a 3-button pointer).

bitmap A grid of pixels or picture elements, each of which is white, black,

or, in the case of color displays, a color. The bitmap client allows

you to edit bitmaps, which you can use as pointers, icons, and back-
ground window patterns.

Glossary 707

border A window can have a border that is zero or more pixels wide. If a

window has a border, the border can have a solid color or a tile pat-
tern, and it will be repainted automatically by the server whenever

its color or pattern is changed or an Expose event occurs on the

window.

client An X application program. There are client programs to perform a

variety of tasks, including terminal emulation and window manage-
ment. Clients need not run on the same system as the display server

program.

colorcell An entry in a colormap is known as a colorcell. An entry contains

three values specifying red, green, and blue intensities. These val-
ues are always 16-bit unsigned numbers, with zero being minimum

intensity. The values are truncated or scaled by the server to match

the display hardware. See also colormap.

colormap A colormap consists of a set of colorcells. A pixel value indexes

into the colormap to produce intensities of red, green, and blue to be

displayed. Depending on hardware limitations, one or more color-

maps may be installed at one time, such that windows associated

with those maps display with true colors. Regardless of the number

of installable colormaps, any number of virtual colormaps can be

created. When needed, a virtual colormap can be installed and the

existing installed colormap may have to be uninstalled. The color-

map on most systems is a limited resource that should be conserved

by allocating read-only colorcells whenever possible, and selecting

RGB values from the predefined color database. Read-only cells

may be shared between clients. See also RGB.

console xterm window

This xterm window is the first window to appear on your display.

Exiting the console window kills the X server program and any

associated applications. Also called the login xterm window.

default A function-dependent value assigned when you do not specify a

value. For example, specifying the -rv option with xterm reverses

the foreground and background colors for the xterm window. If you

do not specify this option, the default foreground and background

colors are used.

depth The depth of a window or pixmap is the number of bits per pixel.

device-dependent Aspects of a system that vary depending on the hardware. For

example, the number of colors available on the screen (or whether

color is available at all) is a device-dependent feature of X.

display A set of one or more screens driven by a single X server. The DIS-
PLAY environment variable tells programs which servers to connect

to, unless it is overridden by the -display command line option.

The default is always screen 0 of (display) server 0 on the local

node.

x Window System User's Guide

event Something that must happen before an action can occur.

exposure Window exposure occurs when a window is first mapped, or when

another window that obscures it is unmapped, resized, or moved.

Servers do not guarantee to preserve the contents of windows when

windows are obscured or reconfigured. Expose events are sent to

clients to inform them when contents of regions of windows have

been lost and need to be regenerated.

focus window The window to which keyboard input is directed. By default, the

keyboard focus belongs to the root, which has the effect of sending

input to whichever window has the pointer in it (if you are using a

"pointer focus" window manager, such as ftvm). However, some cli-
ents may automatically take the focus, which means they may send

input to a particular window regardless of the position of the

pointer.

font A style of text characters. Fonts and X font naming conventions are

described in Chapter 5, Font Specification. Samples of Release 3

and 4 screen fonts are pictured in Appendix E.

font directory By default, Release 3 and Release 4 fonts are stored in three sub-
directories of lusrlliblXll I fonts: called misc, 75dpi, and 100dpi.

(Release 2 fonts are stored in the directory lusrlliblX11 /fonts.) You

can specify an alternative font search path for the server with the

xset client.

foreground The pixel value that will actually be used for drawing pictures or

text is referred to as The foreground.

foreground color The color in which the text in windows and menus, or graphics out-
put are displayed.

geometry The specification for the size and placement of a window, which can

be specified with the -geometry option. This option takes an

argument of the form: widthxheight±xoff±yoff.

hexadecimal A base-16 arithmetic system, which uses the digits A through F to

represent the base-10 numbers 10 through 15. Hexadecimal nota-
tion (called hex for short) is frequently used with computers because

a single hex digit can represent four binary digits (bits). The table

below shows the equivalence between hex digits and binary num-
bers.

Hex Binary Hex Binary Hex Binary Hex Binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

Glossary 709

X clients accept a special hexadecimal notation (prefixed by a #

character) in all command line options relating to color. See Chap-
ter 8, Command Line Options, for more information.

highlighter The horizontal band of color that moves with the pointer within a

menu.

hot spot The reference point of a pointer that corresponds to its specified

position on the display. In the case of an arrow, an appropriate hot

spot is its tip. In the case of a cross, an appropriate hot spot might

be its center.

icon A small symbol that represents a window but uses little space on the

display. Converting windows to icons allows you to keep your dis-
play uncluttered.

input device Hardware device that allows you to input information to the system.

For a window-based system, a keyboard and pointer are the most

common input devices.

keyboard focus See focus window.

menu A list of commands or functions, listed in a small window, which

can be selected with the pointer.

modifier keys Keys on the keyboard such as Control, Alt, and Shift. X programs

recognize a set of "logical" modifier key functions that can be

mapped to physical keys. The most frequently used of these logical

keys is called the "meta" key.

mouse An input device that, when moved across a flat surface, moves the

pointer symbol correspondingly across the display. The mouse

usually has buttons that can be pressed to send signals that in turn

accomplish certain functions. The mouse is one type of pointer

device; the representation of the mouse on the screen is also called

the pointer. (See pointer.)

occluding In a windowing system, windows may be stacked on top of each

other much like a deck of cards. The window that overlays another

window is said to occlude that window. A window need not com-

pletely conceal another window to be occluding it

padding Space inserted to maintain alignment within the borders of windows

and menus.

parameter A value required before a client can perform a function. Also called

an argument.

pixel The smallest element of a display surface that can be addressed.

pointer A generic name for an input device that, when moved across a flat

surface, moves the pointer symbol correspondingly across the dis-

710 X Window System User's Guide

play. A pointer usually has buttons that can be pressed to send sig-
nals that in turn accomplish certain functions. A mouse is one type

of pointer device.

