ARCHIV
FÜR
NATURGESCHICHTE.

IN VERBINDUNG MIT MEHREREN GELEHRTEN
HERAUSGEGEBEN

VON

DR. AR. FR. AUG. WIEGMANN,
AUSSERORD. PROFESSOR AN DER FRIEDRICH-WILHELM'S-UNIVERSITÄT
ZU BERLIN.

DRITTER JAHRGANG.
Erster Band.
MIT ZEHN KUPFERTAFELN.

BERLIN, 1837.

IN DER NICOLAI'SCHEN BUCHHANDLUNG.
Inhalt des ersten Bandes.

I. Zoologie.

1) Originalaufsätze.

<table>
<thead>
<tr>
<th>Aufsatz</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ueber die Byssus der Acephalen, nebst einigen Bemerkungen zur</td>
<td>I</td>
</tr>
<tr>
<td>Anatomic von Tichogonia Chemnitzii Rossm. (Mytilus polymorphpus Pall)</td>
<td></td>
</tr>
<tr>
<td>von A. Müller, Dr. med. (Hierzu Taf. I u. II.)</td>
<td></td>
</tr>
<tr>
<td>2. Ueber neue Arten der Gattung Tichogonia Rossm. vom Herausgeber.</td>
<td>47</td>
</tr>
<tr>
<td>3. Ueber die Sexualität der Muscheltiere, Notiz von Dr. v. Siebold.</td>
<td>51</td>
</tr>
<tr>
<td>4. Helminthologische Beiträge von H. Nathusius. Erster Beitrag.</td>
<td>52</td>
</tr>
<tr>
<td>Ueber einige Eingeweidewürmer des schwarzen Storches. Filaria</td>
<td></td>
</tr>
<tr>
<td>labiata Crepl. und Strongylus trachealis. (Syngamus v. Sieb.)</td>
<td></td>
</tr>
<tr>
<td>5. Zusatz zum vorhergehenden Aufsatz von v. Siebold.</td>
<td>66</td>
</tr>
<tr>
<td>6. Ornithologische Reise nach und durch Ungarn von Joh. Fr. Naumann.</td>
<td>69</td>
</tr>
<tr>
<td>7. Ueber die Gattung Pteroloma von Dr. Erichson.</td>
<td>119</td>
</tr>
<tr>
<td>2) Scincus Fitz. 3) Diplogossus. 4) Euprepes. 5) Xenodermus.)</td>
<td></td>
</tr>
<tr>
<td>9. Ueber die gestielten Eier der Schlupfwespen vom Prof. Th. Hartig.</td>
<td>151</td>
</tr>
<tr>
<td>(Hierzu Taf. IV.)</td>
<td></td>
</tr>
<tr>
<td>11. Steganotoma nov. gen. vom Dr. F. H. Troschel. (Taf. II. Fig. 12-13.)</td>
<td>163</td>
</tr>
<tr>
<td>12. Neue Süßwasseramebianien des Ganges von demselben.</td>
<td>166</td>
</tr>
<tr>
<td>13. Ueber südamerikanische Raupen, besonders über die dortigen Brenn-</td>
<td>183</td>
</tr>
<tr>
<td>und Giftraupen von Moritz.</td>
<td></td>
</tr>
</tbody>
</table>
14. Ueber die mit Asterias aurantiaca verwandten und verwechselten Asterien der sicilianischen Küste von Dr. Philippi. 193
15. Einige Bemerkungen über Guilding’s Peripatus vom Herausgeber. 195
16. Berichtigung einer Stelle des Isis vom Prof. v. d. Hoeven. 229
17. Beschreibung zweier misshandelter Seeigel nebst Bemerkungen über die Echiöiden überhaupt von Dr. Philippi in Kassel. (Taf. V.) 241
18. Ueber Gorgonia paradoxa von derselben. 247
19. Diagnosen einiger neuen Conchylien-Arten von Anton. 281
20. Ueber die Fortpflanzung des Pteroptus Vespertilionis Dufour von Chr. L. Nitzsch. (Hierzu Taf. VIII. Fig. 1—3.) 327
21. Neues Genus von Wasserschlangen, von Joh. Jakob Tschudi. (Hierzu Taf. VIII. Fig. 1—7.) 331
22. Filaria? im Gehirn eines Eidechsen-Fötus von Prof. Rathke. 335
23. Ueber die Gattung Procyon vom Herausgeber. 353
24. Ehrenberg's neuer Entdeckungen über die Bacillären. 377
25. Notiz über das Gehirn des Moco vom Herausgeber. 378
27. Pododesmus, ein neues Genus der Aecophalen von Dr. Philippi. (Hierzu Taf. IX. Fig. 1.) 385
28. Zur Entwickelungsgeschichte der Mollusken und Zoophyten von M. Sars in Norwegen. 402
30. Ueber den Unterschied der Schalenbildung bei den männlichen und weiblichen Aspredonten von Dr. v. Siebold. 415

2) Auszüge.

1. Ichthyologische Beiträge zur Fauna Grönlands vom Professor Reinhard. (I.) 235
2. Ueber eine neue Ordnung der Myriapoden von J. F. Brandt. 238
3. Ueber die Benennung des Tapir von Roulin. 240
5. Beiträge zur Kenntniss der Gattungen Campanularia und Syncoryna von S. K. Lowen. (Hierzu Taf. VI.)
 1) Campanularia. 249
 2) Syncoryna. 321
6. Ichthyologische Beiträge zur Fauna Grönlands vom Professor Reinhardt. (II.) .. 263
10. Elektrische Erscheinungen am Zitterrochen. 377
13. Pflegmutter'schaft bei Katzen. Notiz. .. 401

II. Botanik

Originalaufsätze.

2. Bemerkungen über das Vorkommen von Pflanzen in heissen Quellen und in ungewöhnlich warmem Boden von H. R. Göppert. 201
3. Ueber die Epidermis der Pflanzen von Meyen. 211
4. Einige botanische Bemerkungen von C. S. Kunth. 231
5. Notiz über die Einwirkung freier Kohlensäure auf die Ernährung der Pflanzen von Dr. M. J. Schleiden. ... 279
6. Einige Blicke auf die Entwicklungsgeschichte des vegetabilischen Organismus bei den Phanerogamen von Dr. M. J. Schleiden. 289 u. 414
7. Beweis, daß die Nulliporen Pflanzen sind, von Dr. Philippi. (Hierzu Taf. IX. Fig. 2 - 6.) .. 387
8. Beiträge zur Pflanzenphysiologie von Meyen. (Hierzu Taf. X.) 419
 (1) Entwicklung des Getreidebrandes. 2) Einige Eigenthümlichkeiten der Epidermis verschiedener Orchideen. 3) Brutknospen bei Laubbäumen. 4) Auffallende Bewegung in verschiedenen Pflanzentheilen.)

III. Petrefaktenkunde.

1) Originalaufsätze.

1. Die Styloolithen sind anorganische Absonderungen, von A. Quenstedt. (Taf. III.) .. 137
2) Auszüge.

1. Ueber die fossilen Gattungen *Xarthidium* und *Peridinium* von C. G. Ehrenberg. 273
2. Ueber fossile Infusorien von Denselben. 275
3. Fossile Quadrumanen. .. 373

Druckfehler.

S. 271 Z. 10 von oben in der Diagnose von *Procyon cancrivorus* ist *genis* vor *fuscescenti-cinereis* einzuschalten.
Ueber die Byssus der Acephalen, nebst einigen Bemerkungen zur Anatomie der Tichogonia Chemnitzii Rössm. (Mytilus polymorpha Pall.)

von

A. Müller, Dr. M.

Hierzu Taf. I. und II.

Die Byssus ist eines von den Mitteln, deren sich die Natur zur Aufhebung der Locomotivität bedient, was in den niederer Thierklassen eine nicht seltene Erscheinung ist. Die hier genannte Befestigungsart hat das Merkwürdige, daß sie durch einen willkürlichem Akt des Thieres herbeigeführt wird, dafs dann aber der Willkühr sogleich die Notwendigkeit folgt, und das Thier für das ganze Leben an eine Stelle gebunden bleibt. Sie ist nicht organisirt, soudern das erhärtete Sekret einer Drüse, welches die (nicht wesentliche) Form von den muskulosen Weichteilen des Thieres erhält. Meines Wissens findet sie sich nur bei den zweischaligen Muscheln, an deren Bauchmuskeln sie sich anheftet, indem ein zweites Sekret die Verbindung vermittelt.

I. Geschichte.

Die Byssus der Alten wurde aus der Faser verschiedener Pflanzen verfertigt, und ist nicht Gegenstand dieser Untersuchung 1). Die Byssus der Acephalen findet man in den klassischen Schriften der Griechen und Römer kaum genannt; Ari-

3) *Hierozoeicon I. lib. II. c. 45.
5) *Hexaemeron, homilia VII.
6) *De Justiniani fabricis. l. III.*
dem Meere genommen; pinnae sollen die Thiere heissen, welche diese Wolle erzeugen. Endlich sagt Phile 7), die pinna zenge ein bewunderungswerthes Büschel Haare, als ob sie es ans den Eingeweiden der Spinne entnehme, dessen glänzende und zarte Feinheit, in die gelben Locken der Jungfrauen gebunden, lustige Freier anziehe. — Der Vergleich mit den Spinnen ist trefflich.

So glaubt Bellonius 8), die pinna ziehe durch ihre Byssusfäden Nahrung an. G. Rondelet 9), Professor zu Montpellier, sucht diese Ansicht zu widerlegen. Er sagt auch, dass die mytuli Byssus erzeugen, die sich aber gegen die weiche und zarte Wolle der pinna wie Hanf verhalte. Von der Byssus der Alten redet er ebenfalls und nennt sie byssus terrenus zum Unterschiede von marinus und glaubt, dass beide in den kostbaren Zeugen vermischt gewesen seien. U. Aldrovandi 10) untersucht, ob Aristoteles Recht habe, wenn er sagt, dass die pinna aus der Byssus entstehe, und gibt die Ansichten des Rondelet wieder, die überhaupt sehr oft nachgesprochen sind. S. Bochartus 11) ist wichtig für die älteste Geschichte dieser Byssus. Er scheint übrigens der irren Meinung zu sein, als wache die Byssus auf der Schale der pinna, und citirt deshalb p. 488. mehrere Stellen der alten Schriften, die von der Rauhheit der Schale reden, also nicht auf die Byssus zu beziehen sind.

Noch im 17ten Jahrhundert erschien eine ausgezeichnete Beobachtung über die Byssus des mytillus edulis Linn. von Anton

7) De animalium proprietate. c. 88.
9) Universae, aqualilium historiae pars altera etc. Lugd. 1555. fol. p. 50. sqq.
10) De reliquis animalibus exsanguibus etc. Francof. 1633. fol. l. III. c. 77.

mer und passender anzunehmen, als die klebrige Materie, welche aus der Oberfläche des zungenförmigen Muskels ausschwitzt (gluten e linguae superficie exsudans, was nur Schleim ist). Denn dies ist ein Kleber, der sich in Fäden zieht und in der Längsfurche (sinus) unter vielseitigem Drucke seiner Lippen die längliche und runde Form leicht annimmt. Endlich erstreckt sich die Furche bis zum Stamme der Byssus (stamen), den sie umgeht, weshalb sich der Kleber leicht mit ihm verbinden kann, wenn dieser nicht zum Theil aus den benachbarten und tiefer gelegenen Theilen hervortritt. «Seine Ansicht über das Wachsthum der Byssus ist folgende: »Diese Fäden übertreffen den Faden einer Spinne nicht an Dicke (der gewaltige Unterschied ist wohl ohne Mikrometer zu finden), demungeachtet scheint doch der Stammbaum der Byssus, der viel dicker ist, und vielleicht täglich wächst, aus einem solchen Faden entstanden zu sein (was ganz nurrichtig ist). Es ist daher die Frage, wie die gesponnenen Fäden wachsen. Wahrscheinlich setzt sich der Kleber an, der an den Theilen, die an der Basis des Stammes liegen, herausquillt, und bewirkt so ihr Wachsthum. Ferner scheint er wie eine Pflanze zu wachsen und verlängert zu werden. Es ist auch nicht abgeschmackt, zu sagen, daß die Fäden sich durch Anziehung von Theilen aus dem Seewasser vergrößern.« Endlich hat v. Heide die sonderbare Idee, daß der mytilus sich vermittelt dieser Fäden bewegen könne, indem er sich durch Zusammenziehung der Muskeln, die sich an der Basis der Byssus inseriren, erheben und seine Lage nach Gefallen verändern könne, und dann entfernter hin einen Faden anlegen. Hierbei bleibt v. Heide zu erklären schuldig, wie der mytilus die alten Fäden, die ihn zurückhalten müssen, ablost. v. Heide kennt also die Quelle der Byssusmaterie nicht, und hat noch keinen bestimmten Begriff von organisirten und nicht organisirten Theilen. Nicht gar lange bieran machte Réaumur 13) ähnliche Beobachtungen, und wie es scheint, ganz unabhängig von Heide. Beide haben den mytilus edulis beim Spinnen der Fäden in

D. v. Argenville 14) sagt, die Hauptbeschäftigung der Weiber in Smirna, Messina und Palermo sei, die Seide der Steckmuschel, die dort sehr gemein wäre, zu Handschuhen, Strümpfen u. dgl. zu verarbeiten. Uebrigens folgt er der Ansicht Réaumur's und besteht darauf, daß die mytili die Spinnen des Meeres heissen sollen.

Pastor F. C. Lesser 15) spricht viel über Byssus, und hat darüber fleißig nachgelesen, hat aber keine eigenen Beobachtungen angestellt. Sein College, Hr. Pastor Chemnitz 16), nimmt es übel, daß Lesser so dreist rede, wie die Muscheln ihre Fä-

den machen, »als ob er von dieser verborgenen Sache durch einen geheimen Kanal die richtigsten und zuverlässigsten Kenntnisse erlangt habe.« Er will sich also »kein so unerweisliches Zeug auf den Ermel heften lassen,« sondern lieber mit David sagen: »solche Erkenntnifs sei ihm zu wunderlich und zu hoch.« Besonders reizt es seinen Zorn, daß Lesscr mit dem Abt Pluche 17) glaubt, die Muscheln hätten einen auflösenden Saft, um die gesponnenen Fäden wieder zu lösen, der wirklich nicht existirt. Denn es sei mit den Muscheln nicht wie mit einer Hausapotheke, wo man allerhand klebende und auflösende Wässer finde. — Ihr. Pastor Chemnitz hätte besser gethan, bei David's Spruch stehen zu bleiben, als daß er ohne Sachkenntnifs geradezu abspricht, und dann selbst Thenriecen anstellt, die die einfachste Beobachtung widerlegt, und die hier zu wiederholen zu unmöglich scheint.

Poli 18) kam in der Kenntnifs der Byssus nicht weiter als Réaumur, vielmehr entfernt sich seine Ansicht noch weiter von der Wahrheit. Er sagt bei dem mytilus edulis, die Fäden seien organisirt wie die Haare der Thiere, und wachsen auch so, (was sich schon aus der äußeren Form widerlegen läßt). Denn die Byssus habe eine organische Form wie ein Baumstamm mit seinen Aesten, und steige tief zwischen die Muskeln des Thieres hinab. Réaumur's Beobachtung, die ihm hierin widerspricht, konnte er jedoch nicht leugnen, und half sich also durch die Annahme von Fäden zweierlei Art: 1) die organischen, die mit dem Thiere geschaffen sind, und mit ihm wachsen; 2) die aus Kleber mittelst des zungenförmigen Muskels geformten, durch welche die in Fleifs und Hülfsmitteln unerschöpfliche Natur den Mangel der organischen ersetze. Diese seien, wie Réaumur selbst sage, an Farbe und Dicke von den organischen verschieden. — Frisch gesponnene Fäden der tischogonia sind in der That weifs, die älteren schwärzlich. Hieraus schließen wir aber nur, daß auch die schwärzlichen einst weifs waren. Der Unterschied in der Dicke ist etwas Zufälliges, worin auch die älteren rite gefärbten Fäden unter einander abweichen. Oft mögen die Fäden deshalb dünner gerathen, weil das Thier nach

Zerstörung eines großen Theiles oder aller alten Fäden in kurzer Zeit viele neue zum Ersatz des Verlustes her vorbringen muß, \(^{19}\) wobei Mangel an Stoff eintreten mag. Dies ist besonders zu beachten, wenn die abgelösten Thiere sich in Gefäßen wieder anspinnen. Poli bildet die äußere Form der Byssus von vielen Muskeln ab.

G. Cuvier \(^{19}\) beschreibt die Bildung der Fäden aus einer kleberigen Materie, die von einer conglomerirten Drüse abgesondert werde, welche unter der Basis des beweglichen Fußes liege. Hier liegt sie wenigstens bei *mytilus* nicht, und Cuvier scheint hierin bloß dem Réaumur zu folgen. H. M. D. de Blainville \(^{20}\) sagt, es sei eine große Merkwürdigkeit, daß sich bei einigen Acephalen die Muskelfasern der Schliefsmuskeln mit ihrem verdickten Ende an äußere Körper anheften und festkleben könnten, und so das Thier fixiren. Dies mache bei der *pinna, tridacna, mytilus, arca* u. s. w. die Byssus aus. Diese sei also gar nicht aus dem Sekrete einer Drüse u. s. w. gespannt, wie es einige Schriftsteller beschrieben, sondern es sei ein Bündel Muskel fasern, die oben vertrocknet, unten an ihrem Ursprünge aber lebend und contractil seien, was sie zur Zeit, da sie sich anhefteten, in ihrer ganzen Ausdehnung gewesen wären. — Das hat Blainville gewiß nicht gesehen. Es ist auch gar nicht zu begreifen, wie der vertrocknete Theil eines Muskels mit dem lebenden in Zusammenhang bleiben kann, ohne daß Eiterung und Abstosung erfolgt.

Man sieht aus diesem kurzen Abriss der Geschichte, daß die einzigen genauen Beobachtungen die von v. Heide und Réaumur sind. Diese geben aber noch kein genügendes Resultat, denn es bleiben bei ihnen wesentliche Punkte unerörtert:

1) Die Nachweisung der Quelle der Byssusmaterie.
2) Die Erklärung, welcher Art die Verbindung der offenbar nicht organisirten Byssusfäden mit den Muskelfasern sei, woran sie sich befestigen.
3) Die anatomische Untersuchung mehrerer äußerlich verschiedener Arten von Byssus, und der Weichtheile die darauf Bezug haben, um die Analogie der Theile aufzufinden.

\(^{19}\) **Leçons d'anatomic comparée.** Paris 1805. Bd. V. p. 264.

\(^{20}\) **Manuel de Malacologie etc.** Paris 1825. 8. p. 113.
und um eine allgemeine Ansicht über die Natur der Bys-
sus darauf gründen zu können, wie denn die Anatomie
immer der Physiologie vorhergehen muß.

Der zweite Punkt hat namentlich Poli und Blainville
veranlaßt, die Byssus für organisirt zu halten, was Poli nur
zweideutig ansspricht, indem er sie mit Pflanzen und mit Haaren
vergleicht. Sie glaubten an dem unteren Theile der Byssus eine
innige Verbindung mit den Muskelfasern zu sehen, hielten also
diesen Theil für organisirt, oder glaubten ihn wenigstens da ab-
gesondert, wo er mit den organisirten Theilen in Verbindung
steht, wie ein Haar oder Nagel in der matrix steckt. Da sie
nun aufwärts gehend die Materie der Byssusfäden unverändert
und ununterbrochen fanden, mußten sie dasselbe vom oberen
Theile gelten lassen, also die älteren Beobachtungen, die dem
geradezu widersprechen, leugnen. Dies war um so leichter, als
das Sekretionsorgan der Byssusmaterie noch nicht nachgewiesen
war. Aus diesem Grunde sind auch die Meinungen der Physio-
logen und Anatomen unserer Zeit so getheilt, die sich der An-
sicht des Réaumur, Poli oder Blainville mehr nähern.

In der vorliegenden Untersuchung *) habe ich die Beobach-
tung von jeder Theorie und subjectiven Ansicht zu trennen ge-
sucht; das liest sich zwar weniger gefällig, erleichtert aber spä-
teren Arbeitern die Benutzung und Kritik. Nur zu den musku-
lösen Organen mochte ich nicht wieder zurückgehen.

Dafs ich gleich die Byssus einer Reihe von Gattungen aus
verschiedenen Familien untersuchen konnte, verdanke ich der
großen Gefälligkeit der Herren Professoren Lichtenstein, J.
Müller und Wiegmann, die mir die Untersuchung des
betreffenden Materials, welches sich in den hierigen Museen vor-
findet, so bereitwillig erlaubten, wofür ich ihnen meinen Dank
wiederhole.

II. B e o b a c h t u n g.
A. Ueber die Byssus und die darauf Bezug habenden
Organe im Allgemeinen.

Das Muskelsystem der Byssifären muß vorzüglich aus zwei
Gründen von dem der byssuslosen Muscheln abweichen:

*) Die schon kürzer in meiner Inaugural-Dissertation: De bysso
acephalorum. Berolini 1836. 4. erschienen ist.
1) haftet die Byssus in den Muskeln des Thieres, und an ihm ist das ganze Thier aufgehangen. Daher ist eine Vorrichtung zur Aufnahme der Byssus nöthig; so wie auch die Ausbildung kräftiger Muskeln, die von der Byssus zur Schale gehend das ganze Gewicht des Thieres tragen können;

2) bedurfte es zur Formung der Byssus eines beweglichen muskulösen Organes, von dem sich zwar das Analogon bei den byssuslosen Muscheln findet, dem aber hier der Zweck das bestimmte Gepräge gegeben hat.

Man kann die anodontia als Repräsentanten der gewöhnlichsten Form des Muskelsystems bei den byssuslosen Bivalven annehmen. Wir finden hier eine muskulöse Decke über den ganzen Bauch (Fuß) ausgebreitet, welche in der Mittellinie eine dicke fleischige Carina bildet, und sich mit vier Muskelfasziekeln dicht bei den Schliefsmuskeln an die Schale befestet. Man pflegt diesen ganzen Muskel retracor zu nennen, weil er das Thier in die Schale zurückzieht. Bei der mya arenaria hat sich auf der muskulösen Carina, wo diese am oberen Theile plötzlich zurücktretend eine Ecke bildet, schon ein Muskelstück durch einen Einschnitt mehr isolirt, so dass es eine freiere Beweglichkeit erlangt; auch findet man vor ihm in dem geschlossenen Mantel eine Öffnung, durch welche dieses Muskelstück im ausgedehnten Zustande hervorgestreckt werden kann.

Beim *mytilus edulis* bilden die Muskelfasern, die von der Schale kommend zum zungenförmigen Muskel gehen, ein besonderes Bündel, so daß bei ihm dieser Muskel mit seinen beiden Schenkeln auf dem Vereinigungspunkte der vorderen und hinteren Bündel des *retractor* reitet. Außerdem kommt noch ein besonderes Bündel zwischen den hintersten und den Schenkeln des zungenförmigen Muskels hinzu, so daß sich hier jederseits 4 Bündel finden. Bei *tichogonia* liegen die den 3 hinteren dieser Bündel entsprechenden Fasern als hinterer Schenkel des *retractor* zusammen (F. 5. r.), doch lassen sich noch deutlich 2 Lagen in ihm unterscheiden. Die obersten seiner Fasern kreuzen sich, sobald sie, seitlich von den Schalen kommend, sich vor dem Herzen vereinigen. Wo sich jederseits nur zwei Bündel des *retractor* finden, wie bei *tichogonia*, sind die vorderen immer weitaus schwächer als die hinteren, da diese vorzüglich die Byssus aufnehmen, und das Thier tragen müssen. Am auffallendsten ist dieser Unterschied bei der *pinna*, wo die hinteren Bündel Dau- mensdicke haben, während die vorderen nicht stärker sind als ein Strohhalm.

Noch herrscht ein merkwürdiger Unterschied in der Lage der Muskeln. Gewöhnlich liegen sie wie beim *mytilus edulis* und bei *anodonta* ganz oberflächlich; bei der *tichogonia* aber werden die hinteren Bündel vom *oearium* und dem Darm bedeckt, und zwischen ihnen und der Schale liegt nach dem Rücken zu nur das Herz und der Mastdarm. Deshalb kann sich auch die räthselhafte Höhle bei *tichogonia* nicht finden, die beim *mytilus edulis* zwischen den hinteren Muskelnbündeln und dem Eierstock mit weiter Öffnung anfangend bis zur Mitte des Körpers hinausläuft. — Bei der *tichogonia* kann also der *retractor* nicht die Funktion haben, die Eier bei der Geburt aus dem Eiergauge zu drücken, deren v. Bär *) bei der *anodonta* scharfsinnig erwähnt.

Da die beiden stärkern hintern Schenkel des *retractor* von den Schalen her sich vereinigen, und dann die Byssus aufneh- men, so haben sie mit der Byssus die Form eines y, an welchem die Byssus den Schweif darstellt, und die Funktion einer

Der zungenförmige Muskel zeigt bei allen Muscheln, deren Byssus Fäden enthält, auf der unteren Fläche in seiner Mitte eine Längsfurche (F. 5. t.), die nahe an der Spitze mit einer sehr kurzen Querraspalte aufzuhören pflegt. Sie ist sehr tief, und in der Tiefe ausgehöhlt, so daß sie im Querdurchschnitt die Contour einer Flasche mit sehr weitem Halse zeigt, und durch Aneinanderlegen der Ränder einen Kanal bilden kann. An der Wurzel der Zunge verläuft diese Furche in eine Höhle (die Byssushöhle, cavum byssiferum F. 5. c.), welche sich im musculus retractor befindet, da wo seine verschiedenen Fascikeln radiendiformig auseinander laufen. Diese Höhle nimmt die Byssus auf, um welche sie sich eng anschließt; ihr Eingang ist etwas eng und enthält Cirkelfasern. Auf dem Boden der Höhle sind gewöhnlich zwei seitliche Vertiefungen, deren jede in einen von den dicken hinteren Fascikeln hinausteigt. Außerdem ist der ganze Boden uneben, denn er zeigt gewöhnlich tiefe, schmale Furchen, bisweilen auch runde blinde Löcher. Diese sind in die Muskelsubstanz eingedrückt, und so wie die ganze Höhle mit einer feinen Membran ausgekleidet. — Auf dem zungenförmigen Muskel sieht man bei der tichogonia zu beiden Seiten der Längsfurche einen weissen undurchsichtigen Streifen, der von der Höhle anfangend mit wachsender Größe hinansteigt, und an der Spitze der Zunge nach die kleine Querrurche umkreist (die Byssusdrüse, glandula byssipara F. 5. g.). Unter dem Mikroskope sieht man, daß die parenchymatöse Masse, die diesen Streifen bildet, aus rundlichen acini besteht. Bei den meisten andern Muscheln ist dieser Streif wenig oder gar nicht hemerkbar, weil die Haut, die ihn bedeckt, undurchsichtig oder gefärbt ist, während der ganze zungenförmige Muskel der tichogonia sehr hell, fast durchsichtig ist. Zieht man bei dem mytilus edulis den oberen Theil der Längsfurche und die Querspalte auseinander, so sieht man an dieser, wie auch bei der tichogonia eine halbmondsförmige
Platte, die mit der Convexität nach der Spitze der Zunge sieht. Am concaven Rande bemerkt man beim *myt. edulis* mit Hilfe einer Lupe 7 Oeffnungen, deren 3 mittlere grösser sind (die Ausführungsgänge der Byssusdrüse F. 6.). Es ist schwierig, sie zu finden, da sie in der Tiefe der Querfurche liegen, die man durch eingesteckte Nadeln auf einer convexen Unterlage stark ausdehnen muss, wobei die feine Membran, welche sie überzieht, leicht zerreiβt, und die Oeffnungen verbüllt. Kennt man erst den Ort genau, so sieht man sie unter günstigen Umständen mit bloßen Augen. Bei der *tichogonia* konnte ich diese Oeffnungen, die hier gewifs in ähnlicher Form existiren, da die ganzen zungenförmigen Muskeln bei beiden Thieren so ähnlich sind, wegen zu gröβer Kleinheit und Laxilät des Gewebes nicht auffinden. Eben so wenig gelang mir dies bei den übrigen Gattungen, die grössteotheils durch lauges Liegen in Weingeist sehr stark zusammengezogen waren.

Der zungenförmige Muskel bekommt die meisten Zweige eines Ganglion (*g. Magnili*), das dicht unter seiner Wurzel liegt, und die ganze Byssusspinnerei dirigirt. Es schickt, wie bei der *anodonta*, zwei an der Speiseröhre hinaufgehende Verbindungszweige zu den beiden Ganglien am Schlunde. Da dieses Ganglion tiefer als die vorderen Schenkel des *retractor* liegt, die Schlundganglien aber ganz oberflächlich, so durchbohren diese Verbindungszweige bei der *tichogonia* jene Schenkel an ihrem oberen Drittheil. Der Nervenknoten ist durch einen mittleren Eindruck tief zweitheilig, und schickt bei der *tichogonia* zwei Paar Hauptnerven zum zungenförmigen Muskel, deren einer zur vorderen, der andere zur hinteren Seite geht. Diese beiden Nerven entspringen bei dem *myt. edulis* als ein gemeinschaftlicher Stamm, der nach seinem Ursprunge noch an Stärke zunimmt. Ein viertes Nervenpaar geht zum hinteren Theile des *m. retractor*, und theilt sich bald in zwei Aeste, die ich bei *tichogonia* auch getrennt entspringen sah. — Bei *myt. edulis* geht auf der Mitte des zungenförmigen Muskels, seiner oberen an dem Körper anliegenden Fläche sehr nahe, eine starke Arterie, die sich da, wo an der vorderen Fläche die Längsfurche aufhört, in mehrere Zweige theilt. Diese schlagen sich an der Spitze nach der unteren Fläche um, vervielfältigen sich sehr, und bilden eine Menge parallel herablaufender Zweige.
Der zungenförmige Muskel ist ein überaus wichtiges Organ für die Byssiferen. Er dient zum Spinnen der Byssus; bei der fehlenden Lokomotivität als Tastorgan, bei einigen selbst als Bewegungsorgan nach Zerstörung der Byssus (tichog); bei anderen scheint dies wegen der relativen Kleinheit zum Körper unmöglich (pinna). Zu allen diesen Funktionen wird er durch eine äußerst mannigfaltige Beweglichkeit geschickt, denn er kann sich wie ein Elefantenrüssel weit ausdehnen und sehr zusammenziehen, auch jede seitliche Bewegung ausführen.

Die Byssus zeigt im getrockneten Zustande eine hornartige, feste Substanz. Mit Wasser befeuchtet nimmt sie schnell an Volumen zu, wird biegsamer, und die Fäden den Haaren ähnlich. Sie nimmt dadurch indessen nicht immer ihre ursprüngliche Gestalt genau wieder an, da man bei einigen Arten (tridacna) die Figuren der Durchschnitte weniger deutlich und etwas verändert sieht. Man bewahrt sie daher am besten in schwachem Wein-geist auf.

Stammes, der in der Byssushöhle steckt, und gewöhnlich in Lamellen oder Fasern gespalten ist, heißt die Wurzel. Der Stamm selbst tritt zwischen den Schalen des Thieres hervor, um seine Fäden mit irgend einem äußern Körper zu verbinden. In den Schalen befindet sich deshalb ein besonderer Ausschnitt, der aber oft sehr flach ist.

B. Ueber Byssus und die betreffenden Organe bei einzelnen Arten.

a) Byssus mit einer Byssusrinde und

 a) mit Fäden.

Die Byssus hat einen 3—4" langen Stamm, der nach oben schnell an Dicke abnimmt. Seine Spitze ist besonders bei älteren Individuen immer wie abgenagt. An der dem zungenförmigen Muskel zugekehrten Seite entspringen eine große Menge Fäden von ihm, sobald er aus dem Körper des Thieres hervorgetreten ist. Die der Basis zunächst entspringenden sind die stärksten und längsten, so daß sie nach der Spitze zu mit der Dicke des Stammes selbst abnehmen. Seine Basis ist bisweilen ziemlich rund, gewöhnlich aber länglich, an der Seite, wo sich die Fäden inseriren, breiter und abgeplattet, also fast herzförmig (F. 4.).

In den Furchen der beschriebenen Höhle steckt die Wurzel der Byssus, die aus ziemlich dicken, der Form der Furchen ent-
sprechenden und senkrecht nebeneinander gestellten Lamellen von weißer Farbe besteht. Die Wurzel löst sich durch Maceration in Wasser oder Weingeist von selbst, aber aus dem frischen Thiere gerissen nimmt sie die Wandungen der Höhle zum Theil mit sich fort. Diese Lamellen steigen senkrecht aus den Furchen empor, und verbinden sich noch innerhalb der Höhle mit ihren breiten Flächen zu dem Stamm der Byssus. Da die Lamellen senkrecht aus den Furchen emporsteigen, bleibt an der vorderen Seite, wo sich auf dem Boden der Byssushöhle statt der Furchen jene ebene Fläche befindet, eine Lücke oder Aushöhlung im Stamm. Sie nimmt nach oben ab, und ist da, wo die untersten Fäden abgehen, schon ganz ausgefüllt. Die Masse, welche sie ausfüllt, besteht aus dünnen übereinander gelegten Schichten, die schräg gegen die Achse des Stammes einfallen, und mit dieser nach oben einen sehr spitzen Winkel bilden. Die untere Schicht muß also die obere decken, und reicht bis ganz nahe an ihren oberen Rand. Sie liegen also wie Dachziegel oder Schuppen, nur daß sie weiter über einander greifen. Dies ist die oben erwähnte Byssusrinde, die hier nur an einer Seite des Stammes in die Vertiefung gelegt ist. Im Queerdurchschnitte (F. 4.) zeigen sich die Lamellen, welche aus der Byssushöhle aufsteigen, als breite Längsstreifen; in ihnen bemerkt man dunklere schmale Streifen (die Verbindungsmaterie r), die bisweilen darmähnliche Windungen machen, und von helleren Einfassungen (i) umgeben sind. Oft lassen sich in der Mitte einige größere Abtheilungen erkennen, die den hinteren breiten Furchen entsprechen. Die beiden Substanzen (r, i) sind immer geschieden, gehen nie in einander über. Die eben beschriebenen Schichten zeigen sich als sehr feine Queerstreifen (e) und füllen am oberen breiten Theile der Figur den Raum, welcher weiter unten an der Wurzel als der beschriebene Lücke leer stand. Sie schmiegen und fügen sich um die dicken Längsstreifen, bilden Bögen um ihre konvexen Umrisse, und schicken spitze Winkel in ihre Zwischenräume. Auch wird man nie finden, daß eine Queerlinie, die nach der Mitte zu zwei, nach oben drei Bögen macht, bei diesen Bögen absetze, sondern sie zieht sich ununterbrochen aus den Winkeln wieder hervor. Zu beiden Seiten aber verlieren sich die Bögen in den helleren Streifen.
fen (i), von welchen sie sich nicht abscheiden lassen. Es ist also zwischen den Schichten (c) und dem helleren Theile der Lamellen (i) ein entgegengesetztes Verhältnifs, als unter den beiden Substanzen der Lamellen (r, i). Dasselbe zeigt sich sehr auffallend in dem Längendurchschnitte quer durch die Lamellen, also von rechts nach links durch F. 4. Die Schichten (c) welche hierbei mehr von einander gespalten als geschüttet werden, zeigen sich als breite Streifen, die sich nach der Wurzel zu unmerklich in die hellere Materie der Lamellen (i) verlieren, um ihren dunkleren Theil (r) aber wegziehen wie fließendes Wasser um einen Brückenpfeiler. Der andere Längendurchschnitt, welcher quer durch die Schichten geht, die Lamellen aber nur von einander spaltet, stellt die Schichten (c) als Linien dar, welche von oben und außen nach unten und innen verlaufen, sich also der Achse des Stammes nach unten nähern. Hier sieht man sehr deutlich, daß die Fäden der Byssus nur Fortsetzungen der Schichten sind, denn jede Schicht läuft nach oben ohne Aenderung der Substanz oder Unterbrechung der Form in einen Faden aus. Oft sind mehrere Fäden an ihrem Ursprunge zu einem dickeren Aste versehmelzen. — Da sich die Schichten, wie gesagt, nur in der dem zungenförmigen Muskel zugekehrten Lücke finden, so müssen sich natürlich auch alle Fäden von dieser Seite dem Stämme inseriren.

Mit dem beschriebenen Zusammenhange der verschiedenen Materien der Byssus, wie sie die mikroskopische Untersuchung gelehrt hat, stimmt auch seine Spaltbarkeit genau überein. Er greift man einen der untersten Fäden, der also nicht durch übergelegte Schichten fest gehalten wird, so kann man ihn wie einen Zweig vom Stämme abspalten; er reißt nicht nur seine Schicht mit sich fort, sondern geht zur Wurzel bis in die helle Substanz der noch getrennten Lamellen hinunter, die ihm dann in Form von Franzen anhängt. Das Mikroskop zeigt alsdann die vollkommenste Continuität von den Franzen durch die Schicht zum Faden, ebenso als bei allen übrigen Arten der Byssus. — Die Verbindungsmaterie bildet also senkrecht stehende Platten, an deren vordere Seite sich die Schichten anlegen, welche nach oben in die Fäden auslaufen, nach unten aber dünner werdend zwischen und um jene Platten dringen und dieselben einhüllen.