The pointer also refers to the symbol on your display that tracks

pointer movement on your desk. Pointers allow you to make selec-
tions in menus, size and position windows and icons, and select the

window where you want to focus input. A pointer can be repre-
sented by a variety of symbols. (See text cursor.) Some typical X

pointer symbols are the I-beam and the skull and crossbones.

property Windows have associated properties, each consisting of a name, a

type, a data format, and some data. The X protocol places no inter-
pretation on properties; they are intended as a general-purpose data

storage and intercommunication mechanism for clients. There is,

however, a list of predefined properties and property types so that

clients can share information such as resize hints, program names,

and icon formats with a window manager. In order to avoid passing

arbitrary length property-name strings, each property name is asso-
ciated with a corresponding integer value known as an atom.

reverse video Reversing the default foreground and background colors.

RGB An additive method for defining color in which tenths of percent-
ages of the primaries red, green, and blue are combined to form

other colors.

root window A shaded area (also called the background window) that covers the

entire screen and upon which other windows are displayed.

screen A server may provide several independent screens, which may or

may not have physically independent monitors. For instance, it is

sometimes possible to treat a color monitor as if it were two screens,

one color and one black and white.

scrollbar A bar on the side of an xterm window that allows you to use the

pointer to scroll up and down through the text saved in the window.

The number of lines saved is usually greater than the number of

lines displayed and can be controlled by the saveLines resource

variable.

select A process in which you move the pointer to the desired menu item

or window and click or hold down a pointer button in order to per-
form some action.

selection Selections are a means of communication between clients using pro-
perties and events. From the user's perspective, a selection is an

item of data that can be highlighted in one instance of an application

and pasted into another instance of the same or a different applica-
tion. The client that highlights the data is the owner, and the client

into which the data is pasted is the requestor. Properties are used to

store the selection data and the type of the data, while events are

Glossary 711

used to synchronize the transaction and to allow the requestor to

indicate the type of data it prefers and to allow the owner to convert

the data to the indicated type if possible.

server The combination of graphics display, hardware, and X server soft-
ware that provides display services for clients. The server also

handles keyboard and pointer input.

text cursor The standard underscore or block cursor that appears on the com-
mand line or in a text editor running an xterm window. To make the

distinction clearer, the cursor that tracks the movement of a mouse

or other pointing device is referred to as the pointer. The pointer

may be associated with any number of cursor shapes, and may

change shape as it moves from window to window.

tile A pattern that is replicated (as if laying a tile) to form the back-
ground of a window or other area. This term is also used to refer to

a style of window manager or application that places windows side

by side instead of allowing them to overlap.

window A region on your display created by a client. For example, the

xterm terminal emulator, the xcalc calculator, and the bitmap graph-
ics editor all create windows. You can manipulate windows on your

display using a window manager.

window manager A client that allows you to move, resize, circulate, and iconify win-
dows on your display.

712 X Window System User's Guide

Index

-bg option 169

binding

acceleration button/key (.twmrc file) 206

cursor 14 keys 45

pointer 222 tight vs. loose (resources) 184

access control bitmap (creating graphics) 14, 109

/etc/Xn.hosts file 547 -118

user-based 548 command boxes 112

xdm 548 description of 109

XDMCP 548 invoking 109, 112

xhost 547 window 110

action field (twm window man- Bitmap Display Format (BDF) for

ager) 208 fonts 549

active window 592 -bitmap option (xsetroot) 224, 225

aliasing font names 93 - 95 bitmaps

arrays converting to arrays 109, 119

converting to bitmaps 109,119 creating from cursor 119

atobm (array to bitmap converter) editing 111

109-120 standard 693

authentication widget 535, 538, bmtoa (bitmap to array converter)

544 109 -120

auto-repeat option (xset) 109, 221 Boolean variables 205

average width (fonts) 87 border color option (-bd) 169

border width option 168

Bourne shell script 528

B bug compatibility mode 220

button

background bindings 206

colors 225 codes 237

-background option (-bg) 169 command 151,188,596

background window see also root logical 228

window 6 -bw option 168

-bd option 169

BDF (Bitmap Display Format) for

fonts 549

bdftosnf (font compiler) 549

bell volume (xset) 203,219

Index 713

colormap 146,223

description 174

C shell script 528 command boxes (bitmap)

calculator (xcalc) 14 see also 112-118

xcalc command buttons

description 132 Maximize 596

function of keys 133 Minimize 596

terminating 133 command button widget 151

character set 88 command line options (client)