III. Jahrg. 1. Band. 2
Die Fäden sind wie die geschichtete Masse schwarzbraun, unter dem Mikroskope hellbraun. Neun entstandene Fäden und ihre Schichten sind aber weiß; sie färben sich erst nach einigen Tagen, lassen sich aber nicht wieder weiß waschen, weil die Färbung durch die ganze Masse geht. Die Fäden sind cylin-
drisch mit feinen Quecrunzeln, bei einem großen Exemplare 22.000, bei einem jüngern 14.000 Par. Lin. dick. An dem Ende, welches an dem äußeren Gegenstande gehaftet ist, gehen sie in eine kleine rundliche Platte über, wodurch die adhärrende Flä-
che, vergrößert wird. Auf ähnliche Art befestigen die spinnen-
den Insekten ihre Fäden.

ren in Weingeist verändert ist, kann ich nicht bestimmen.

Der zungenförmige Muskel ist kurz und dick, und enthält eine starke Längsfurche, die an ihren Lefzen mehrere erhabene Linien zeigt. An seiner Spitze liegt eine dunkle parenchyma-
töse Masse, vermutlich die Byssusdrüse, deren Ausgänge aber nach dem langen Aufbewahren in Weingeist nicht mehr aufzu-
finden waren. Wo die Furche in die Byssushöhle hineinsteigt, wird sie breiter, und schließt in ihrer Mitte eine V-förmige Er-
habenheit ein, dann geht sie zu beiden Seiten in die beiden Hauptvertiefungen der Höhle hinab. Diese haben auf ihrem Bo-
den kleinere Vertiefungen, in welchen wieder kleinere blinde Löcher sind u. s. w., daß der ganze Boden, selbst die Erhaben-
heit, welche die beiden seitlichen Hauptvertiefungen trennt, ganz uneben wird.

Die Wurzel besteht, wie Fig. zeigt, aus Fasern, die sich zu kleinen Fascikeln verbinden; diese vereinigen sich zu größern, und bilden zuletzt zwei Hauptbündel, zwischen denen noch einige schwächere stehen. Diese größern und kleinern Fascikel, und endlich die Fasern werden von den Vertiefungen auf dem
Boden der Byssushöhle aufgenommen, und entsprechen ihnen genau der Form nach. Die Hauptbündel bilden endlich zusammentreidend den Stamm (r a). Dieser wird von Scheiden umschlossen, von denen die untere immer die obere so weit umfasst, daß nur der Rand der oberen frei bleibt. Es verhält sich also wie bei tichogonia, wenn man sich die Schichten zu vollständigen Ringen um den Stamm ergänzt denkt. So erhält der Stamm eine Rinde, und es entsteht das Ansehn, als wenn man viele Becher gleicher Größe in einander setzt, was an der von den Fäden freien Seite der Byssus gut zu sehen ist. Jede Scheide geht an ihrem oberen freien Rande in einen Faden über, wie eine nach antikem Muster geformte Kaffeetasse in ihren geschweiften Henkel ausläuft. An der Seite, wo die Fäden sitzen, sind die Scheiden und folglich die ganze Rinde dicker als an der entgegengesetzten. Nach unten laufen die untersten Scheiden an der Wurzel hinab, zerasteln sich mit ihr, und hüllen, dünner und zarter werdend, die Bündel, zuletzt jedes feinste Faserchen besonders ein, und hören nahe an seinem unteren Ende auf. Sie umschließen also oberwärts den ganzen Stamm, wie ein Handschuh die Handwurzel, dann die einzelnen Bündel, wie dieser die einzelnen Finger u. s. w., jedoch so, daß die letzten Enden offene Röhreben bilden, aus denen die Fasern hervorblieben. Hiervon kann man sich überzeugen, wenn man die ganze Scheide bei ihrem Faden ergreift und abzieht; dies gelingt jedoch nicht ohne Spaltung, weil das unterste Ende der Wurzel dicker ist. Ganz ebenso, wie es von den untersten Scheiden an der Wurzel demonstriert ist, verzweigen sich auch die übrigen, wie dies unten seine Erklärung finden wird.

Im Querquerschnitt erscheint die Rinde als breiter Ring (F. 3. A.), der aus concentrischen Schichten gebildet ist. Sie entsteht aus dem Durchschnitte der in einander geschobenen Scheiden. Der Ring schließt zwei Hauptfelder ein, die bei Durchschnitten, die der Wurzel näher geführt werden, noch stärker getrennt sind. Jedes der Hauptfelder hat wieder seine besondere Rinde, und schließt wieder 2 — 4 Felder zweiten Ranges ein, die ebenfalls ihren besonderen, aus concentrischen Schichten bestehenden Rahmen haben, und so geht es fort, bis man auf die Fasern der feinsten Bündelchen kommt, die nur

Die Fäden sind unten, wo sie in die Scheiden übergehen, sehr breit, und schließen hier mit einem verdickten Saum (F. 1. m.) den mittleren sehr durchsichtigen Theil ein. Weiter oben werden die Fäden schmäler, haben aber in ihrem Durchschnitte viele Buchten und Hervorragungen (F. 2.). Am Ende, wo sie sich an dem äussern Körper befestigen, sind sie ebenfalls verdickt, haben aber nicht eine so zierliche Anheftungsplatte, als die Byssus der tichogonia.

3) Malleus vulsellatus Lam. Das Thier ist mir unbekannt, indessen kann man aus der Form der Wurzel der Byssus schließen, dafs die Byssushöhlle zwei seitliche Vertiefungen hat, die mit feinen Furchen bezogen sind. Die Byssus, deren Länge etwa 9"" ist, hat das Eigenthümliche, dafs der Stamm sich über der Wurzel wohl 4"" mit gleichmäfsiger Stärke erhebt, ohne Fäden abzuschicken, was bei anderer Byssus schon dicht über
der Wurzel geschichtet. Wo die Fäden anfangen abzugehen, nimmt er schnell an Dicke ab und ist rückwärts gebogen; seine Farbe ist dunkel olivengrün, die der Fäden etwas heller. Diese inserieren sich alle von einer Seite, sind an ihrer Basis unter einander verklebt, und heften sich ebenfalls durch eine kleine Platte an die äußeren Gegenstände.

Die Wurzel besteht aus Lamellen, die in der Mitte eine hellere Masse (die Verbindungsmaterie) einschließen. Sie steigen in dem Stamme auf, und zeigen sich beim Querabschnitt in Form eines Hufeisens (F. S. v.), was indes nicht ganz constant ist, denn der eine Schenkel ist bisweilen sehr klein oder fehlt ganz. Das Innere des Hufeisens ist durch eine geschichtete Masse ausgefüllt, welche sich am offenen Theile des Hufeisens nach außen fortsetzt, und eine ringförmige Rinde bildet (e). Im Längendurchschnitt (F. 9.), der in dem abgebildeten Falle das Hufeisen zweimal traf (r. s), dessen einer Schenkel (s) aber verwittert ist, sieht man, wie sich aus der geschichteten grünen Masse (c) nadulirte schmale Linien in den weißen von den Lamellen gebildeten Streifen (r) fortsetzen, und eben den dunklen Theil der Lamellen bilden. Nach oben laufen die Schichten (c) in Fäden (f) aus. Man sieht leicht, daß diese geschichtete Materie ebenfalls Scheiden bildet wie bei der tridacna. Indessen lassen sie sich nicht so abziehen, weil diese Byssus viel fester und härter ist.

4) Mytilus edulis Linn. Der zungenförmige Muskel mit der Byssusdrüse und deren Ausführungsgängen ist schon oben beschrieben. Die Byssushöhle findet sich an der analogen Stelle im musculus retractor, wo dessen verschiedene Bündel radierförmig zusammenstoßen. Sie enthält sehr schmale und tiefe Furchen, die ziemlich nach der Längenachse des Thieres verlaufen, und in eine gelbe parenchymatöse Masse eingedrückt scheinen. Von dieser lassen sich die anstoßenden Muskelfasern bei Individuen, die lange in Weingeist aufbewahrt sind, leicht und scharf trennen. Das Parenchym ist aber nichts dem myt. edulis eigenthümliches, sondern entsteht bei der Schmalheit und Tiefe der Furchen durch die Faltung der Membran, welche die Byssushöhle auskleidet. In diese Furchen greift die lamellüse Byssuswurzel ein.

In den Lamellen konnte ich ihrer Feinheit wegen nicht die beiden Substanzen unterscheiden, doch existieren sie ohne Zweifel auch hier. Die Lamellen erheben sich in großer Anzahl neben einander, und bilden das Innere des Stammes. Ähnlich als bei der *tridacna* in einander geschobene Scheiden bilden eine Art Rinde um den Stamm. Ihr freier oberer Rand läuft in einen Faden aus; nach unten kommen sie zu den Lamellen, und setzen sich in diese fort wie die Schichten der *tichogonia* und des *malleus*. Zieht man den untersten Faden rückwärts, so nimmt er seine Scheide mit, die sich dabei umkehrt wie ein Handschuhfinger, und sich von den Lamellen in Form von Frauen abspaltet. Setzt man diese Arbeit an den folgenden Scheiden fort, so wird der Stamm zuletzt nach unten spindelförmig zugeschärft. Im Längendurchschnitt stellen sich die Scheiden als Linien dar, die oben und außen anfangend im Herabsteigen der Achse des Stammes näher kommen, und endlich in die Lamellen übergehen. Im Quer durchschnitt des Stammes zeigt sich die Rinde (F. 7. c.) ringförmig und aus concentrischen Kreisen bestehend; sie schliesst zarte weiße Linien ein, die Durchschnitte der Lamellen. Diese gehen in manigfältig gewundenen Linien, wie die Blätter in einem Pack Papier, welches man am Schnitt zusammendrückt, daß es sich in Bögen und Falten legt, die einzelnen Blätter aber doch ziemlich parallel bleiben. In den Fächern der Byssushöhle liegen sie mehr gerade ausgestreckt. Bei dünn gerathenen Durchschnitten weichcu diese Linien oft auseinander, daß man dazwischen durchsehen kann; auch von den Scheiden, welche die Schichten der Rinde bilden, lösen sich nicht selten einige ab (F. 7. d.). Auch sieht man hier, wie die äußersten in die Fäden (f) auslaufen, die sich in dem abgebildeten Falle an beiden Seiten des Stammes inseriren, was seltener ist. Einigemal sah ich
auch einen Faden, der durch einen error loci mit seiner Scheide einen andern Faden umfaßte, anstatt sich am Stamme zu inseriren.

6) *Pecten varius* Lam. Die beiden Schenkel des zungenförmigen Muskels, die bei dem *m. edulis* ganz getrennt von den Schalen entspringen und sich dann über dem *musc. retractor* vereinigen, liegen hier verschmolzen zusammen, und entspringen beide von der rechten Schale dicht über dem dicken *adductor*; sie fassen die Byssushöhle zwischen sich. Der zungenförmige Muskel und die Byssushöhle erhalten hierdurch eine schiefe Lage zum Thiere, so daß der Muskel der linken Schale näher liegt, und mit der Furche gegen die rechte steht. Die Byssus geht aus dem größeren Ohre heraus. Der zungenförmige Muskel hat eine tiefe Furche, die aus der Byssushöhle heraussteigt, die aber in der Tiefe nicht erweitert und ausgehöhlt ist, sondern einem einfachen, mit dem Messer gemachten Einschnitte gleich. Sie läuft nicht hoch nach der Spitze des Muskels hinauf, sondern endet schon früh ganz einfach. Kurz über ihrem Ende hat der Muskel eine Einschnürung, auf die noch ein kugeliger Anhang folgt (wie eine Hermessäule). Dieser hat ebenfalls einen kurzen tiefen Längeneinschnitt, der eben so wenig als die untere Furche in der Tiefe ausgehöhlt ist. Er zieht sich vorn tiefer hinunter und scheint in einen kleinen Kanal (Anführungsgang der Byssusdrüse?) auszulaufen, was ich bei dem sehr kleinen Exemplare, was mir zu Gebote stand, nicht deutlich erkennen konnte. Die Lippen dieser Furche haben sehr feine, aber scharf ausgeprägte Längstreifen. Die Byssushöhle hat schmale tiefe Furchen und und erstreckt sich weit zwischen den Schenkeln des zungenförmigen Muskels hinunter.

Die Wurzel der Byssus besteht aus feinen, parallel neben einander liegenden Lamellen, die auch diese Lage im Stamme behalten. Der Stamm ist kurz, pyramidal, und wird von Scheiden umfaßt, die nachgiebig, lax und leicht abzuziehen, übrigens sich wie beim *m. edulis* verhalten. Die Fäden, in welche die
Scheiden oben auslaufen, sind platt und bandartig, mit feinen Längsstreifen versehen, und ließen sich mit einem verdickten Ende außen an, wobei oft mehrere verklebt sind. Die Lamellen sind weiß, Fäden und Rinde schmuzig gelb.

β. Byssus ohne Fäden.

welche die Pyramide einhüllen, ist so (F. 10.): Die innersten Schichten haben, wie die innersten Jahresringe des Holzes den kleinsten Umfang, und fallen auf die Spitze der Pyramide ein; die folgenden umgeben die innersten, und fallen etwas tiefer an der Pyramide ein; die äußersten gehen bis zu ihrer Basis herunter. Ferner sind alle Schichten an der vorderen Seite der Pyramide dicker, und verlieren sich meistens schon ganz, ehe sie die hintere Fläche (a) erreichen. Also bilden sie auf der convexen Fläche der Pyramide eine dicke Rinde, während die concave kaum durch einige Schichten bedeckt ist. Nach oben befestigen sich die Schichten an dem äußeren Körper, woran die area längt. In dem abgebildeten Falle war dies ein Kalkstück, in dessen Erhabenheiten und Vertiefungen sich die Schichten genau fügten. Die geschichtete Masse zeigt unter dem Mikroskop eine gelbbräune Farbe, mit dunklern Grenzlinien, dem blößen Auge erscheint sie streifenweise sehr dunkel, dann wieder bläulich-hornfarben, und zeigt im Querdurchschnitt oft einen grülichen Schein. Die Verbindungsmaterie (Pyramide) ist weiss.

b) Byssus ohne Byssusrinde.

a) Wurzel lamellös.

8, 9) Lima squamosa Lam. und glacialis Lam. An den Thieren, die eingetrocknet waren, konnte ich nicht viel mehr erkennen. Beide sind sehr ähnlich; der zungenförmige Muskel inserirt sich mit zwei Schenkeln an den Schalen dicht bei dem adductor; er ist an seiner Basis verdickt und hat eine gewöhnlich geformte Längsfurche. Auch hat der m. retractor zwei vordere Schenkeln.

werden also nur dadurch verbunden, daß sie nach unten in die Lamellen übergehen, die man sich aus den übereinander geschichteten Franzen entstanden denken kann, ähnlich als es von der *meleagrina* beschrieben werden wird. Daher zerfällt auch die Byssus sehr leicht in ihre Fäden. Bei der *glacialis* geschieht dies noch viel leichter, so daß ich hier die Lamellen gar nicht in ihrem Zusammenhange untersuchen konnte. Die Farbe beider ist schmutzig gelb.

Die Fäden liegen nun ziemlich regelmäßig an einander geschichtet, daß Schaft auf Schaft und Fahne auf Fahne fällt und jeder Schaft in jede Lamelle ein Würzelchen schickt. Die dem zungenförmigen Muskel zugekehrten Fäden stehen tiefer und sind länger als die hintern. Dabei steigen die Faden schräg von vorn nach unten und hinten in die Byssushöhle hinab, weshalb denn die Schafte (F. 12. f.) auch mehr vorn angehäuft sind, wo die Lamellen convergiren, und nur die feinen Würzelchen (F. 12. c.) den hinteren Theil erreichen. Hier sind daher auch die Lamellen regelmäßig, während sie vorn von den größern Körperrn (f.) gestört werden und sich wie ein Bach zwischen Felsstücckes um sie hinziehen. Die kleinen Körper (c.) sind bald kürzer bald
länger, je nachdem der Schnitt mehr gerade oder schief durch ihre Längenachse fiel. Man sieht an ihnen auch deutlich, dass sie zwar neben einander geschichtet, aber nicht wirklich unter einander zu einer Lamelle verschmolzen sind, sondern nur durch die einhüllende Verbindungsmaterie zusammengehalten werden.

β. Wurzel nicht lamellös.

Die Byssus ist ohne Stamm. In den beschriebenen Gruben sieht man ein Fascikel sehr feiner Fäden, die in Wellenlinien (bei einem in Weingeist aufbewahrten Exemplare) vom tiefsten

Die Fäden, welche aus der Vereinigung der 4 Wurzeln ent- stehen, machen eben den aus dem Thiere hervortretenden Theil der Byssus aus, sind fein, glänzend, von schön kastanienbrauner Farbe, und maßen 2½ Par. Zoll bei einer pinna, deren Schale 16" lang war. Im Queerdurchschnitt erscheinen sie von den Seiten zusammengedrückt, vorn und hinten winklich. Das obere Ende heftet sich mit einer zierlichen Platte an äußere Körper fest. Ein Faden maß nach der grösseren Queerdimension dicht unter der Anheftungsplatte 15.000, in der Mitte 14.000, an der Vereinigungsstelle der vier Wurzeln 29.000. Eine Wurzel nahe unter der Vereinigungsstelle 10.000, ganz unten 2.000 Par. Lin.

C. Beobachtung der tichogonia beim Spinnen der Byssus.

Diesem Geschäfte habe ich einigemal zugesehen. Sie spannen am besten während der Nacht, besonders jüngere Individuen,
die überhaupt mobiler sind. Zuerst strecken sie ihren zungenförmigen Muskel weit aus der Schale hervor, und suchen tastend einen bequemen Ort. Finden sie diesen nicht in ihrer Umgebung, so kriechen sie langsam und beschwerlich auf demselben Organe weiter, wohl über ihres Gleichen hinüber und an dem Rande des Gefäßes hinauf, doch können sie auf dem Trocknen nicht kriechen. Haben sie einen passenden Ort gefunden, so ziehen sie den Muskel in die Schale zurück, strecken ihn nach einiger Zeit wieder hervor, legen dessen Spitze auf den Ort, wo sie den Faden befestigen wollen, und lassen sie unter einer leichten seitlichen Bewegung ein wenig liegen. Sie ziehen hierauf den Muskel langsam zurück, und es erscheint der Faden weiß und glänzend, und nimmt stets den tiefsten Platz am Stamm der Byssus ein.

III. Reflexion.

A. Ueber die Natur und Entstehung der Byssus.

Nach den obigen Andeutungen besteht die Byssus aus zwei Theilen, der eigentlichen Byssusmaterie und der Verbindungs- materie. An der Existenz zweier verschiedener Materien kann man nicht zweifeln, wenn man die scharf begrenzten Fäden der *pinna* oder *meleagrina* mit der sie umhüllenden weichen Masse vergleicht, oder die opalisirenden Einfassungen der *tridacna* mit den Fiberu, welche sie einschließen, oder die dunkle Substanz in den Lamellen der *tichogonia* mit der hellen, die jene umzieht, ohne sich je mit ihr zu vermischen. Es bleibt also übrig, die Gleichheit alles dessen zu erweisen, was wie mit dem Namen Byssusmaterie belegt haben. Die Byssusfäden, welche eigentlich aus der Materie bestehen, die Jedermann Byssus nennt, setzen sich bei der ersten Klasse in die Schichten oder Scheiden fort, welche die Rinde des Stammes bilden, und diese wieder in die Lamellen der Wurzel, von denen sie beim Abspalten die Franzen mitnehmen, oder bei der *tridacna* in die feinen Röhren, welche die Bündel und zuletzt die einzelnen Fiberu der Verbindungs- materie einkleiden. In der zweiten Klasse setzen sich die Fäden unten in den Schacht fort, der die Würzelchen abgibt, und zuletzt sich selbst in solche theilt. Die Franzen der ersten Klasse sind den Würzelchen der zweiten analog, und bei beiden zeigt
Das Mikroskop deu vollkommensten ganz allmäßigen Uebergang, so daß man hier an kein Aneinanderkleben verschiedener Substanzen denken kann. Die Farbe aber scheint den Theil der Byssusmaterie, welcher sieh von den Lamellen in Form der Franzen abspalten läßt, von dem die Fäden und Schichten bildenden zu unterscheiden, wie denn auch in der zweiten Klasse die Würzelchen am Ende farblos werden. Allein dieser Theil der Byssusmaterie hat entweder keine abweichende Farbe (wie bei tridacna, wo Alles gelblich, oder bei malleus, wo Alles grün und dunkler ist als die Verbindungsmaterie) oder er ist farblos, und der Uebergang ist dann so allmäßig, daß sich keine Grenze bestimmen läßt. Der Unterschied der Farbe hat zwei Gründe:

2) Es ist oben bei der tichogonia bemerkt worden, daß deren frisch gesponnene Fäden weiß sind, und erst dunkel werden, nachdem sie mehrere Tage dem Wasser und dem Lichte ausgesetzt waren. Der unterste an den Lamellen befindliche Theil ist aber diesen Einflüssen nicht ausgesetzt, kann also seine weiße Farbe conserviren.

a) Byssusmaterie.

Alle Byssusmaterie ist das Sekret der oben beschriebenen Byssusdrüse. Ist das wahr, so muß sie einst flüssig gewesen
sein, oder plastisch wie der Kleber, aus welchem die Insekten ihr Gespinst machen. Dass sie wirklich so war, folgt

1) weil die Beobachtung lehrt, dass das Thier den Faden in kurzer Zeit bereitet. Er kann also nicht wie ein Haar, Schenens-faser u. s. w. wachsen;

2) trägt der Faden das unverkennbare Gepräge an sich, dass er, wie eine Gipsfigur, seine Gestalt in einer Form erhalten habe, indem er manchen Weichtheilen des Thieres ganz genau entspricht. So passen die Fäden jedes Thieres in die Längsfurche des zungenförmigen Muskels; die Anheftungsplatte in den oberen erweiterten Theil derselben, wo sie mit der Queerspalte aufhört. Die Fäden des mytil. edulis sind am unteren Theile queer gerunzelt, wie die Furche des Thieres; die Fäden der tridacna haben Längsvertiefungen, die Furche Längserhabenheiten; ihr unterer breiter Theil passt genau in den breiten Theil der Furche, so dass der verdickte Saum (F. 1. m.) in die seitlichen Vertiefungen, der mittlere durchsichtige Theil auf die V-förmige Erhabenheit der Furche fällt. Der arca, die keine Fälle spinnt, fehlt auch die Furche am zungenförmigen Muskel. Sie legt nur die Schichten mit ihrem kurzen Muskel um den Byssusstamm, den sie seiner Dicke wegen nicht völlig umfassen kann, weshalb die Schichten seine hintere Fläche unbedeckt lassen. Die pinna spinnt, ihrer Größe ungeachtet, mit ihrem langen dünnen Muskel doch keine lange Fäden, die sich nach unten wie die Furche in vier Theile theilten. Leider kann ich dies nicht auch von den Fäden der Perlmutter nachweisen, deren Weichtheile zu sehr zerstört waren. So sind auch die Scheiden, in welche die Fäden übergehen, an der vorderen dem zungenförmigen Muskel zugekehrten Seite dicker als an der hinteren, weil sie der Byssusquelle näher sind, und bisweilen fehlt das hintere Stück ganz, wie oben von der arca gesagt, und wie es bei der tichogonia der Fall ist. Bei dieser mag der Grund darin liegen, dass die Rinne vorn am Stamm die Byssusmaterie auffängt. So wird bei dem malleus zuerst das Innere des Hufeisens (F. 8.) ausgefüllt, und nachher umziehen dann die Scheiden den ganzen Stamm.

3) Die Lage der Byssusdrüse ist eine für die genannte Funktion höchst zweckmässige. Dass ein Organ eine Drüse sei, ist wohl nicht zu bezweifeln, wenn man die Ausführungsgänge nachge-
wiesen, und die rundlichen *acin* unter dem Mikroskope gesehen
hat. Den Byssuskleber herauszudrücken und selbst Byssus zu
spinnen, gelang mir übrigens nicht. Réaumur rühmt sich zwar
dieser Kunst, allein ich hege einen bescheidenen Zweifel gegen
seine Angabe, da er das Sekret bei dem *m. edulis* aus einem
ganz anderen Orte gedrückt haben will, als wo die Öffnungen
der Byssusdrüse liegen. Das Kunststück mag auch wohl bei
andern Drüsen nicht so leicht gelingen, deren Sekret weniger
dick ist. Man drücke doch die Galle aus der Leber dieses Thie-
res! — Die Zweckmäßig性 der Lage folgt aus dem Vorgange
beim Spinnen der Byssus. Das Thier legt zuerst den zungen-
förmigen Muskel mit den Öffnungen der Byssusdrüse an den
Stamn der Byssus, überzieht ihn mit dem Kleber, der dann
durch die ringförmigen Muskelfasern bis unten zwischen die
Wurzel getrieben werden mag. Durch Zurückziehen des zung-
fenförmigen Muskels wird der Kleber in einen Faden ausgedehnt,
der der Furche des ausgestreckten Muskels an Länge gleich.
(Man hat also an dem Faden ein Maafs für die Länge des zung-
enförmigen Muskels.) Der Faden wird von der Furche aufge-
nommen, weil diese gerade zwischen den beiden Anheftungs-
punkten des Fadens, dem Stamn nämlich und den Öffnungen
der Byssusdrüse, liegt. Er wird in ihr geformt, und endlich sein
oberes Ende an einen äußeren Körper zur Befestigung übertra-
gen. Hierbei fallen wieder die Öffnungen der Byssusdrüse ge-
rade auf das Ende des Fadens; aus ihnen fließt das Sekret un-
mittelbar darauf, und bildet die Platte zu seiner Befestigung.

Die Furche am zungenförmigen Muskel des *pecten* ist unter-
brochen, wovon ich den Zweck nicht klar einsche. Durch Za-
sammenziehung im *isthmus* kann wahrscheinlich Contiguität der
beiden Furchen hergestellt werden. Der Faden entspricht ihrer
Form, indem er platt und breit ist wie ein Bandstreifen, und
trägt die Skulptur des oberen kleineren Stückes der Furche, denn
er enthält feine Längstreifen. Demnach ist es wahrscheinlich,
dafs das Thier, sobald es den Kleber an den Byssusstamm gehaf-
tet hat, und durch Abziehen der Spitze des Muskels den Faden
zu bilden anfängt, diesen mit dem oberen Theile der Furche so-
gleich aufnimmt, und die Längstreifen ihm eindrückt. Dabei
muß der Muskel in dem *isthmus* gebogen sein, so dafs das obere
Stück
Stück zuerst allein an dem Byssusstämme liegt, und bei Verlängerung des Fadens nach und nach das untere Stück der Furche zu Hülfe genommen wird.

b) Verbindungsmaterie.

Die Verbindungsmaterie ist also ebenfalls unorganisirt, und Sekret der Byssushöhle, welches die Byssusmaterie in dieser Höhle einhüllt, und ihr zum festen Ansatzpunkte dient. Der letztere Zweck herrscht in der ersten Klasse der Byssus vor, der erstere in der zweiten.
Die Byssus steht also physiologisch dem Gespinnste der Insekten am nächsten, und es ist nur der Unterschied, daß das Insekten-Gespinnst nicht mit dem Körper in steter Berührung bleibt, also bei ihm keine Verbindungsmaterie statt haben kann. Sie ist auch ebensoweit der Materie zu vergleichen, womit die *Rossia palpebrosa*, ein Cephalopod, nach Rofe’s Beschreibung*) ihre Eier aneinanderheftet, welche ebenfalls Sekret einer Drüse ist.

B. Erklärung der Formen der Byssus.

Wenn die im vorigen Abschnitte vorgetragene Meinung, daß die Byssus aus unorganisirter Materie bestehe, richtig ist, so muß sie durch Juxtaposition wachsen, und alle ihre Formen sich aus der Form und Thätigkeit der organisirten Theile erklären lassen, was ich, soweit ich es vermöge, hier thun werde.

Zunächst ist der Grund aufzusuchen, der den Typus der beiden Klassen von Byssus bedingt; woher es also komme, daß im einen Falle die Byssusmaterie flächenhaft ausgedehnt ist, und die Verbindungsmaterie, in der mehr die Längen-Dimension vorherrscht, einschließt; im andern Falle die ausgedehnte Verbindungsmaterie die fadenförmige Byssus einhüllt. Die Form der Byssusmaterie hängt hauptsächlich von der Gestalt der Furche des zungenförmigen Muskels ab; die Form der Verbindungsmaterie von der Gestalt des Theiles der Byssushöhle, welcher sie absondert, und von ihrer Consistenz.

*) Appendix to the narrative of a second voyage in search of a north-west passage etc. by Sir J. Rofe. London 1835. fol. p. 93.
entstehen, weil die festen Byssusschichten immer das ganze Cont-
tentum der Byssushöhle umfassen und verbinden.

In der zweiten Klasse, wo ich nur von der pinna bestimmt redeo kann, da mir nur von dieser die Weichtheile zur Unter-
suchung zu Gebote standen, theilt sich die Furchen des zungen-
förmigen Muskels in der Byssushöhle in kleinere Furchen, bei pinna in 4, bei meleagrina in so viele als man F. 13. Würzel-
chen sieht. Meine Ansicht ist nun, daß die Byssusmaterie diese
Furchen in allen ihren Verzweigungen anfüllt. Dabei ist es nicht
nöthig, daß sie ganz von der Spitze des zungenförmigen Muskels
in der zu einem Kanal geschlossenen Furchen hinablaufe, denn
die weischen Streifen, die sich von der Byssusdrüse an den klei-
nen Furchen herunter fortsetzen, mögen ebenfalls von dieser
Materie secerniren, und durch seine Öffnungen in die Furchen
ergießen. Es ist überhaupt nicht wahrscheinlich, daß die oben
von mir angegebenen Öffnungen der Byssusdrüse die einzigen
seien, weil sich diese auch bei der ersten Klasse so weit an der
Furchen hinunter zieht. — Ist nun in der Furchen der Faden ge-
formt, so wird er ausgeschlossen und kommt dadurch in die
Byssushöhle. So gut also in jedes Fach der Höhle ein Zweig
der Furchen läuft, muß auch ein jedes Fach ein Würzelchen
des Fadens erhalten. Nun kommt das weichere Sekret der Bys-
sushöhle darauf, hüllt die Fäden ein und hält sie fest. Die
Stammbildung hängt in dieser Klasse davon ab, ob die Verbin-
dungsmaterie Consistenz genug besitzt, das Ganze zu einem
Stamme zu vereinigen und zusammenzuhalten.

Sowohl durch die Sekretion der Byssushöhle, als durch die
auf dem Boden der Höhle einfließende Byssusmaterie erhält der
Stamm immer nur von unten den Zuwachs, so daß die neu an-
glegten Schichten die älteren nach und nach aus der Höhle er-
heben. Die an der Wurzel noch getrennten Theile werden dann
durch die neu angesetzte Materie verklebt, sobald sie sich über
die Scheidewände erheben, welche die Vertiefungen der Höhle
trennen. Zu dieser Verbindung mag auch wohl die Wirkung
des sphincter am Eingange der Byssushöhle beitragen. Denn
bei dem myt. edulis liegen die Lamellen in der Wurzel ziemlich
gerecht, im Stamme aber so verworren, als ob sie gewaltsam
zusammen gedrückt wären. Besonders sind die seitlich in die

Für das Wachsthum des Stammes in der angegebenen Art, kann man noch folgende Gründe anführen:

1) Ergänzt man an einem alten Byssusstamme das obere fehlende Stück, so ist sein oberer Theil dem ganzen Stamm eines jüngern Thieres gleich, was sich auch auf die Länge und Dieke der von ihnen abgehenden Fäden bezieht. Es ist also hier dasselbe Verhältnifs als zwischen der Spitze der Schale einer alten Schnecke und zwischen der ganzen einer jungen.

2) Die Queerdurchschnitte durch den oberen und unteren Theil des Stammes zeigen dieselben wesentlichen Theile, so daß hier nach die jetzige Spitze einst Basis gewesen sein kann.

3) Nach Réaumur's Beobachtung am *m. edulis* und der meinen an der *tichogonia* ist der neueste Faden immer der unterste d. h. der nächste an der Wurzel. Da wir aber auch am oberen und obersten Theile des Stammes Fäden sehen, so schließen wir, daß auch dieser Theil einst die Basis war.

4) Die Thiere selbst können die Byssus nicht lösen, denn oft habe ich den *m. edulis* und die *tichogonia* bei niedrigem Wasserstande an den Pfählen im Trocknen hangen und sterben sehen; kein Thier stirbt aber, wo es sich retten kann. Da nun die während der Jugend gesponnenen Fäden kürzer sind, und also das Thier dichter an den äusseren Gegenstand anheften, so würde es, nachdem es größer geworden, straff gegen den äusseren Kör-
per angezogen werden, und die Fäden müßten endlich gewalt-
sam zersprengt werden. Dies würde um so mißlicher für das
Thier sein, je stärker die Fäden sind. Dagegen wird nach unserer Behauptung durch das Anspinnen neuer Fäden der Stamm
und durch ihn zugleich die älteren Fäden verlängert.

Die Spitze des Stammes ist also der älteste Theil, und ist
deshalb auch fast immer verwittert, wie die Spitze der Schale

\textit{bulimus decollatus} Brug. Nur bei der \textit{area} zeigt sich die
Pyramide ziemlich vollständig, weil sie durch dicke Schichten
fast ganz eingehüllt ist, denn nur nach hinten stößt die Spitze
ein wenig an die Oberfläche.

Die Form des Stammes ist immer die einer Pyramide mit
verschiedenem Verhältnifs der Basis zur Höhe. Denn mit dem
Wachsthun des Thieres vergrößert sich auch die Byssushöhle
und formt zuerst einen dünnen, dann einen dickern Stamm.
Das Größenvorhältnis der Basis zur Höhe muß also von der
Schnelligkeit des Wachsthumes des Byssustammes abhängen.
Denn vergrößert sich ein Stamm von $\frac{1}{4}$" Dicke und 1" Länge
binnen einem Jahre um $\frac{1}{4}$" im Durchmesser und um 2" in der
Länge, so wird die Pyramide bei einer Basis von $\frac{1}{4}$" nur 3"
Höhe haben, was eine sehr merkliche Pyramidentform giebt, (z. B.
\textit{tichogonia}, \textit{tridacona}). Wächst aber der Stamm unter dieselben
Bedingungen 1 Zoll in die Länge, so verhält sich die Basis zur
Höhe wie $\frac{1}{4} : 13$, was sich schon der Cylinderform sehr nähert
(\textit{m. edulis}). Es läßt sich also aus der Form des Stammes auf
die Schnelligkeit seines Wachsthum schließen. Bei dem \textit{m. edulis}
mag der Grund des schnellen Wachsthum in der Tiefe und
Schmalheit der Furchen der Byssushöhle liegen, wodurch die
Fläche, welche die Verbindungsmaterie secernirt, vergrößert wird
und daher mehr schafft, und in einer starken Absonderung der
Byssusschale.

Hiermit ist auch die Pyramide im Stämme der \textit{area} erklärt.
Nach oben ist sie zwar von Schichten so dick umgeben, daß der
ganze Stamm im Gegentheil an Dicke zunimmt. Allein sein
oberer Theil ist den Fäden analog, die mit dem äußeren Körper
in Verbindung stehen, und so würde denn wohl jeder Stamm
an Dicke zunehmen, wenn man sich die Fäden an ihm hinauf-
gelegt und mit ihm verschmolzen denkt.
Zugleich mit der Byssushöhle wächst aber auch der zungenförmige Muskel; die Fäden, die er formt, werden also länger und dicker. Daher steht die Größe eines Fadens immer mit der Dicke des Stammes an dem Theile im Verhältniß, wo sich der Faden inserirt. Oben sind die kleinsten und ältesten. So inseriren sich auch die ältesten (innersten) Schichten der arca an der Spitze der Pyramide, die neuesten an ihrer Basis.

Ferner ist jeder Stamm zurückgekrümmt, so daß die Fäden sich an der convexen Seite inseriren. Dies rührt eben nur von der mechanischen Ausdehnung dieser Seite her. So geht die Krümmung des Stammes bei *m. edulis* bisweilen nach der entgegengesetzten Seite über, wenn die Fäden anfangen, sich auf der andern Seite zu inseriren, (was durch eine gewaltsame Umdrehung des Thieres um die Achse der Byssus geschehen mag). Auch bei der arca inseriren sich die Schichten auf der convexen Seite; die concave ist fast nnbedeckt.