character-cell fonts 82 163 -177,181

class -fn(font) 104

definition 184 -background 169

resource names 184 -bd (border color) 169

click-to-type focus -bg (background) 169

see explicit focus 592 -border co lor 169

client -borderwidth 168

command line options 164 -bw (border width) 168

customizing 15,45,181 -display 164

definition 12 -fn(font) 176

desk accessories 129 -foreground 169

display manager 14 -geometry 166

display options 164 -iconic 176

location of default values 182 list of standard 163

placing 45 -name 194

removing 141 -reverse 177

standalone 14 -title 165

user-contributed 150 -xrm (set resources) 194

window manager 13 commands

clipboard 72, 191 see also xclip- bitmap editing 111

board executing system 211

CLIPBOARD selection 65, for terminating xterm window

191-192 see also 54

xclipboard Main Options menu 53

clock 130 see also oclock menu 212

Close (Window Menu) 606 pointer 112

color Tek Options menu 59

changing color name database text editing widget 156

550 VT Options menu 56

determining number available console messages 550

174 context field (twm window man-

displaying 174 ager) 207

for screen elements 169 Control key 156,189,207

hexadecimal specification 172 conventions of book v

menus 212 copying selections in xterm win-
problems allocating 551 dows 61,152

RGB model 173 and xcutsel 66

specifying root window create font databases 92 see also

(xsetroot) 225 mkfontdir

colorcell cursor font 633

definition 174 customizing

read-only 175 clients 15,181

read/write 175,223 keyboard 227

shared 175 mwm 610-629

714 X Window System User's Guide

pointer 227 Exit (Twm menu) 44

twm 46,203 exiting

xdm 536 - 544 window manager 44

cut buffer strings 61 xmag 123

vs. selections 65 xman pro gram 138

xterm window 25

explicit focus 592

D

database resource 196

DECVT102 14

-def option (xsetroot) 224 feedback boxes 623

defaults -fg option 169

setting application 182, 187 files

deiconifying windows 36, 597 .twmrc 35, 45, 46

Delete key 157 .Xdefaults 52

Delete (Twm menu) 43 .Xresources 45,51,52

deleting windows 43 log 550

desk accessories 14, 129 -139 resource 181

dialog box widget 151 .twmrc 15,203

directories .uwmrc 557

font 90 .xinitrc 182,527

display Xreset 536, 542, 544

depth of 174 .Xresources 182

server 11 Xresources 536, 542, 544

setting 219 .xsession 182, 535

DISPLAY environment variable Xsession 538

165,528 xfd (font displayer) 97-105

display fonts 80, 97 - 98 see also xset (set display preferences)

xfd 219 - 223

display manager 14 see also xdm xterm (terminal emulator) menus

-display option 164 Main Options 50,52

display window information 144 xwd (window dump) 140 - 141

see also xwininfo Focus (Twm menu) 43

dump file see window dump file focus policies (mwm)

explicit 592

focus window 43

focusing

definition 8

-edit option (xrdb) 197 font displayer see also xfd 15

enlarging windows 597, 606 font path option (xset) 221

environment variables fonts see also Release 2 fonts and

DISPLAY 148, 165, 528, 609 Release 3 fonts

TERMCAP 74,526 75-dpi vs 100-dpi 85-87

XENVIRONMENT 199 aliases for 93

error log file (xdm) 539 average width 87

/etc/ttys (starting X from) 545 bdftosnf (font compiler) 549

event translations 188,189,538 Bitmap Display Format (BDF)

syntax 697 549

events bold and demi-bold 84

definition 188 character set 88

input 188 character-cell 82, 87

conventions of in book v

Index 715

create font databases (mkfontdir) -geometry option 166-167

92 -grammar option (xmodmap) 234

directories 90 graphics

display (xfd) 79, 80 creating with bitmap 109 - 118

displaying (xfd) 79 - 80,97 - 98 magnifying with xmag 122

families 81,90 graphics utilities 109-125

fonts .dir file 91 -gray option (xsetroot) 224

foundries 87 grip

italic vs. oblique 84 definition 153

list available (xlsfonts) 80

making server aware of aliases

95,549 H

mkfontdir (create font databases)

92, 549 -help option (xsetroot) 224

monospace 87 hexadecimal color specification

naming conventions 80 172

number of fonts available 81

on command line 176

pictures of Release 3 and 4 639

point size 84

previewing (xfontsel) 98 icon

printer 79 definition 7

proportional 82, 87 displaying window as 36

reverse italic and reverse oblique moving 39

84 starting window as 176

screen 79, 176 turning a window into 207

search path 90,91 icon box 626-629

selecting (xfontsel) 80, 98 -iconic option 176

serif and sans serif 84, 88 Iconify (Twm menu) 36

Server Natural Format (SNF) iconifying windows 25,36, 596,

549 605

set width 87 icons

showsnf (display compiled manipulating 607 - 608

font) 549 input events 188

slant 84 instance

style 88 definition 184

weight 84 resource names 184

wildcarding 88, 89, 90 ISO Latin-1 character set 88

fonts.alias file 93

fonts.dir file 91,93,549

foreground colors 225 K

-foreground option (-fg) 169

foundries (fonts) 87 key binding 45,206

-frame option 140 keyboard

function names field (twm window bell 219

manager) 208 customization 227

preferences 219

shortcuts 36,45,557

keyclick volume 220

keycode

generating display information definition 229

149 see also xdpyinfo

716 X Window System User's Guide

keys Main Options menu 50

binding 207 commands 53

Control 156,189, 207 mode toggles 52

Delete 157 manipulating icons 607 - 608

mapping 230,235 using Window Menu 607

Meta 26,156,189,207,231 mapping

modifier 26,227, 227 - 237 definition 188

Shift 207 event-action 190

keys field (twm window manager) Meta key 207

207 modifier keys 227,230,236

keystrokes possibilities with xmodmap 234

missing 46 translation table 189

keysym Maximize

definition 229 command button 597 - 598

determining 232 Window Menu item 606

mapping 234 menus

values 699 color 212

keyword variables 206 creating new 203

Kill (Twm menu) 43 defining in .twmrc file 209, 210

killing executing system commands

client window 141 from 211

oclock 143 Preferences 209

server 141 Root Menu (mwm) 608-610

windows 43 Tek Options 49,58

with Window Menu button 602 Tektronix 49

xterm window 25, 54 Twm 35,203

twm (window manager) 50

VT Fonts 57

VT Options 55,59

Window Menu (mwm)

led option (xset) 221 602 - 608

list fonts 80 see also xlsfonts WindowOps 556

list variables 206 xterm (terminal emulator) 50

list window tree 146 see also -merge option (xrdb) 196

xlswins Meta key 26, 156, 189-190,231

log files 550 definition 207

logging in 14, 20 mapping 207

logical Minimize

font convention 80 command button 596 - 597

keyname 26,230 Window Menu item 605

pointer button 228 mkfontdir (create font databases)

loose bindings 184,186 92, 549

Lower -mod option (xsetroot) 225

Twm menu 42 mode toggles

Window Menu 606 Main Options menu 52

lowering windows 42 Tek Options menu 58

VT Options menu 56

Modes menu see VT Options

M menu

modifier keys 26,227

magnifying screen 122 see also mapping 227 - 237

xmag

Index 717

monospaced fonts 82

Motif (window manager) see

mwm pasting selections in xterm win-
mouse option (xset) 222 dows 64, 152

Move and xcutsel 66

Twmmenu 39 path

Window Menu 604 including X in 526

moving pipes and pointer interaction 141

windows 594 point size 84

on-screen objects 39, 45 pointer

mwm (window manager) acceleration 222

591-629 bindings 206

activating changes to 610 buttons 237

client-specific resources 624 commands 112

component appearance resources context of 207

623 customization 227

customizing 610-629 defining button functions 206

manipulating windows 594 definition 7

overview 591 mapping 236

restarting 610 possible cursor images 633

selecting windows 592 pointer button see button

setting resources 622 - 623 pointer button field (twm window

specific resources 624 manager) 206

starting 592 postscript translation 15 see also

.mwmrc file xpr

customizing mwm through 610 Preferences menu

example of 209

PRIMARY selection 61,152

N printer fonts see fonts

printing utilities 140 - 141

-name option 194 proportional fonts 82

naming conventions

fonts 80

New Window command

Root Menu 609

New Window (WindowOps menu) Quit command (Main Options

558 menu) 54

numeric variables 206

O

Raise (Twm Menu) 41

occluded raising windows 41,42,598

definition 40 read-only colorcell 175,223

oclock (analog clock) 27, read/write colorcell 175, 223

130-131,206,213 redrawing windows 55

killing 131,143 Refresh command

options see command line options Root Menu 610

OSF/Motif (window manager) refreshing the screen 550

591 - 629 see also mwm Release 2 fonts

directory 104

vs. subsequent releases 104

775 X Window System User's Guide

Release 3 fonts Root Menu

aliasing 93 New Window command 609

create font databases (mkfontdir) Refresh command 610

92, 549 Restart command 610

directories 90 Shuffle Down command 609

fonts.dirfile 91,549 Shuffle Up command 609

making server aware of aliases root window 224

95,549 definition 6

pictures of 639 setting (xsetroot) 224

Release 4 fonts -rv option 177

directories 90

pictures of 639

removing windows 43

resize 74

Resize (Twm menu) 38 screen

resizing windows 38, 74 magnifying 122

problems due to 38 resolution 85, 86, 87

using pointer 599 saver option (xset) 222

resource database manager 15, screen fonts see fonts

192,181 see also xrdb scripts

RESOURCE_MANAGER Bourne shell 528

property 195 C shell 528

resources startup 527 - 530, 538

class names of 184, 185 scrollbar

client-specific 624 creating in xterm window 59

component appearance 623 VT Options menu 59

event translations of 188 -192 widget 152

files of 181 search path

instance names of 184,185 including X in 526

list of common 187 setting 22

management of 181, 195 -199 security issues

precedence rules for 185 /etc/Xn.hosts file 547

removing definitions 197 user-based access 548

sample file 193 xdm 548

setting 181-199,195 XDMCP 548

setting with mwm 622 xhost 547

specific appearance 624 selections

specification of 181, 183,185 copying 61, 152

syntax of 182, 183 manipulating 65

tight vs. loose bindings 186 pasting 64, 152

translation table of 188 saving multiple 68, 72

Restart text 62

Root Menu 610 vs. cut buffers 65

Twm menu 44 Send CONT signal command

restarting mwm 610 (Main Options menu) 54

Restore (Window Menu) 607 Send HUP Signal command (Main

-reverse option 177 Options menu) 54

reverse video 177,225 Send INT Signal command (Main

RGB Options menu) 53

color model 173-174 Send KILL Signal command

values 225 (Main Options menu) 54

Index 719

Send STOP signal command

(Main Options menu) 54

Send TERM Signal command Tek Options menu 50

(Main Options menu) 54 commands 59

server description of items 58

closing connection 141 mode toggles 58

control access (xdm) 548 Tektronix 4014 14

control access (xhost) 547 temporary xterm windows

definition 11 running commands in 75

display 11 TERMCAP

starting 19,527 environment variable 526

Server Natural Format (SNF) for entry for xterm 74

fonts 549 terminal emulator 49 see also

set width (fonts) 87 xterm

shell environment variables ee definition 14

environment variables terminal type

shell scripts setting 526

Bourne 528 xterm 73

C 528 terminating xterm window 25, 54,

startup 527 176

Shift key 207 text

showsnf (display compiled font) copying and pasting 61,64,66,

549 72

Shuffle Down (Root Menu) 609 string variables 205

Shuffle Up (Root Menu) 609 switching buffer and selection

Size (Window Menu) 605 (xcutsel) 66

SNF see Server Natural Format text editing widget 154,156

549 thumb (scrollbar)