Bei der *pinna* bildet sich gar kein Stamm. — Die Verbindungsmaterie hat bei der *meleagrina* noch so viel Festigkeit, daß durch die neue Absonderung von unten der obere Theil gehoben wird und hervorwächst, wobei das Contentum jedes Faches der Byssushöhle eine Lamelle bildet. Die Byssus der unbekannten Muschel Nro. 11, hat eine weichere Verbindungsmaterie, so daß die Lamellenform ganz verschmolzen ist, und die Fäden kaum zu einem Stamme zusammengehalten werden. Die Weichheit der Verbindungsmaterie hat nun bei der *pinna* so zugenommen, daß der ganze Inhalt der 4 Fächer der Byssushöhle durch den Zuwachs der Verbindungsmaterie, der hier auch sehr gering sein mag, nicht mehr regelmäßig vorgeschoben wird. Die älteren Fäden gelangen nach dem entgegengesetzten Ende der Byssushöhle, da von der zungenförmigen Muskel zugekehrten Seite immer neue hinzukommen. So erklärt sich die Ausnahme, welche die *pinna* darin macht, daß bei ihr die ältesten Fäden am wenigstens weit aus dem Körper hervorragen. Sie zerreißen aus dem unter Nro. 4. beim Wachsthum des Stammes angeführten Grunde, mögen sich auch zum Theil herausziehen, und so findet man denn an der vom zungenförmigen Muskel abgewandten Seite einen Büschel abgekürzter Fäden. Hätte die Verbindungsmaterie Consistenz genug, und wäre ihre Sekretion reichlicher, so wür-
den wir hier einen Byssusstamm erhalten, der aus vier großen dicken Lamellen bestünde, übrigens wie der der *meleagrina* gebildet wäre.

Die Form der Fäden ist schon im vorigen Abschnitte aus der Form der Furche des zungenförmigen Muskels hergeleitet.

Nachtrag.

Kürzlich erhielt ich einen Aufsatz des Prof. Lavini *) über die chemischen Bestandtheile der Byssus von *pinna nobilis*, den ich hier kurz mittheilen will:

Byssus sei in Piémont unter dem Namen *gnaccara* bekannt, und finde sich häufig bei Sardinien, woher er die Seinige erhalten habe.

Zur Anatomie der tichogonia Chemnitzii Rofsm.

Dr. Van Beneden hat kürzlich die Anatomie dieses Thieres untersucht, welches er nach einem Pharmazeuten, der ihm Exemplare davon geschickt habe, *Dreissena* nannt *). Seine Beobachtungen weichen in mehreren wesentlichen Punkten von den meinigen ab, die ich hier herausheben will.

*) *Annales des Sciences naturelles. T. III. Avril 1835.*

Auch die Nerven der mya arenaria haben eine ganz ähnliche Disposition. Nur der Communications zweig zwischen dem Schlundganglion und dem vierten oder hintersten Knoten entspringt von diesem mit einer doppelten Wurzel, deren äußerer Theil mit dem Kiemennerven verbunden ist.

Muskeln und Darmkanal hat Vanbeneden sehr gut beschrieben, nur ist er in Zweifel, ob der blinde Anhang des Magens einen Krystallstiel enthalte, den ich oft gefunden habe.

Der Darm des mytilus edulis ist viel länger als der der ti chogonia, und bei ihm fand ich den blinde Anhang nicht. Poli bildet ihn gerade so ab, wie ich ihn gesehen habe. Bei der mya arenaria entsteht der Blinddarm mit einer größeren Öffnung aus dem Magen als der Darm selbst, und enthielt im Sommer einen dicken Krystallstiel. Er verläuft in einem Bogen in der Carina des Fußes und liegt der linken Seite etwas näher. Der Darm entsteht ein wenig höher aus dem Magen, ist durch eine Falte (Klappe) geschlossen, macht einige kurze Windungen, und läuft dann in der Carina des Fußes der rechten Seite näher wieder nach dem Magen zu, wendet sich um zum Rücken und geht wie gewöhnlich durch das Herz zum After.

Die Öffnung des Oviductes (F. 5. o.) konnte Vanbeneden nicht auffinden. Sie liegt im inneren Kiemengange, etwa mit
der Byssushöhle in gleicher Höhe, und bildet eine kleine Längs-
spalte mit einem Rande umgeben. Von hier verzweigt sich der
Eierleiter aufwärts im Ovarium, und an ihm hängen die Eiersäcke
wie die Beeren an einer Traube. Unter dem Mikroskope zeigten
sich bei einem in Weingeist aufbewahrten Exemplare die Eierleiter silber- oder perlmutterweiß, und die Eiersäckechen
wie schneeweisse Cocons. Bei einigen Exemplaren konnte ich
diese Struktur nicht wiederfinden.

Des Bojanus’schen Organes (F. 5. B.) erwähnt Vanbe-

neden nicht. Es ist ein häutiger Sack, der sich nach oben (in
der Gegend B) in zwei Schenkel theilt. Der Körper des Sackes,
der auf dem unteren Schliefsmuskel (A) liegt, hängt mit dem
der anderen Seite zusammen, so daß man die gelbe Materie, die
er zu enthalten pflegt, aus dem einen in den anderen hintüber
drücken kann. Der innere Schenkel liegt in den Kiemengängen
unter dem septum, welches beide Kiemengänge scheidet, steigt
gegen die Öffnung des Oviducts auf und verengert sich hier ein
wenig, dann wird er wieder etwas weiter, und öffnet sich nahe
am Oviduct mit einer kleinen Spalte (b.), die ganz an seinem
äußeren Rande, liegt, so daß es bisweilen den Anschein hat,
al's wäre die Öffnung in dem äußeren dicht daneben liegenden
Schenkel. Das Ende von diesem ist in der Abbildung noch
nicht sichtbar. Denn er schien mir noch zwischen dem Mantel
und dem Rande des musc. retractor nach dem Rücken fortzu-
gehen, und am Mastdarme mit demselben Schenkel der anderen
Seite zusammenzutreffen. Er würde hierdurch, wenu ich nicht
geirrt habe, in die Nähe des Herzens gelangen. Ob ein sinus
venosus am Organe existire, weiß ich nicht. Von dem Gewebe
dieses Organes bei der anodonta ist das der tichogonia sehr ver-
schieden, denn es zeigt nichts von dem dunklen Parenchyme,
und ist ganz dünnhäutig, daß sein Contentum durchscheint. Die
Formverschiedenheit in diesen beiden Thieren mag darin seinen
Grund haben, daß der musc. retractor bei der tichogonia einen
Theil des Raumes einnimmt, der bei der anodonta durch das
Boj. Organ erfüllt wird, denn bei dieser ist der Muskel nicht so
stark ausgebildet und inserirt sich weiter nach unten. Das Organ
hat übrigens in beiden Thieren gemein, daß es an der Bauch-
seite des unteren Schliefsmuskels liegt, in die Nähe des Herzens

Bei diesen Muscheln liegt also die Öffnung des Eierleiters und des Boj. Organes beisammen, und immer verläuft der Nerv, der das vierte und das Schlund-Ganglion verbindet, nahe an ihrem inneren Rande, was als Wegweiser dienen kann. Bei der *mya arenaria* liegt die Öffnung der Eierleiter am unteren Ende des Fusses sehr nahe an einander, und hier berühren sich jene Nerven fast, die nach diesem Gesetze noch zwischen ihnen durch müssen.

Von den Kiemen sagt Van Beneden, ihr hinterer Theil sei frei und flottirend, was bei seiner Untersuchung an in Wein-geist aufbewahrten Exemplaren wohl zu entschuldigen ist, denn da lösen sich diese Verbindungen der Kiemen sehr leicht; es sind folgende: auf jeder Seite liegen zwei Kiemen, deren jede aus zwei durch Querscheidewände verbundenen Blättern besteht. Die sich berührenden Blätter beider Kiemen sind an ihrer Basis zusammengewachsen ganz wie bei *anodonta*. Von der gemeinschaftlichen Basis dieser beiden Kiemenblätter geht eine Scheidewand zum Boj. Organe, welche den inneren Kiemengang vom äußeren scheidet, und sich nach unten bis zu dem Nerv erstreckt, der vom vierten Nervenknoten zu eben diesen beiden Kiemenblättern, übergeht. Der Nerv bildet also den unteren freien Rand der Scheidewand. Unterhalb des Nerven communiziren daher beide Kiemengänge derselben Seite. Der äußere wird durch Verwachsung des äußersten Kiemenblattes mit dem Mantel, der innere durch Verwachsung des innersten Kiemenblattes mit dem Ovarium gänzlich geschlossen. Der rechte und linke innere Kiemengang sind also durch das dazwischen liegende Ovarium getrennt; wo dieses aber nach unten spitz auslaufend endigt, treten die innersten Kiemenblätter der rechten und linken Seite zusammen, und verwachsen unter sich. Hier communiziren also beide inneren Kiemengänge, ja die Vereinigung erfolgt

Bei der anodont a, deren Mantel bekanntlich ganz gespalten ist, kann man auch die Andeutungen der Röhren auffinden; denn an den entsprechenden Orten zeigt der Mantel kleine Verlänge rungen, die etwas buchtig ausgeschnitten sind, und deren vor dere, die der Röhre der Kiemenhöhle entspricht, mit kleinen Fibrillen besetzt ist, wie es bei dieser gewöhnlich ist. Das Thier legt bei der Respiratinn die Ränder des Mantels aneinander und läßt an beiden den Röhren entsprechenden Stellen Räume übrig, aus denen das Wasser wie aus den Röhren der mya und tichogonia ein- und ausströmmt. Hieraus scheint mir hervorzugehen, daß der Unterschied, den die Spaltung des Mantels giebt, ein unerheblicher sei.

Da also der untere Theil des großen Mantelschlitzes den Röhren entspricht, so folgt, daß der sogenannte Rückenschlitz, der sich bei anodonta und myt. edulis findet, nicht mit der Röhre der Kloake verglichen werden kann. Sein Zweck ist mir ganz unbekannt; die Exkremente kommen nicht aus ihm hervor.
vielleicht nimmt das Wasser aber durch ihn seinen Weg, welches sich zwischen dem Mantel und der Schale findet.

Erklärung der Kupfer.

NB. Das Secret der Byssushöhle oder die Verbindungsmaterie ist in allen Durchschnitten mit r bezeichnet.

Fig. 1. Die Byssus der *tridacna elongata* Lam. in natürlicher Größe. r die Wurzel des Stammes, die von der Byssushöhle aufgenommen wird. a die Spitze des Stammes. v die oberen freien Ränder der Scheiden, welche den Stamm umkleiden. m der verdickte Rand an der Basis des Fadens, der den mittleren sehr dünnen Theil sämt. f ein Faden. Fortsetzung der Scheide, der an den äußeren Körperrn befestigt war.

Fig. 2. Querschnitt durch einen Faden von Fig. 1., um die Längs-Vertiefungen und Erhabenheiten zu zeigen, 110mal vergrößert.

Fig. 3. Ein Theil des Querdurchschnittes von derselben Byssus, nahe der Spitze Fig. 1. a geführt. Etwa der 5te Theil ist abgebildet und 45mal vergrößert. A die Rinde, welche den ganzen Stamm umschließt. A a a verschiedene Lagen von Rinde, welche immer kleinere Felder einschließen. r die Fasern, welche durch die Rinde zu Bündeln vereinigt werden.

Fig. 4. Querdurchschnitt des Byssus-Stammes von *tichogonia Chenuittzii* Rafsm. 110mal vergrößert. c die Schichten, welche nach oben in die Fäden auslaufen. i die hellere Masse der Lamellen, in welche sich die Schichten nach unten fortsetzen. r die dunklere Masse der Lamellen.

Fig. 5. *Tichogonia Chenui.* Rafsm. Der vordere Theil des Körpers, Mantel, Kiemen und Eierstock sind abgetragen, die Öffnung des Oviduets aber stehen gelassen; 24mal vergrößert. A der untere Schließmuskel. r die unteren Schenkel des musc. retractor, s dessen obere Schenkel. l der zungenförmige Muskel, t dessen Längsfurche, die nach oben mit einer kleinen Querspalte enuert, und nach unten in die Byssushöhle hinabgeht. g die Byssusdrüse, welche sich längs dieser Furche erstreckt. c die Byssushöhle, die oben aufgespalten und mit Nadeln aus einander gehalten ist, damit der mit Fäden be- tagene Grund derselben erscheine. o die Öffnung des Eierleiters. B das Bojanus'sche Organ, welches sich nach vorn in zwei Schenkel theilt; b seine Öffnung. x das vierte Ganglion. u Verbindungsnerv zu den Ganglien am Schlunde. v Nerv.
der Kiemen. Beide werden durch eine sehr feine Nerven- schlinge verbunden, von der wieder zwei feine Nerven auf- wärts gehen. y ein Zweig der sich um den unteren Schlief- muskel herumschlägt, und zum Rücken geht. w Zweig zu den Röhren des Maultels. a After.

Fig. 6. Spitze des zungenförmigen Muskels von *mytilus edulis* Linn., 5mal vergrößert. Der obere Theil der Längsfurche ist durch Nadeln aus einander gezogen, um die Öffnungen der Byssusdrüse zu zeigen.

Fig. 7. Querschnitt durch den Byssusstamm des *mytilus edulis* Linn., 110mal vergrößert. f, f Fäden, welche in diesem Falle auf zwei Seiten vom Stamme abgehen. c die Rinde, in welche die Fäden übergehen. d einige abgelöste Schichten der Rinde. In der Mitte die gewundenen Lamellen.

Fig. 8. Querschnitt durch den Byssusstamm des *malleus vulsellatus* Lam. und

Fig. 9. Längsschnitt durch denselben. Beide 110mal vergrößert. c die geschichtete Masse, welche sich nach oben in die Fäden f fortsetzt. r die Lamellen, zwischen welche die geschichtete Masse als schmale Streifen eindringt. s Stelle, wo Lamellen waren, die verwittert sind.

Fig. 10. Längendurchschnitt der Byssus von *area barbata* Linn., durch seine beiden Kiele geführt, 2½mal vergrößert. r a die von der Verbindungsmaterie gebildete Pyramide mit gefalteten Seiten. a ihre zurückgebogene Spitze. c die Schichten, welche die Pyramide besonders an ihrer convexen Seite einschließen und sich oben an irgend einen Körper anheften.

Fig. 11. Querdurchschnitt von Fig. 10. parallel mit deren Basis r geführt und 75mal vergrößert. r die Verbindungsmaterie, welche die Pyramide mit gefalteten Seiten bildet. c die Schichten, welche die Falten erfüllen.

Fig. 12. Querschnitt durch den Byssusstamm der *meleagrina margaritifera* Lam. zur Hälfte abgebildet und 75mal vergrößert. f Durchschnitte der Fäden. c ihrer Würzelchen. r die Lamellen, welche dies alles einschließen.

Fig. 13. Der untere Theil eines Fadens von derselben Byssus und in derselben Vergrößerung. f der Faden, der sich endlich selbst spaltet. c die Würzelchen.
Über neue Arten der Gattung Tichogonia Rofsm.
(Dreissena Vanben.)
nach den Exemplaren des Berliner Museums
vom Herausgeber.

Die generische Verschiedenheit des Mytilus polymorphus Pall. (Tichogonia Chemnitzzii Rofsm.) von M. edulis scheint mir hiervorschließlich durch die Abweichung des Thieres in äußerer Gestalt und anatomischen Einzelheiten gerechtfertigt*); von den

das Meer bewohnenden Arten, welche sich sämtlich durch ihre Skulptur, d. h. durch strahlenförmig von den Wirbeln zum Rande verlaufende Rippen auszeichnen, kennen wir aber leider das Thier bis jetzt nicht; und nur aus dem Vorhandensein der Wirbelplatte schliessen wir auf eine Uebereinstimmung der Thiere. Die Zukunft muß lehren, wie weit diese Uebereinstimmung geht.

Tichogonia Roßmäßler.

(_Dreissena_ Vanbeneden.)

Testa longitudinalis, aequivalvis, trilatera; _latus_ ventrale pro byso plerumque hians; _latus_ anticum cum ventrali confusum, hinc nates terminales anticae; _margo_ posticus in dorsalem areuatom transiens. _Valvae_ carinatae, intus sub umbonibus lamina perpendiculares, musc. adductorem anteriorem excipiente instructae. _Cardo_ varius, his deutes interni minimi, illis dens externus alterius _valvae_ solitarius vel obsoletus. _Ligamentum_ subinternum, sovea longitudinali marginis dorsalis exceptum. Impressio musculi posterioris lateralis, _subdidyma_; anterioris in lamella sub apicali.

Animalis pallium clausum, aperturis tribus perforatum, ventrali byssum emittente, posterioribus in tubulos prolongatis.

A. Extus costato-striatae, margine interno crenulato: (Marinae)

a) _Dentibus cardinalibus internis parvis sub utroque apiex._

1) _Tichogonia bilocularis._

T. testa ovato-trigona antice valde angulata, longitudinaliter striata; striis confertis, inferue furcatis; epidermise viridi; lamina subapicali valvarum integerrima; _denticibus_ cardinalibus parvis internis, sub utroque _apice_ binis.

*Ich muß hier einen Fehler des Jahresberichts verbessern, der Hrn. Roßmäßler zu nahe tritt. Dieser kannte freilich das Thier selbst nicht aus eigener Ansicht; wohl aber war ihm v. Baer's Beschreibung desselben bekannt, was ich an jenem Orte irrig verneint habe.

2) Tichogonia excisa n. sp. **) T. testa oblongo-trigona; angulo lateris antic rotundato, obsoleto; dense striata; striis eminentibus, confertis, mature furcatis; epidermide flavicante; lamina valvarum subapicali sinuato-excisa; denticulis cardinalibus internis, sub utroque apice pluribus, minimis.

b) Dente cardinali solitario externo, sinum alterius valvae explente:

3) Tichogonia virgata n. sp.

T. testa oblongo-trigona, costis inferioris 3—4 partitis, margine versus subevanescentibus; extus atropurpurea, intus violacea.

*) Schröter hat doch wohl nur diese Art gemeint, obwohl er die Anwesenheit zweier Zähne leugnet.

**) Lamarck's Varietät d. extus ferruginea, intus albida (Born. III. Jahrg. 1. Band.
Mytilus bilocularis var. c. testa extus intusque fusca Lam. l. c.?

B. Margine interno integerrimo, dente cardinali obsoletō nullove: (Fluvia tiles)

4) Tichogonia Chemnitzii Rofsm. *)

T. testa oblongo-trigona, hiante, laevi, striis incrementi exarata, natibus aequis.

Mus. 7. f. 5.) kenne ich nicht, doch scheint sie nur Varietät der *T. bilocularis*; wenigstens ist sie keineswegs die von mir unterschiedene, da die Wirbelplatten nicht ausgeschnitten dargestellt sind. Dieser Ausschnitt ist aber ein constanter Charakter.