-solid option (xsetroot) 225 definition 152

spacing (fonts) 87 tight bindings 184,186

stacked windows title area of window 594

changing order of 40, 42 -tide option 165

starting X 19-30 titlebar 595

bringing up window manager 23 description 7

BSD 4.3 545 in twm window manager 23,

from/etc/ttys 545 34-35

placing clients 45 in xterm window 20

setting search path 526 titlebutton bindings 206

setting terminal type 526 Toolkit options see command line

steps for 22 options

System V 545 toolkits

xdm (display manager) definition 182

531-544 translation table

xinit (start X server) 22,545 definition 188

startup scripts 528,538 example of 190

submenu 210 mappings in 189

system management 525 - 551 syntax 190,697-701

system.mwmrc file 612-619 Twm menu 35 - 45

Delete 43

Exit 44

Focus 43

Iconify 36

KiU 43

720 X Window System User's Guide

Lower 42

Move 39

Raise 41 variables 165 see also environ-

redesigning 203 ment variables

Resize 38 Boolean 205

Restart 44 keyword 206

twm (window manager) 13,22 list 206

action field 208 numeric 206

and stacking windows 40 resource 167

background processes 23 setting .twmrc 205

bringing up 23, 535 vertical panes 153

context field 207 viewport widget 154

customizing 46, 203 Vpaned widget 153

defining keys 207 VT Fonts menu 50

example of modified 213 description of items 57

exiting 44 VT Options menu 50

function names field 208 Allow 80/132 Column Switching

keys field 207 56

menus 50 description of items 55

overview 33 mode toggles 56

placing clients 45 VT102(DEC) 14

pointer button field 206 Modes menu 55

restarting 44 VT Options menu 55

setting variables 205

titlebars 34-35

Twm menu 35 W

.twmrc file 35

.twmrc file 15, 35, 45 - 46, widget

203-216 attributes 184

button/key bindings 206 authentication 535, 538, 544

changing defaults 205 binding (loose vs. tight) 184

example of 203 command button 151

menus defined by 209-210 defining conventions 184

modifying 213 definition 150

setting variables 205 dialog box 151

hierarchy 183

scrollbar 152

U text editing 154, 156

viewport 154

UNIX commands Vpaned 153

running in temporary xterm 75 wildcarding font names 88-90

user-contributed clients 150 window dump 14 see also xwd

Utilities menu window dump file

example of 209 creating (xwd) 140

uwm (window manager) 13 displaying (xwud) 140

overview 555 printing 140

.uwmrc file 557 to printer (xdpr) 141

WindowOps menu 556 undumping (xwud) 141

.uwmrc file 557 window manager 13, 33 - 46, 203

see also twm, uwm, mwm

steps for starting 23

Index 721

Window Menu vertically tiled 153

Close 606 width of 168

displaying 602

Lower 606

manipulating icons with 607

Maximize 606

Minimize 605 X Window System

Move 604 description of 5

reasons for using 602 display server 11

removing menu 604 overview of architecture 10

Restore 607 xbiff (mail notification) 133,212

selecting items 603 xcalc (calculator) 14, 132 -133,

Size 605 212,528, 598

Window Menu command button xclipboard (save text selections)

602 65, 68,191

WindowOps menu Release3 72

New Window 558 xclock (analog or digital clock)

windows 14,130-131,206

creating 22,23,558 killing 130

definition 6 xcutsel (exchange cut buffer and

deiconifying 36, 597 selection) 65, 66

displayed as icons 36 .Xdefaults file 52

displaying information about vs. xrdb 192

144 .Xdefaults file see .Xresources

enlarging 597 xdm (display manager) 14

exiting xterm 25 access control features 548

focus 43 authentication widget 535, 538,

geometry of 166 544

hierarchy of 146 configuration file 532

icon box 626 customizing 536 - 544

iconifying 25,36,596 error log file 539

killing (Twm menu) 43 login window 20

killing (Window Menu button) standard session 535

602 starting X with 531 - 544

killing (xkill) 141 stopping xdm and the server 540

lowering 42 Xreset 539

manipulating 33, 555 Xresources file 538, 544

manipulating (mwm) 594 .xsession file 538

maximizing 596 Xsessionfile 538

minimizing 596 Xstartup 539

moving 39, 594 xdpr (window dump to printer)

raising 41,42,598 141

redrawing 55 xdpyinfo (list display information)

resizing 38,74,558,599 149

root 6,224 xedit (text editor) 71, 154,207

selecting (mwm) 592 XENVIRONMENT environment

stacked 40,42 variable 199

starting as icon 176 xev (track events) 232

switching focus between 25 xfd (font displayer) 15, 80, 95,

Tektronix 49 141

terminating 54 xfontsel (select font) 80

title 165

tide area 594

722 X Window System User's Guide

xhost (control access to server) font path option 221

547 mouse option 222

xinit (start X server) 22, 527, 545 xsetroot (set root window charac-
.xinitrcfile 527 teristics) 224-237

xkill (remove window) 141 -144 -bitmap option 224

xload (poll system load average) -defoption 224

28,134 xterm menus 49 - 59 see also

xlsclients (list running clients) Main Options menu, Tek

148 -149 Options menu, Vt Options

xlsfonts (list available fonts) 80 menu

xlswins (list window tree) Modes 50

146 -148 Tek Options 49 - 50

xmag (magnify screen portion) Tektronix 49 - 50

122 -125 VT Fonts 50

description of 122 VT Options 50

quitting 123 xterm 50

xman xterm (terminal emulator)

as a viewport 154 and termcap 526

xman (display manual pages) 135 control sequences 681

Release3 138 creating window(s) 22, 558

xmodmap (modifier key and default size 45

pointer customization) multiple xterms 23

227 - 237 overview 14, 49

change map 233 - 237 pasting and copying selections

display key map 230 152

display pointer map 236 running command in temporary

grammar option 234 window 75

xpr (postscript translation) 15, scrollbar 59

140-141 Tektronix window 49

xrdb (resource database manager) TERMCAP 74

15,192-199,527 terminal type 73

-edit option 197 terminating 25, 54

loading new values to 196 xwd (window dump) 14

querying 196 xwininfo (display window infor-
removing definitions 197 mation) 144-146