*) Eigentlich hätte der Trivialname den Vorzug verdient, und um so mehr, als er der am meisten angenommene ist; doch möchte ich die Synonymie nicht vergrößern.
vielleicht nach manchen Orten, wo sie früher nicht bekannt war, durch preußische Schiffe verschleppt.

5) **Tichogonia africana.**

T. testa oblonga, apice rotundata, margine ventrali recto, integro, latere externo regulariter lamelloso, eristis dnavus longitudinalibus ornata.

Dreissena africana Vanben. *l. c. p. 211. t. 8. f. 12 u. 13.*

Ist mir nur aus Vaubeneden's Beschreibung und Abbildung bekannt, auf welche ich schließlich verweise.

Über die Sexualität der Muschelthiere.

Notiz vom Dr. v. Siebold.

Erster Beitrag.

Ueber einige Eingeweidewürmer des schwarzen Storchs.

Filaria labiata Crepl. u. Strongylus trachealis N. (Syngamus trachealis v. Sieb.)

Am 23. Mai dieses Jahres erhielt ich einen alten männlichen schwarzen Storch — Ciconia nigra, Bechstein — welcher Tags zuvor von meinem Jäger in hiesiger Gegend geschossen war. Das äussere Ansehn des Thieres war nicht krankhaft, die Muskeln waren von gesunder Farbe, und die Flugkraft durchaus nicht gelähmt. Im Innern fand sich eine selten grosse Anzahl von Entozoen, welche zwar sämmtlich noch ganz frisch waren, aber nur noch geringe Zeichen von Leben gaben:
1. **Filaria labiata** Creplin, in den Lungen und Luftzellen 24 Individuen.

2. **Strongyulus trachealis** M., 16 Exemplare in der Luftröhre.

3. **Spiroptera alata** Rudolphi, zwischen den Magenhauten über 100.

4. **Holostomum excavatum** Nitzsch, viele Hunderte im Dündarm.

5. **Distoma ferox** Rudolphi, gegen hundert Individuen im Darm.

6. **Distoma hians** Rudolphi, 22 Exempl. in der Speiseröhre.

7. **Distoma (hians Rud.?)**, 5 Exempl. zwischen den Magenhauten.

8. **Distoma echinatum** Zeder, 1 Individuum im Dünndarm.

Die große, schöne **Filaria**, und das Thier, auf welches die Aufmerksamkeit gewiß aller Helminthologen durch Herrn v. Siebold’s Abhandlung in diesem Archiv (II. 105.) gerichtet ist, nahmen meine Aufmerksamkeit ganz besonders in Anspruch, und die Untersuchung nahm so viel Zeit hinweg, daß die andern Arten nicht mehr ebenso frisch untersucht werden konnten.

1. **Filaria labiata** Creplin.

Über den innern Bau der zu der Gattung **Filaria** gerechneten Thiere ist im Ganzen noch zu wenig bekannt, so viel auch über manche Arten geschrieben ist. Es scheinen mir nach meinen, in dieser Gattung wenig zahlreichen Beobachtungen, verschiedene Formen darunter vereinigt zu sein; ich bin aber nicht im Stande, etwas Allgemeines über diese Gattung zu sagen, und will daher das, was ich an der vorliegenden Art beobachtete, einfach und isolirt mittheilen.

gefunden hatte, wo sie jedoch nicht, wie im vorliegenden Falle, in der Substanz der Lungen gelegen haben sollen, obgleich diese auf der linken Seite nicht unversehrt gewesen ist. Hr. Creplin sah nur wenige weibliche Exemplare, und theilt uns über die Anatomie nichts mit.

Beschreibung. Die Länge aller aufgefundenen Weibchen ist ziemlich gleichmäßig 2 Fuße und 10 Zoll bei einem Durchmesser von beinahe 1 Linie. Die Länge der Männchen beträgt zwischen 4½ bis 5½ Zoll und ihr Durchmesser ist ungefähr dem einer mittleren Violinsaite gleich. Die Farbe gelblich-weiss, am Kopfende auf einer Strecke von 1 bis 1½ Zoll rein weiss, sehr ausgezeichnet durch die durchscheinende zinnoberrrote Farbe des Nahrungskanals, welcher bei dem Weibchen etwas mehr gewunden, bei dem Männchen beinahe ohne Windungen verläuft. Der elastische, langgestreckte, drehrunde, feingerüllte Körper ist überall gleich dick, nur am Schwanzende etwas verschmächtigt, und zwar bei dem Männchen etwas mehr, als beim Weibchen, bei diesem gerade, bei jenem am Schwanzende eingekrümmt, die Schwanzspitze von einer Flügelhaut umgeben, welche fast oval und jederseits mit fünf knieförmig gebogenen Rippen ver-
sehen ist, so daß der männliche Schwanztheil bauchwärts concav gebogen ist, und daher löffelförmig erscheint. Die auf der Längenaxe des Körpers stehende Mundöffnung ist kreisrund, zuweilen ein wenig oval, und liegt zwischen zwei lippenartigen kleinen Hervorragungen, welche parallel neben einander liegen, auf deren Bogen und an jedem Ende ein kleines conisches, mit einem abgesonderten Köpfchen versehenes Knötchen steht, so daß also solcher Knötchen im Ganzen sechs vorhanden sind.

Es geht also hieraus hervor, daß die Anordnung der Muskeln, der Organe der Seitenlinien und der gefäßartigen Stämme an der Bauch- und Rückenseite, im Wesentlichen bei dieser Filaria dieselbe ist, wie sie von audern Nematoden-Gattungen schon bekannt war *).

*) Wenn der genaue Beobachter, Hr. A. Retzius bei Beschreibung der Ascaris mit viertheligem Uterus aus Python bivittatus von den andern Beobachtern darin abweicht, dafs er die fadenförmigen Gefäße des Darms an die Seitenlinien treten läßt, so entstand dieser Irrthum wohl nur dadurch, dafs ihm bei dieser Untersuchung kein passendes Mikroskop zu Gebote stand, wie er selbst berichtet. (Vetenskaps-Academiens Handlingar för år 1829. p. 104 u. 107.)
Körperlänge macht der Darm nur seichte Windungen, in dem letzten Drittel dagegen höhere und häufigere Bogen, jedoch nirgends eigentliche Schlingen. Die Farbe des ganzen Darms, vom Magen bis zum After, ist schön und lebhaft zinnoberrot. Im Innern liegen von oben bis unten theils regelmäßig kreisrunde, theils unregelmäßig gestaltete zinnoberrote Körnchen. Die Darmhaut ist besonders zart und dünn, zeigt keine Andeutung von Zottcubildung (wie sie nun schon bei einigen Nematoden gefunden ist); die Körnchen sind auf ihr jedoch in insektenartige Häufchen vertieft, wodurch die innere Darmwand einige Ähnlichkeit mit einem Gefäßnetz erhält; vielleicht ist diese regelmäßige Verteilung der Körnchen des Darminhalts auf eigentümliche Strukturverhältnisse der Darmhaut gegründet, diese aufzufinden gelang mir aber nicht.

Sehr eigentümlich sind in mehrfacher Beziehung die weiblichen Genitalien. Zuerst schon die Lage der Geschlechtsöffnung. Am Kopfe, dicht neben der Mundöffnung, eine halbe Linie von dieser entfernt, ist eine kleine Öffnung (vulva), welche in eine enge, kurze, eine Linie lange Röhre (vagina) führt, an welcher eine obere, aus verzweigten, anastomosirenden Fasern, und eine untere, minder deutliche, aus Ringfasern bestehende Schicht zu erkennen ist. Die vagina geht über in den, zunächst über derselben kolbenartig angeschwollenen Uterus, der weiter nach unten cylindrisch verläuft und zwischen 5 und 6 Linien lang ist. Der angeschwollene Theil des Uterus besteht aus verzweigten, sich durchkreuzenden Fasern, deren Richtung schief auf die Längenaxe des Uterus ist, und der daher wie ein gewickeltes Zwirnknaul aussieht; in dem cylindrischen Theil des Uterus herrscht eine quere Richtung der (Ring)fasern vor, jedoch mit mannigfachen Durchkreuzungen. — Plötzlich theilt sich der Uterus handförmig in fünf Hörner; jedes dieser Hörner verläuft in mannigfachen Windungen, oftmals um den Darm geschlungen, durch den ganzen Körper, ist gegen 4 Fuße lang, schwittl ganz allmählig, gegen das Ende zu etwas mehr, an, endet zugespitzt, und geht hier in das 5 bis 6 Zoll lange Ovarium über; dieses ist zuerst sehr dünn, wird ein wenig weiter, und verläuft dann ziemlich gleich dick, bis es sich in einer geschlossenen Kugel endet. Die an dem Uterus sehr deut-
lche muskulöse Struktur wird im Verlaufe der Hörner immer undeutlicher, indem nur noch einzelne, zum Theil gabelig getheilte, Längsfasern zu erkennen sind, und geht in eine häutige über. Der untere Theil der Uterushörner ist ungefähr so dick wie der Darm; der dünnste Theil der Ovarien hat dagegen nur 0,0013 Par. Zoll im Durchmesser, und der Durchmesser der Kugel, in welche die Ovarien enden, beträgt 0,0025 Par. Zoll. Den Inhalt dieser Kugeln und des untern Theiles der Ovarien bildet eine homogene Masse von Kugelchen, deren Durchmesser ich = 0,0002 Par. Zoll fand; weiter nach dem Uterus zu treten in den Ovarien mehrere solcher Körnchen zu abgesonderten Haufen zusammen, welche schon von einer äußerst zarten Hülle umgeben zu sein scheinen, wenigstens sind sie auch da bestimmt begräuzt, wo sie sich dicht aneinander drängen, und deshalb eckig erscheinen. Gleich in dem untern Theil der Hörner des Uterus haben die Eier plötzlich eine bestimmte elliptische Gestalt, und erleiden bis zu ihrem Austritt aus der vagina keine sichtbare Veränderung mehr, indem alle Theile des Uterus überall mit gleich gebildeten Eiern erfüllt sind. Die Längenaxe der Eier beträgt im Durchschnitt mehrerer Messungen 0,002 Par. Zoll (Maximum 0,00205. Minimum 0,00194). Zwei Eihüllen sind deutlich zu erkennen; der Dotter nimmt fast die ganze Höhlung ein (an mehreren Eiern erkannte ich an dem einen Ende einen anscheinend leeren Raum, ähnlich dem Luftraum der Hühnereier), besteht aus mehrern rundlichen Häufchen, in denen man einen Keimfleck zu erkennen glaubt.

Die fünf Hörner des Uterus erfüllen den ganzen Raum des Körpers, indem sie überall neben dem Darm, zum Theil ihn umschlingend, verlaufen. Zwei von ihnen biegen sich, ungefähr in der Mitte des Körpers, um, und verlaufen wieder nach dem Kopfe zu; die Ovarien dieser beiden Hörner liegen dicht neben einander, kurz vor dem Schlund, auf dem Magen mit kleinen Schlingen, und richten sich von hier aus in ihrem fernern Verlauf wieder nach dem Schwanztheil; sie umfassen mit sehr kur-
zen und zahlreichen Windungen, dicht zusammengedrängt die ihnen entsprechenden Hörner. — Zwei andere verlaufen bis in das Schwanzende des Wurmes, hier biegen sich die Ovarien um, und verlaufen ebenfalls in kurzen, sehr zahlreichen Windungen nach dem Kopfe zu. — Das fünfte Horn des Uterus endlich verläuft nicht ganz bis zum Schwanzende, biegt sich nach dem Kopfe zu um, und das dazu gehörige Ovarium endet ungefähr in der Mitte des Körpers.

Die Hörner des Uterus und die Ovarien sind überall dicht mit jenen cilienartigen Organen besetzt, welche auch am Darmkanal sich finden; sie verbinden diese Theile mit dem oben beschriebenen gefäßartigen Stämmen der Bauch- und Rückenlinie. An der Vagina und dem Uterus selbst konnte ich dieselben nicht deutlich erkennen; wenn sie hier auch nicht ganz fehlen, sind sie doch gewiß nur in sehr geringer Menge vorhanden. Am zahlreichsten sieht man sie an den Ovarien nur ganz besonders an den kugeligen Endungen derselben. Sie sind bei geringerer als 200maliger Linearvergrößerung nicht überall deutlich zu erkennen; zeigen aber selbst bei 1000maliger Linearvergrößerung und dem günstigsten Licht (mit einem großen, vortrefflichen Mikroskop von Schick) keine deutliche Organisation. Sie sind so zart, daß sie sogleich zerreißen, wenn die elastische Haut des Wurmes im Wasser aufplatzt, oder mit der Nadel und Scheere aufgeschnitten wird, und es ist daher nicht leicht, ihren Zusammenhang mit dem Bauch- und Rückengefäß direkt zu beobachten; er ist jedoch unbezweifelt vorhanden — und die Fäden selbst können wohl nichts anders als Gefäße sein.

Bei dem männlichen Geschlecht verhält sich das Verdauungssystem ganz wie bei dem weiblichen, nur ist der Darmkanal, indem er etwas weniger und seichtere Windungen macht, etwas kürzer im Verhältnis zur Körperlänge bei dem Männchen; und der After liegt nicht dem Munde gegenüber auf der hier geflügelten Schwanzspitze, sondern auf der Bauchseite zwischen den Flügeln, dicht vor der Schwanzspitze. Die Haut des Wurmes ist nicht so durchsichtig, daß man die Geschlechtstheile in ihrem ganzen Verlauf deutlich erkennen könnte, und da das Thier so dünn ist, gelang es mir nicht, mit Instrumenten die männlichen Genitalien so vollkommen darzulegen, wie es mir

Der Penis, welcher bei einigen Individuen dicht neben dem After vorgeschoben war, ist lang, hornartig, braun, wie gewöhnlich banchwärts sensenartig gebogen, indees in geringeren Grade, als bei den meisten Ascariden. Er besteht deutlich aus zwei Blättern, von denen das eine ein wenig länger ist, als das andere, wodurch der Penis ungewöhnlich spitz erscheint. Eine Scheide scheint nicht vorhanden. Bei einigen Individuen sah ich am Schwanzteil Spuren solcher Halspapillen, wie sie bei mehreren Ascariden vorkommen; jedoch nur undeutlich. Bei mehreren Nematoden hat sich mir die Aeusserung des verehrten Nitzsch bestätigt, dafs diese Haltknötchen nur zu gewissen Zeiten vorkommen, indem ihr periodisches Vorhandensein wahrscheinlich mit den Geschlechts-Functionen in Zusammenhang steht **).

2. *Strongylus trachealis N.*

(Syngamus trachealis v. Sieb.)

Vor Kurzem hat Hr. v. Siebold in diesem Archiv (II. 106. Taf. 3.) eine Arbeit über diese Art mitgetheilt, welche gewiss

*) Die feinen, von den innern Organen zu den Gefässtämmen der Bauch- und Rückenseite gehenden Gefässe, von denen oben die Rede war, haben, wenn sie sich isolirt dem Auge darbieten, zuweilen das Ansehen der haarförmigen Spermatozoen der wirbellosen Thiere, wie sie Hr. v. Siebold uns vor Kurzem durch seine vortrefflichen Untersuchungen bekannt machte. Bei einiger Aufmerksamkeit wird man ab einem solchen Irrthum leicht entgehen.

**) Spätere Beobachter will ich noch auf zwei äusserst kleine drüsenartige Organe aufmerksam machen, welche im Innern des Körpers, kurz vor dem Alter, neben dem Darm des Männchens liegen, und mit den Genitalien nicht in Verbindung zu stehen scheinen. Ich sah sie nur an einem Präparat ganz deutlich, vermochte sie an andern nicht aufzufinden.

Ich fand im Ganzen 9 Weibchen von 6 bis zu 20 Linien, und 7 Männchen von 3½ bis 4 Linien Länge; zwei der größeren Weibchen waren in der Begattung begriffen, und die Männchen hafteten so fest an ihnen, daß sie selbst im Spiritus noch unverändert in dieser Stellung beharren, wie dies bei mehreren Strongylusarten schon früher beobachtet, und überhaupt keine seltene Erscheinung ist.
Hr. v. Siehold beschrieb, und füge nur hinzu, daß sie eine ellipsoidische Gestalt haben und nach mehreren Messungen der Durchmesser der Längenaxe 0,0030 Par. Zoll, an der Queraxe 0,0015 Par. Zoll beträgt. In den jungen Weibchen von noch nicht 6 Linien Länge zeigt sich dasselbe gewundene Gefäß, doch scheint es im Verhältniss zur Körperlänge noch nicht ganz so lang zu sein, wie bei den mit reifen Eiern angesäumten Thieren; es ist dies aber nur eine Vermuthung, indem es mir nicht gelang, das Gefäß vollkommen zu entwickeln. Es ist bei diesen jungfräulichen Würmern durchgängig mit einer körnigen Masse ohne innere Coagulirungen angefüllt.

Im Männchen ist das gewundene Samengefäß im Allgemeinen sehr deutlich; das Verhältnis des Ausführungsganges zum Penis, und die Muskeln und Scheiden desselben sind hier jedoch, wie bei so vielen kleineren Nematoden nicht vollkommen deutlich zu sehen; der Körper ist in dieser Gegend ziemlich andurchsichtig, und der dunkelbraune Penis selbst verdeckt zu viel; dieser besteht, nach der allgemein bekannten, den meisten Nematoden gemeinschaftlichen Art, aus zwei hornartigen, etwas sensorartig gebogenen Blättern von gleicher Länge, war bei einigen Individuen vorgeschoben, bei andern durch einen sehr gelinden Druck hervoranschieben. Er tritt am abgestutzten Ende des Körpers heraus, unmittelbar neben dem After, mit welchem er vielleicht nur eine gemeinschaftliche Öffnung hat. Der Schwanz ist mit einem Bentel umgeben, welcher allen Strongylusarten zukommt, bei dieser gerade abgestutzt, am Bauch tief, bis auf den Körperrand, gespalten, übrigens ganzrandig ist, und durch fünf Gruppen von Rippen gestützt wird, deren Anordnung durch eine dem nächst an einem andern Orte bekannt zu machende Abbildung leichter anschaulich zu machen ist, als eine, wenn auch wortreiche Beschreibung, zu ihm vermag. Die Mittelrippe (die der offenen Seite des Bentels entgegengesetzte) ist zweifach gelblich getheilt, und endet, über den Bauch des Bentels hinaus, in eine feine Spitze, welche bei der Begattung etwas vom Körper des ♀ absteht, und nach dem weiblichen Kopf sieht, so daß also der Penis nach dem weiblichen Schwanz gerichtet ist. Die Membran des Bentels zwischen den, ebenfalls sehr zarten, Rippen ist außerordentlich durchsichtig, in so hohem Grade, daß man
bei begatteten Exemplaren durch sie hindurch alle innern Theile des Weibchen sieht, indem der Beutel den weiblichen Körper bei der Vulva so umfaßt, daß er mit der Fläche und den Rändern ganz fest aufliegt.