saving definitions 197 xwud (window undumper) 140,

setting resources with 195 141

syntax 195

using 195

xrefresh (refresh screen) 55, 610

Xresetfile 536,542,544

.Xresources file 15, 51, 52, 182,

536, 538,542,544

sample 193

.xresources file

customizing mwm through 610

-xrm option 194

.xsession file 535,538

Xsession file 538

xset (set display preferences) 14,

91,210

auto display option 221

auto-repeat option 109

Index 723

Also from O'Reilly & Associates:

A PRACTICAL JOURNAL OF THE X WINDOW SYSTEM

THE X RESOURCE

Programming in the X environment can be difficult. You need access to subjects that are

too specialized for magazines and developments that are too recent to have been incorpo-
rated into books. How do you take advantage

of other programmers' experience? How do

A PRACTICAL JOURNAL OF THE X WINDOW SYSTEM

you keep current? THE X RESOURCE

The X Resource is a quarterly, working journal

for X programmers. Its goal is to provide

practical, timely information about the pro-
gramming, administration, and use of the X

Window System:

" Over-the-shoulder advice from program-
mers who share their experience.

" Suggestions from the people who wrote

your software tools.

" Insight on making better use of public

domain tools for software development.

" In-depth tutorial and reference documenta-
tion.

" Annual Proceedings of the X Technical

Conference held at MIT. (O'Reilly & O'Reilly & A>sociaivs

Associates is the official publisher of the

Proceedings.)

For those programmers who want to review proposed X Consortium standards, and

participate in setting those standards, supplements to TheXResourcewill include:

" Public Review Specifications for proposed X Consortium standards.

" Introductory explanations of the issues involved.

You can order The X Resource and supplements for $90 per year. Subscription to the journal

alone is $65 per year. (Foreign shipping extra.) Order now to begin your subscription. We

guarantee that you will find our articles timely and practical - information you can use. (If

you don't agree, you can cancel at any time.)

Also available in single issues from local bookstores.

O'Reilly & Associates, Inc.

103 Morris Street " Sebastopol CA 95472

((800) 338-6887 " (707) 829-0515 " FAX (707) 829-0104

Books That Help People Get More Out of Computers

If you want more information about our Name

books, or want to know where to buy them,

we're happy to send it. Address.

_) Send me a free catalog of titles.

3 What bookstores in my area carry your

books (U.S. and Canada only)?
 City.

Q Where can I buy your books outside the

U.S. and Canada?

D Send me information about consulting

State, ZIP

Country_

services for documentation or

programming. Phone

a Send me information about bundling

Email Address.

books with my product.

Books That Help People Get More Out of Computers

If you want more information about our

Name

books, or want to know where to buy them,

we 're happy to send it.

Address.

a Send me a free catalog of titles.

3 What bookstores in my area carry your

books (U.S. and Canada only)?

City_

Q Where can I buy your books outside the

U.S. and Canada? State, ZIP.

3 Send me information about consulting

Country_

services for documentation or program-
ming. Phone

a Send me information about bundling

books with my product. Email Address.

NAME

STATE ZIP

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL. CA

POSTAGE WILL BE PAID BY ADDRESSEE

O'Reilly & Associates, Inc.

632 Petaluma Avenue

Sebastopol, CA 95472-9902

NAME

COMPANY

ADDRESS

CITY STATE ZIP

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 80 SEBASTOPOL. CA

POSTAGE WILL BE PAID BY ADDRESSEE

O'Reilly & Associates, Inc.

632 Petaluma Avenue

Sebastopol, CA 95472-9902

Overseas Distributors

Effective January 1,1990, customers outside the U.S. and Canada will be able to order O'Reilly & Associates

books through distributors near them. These overseas locations offer international customers faster order

processing, more local bookstores and local distributors, and increased representation at trade shows

worldwide, as well as the high level, quality service our customers have always received.

AUSTRALIA & NEW ZEALAND ASIA except JAPAN (inquiries)

(orders and inquiries) Addison-Wesley (Singapore) Pte. Ltd.

Addison-Wesley Publishers, Pty. Ltd. 15 Beach Road

6 Byfield Street 05-09/10 Beach Centre

NorthRyde,N.S.W.2113 SINGAPORE 0718

AUSTRALIA Telephone: 65-339-7503

Telephone: 61-2-888-2733 FAX: 65-339-9709

FAX: 61-2-888-9404

LATIN AMERICA and ASIA

GREAT BRITAIN & AFRICA except JAPAN (orders only)

(orders and inquiries) Addison-Wesley Publishing Company

Addison-Wesley Publishers Ltd. International Order Department

Finchampstead Road Jacob Way

Wokingham, Berkshire RG11 2NZ Reading, MA 01867 U.S.A.

ENGLAND Telephone: 1-617-944-3700

Telephone: 44-734-794-000 FAX: 1-617-942-2829

FAX: 44-734-794-035

JAPAN (orders and inquiries)

EUROPE & MIDDLE EAST Toppan Company, Ltd.

(orders and inquiries) Ochanomizu Square B, 1-6

Addison-Wesley Publishing Group Kanda Surugadai

Concertgebouwplein 25 Chiyoda-ku, Tokyo 101

1071LM Amsterdam JAPAN

THE NETHERLANDS Telephone: 81-3-3295-3461

Telephone: 31 -20-671 -72-96 FAX: 81-3-3293-5963

FAX: 31-20-664-53-34

Maruzen Company, Limited

LATIN AMERICA (inquiries) (X Window System Series only)

Addison-Wesley Iberoamericana S.A. 3-10 Nihonbashi, 2-Chome

Blvd. de las Cataratas No. 3 Chuo-Ku, Tokyo, 103

Colonia Jardines del Pedregal JAPAN

Delegacion Alvaro Obregon Telephone: 81-3-3275-8585

Mexico 01900, D. F. FAX: 81-3-3274-3238

MEXICO

Telephone: 525-660-2497

FAX: 525-660-4930

X Window System User's Guide

This book orients the new user to window system concepts and provides detailed

tutorials for many client programs, including the xterm terminal emulator and the

twm, /ww, and mwm window managers. Once you have a basic knowledge of the

system, the later chapters explain how to customize the X environment and

provide sample configurations.

The X Window System User's Guide has been revised and updated for XI1

Release 4. It includes:

" Starting the system and opening the first client windows

" Using the xterm terminal emulator and the twm and //VIA?/ window

managers

" Most standard release clients, including programs for graphics.

printing, font manipulation, window/display information and

removing the windows, as well as several "desktop" utilities

" Customizing the window manager, keyboard, display, and certain

basic features of any client program

" Using and customizing the mwm window manager, for those using

the OSF/Motif graphical user interface

" System administration tasks, including managing fonts, starting X

automatically, and using the display manager, xdm. to run X on a

single display or multiple displays

The books in the X Window System Series are based in part on the original MIT

X Window System documentation, but are far more comprehensive, easy to use,

and are loaded with examples, tutorials, and helpful hints. Over 20 major

computer manufacturers recommend or license volumes in the series. In short,

these books are the definitive guides to the X Window System.

ISBN 0-937175-U-5

9 "780937"175U9"

1 ISBN 0-937175-14-5

O'Reilly & Associates, Inc.

imtffl'

-

.

" "

.

,

.