Im Uebigen beziehe ich mich auf die Beschreibung des Hrn. v. Siebold, welche in allen, hier nicht berührten Punkten mit meinen Beobachtungen vollkommen übereinstimmte; auch gibt die Abbildung ein klares Bild des Thieres, nur erscheint mir die Farbe bei dem frischen Thiere weniger ziegelroth, als vielmehr hell blutroth; diese verändert sich jedoch sehr schnell. Im frischen Zustande aber ist der Wurm von allen Helminthen der schönste, indem die weissen, zierlich gewundenen Genitalien von dem schönen Roth, welches den Körper färbt, auf das Säuberste abstechen. Das weibliche Schwanzende des abgebildeten Exemplar war wahrscheinlich verletzt, denn die unversehrten Individuen zeigen nicht jene Abschnürung mit einem kleinen Köpfchen; sondern es geht der Schwanz allmählig in eine feine Spitze über.

Aus
Aus dieser Beschreibung wird es klar werden, daß wir gezwungen sind, dieses Thier in der Gattung *Strongylus*, wie sie bis jetzt besteht, unterzubringen, und *Diplozoön paradoxum* bleibt auch ferner das einzige bekannte Doppellhier!

Ob aber wirklich jene von Montagu beschriebene *Fasciola*, welche Rudolphi zu seinem *Distoma lineare* zieht, unser vorliegender *Strongylus* ist, darüber müssen wir wohl vor der Entscheidung fernere Beobachtungen erwarten. —

Von den andern Entozoen des schwarzen Storches will ich hier nur noch des oben unter No. 7. aufgeführten Dostom's erwähnen, weil sein Fundort, so viel ich weiß, für die Gattung neu ist. — Zwischen den Magenhäuten, unter den Hunderten von Exemplaren der *Spiroptera alata* Rud., lagen 5 Individuen, deren ausgedehnter Körper genau in eine, durch ihn gebildete Höhlung, zwischen der inneren und äußeren Lage der Magenhäute, hinein passte, so daß dem Thiere keine Bewegung von der Stelle möglich zu sein scheint. Sie lagen alle einzeln, getrennt von einander. Im Tode haben diese Thiere genau die Gestalt des *Distoma hians* Rud., aus dem Schlunde, sind aber 1—2 Linien kleiner, und namentlich schmäler, und ihre Farbe ist ein intensiveres und reineres Blutrot, als die der Schlundbewohner; die Genitalien wurden mir, da ich die Thiere nicht ganz frisch untersuchen konnte, sofern nur, nachdem sie schon entfärbt waren, nicht deutlich. Im Uebrigen zeigt sich zwischen beiden Thieren in den wesentlichen Punkten eine zu große Übereinstimmung, als daß ich nicht beide vorläufig als zu einer Art gehörig betrachten müße, obgleich der Habitus auffallend verschieden ist, indem *D. hians* des Schlundes im Leben immer zusammengerollt vorkommt, diese Würmer aber alle flach ausgebreitet dalagen, was aber eine natürliche Folge der Lebensart sein mag. — So wollte ich denn hier nur auf den Fundort aufmerksam machen, und die Entscheidung über diese Art denen überlassen, welche frische und lebende Individuen dereinst werden beobachten können.

Zusatz zum vorhergehenden Aufsatz

vom

Dr. v. Siebold.

dem ich meinen noch einzigen unverscherten Syngamus zur Ver-
gleichung überschickt hatte, konnte sich von der Identität dieser
Thiere nicht überzeugen. Die Unterschiede sind (so gut sich
solche an in Spiritus aufbewahrten Entozoen auffinden ließen),
folgende: Das Schwanzende des Weibchens von Strongylus trac-
chealis läuft allmählich in eine Spitze aus, bei dem Weibchen
meines Wurmes dagegen ist immer das Schwanzende mit den
hinteren zwei Drittel des Leibes in Stärke gleich, endigt stumpf
und besitzt an diesem stumpfen Ende nur eine kleine, gleichsam
abgeschnittene Spitze. Bei Strongylus trach. befindet sich hinter
dem Kopf keine Einschnürung des Halses, wie bei meinem Wur-
me. Ferner ist der ganze Körper des Strongylus trach. sehr in
die Länge gezogen, und selbst das junge Weibchen, welches ich
von Hrn. Nathusius besitze, verräth, trotz seiner Kleinheit,
seinige künstige Schlankeit; bei meinem Wurme dagegen
ist der ganze Körper mehr gedrungen. Sehr auffallend ist an
meinem weiblichen Wurme die plötzliche Zunahme des Durch-
messer des Körpers von der Stelle an, wo sich die Vulva findet,
dafs der Leib vor der Vulva durch seine Schmalheit von dem
hinter der Vulva gelegenen Theile desselben stark absticht, etwas
ähnliches konnte ich an den mir vorliegenden beiden weibli-
chen Individuen des Strongylus trachealis nicht erkennen und
auch nicht aus der Beschreibung des Herrn Nathusius ent-
nehmen.

Doch was half es mir nun auch, dass ich mich von der
Verschiedenheit dieser beiden Schmarotzer überzeugte, der Zweifel
über die Doppelleibigkeit meines Syngamus war einmal in mir angeregt, ich konnte mich nicht eher beruhigen, als bis die
Sache in's Reine gebracht war. Ich nahm also meinen einzigen
Wurm noch einmal vor, untersuchte die Verbindungsstelle des
Weibchens mit dem Männchen noch einmal, Letzterer liefs aber
nicht los; ich brauchte zuletzt Gewalt, und nun brach das Män-
nchen ab; das Weibchen zeigte eine deutliche Hervorragung, auf
der das Männchen aufgesessen hatte. Betrachtete ich das Schwanz-
ende des abgebrochenen Männchens, so erschien es unregelmässig
abgerissen, aber genauer zugesehen schien mir wirklich eine ge-
spaltene einfache Blase, wie bei manchen Strongylus- Arten, vor-
handen zu sein, welche nur von einer durchsichtigen wachsar-

Ornithologische Reise nach und durch Ungarn
von
Johann Friedrich Naumann.

einen unberechenbaren Gewinn bringen. Was ich demnach durch diese Reise an Erfahrungen reicher geworden bin, habe ich lediglich diesem Freund zu verdanken, welcher auf allen meinen sehr ausgedehnten Excursionen mich nicht nur als brüderlicher Freund, sondern auch als thätiger Jagdgenosse begleitete, als sehr geübter Schütze mir treulich beistand, und dabei nicht allein gewandter Jäger, sondern auch sogar Beobachter war.

Schon am 22sten unternahmen wir eine Excursion, östlich von Pesth, über Petéri, wo wir bei Hrn. Nic. v. Földráry die freundschaftlichste Aufnahme fanden, und mit ihm nach dem Tapjo, einem Flühschen, das in die obere Theils mündet, reisten.

Da der Hauptzweck dieser Reise Erweiterung meiner Kenntnisse in der Ornithologie war, so nahm natürlich dieser Zweig der Naturgeschichte fast alle meine Zeit in Anspruch, und alle übrigen mußten zurück treten. Ich habe jedoch nicht unterlassen können, auch die Pflanzenwelt eines Blickes zu würdigen, da in jenem merkwürdigen Lande ganz andere unbekannte Floren auftraten, die mich gewaltsam zu sich hinzogen, habe auch beiläufig noch Mancherlei, zur Länder- und Völkerkunde gehörig, gesammelt, was Alles ich nicht abgeneigt bin, zu seiner Zeit meinen Freunden in einem geordneten Reiseberichte mitzuteilen. Gegenwärtiger Aufsatz soll jedoch rein naturgeschichtlich bleiben.

Auf meiner Reise durch Böhmen drang sich mir die Bemerkung auf, daß die schönen Fluren dieses Landes durchgängig von einer weit geringern Zahl von Feldlerchen (Alauda arvensis) bewohnt werden, als die von Sachsen, Anhalt und andern norddeutschen Landen; auch das gesegnete Oestreich hatte weniger, und ihre Zahl nahm immer mehr ab, je näher ich der Mitte von Ungarn kam, und die südlichen Theile dieses Landes werden endlich im Sommer wirklich nur noch sehr einzeln von ihnen bewohnt. Wir sahen schon am 13. Sept. auf den sogenannten Haiden bei Félegyháza kleine Gesellschaften als Zugvögel ankom-
nen, späterhin alle Tage dergleichen, auf der Rückreise durch Böhmen immer mehr, der Hauptzug ging jedoch bei uns wie gewöhnlich erst in der Mitte des Oktober durch. Dagegen ist die Haubenlerche (*Alauda cristata*) durch den ganzen von mir durchreisten Länderstrich an allen Wegen und Straßen anzutreffen, am häufigsten jedoch in Ungarn, wo sie bei jedem Dorfe in bedeutender Anzahl wohnt und längs den Wegen, auch durch die weitläufigsten Felder entlang, überall häufig gesehen wird, und zwar dort überall in einer so großen Anzahl, wie sie Deutschland kaum bei einzelnen Ortschaften aufzuweisen hat *). — Von einem noch gemeinern Vogel, dem Hausperling, bemerkte ich, daß er gegen Südosten allmählich an Anzahl abnahm, in Ungarn allfällig einzelner, und in dessen südlichen Theilen meist nur noch in Städten vorkam, so gut es ihm auch in einem Lande geboten wird, wo man keine Scheunen hat, sondern das Getreide in großen Haufen frei hinstellt, wo so unendlich viel, leckerhafte Samen tragendes, sogenanntes Unkraut wuchert, und darunter der Hanf (*Cannabis sativa*) überall in Menge wild wächst, wo der Attich (*Sambucus Ebulus*), dessen Beeren oder Samen er bei uns so gern naseht, nirgends fehlt und in großer Menge beisammen wuchert, wo manche ihm sehr schmackhafte Samen im Großen gebaut werden, z. B. Mohrhirse (ungar. Szirók, *Holcus Sorghum*) und Muhar (*Panicum germanicum*), Hirse, Hanf u. a. m., wo, wie namentlich im Banat, seine Lieblingsgetreidearten, Waizen und Gerste in so vorzüglicher Güte und so großem Ueberflusse gewonnen werden. Ist es nun das Klima, was ihm das plattle Land nicht angenehm macht? oder ist es nicht vielleicht der Mangel an Heckstätten, in diesen Dörfern? Das Letzte ist mir das Wahrscheinlichste, weil in vielen Dörfern Ungarns kein zweistöckiges Haus vorkommt, die Bauernhäuser sehr niedrig sind, Viehställe bei den Bauern kaum dem Namen nach und Scheuern, wie gesagt, gar nicht gekannt sind, auch die Edel-

*) Ich glaube bemerken zu müssen, daß die Haubenlerche jetzt in vielen Gegenden häufiger ist, als sonst; so lange ich zurückdenken kann, ist dies bei meinem Wohnorte wirklich so allfällig, daß diese Bemerkung schon Leute gegen mich geäußert haben, die sonst auf solche Dinge nicht zu achten pflegen. Sind ihrer Erhaltung vielleicht eine Reihe schneearmer und gelinder Winter so günstig gewesen?
hohe außer den einstöckigen Wohnhäusern wenig andere, auch nur niedrige Gebäude haben, und da endlich noch die Kirchen überall so zierlich aussehen und so gut abgeputzt sind, daß er auch da wenig Stellen findet, sein Nest anzubringen. So ist ihm vielleicht die zu grobe Entfernung der Ortschaften von einander, namentlich der Mangel an Bäumen, als Zufluchsorte, in diesen weiten Geländen zuwider. Er fehlt zwar keinem Dorfe ganz, nur seine geringe Auffzahl ist auffallend, und in Städten ist er gemein genug. Eine klimatische Farbenabweichung bemerkt man nicht an ihm, wenigstens ist sie durchaus nicht auffallend, die Sperlinge in Semlin und Belgrad sehen wie die unsrigen aus; die alten Männchen haben alle noch den grauen Scheitel, aber nur ganz schmal, und die Seiten des Kopfes scheinen etwas lebhafter rot, was sich freilich so bestimmt nicht vergleichen läßt, weil sie, als ich dort war, eben das Herbstkleid angelegt hatten oder doch in der Mauser standen.

Das südliche Grenzgebirge Böhmens, indem man von ihm
in das anschließende Oestreich hinabsteigt, hat eine sehr interessante Flora, die immer schöner wird, jemehr man auf der Linzer Straße sich dem Donauhalle näher; mehrere schöne Cytisus-Arten, darunter C. austriacus, C. sessilifolius u. a. m. sehr schöne Glockenblumen u. dgl., sogar Ruscus aculeatus wächst dort wild; Clematis vitalba, sehr gemein, rankte auf hohe Bäume hinauf und bildete oft sehr malerische natürliche Lauben. Auf den Bergen war die schöne Carlina acaulis sehr gemein. Dafs daneben die Insekten-Fauna auch sehr reich sein musste, zeigten viele dort vorkommende Arten, zumal Schmetterlinge. Die Vogelwelt hatte jedoch nichts Besonderes.

Die große Kaiserstadt Wien mit ihren reichen Naturalien-Sammlungen konnte vor der Hand nur der Letzten wegen für mich ein hohes Interesse haben, weil die Zeit zu kurz war, um alle andern Herrlichkeiten zu sehen, deren dort so viele sind, und die wohl durchschnittlich alle den großartigsten Charakter tragen. Es war mir nur vergönnt, die wichtigsten zu sehen, weil ich die Vomittage alle auf dem K. K. Naturalienkabinet zubrachte, und namentlich die ungeheure Vogelsammlung genauer durchmusterte. Die lebend unterhaltenen Sägethiere und Vögel, hier und in Schönbrunn, wurden nicht vergessen, so auch der Wiener Vögelmarkt beiläufig täglich durchgesehen, wo lebende Blau- und Steindrosselfn (Turdus cyanus u. T. saxatilis), Sprosser und andere Sänger von den zartesten Arten, selbst auch Muscicapa parva, in mehrern Exemplaren, zu hohen Preisen feil geboten wurden. Auf einer Anflucht über Hietzingen in eine romantisch herrliche Gegend besah ich den Park und die Fasanerie eines östreichischen Großen *), worin viele Gold- und Silberfasanen gezogen waren. Hier im Park überraschte mich der wispernde, feintönuige Gesang eines kleinen Vogels, der sich durch das oft vorkommende etwas lautere Hitzli hitzli so gleich als dem Giritz (Fringilla serinus, hier Hirgrillerl genannt) angehörig, erkennen liefs; das Pärchen, von dessen Männchen er kam, saes auf dem trocknen Wipfel einer Fichte, flog aber weg ehe eine Windbüchse herbeigezogen wurde, und verschwand in

*) Fürsten, ich weifs nicht mehr ob Schwarzenbergs, oder Lichtensteins oder noch eines andern.

Das Olsener Gebirge, ins seiner ganzen Ausdehnung an allen dazu geeigneten Stellen prächtig mit Reben bepflanzt, gewährt an jeder schraffen Felsenwand und jedem kahlen Bergsturze der Steindrossel (Turdus saxatilis) einen Aufenthalt und ihrer viele werden dort aus den Nestern geholt, aufgezogen und in Pesth als beliebte Stubenvögel verkauft. Die Blaudrossel (Turdus cyanus) soll aber in jenem schönen Gebirge nie vor-

*) Hr. Salamon Petényi, Procurstos am Königl. Museum zu Pesth, sammelt sie fleißig auf und wird den Museen und andern Liebhabern in der Ferne auf portfreie Uebersendung von 5 Fl. C. M. pro Stück gern so viele in Weingeist ablassen, als man wünscht, und auf 10 Stück ein 1l tea gratis geben.
kommen. Auch *Muscicapa parva* ist in der Gegend um Ofen und Pesth kein seltener Vogel.

Die *rosenfarbige Staaramsel* (*Merula rosea*) kommt im mittleren Ungarn gar nicht selten vor und man trifft sie in den ebenerdigen Gegenden gewöhnlich unter den Staaren oder bei den Viehweiden. Dass sie sich indessen dort auch fortpflanzen, will wenigstens Niemand beobachtet haben.

Die Gegendern am Flüschten Tapjo sind für den Ornithologen von vielem Interesse. Über unansehbare Flächen besserer oder schlechterer Viehweiden reihen sich Sumpfe an Sumpfe, die dem Flüschen ihr überflüssiges Wasser geben, in welchen Sumpfvägel ohne Zahl ungestört ihr Wesen treiben. Die Dürre dieses Sommers hatte vielen derselben, auch dem Flüschen, großentheils
und einigen Enten (*Anas strepera* u. *A. querquedula*) u. Lachmöven, daß der einzelne Stelzenläufer (*Hypsibates himantopus*) und eine *Sterna leucoptera* sich kaum herausfinden ließen.

Höchst anziehend war mir die Beobachtung des in diesen Gegenden sehr häufigen **Halbsandgirauls** (*Glareola torquata*), der mir außer hier nur noch in Syrmiien wieder vor kam; als ich aber durch die Gegenden des Platten- u. Neusieder-See's (Ende September und Anfang October) reiste, wo er sonst in vielen Strichen vorkommt, bereits ebenfalls fortgezogen war. Ein wunderbarer Vogel, in Ungarn Brachseeschwalbe genannt, von seinem schwalbenartigen Aussehen und Fluge, und seinem öfters Aufenthalt auf feuchten Brachläcken, ein Vogel, welcher dem Systemmacher stets viel zu schaffen gemacht hat. In freudiger Verwunderung sah ich seinem Treiben zu, ich wußte nicht ob ich meinen Sinne trauen sollte. Man weiß nicht, wenn man seinem Treiben zusieht, ob man ihn für einen Feld-, oder für einen Wasser-, oder für einen Luftvogel halten soll, und doch zeigt er von jedem Etwas, und zwar das sonderbarste Gemisch von allen, ohne daß Eines besonders hervorsticht. Im Fluge ganz einer Seeschwalbe ähnlich, in der Stämme ebenso, sieht man ihn nicht, wie diese, über dem Wasser hin und her streichen, sondern über dem Trocknen, über ausgetrockneten Plätzchen, bald auf dem geborstenen Schlamm, bald auf dem Wasser gestanden hatte, sich niederlassen, wenig aber herumlaufen, öfters mit dem Schwanz wippen (ganz fremdartig die einzelnen Schläge gegen den Boden gerichtet), bald sich wieder erheben, niedrig hinstreichen, oder hoch aufsteigen und schöne Schwenkungen machen; dies Alles, vorzüglich ihn sowohl laufende, als fliegende Insekten fangen zu sehen, namentlich Heuschrecken und große Käfer, sieht so wunderbar aus, daß man ihn lieber unter die schwalbenartigen, als unter die Sumpfvögel zählen möchte, am allerwenigsten aber, wenn auch noch so entfernt, etwas Hühnerartiges finden kann. 'Wer ihn zum ersten Male im Freien sieht, würde an das Letztere gar nicht denken, wenn nicht geschrieben stände, „sein Schnabel sähe einem Hühnerschnabel ähnlich,“ was ich indessen auch vordem nie habe finden können. Der tief gespaltene breite Rachen ist offenbar ganz schwalbenartig. Und nun diese Füße, deren Gestaltung al-

In diesen Gegenen des mittleren Ungarn ist noch eine, in Deutschland sehr seltene Vogelart wirklich gemein, nämlich der Rothfnfsfalke (Falco rufipes). Man sieht ihn dort überall so häufig über den Feldern herumfliegen, als im Mannfeldschen den Thurmfalken. Er horstet dort auch in allen Wäldchen und Baumgruppen und macht seine Brut meistens in Elsternestern,

*) Hr. Petényi erhielt ein Jahr früher ein Weibchen, welches ein zum Legen ganz reifes Ei bei sich trug, an welchem Farbe und Zeichnung deutlich zu erkennen waren.
da die Elster (Corvus Pica) dort ebenfalls unter die gemeinsten Vögel gehört. Ob er auch frei auf Bäumen in selbsterbauten Nestern brüte, habe ich nicht ermitteln können; wahrscheinlicher ist, daß er es außerdem in hohlen Bäumen thue, die hier freilich selten sind, und darum die Elstern aus ihren Nestern vertriebe, um mit seiner Brut wenigstens in etwas an Bedachung zu sein. Er nährt sich fast einzig von grössern Käfern, Netzflüglern, grillenartigen Insekten und deren Larven, ist im Fluge an seiner geringern Größe und dem etwas kürzeren Schwanz leicht vom Thurmfalken zu unterscheiden, obgleich er völlig ebenso fliegt, und oft auch so über einem ins Auge gefaßten Gegenstande rüttelt, selbst in der Stimme viele Ähnlichkeit verrath; obwohl der Kenner diese auch bald unterscheiden wird. Er ist ziemlich scheu, nekt sich gern mit andern Raubvögeln, ist besonders gegen Abend und am frühen Morgen sehr beweglich, und ruht am Tage auf freiem Felde, am liebsten an erhabenen Orten, auf Heu- oder Getreidehaufen, Erdschollen und sonst vorkommenden Erhabenheiten. Er ist Zugvogel und verläßt das Land im September und October.

von Vögeln belebter und die Ufer von Slavonien und Syrmien reizender. Unterhalb Vukovar zeigte sich allenthalben der Seeadler (*Falco albicilla*), nicht mehr so einzeln als Tägs vorher, und zu meiner großen Freude auch Geier, einzeln und paarweise, *Vultur fulvus* und auch *V. cinereus*. Sie sind leicht vom Seeadler an ihrer enormen Größe und den langen Flügeln, die sie noch langsamer und weniger tief schlagen, auch in großer Ferne zu unterscheiden. Einer stellte sich auf einen abgestorbenen Baum und ließ sich mit dem Fernrohr deutlich erkennen. —

Nichts Ornithologisches von Wichtigkeit, aber desto mehr Wunderbares, Unglaubliches, völlig Außereuropäisches, ließ sich bei unserer ersten Ausflucht von Semlin nach Belgrad hinaüber, in dieser alten berühmten Türkenstadt schauen; kein Reisender aus dem civilisierten Europa, welcher jemals diese Gegenden besucht, sollte versäumen, diese bewohnnten Ruinen, dieses Versinken ehemaliger türkischer Herrlichkeit in schmutzige Armut und Erbärmlichkeit zu sehen. Keine Beschreibung wird ihm versinnlichen können, was er dort mit seinen Augen zu sehen bekommt; er wird nicht wissen, ob er wache oder träume; vor-
ausgesetzt, daß er nicht schon im Orient war und vernachlässigte türkische Städte sahe und türkische Wirthschaft kennt.

leucopareia lief sich unablässig vernehmen und die Alten fingen hier und anderwärts auf etwas freihen Grasplätzchen kleine Fröschechen (alles Rana esculenta in unsäglicher Menge), denen sie oft zu Fuss nachsetzten und nachher ihre Jungen fütterten, welche sie ihnen oft im Fluge abnahmen. Des höchst anstren-genden Herumtreibens in diesen furchterlichen Wildnissen müde, und beladen mit Bente, setzten wir mit unserm Nachen (Schinakel) auf die größte unter den dortigen Donauinseln, die Kriegs-insel über, die zwar größtenteils behaupt ist und einen Boden hat, welcher die üppigste Vegetation hervorbringt, auf welcher es aber auch nicht an Rohdickicht fehlt, wodurch man sich mühsam hindurch bricht, ehe man zu einem großen Sumpfe in einem Theile der Insel gelangen kann, wo viele Enten, namentlich Anas leucophthalmos, und einige A. Boschas vorkamen. Die nahe Reiherschale betraten wir leider nicht, weil dort jetzt alles still und leer war. Sie ist mit Wald und Gebüscht dich besetzt, in welchem alljährlich viele Tausende von Reihern, namentlich Ardea Garzetta in erstaunlicher Menge nisten, die man oft zu Hunderten an einem Tage dort erlegt, wo auch Ardea Egretta häufig brütet, außerdem aber noch A. purpurea und A. comata aus jedem Gebüscht hervorstürzen. Wie sehr war hier zu bedauern, daß es nicht mehr Frühling war! Welch reichen Zuwachs würde durch mich die Ornithologie auf diesem einzigen Punkte gewonnen haben, wenn ich im Frühjahr alle hierwohnende Arten bei ihren Nestern, Eiern und Jungen hätte beobachten können!! —

Es zeigten sich an diesem Tage noch Tausende von Ibis Falcinellus, wie es schien, auf dem Zuge begriffen, wo eine solche Schar eine einzige geschlossene, aber nicht gerade, sondern geschängelte Reihe bildete, und so nicht ein Vogel hinter, sondern neben dem andern, hoch durch die Luft fortstrich. Eine solche lange Reihe dieser großen schwarzen Schneipengestalten mit gemächlichen Flügelschlägen sich fortbewegen zu sehen, mit allen den abwechselnden schlangenartigen oder wellenförmigen Bewegungen, welche in einer solchen Linie vorgehen, ist ein ganz eigenthümliches Schauspiel und mir sonst noch von keiner Vogelart vorgekommen. Der Vogel fliegt überhaupt schön, ähnelnt in der Gestalt fliegend zwar entfernt den Brachvögeln (Numenius), hat aber viel breitere, abgerundetere Flügel, die er lang-

Höchst interessant und reich an Ausbeute waren unsere fernern Excursionen von Semlin aus in Syrmien längs der Save hinauf, wo es unermeßliche, vielfach verzweigte, und sehr ver-schiedenartige Sümpfe gibt, von denen uns nur die mit vielem freien Wasser gestatteten, mit ihren Bewohnern bekannter zu
werden, daneben die fürchterlichen Robbrwälder, in die selbst der verwogene Raitze (Raatz, Serbler), nie einzudringen wagt, es sei denn im Winter und in Masse, um die vielen darin hau-
senden Wölfe aufzustöbern und den Schützen zuzutreiben, wo
denn, beiläufig gesagt, das Ergebnis einer solchen Treibjagd, an
einem glücklichen Tage, zuweilen wohl mehr als 20 Wölfe, 12
bis 15 Füchse, aber nur wenige Hasen ist, dabei auch wohl ein
aus den fernen Gebirgwäldern hierher verirrter Luchs oder wil-
der Kater vorkommt. So weit sich auch das weidende Vieh,
Horn- u. Borstenvieh, zuweilen in die Sümpfe hinein verkrüucht,
so wissen sorglicbe Hirten es jedoch vom allzuüiefen Eindringen
abzuhalten, weil dort oft vorkommt, daß einzelne Stücke sich
verirren und verloren gehen. Von angereichertem Unfuge der
Wölfe unter den Schaafheerden hört man im untern Ungarn gar
oft und viel sprechen.

In einer Gegend beim raatzeichen Dorfe Becsania (Bedschania)
an einem freien Wasser, war der Abendanstand sehr ergiebig.
Ardea nycticorax kam hier zum Vorschein, es wurden einige
junge Vögel geschossen, wie denn überhaupt die Reiherarten auf
der ganzen Reise meistens nur in den Jugendkleidern erlegt wur-
den, weil die alten Vögel die Nistplätze verlassen, und fast alle
schon weggezogen waren. Der weisse Lößler (Platalea leu-
cerodia), früher im Jahr hier sehr gemein, jetzt nur noch hin
und wieder in kleinen Gesellschaften oder einzeln gesehen, wurde
ebenfalls hier erlegt, aber auch nur junge Vögel. Er wird als
Lößl-Gans dort gern gegessent und schmeckt auch nicht übel.
Die allerbelebteste Gegend auf meiner ganzen Reise, und in Hin-
sicht der Menge der Vögel wohl mit irgend einer an der Nordsee
zu vergleichen, fing etwa eine halbe Meile oberhalb des Dorfe
an und zog sich an dem Dorfe Zsurcsin (Surdschin) vorbei, und
eine sehr weite Strecke noch über dasselbe hinaus. Ein freies
Wasser, eine Art Teich, von etwa einer halben Meile Länge,
abwechselnd 100 und mehrere Schritte Breite, vorüber einige
Brücken gingen, voller Schlamm und meistens nur mit einer
Queerhand hoch Wasser über demselben, so daß die meisten dort
sich aufhalteuden Sumpfvögel nicht blofs an den, übrigens ganz
kahlen, Rändern, sondern auch in der Mitte es durchwaten kon-
ten und keiner sich verstecken konnte, war so angefüllt, daß
auf der ganzen langen Fläche Vogel an Vogel stand, sogar ganz nahe bei mehreren Syrniierinnen, welche neben der einen Brücke Wäsche reinigten, nicht ausgenommen. Es wimmelte hier buchstäblich von den kleineren Arten der Gattungen Totanus und Tringa, unter denen auch Totanus Glottis in Menge, Tot. fuscus aber nur einzeln, so Limosa melanura und Hypsibates himantopus, aber die eigentliche Zierde dieses Gewässers waren die allenenthalben, und so weit das Auge reichte, wie Stücke oder Pärche dazwischen hingestellten Rallenreiher (Ardea rallbides), die in possierlicher Einfalt die fremden Jäger anlotzten und nichts weniger als sehen waren. Zwischen ihnen standen herrlich glänzend und kaum weniger zahlreich eine Menge von kleinen Silberreihern (Ardea Garzetta), welche nur wenig vorsichtiger waren als jene. Einige große Silberreiher (Ar. Egretta) u. Löffler (Platalea leucorodia) entfernten sich jedoch nach den ersten an diesem allgemeinen Sammelplatze gefallenen Schüssen; nicht so jene, die dadurch wohl auf eine Strecke hin aufgeschreckt wurden, aber auch sogleich wieder einfielen. Auf jeder Seite des Wassers ein Schütze gehend, ließen sie sich auf Hänfen zusammentreiben, so daß ich ein Mal angeregt ward, ob etwa 60 bis 100 Schritt vor uns stehenden blendendweißen und angenehm hellgelben Vögel zu zählen, wo denn auf einem in der That sehr kleinen Raume allein 27 Stück kleine Silberreiher und mehr als noch ein Mal so viel Rallenreiher standen. Fiel ein Schuß, so erfüllte für den Augenblick das bunteste Ge- wimmel von den verschiedensten Vögelarten die Luft, welches zahllose Seeschwalben, meistens Sterna leucopareia, weniger St. nigra, nebst einzelnen Lachmöven, noch vermehren halfen, während kleine Gesellschaften Sichelzähbläler (Ibis Falcinellus), in der Ferne schwarz wie Raben glänzend, den schönsten Abstich gegen das weißeste Weiß der Silberreiher machten. Ohne große Mühe wurden von allen Arten Stücke erlegt; aber man hätte ein Blutbad anrichten können, wenn damit ein nützlicher Zweck zu verbinden gewesen wäre. — An beiden Enden verlief diese Wasserfläche in schilfsichten Sumpf, worin wieder andere Arten steckten und überall Purpurreiher und Baeassinen (Scolopax gallinago et Sc. major) hervorstürzten, wo es von Rohrsängern, bei einem Weidengebüsche und hohen

er meistens, auch am Tage, auf dem Freien lebt, seiner Nahrung öffentlich nachschleicht, sich nur selten versteckt und dieses Versteck kaum so fest hält, als der Purpurreiher das seine. Vom Hunde an einer freien Stelle in einem Rohrwalde aufgejagt, läßt er sich sehr häufig außerhalb des Sumpfes ganz auf dem Freien nieder, oft zwischen dem weidenden Vieh, was ich von Purpurreihern nie gesehen habe. Er hält sich übrigens auch ohne andere Veranlassung, besonders gern zwischen Schweinen auf. Der Purpurreiher drückt sich auch, in einzelnen Fällen, wo ich dies beobachten konnte, auf die Fersen nieder, wobei er Rumpf, Hals und Schnabel in gerader Linie, aber schräg aufwärts streckt, so stockstill sitzt und in solcher Stellung, einem schief hingestellten Pfahle ähnlich sieht, und zuweilen erst nahe vor dem Schützen herauspoltert. Selbst in niedrigem Schilfe und zwischen dünnstehenden Binsen bemerkt man ihn daher oft aus der Ferne nicht. Er steckt mitten in den dichtesten Rohrwäldern, aber stets an etwas freien Plätzen, was auch der Rallenreiher zuweilen thut, aber keiner von beiden, und am allerwenigsten der Letztene, verbirgt sich jemals in so dichtstehendem Rohr, als der große oder der kleine Rohrdommel, und ich habe ihn auch nie so an Rohrstengeln hinaufsteigen sehen, wie diese Beiden. — Die Silberreiher, große und kleine, ähneln im Betragen dem gemeinen grauen Reiher; *Ardea Egretta* ist auch eben so scheu, *A. Garzetta* dies aber viel weniger und daher leicht zu erlegen. Er ist in Ungarn sehr gemein und man sieht ihn hin und wieder im gezäuntten Zustande, wo er ein niedlicher Vogel ist und sich sehr reinlich hält. Dafs *Ardea Egretta* viel einzeln und so sehr scheu ist, mag theilweise wohl den vielen Nachstellungen zuzuschreiben sein, welche er seiner herrlichen Rückenfedern wegen überall ausgesetzt ist, indem diese als Federbüschel einen Hauptschmuck des National-Costüms der ungarischen Magnaten ausmachen, und von einem einzigen schönen Exemplar im Frühjahr, wo sie nur schön vorkommen, aus der ersten Hand, d. h. dem Schützen, mit 8 bis 10 Gulden C.M. bezahlt werden, nachher in den Putz- und Modewaarenhandlungen, aber zuweilen noch zwei bis vier Mal teurer sind. Die von *Ardea Garzetta* stehen im Preise verhältnismäßig unter der Hälfte niedriger, weil sie nur kurze Büsche geben, die

Eine Ausflucht nach Pancsova, in dessen Nähe, wie überhaupt in ganz Unter-Ungarn, der große Pelekan (Pelecanus Onocrotalus) keine Seltenheit ist und auch der noch größere Pelecanus crispus vorkommt, brachte nicht viel mehr als leider

Da die Zugzeit der meisten Sumpfvögel sich ihrem Ende nahete, reisten wir schnell durch das Banater Grenzland und passirten zur Nachtzeit die Gegend des weißen Sumpfes, eine früher ungemäne wilde Sumpfgegend, von der Farbe des Wassers oder vielmehr des mit vielen Salztheilen geschwängerten Bodens so genannt, die jetzt durch Abzugskanäle viel an ihrem sonst ungeheuren Umfange verloren, aber immer noch Sumpfvögel in großer Menge hat, und das Städtchen Nagy Becskerek (Groß Betschkerek) am Begaflusse, in welchem sich hier in der Nähe der Stadt eine mit hohen Weiden dicht besetzte Insel befindet, auf welcher sich in der Zugzeit manchmal so viele Turteltauben (Columba Turtur) sammeln sollen, daß gute Schützen sie dort zu mehreren Hunderten an einem Tage erlegen. Beiläufig sahen wir (im Anfange des Septembers) nicht allein hier, sondern
auch an der Save und Temes überall Turteltauben in ungewöhnlich großer Anzahl.

gelbweiße Augenstrich ist sehr breit, im grellen Abstich von
dem tief braun schwarzen Oberkopfe; ein tief schwarzer sehr in
die Augen fallender Streif geht von der Schnabelwurzel zum
Auge und ist hinter diesem noch fortgesetzt, nimmt also Zügel
und Schläfe ein; ein Streifen aus schwarzen Flecken bestehend,
begrenzt vom Mundwinkel abwärts die hranen Wangen und die
rein weiße Kehle. Unser Exemplar war leider so vom Schusse
zerrissen, daß es für die Sammlung nicht zu conserviren war,
und ein zweites war aller Mühe ungeachtet nicht zu erhalten,
indem wir in Allem nur drei Stücke von der Art bemerkt hat-
ten. Wahrscheinlich nistet sie auch in diesen Wildnissen. — Die
Bartmeise (Parus biarmicus) war hier, wie auch anderwärts
in Ungarn, gemein, auch Parus pendulinus liefs sich überall hören
und sehen. Daß auch der Singschwan (Cygnus melanorhyn-
chus) im Winter bis in diese Gegenden streift, beweist ein
schönes Stück, welches wir bei einem Hrn. v. Kis (Kisch) le-
bend sahen, wo es flügellahm geschossen, schon seit langer als
einem Jahr in Gefangenschaft war.

Vom schwarzen Sumpf bis in die Nähe der Theis, die wir
bei Szegedin passirten, gibt es wenig Wasser, die Gegend war
daher für meine Absichten ohne Interesse. Nicht weit von der
eben genannten Stadt fehlt es dagegen nicht an Sumpfen und
Teichen, die alle sehr fischreich sind, und oft mit der Theis, die
für den fischreichsten Fluß in ganz Europa gehalten wird, zu-
sammenfliesen, wenn Letzterer anschwillt und aus seinen Ufern
tritt, was gar oft geschieht, da er sehr langsam und in zahllosen
Krümmungen sich durch eine ganz