" "/-,

	Contents Page 1
	Contents Page 2
	Contents Page 3
	Contents Page 4
	Contents Page 5
	Contents Page 6
	Contents Page 7
	Contents Page 8
	Contents Page 9
	First Page:
	Chapter ?: preface assumptions xxi organization xxii bulk sales information xxiv xshowfonts.c xxiv
	Chapter ?: part one using x part two customizing x
	Chapter ?: part three client reference pages part four appendices index
	Chapter ?: xxiv font and character conventions xxv
	Chapter 1: anatomy of an x display 5 x architecture overview 10 the x display server 11 clients 12 the window manager 13 the xterm terminal emulator 14 the display manager 14 other x clients 14 customizing clients 15 1-6 a sample x window system configuration
	Chapter 2: 2 getting started 19 30
	Chapter 2: if x is being started automatically 19 starting x manually 22 starting the first xterm window 22 bringing up the window manager 23 starting a second xterm window 23 exiting from an xterm window 25 special keys 26 how a client looks and behaves application defaults 26 starting other clients 27 running a client on another machine 28 where to go from here
	Chapter 3: 3 using the twm window manager 33 35
	Chapter 3: starting the window manager 556 the windowops menu 556 creating new terminal windows 558
	Chapter ?:
	Chapter ?: 3-6 moving windows or icons 3-5 resizing a window 39
	Chapter ?: starting the window manager 34 titlebars 34 the twm menu 35 displaying windows as icons 36 resizing windows 38 moving windows and icons 39 shuffling the window stack raise and lower 40 raising windows bringing in front of others 41 lowering windows sending behind others 42 changing keyboard focus 43 removing a window delete and kill 43 restarting the window manager 44 exiting the window manager 44 button control of window manager functions 45 using twm to place other clients 45 customizing twm 46 some of my keystrokes are missing 46 40
	Chapter ?: 3-7 one xterm window overlapping another 41
	Chapter ?: 3-8 raising a window 42
	Chapter 4: 4 the xterm terminal emulator 49 4-1 the release 4 xterm menus 4-2 the main options menu 52 4-5 vt fonts menu 57
	Chapter 4:
	Chapter ?: the release 4 xterm menus 50 the xterm menus at a glance 50 the main options menu 52 vt options menu 55 vt fonts menu 57 tek options menu 58 using the scrollbar 59 copying and pasting text selections 61 selecting text to copy 62 pasting text selections 64 manipulating text selections 65 copying and pasting between release 2 and 3 clients xcutsel 66 saving multiple selections xclipboard release 4 version 68 problems with large selections 71 editing text saved in the xclipboard 71 release 3 xclipboard 72 terminal emulation and the xterm terminal type 73 resizing an xterm window 74 running a program in a temporary xterm window 75
	Chapter 5: font naming conventions 80 5 font specification 79 font specification in release 2 previewing fonts with the xfontsel menus 84 98 82 85
	Chapter ?:
	Chapter ?:
	Chapter ?: font families 81 5-2 the major commercial font families available in the standard x distribution 5-1 font name releases 3 and 4 81 figures
	Chapter 6: stroke weight and slant 84 font sizes 5-5 the same font in six different point sizes
	Chapter ?: other information in the font name 87
	Chapter ?: font name wildcarding 88
	Chapter ?: the font search path
	Chapter ?: 90 the fonts.dir files 91
	Chapter ?: font name aliasing 93
	Chapter ?: utilities for displaying information about fonts making the server aware of aliases the font displayer xfd 95
	Chapter ?: release 3 xfd 97
	Chapter ?: previewing and selecting fonts xfontsel 98
	Chapter ?: the great escape changing fonts in xterm windows selecting a font name 102
	Chapter ?: release 2 versus subsequent release fonts the selection menu item 104
	Chapter 6: 6 graphics utilities 109 6
	Chapter ?:
	Chapter ?: creating icons and other bitmaps 109 bitmap editing commands 111 pointer commands 112 bitmap command boxes 112 acting on the entire grid clear all set all invert all 112 acting on an area clear area set area invert area 114 copy area move area overlay area 115 drawing line circle filled circle 116 filling in a shape
	Chapter ?: fill 117 hot spots set hot spot clear hot spot 117 saving and quitting write output quit 117 creating a bitmap from a cursor 119 magnifying portions of the screen xmag 122 quitting xmag 123 what xmag shows you 123 dynamically choosing a different source area 125
	Chapter ?:
	Chapter 7: desk accessories 129 clock programs xclock and oclock 130 a scientific calculator xcalc 132 terminating the calculator 133 mail notification client xbiff 133 7 other clients
	Chapter ?: 154 text editing widget 154
	Chapter ?:
	Chapter 8: 8 command line options 163 177 8
	Chapter 8: which display to run on 164 title and name 165 window geometry 166 border width 168 color specification 169 the rgb.txt file 169 release 4 color names 170 release 3 color names 172 alternative release 4 color databases 172 hexadecimal color specification 172 the rgb color model 173 how many colors are available 174 starting a client window as an icon 176 specifying fonts on the command line 176 reverse video
	Chapter ?:
	Chapter 9: resource naming syntax 182 syntax of toolkit client resources 183 tight bindings and loose bindings 184 instances and classes 184 9 setting resources 9
	Chapter ?: precedence rules for resource specification 185 some common resources 187 event translations 188 the syntax of event translations 189 xterm translations to use xclipboard 191 how to set resources 192 a sample resources file 193 specifying resources from the command line 194 the-xrm option 194 the-name option 194 setting resources with xrdb 195 querying the resource database 196 loading new values into the resource database 196 saving active resource definitions in a file 197 removing resource definitions 197 listing the current resources for a client appres
	Chapter ?:
	Chapter ?:
	Chapter ?: 198
	Chapter ?: other sources of resource definition 199
	Chapter 10: setting twmrc variables 205 button/key bindings 206 pointer buttons 206 keys 207 context 207 function names 208 action 208 defining menus 209 submenus 210 executing system commands from a menu 211 color menus 212 a complete revamp of twm 213 10 customizing the twm window manager 203 menu specifications 615 key bindings 616 button bindings 617 customizing the root menu 619 creating new menus 620 cascading menus 620 setting mwm resources 622 component appearance resources 623 mwm-specific appearance and behavior resources 624 client-specific resources 624 setting the focus policy 625 using an icon box 626 10
	Chapter ?:
	Chapter 11: xset setting display and keyboard preferences 219 keyboard bell 219 bug compatibility mode 220 keyclick volume 220 enabling or disabling auto-repeat 221 changing or rehashing the font path 221 keyboard leds 221 pointer acceleration 222 screen saver 222 color definition 223 help with xset options 223 11 setup clients 219 displaying and changing the pointer map 236 11
	Chapter ?: xsetroot setting root window characteristics 224 setting root window patterns 224 foreground background color and reverse video 225 changing the root window pointer 226 xmodmap modifier key and pointer customization 227 keycodes and keysyms 229 procedure to map modifier keys 230 displaying the current modifier key map 230 determining the default key mappings 231 matching keysyms with physical keys using xev 232 changing the map with xmodmap 233 expressions to change the key map 234 key mapping examples
	Chapter ?: a system management 525
	Chapter ?:
	Chapter ?: including x in your search path 526 setting the terminal type 526 a startup shell script 527 what should go in the script 527 starting x 531 starting x with the display manager xdm release 4 531 getting started with xdm on a single display 532 setting up the configuration file and other special files 532 the standard login session 535 customizing xdm 536 the xservers file 537 the xsession file and xsession scripts 538 the xresources file 538 the error log file 539 the xdm-pid file release 4 only 539 xstartup and xreset 539 security and the authorize resource release 4 only 539 stopping xdm and the server 540 x terminals and the xdm control protocol release 4 540 release 3 xdm 541 release 3 special files and the config file 541 customizing the release 3 xdm 542 managing multiple displays the release 3 xservers file 543 release 3 xsession scripts 544
	Chapter ?:
	Chapter ?: b the uwm window manager 555
	Chapter ?: c the osf/motif window manager 591 614
	Chapter ?: getting started with mwm 591 starting mwm 592 selecting the window to receive input 592 manipulating windows with the mwm window frame 594 moving a window the title area 594 minimizing iconifying and maximizing a window 596 the minimize button 596 the maximize button 597 raising a window 598 resizing a window 599 the window menu button display a menu or close the window 602 manipulating windows using the window menu 602 changing the window location move 604 resizing the window size 605 iconifying the window minimize 605 changing to the maximum size maximize 606 moving a window to the bottom of the stack lower 606 removing a window close 606 restoring a maximized window or an icon restore 607 manipulating icons 607 manipulating icons using the window menu 607 the root menu 608 customizing mwm 610 activating changes to the window manager 611 the system.mwmrc file 612 mwm functions
	Chapter ?:
	Chapter ?: e release 3 and 4 standard fonts 639
	Chapter ?: xterm control sequences 681 definitions 681 vt102mode 681 tektronix 4014 mode f xterm control sequences
	Chapter ?:
	Chapter ?: event types and modifiers 697 detail field 699 modifiers 700 complex translation examples 700 h translation table syntax 697
	Chapter ?: glossary
	Chapter ?: 711
	Chapter ?:

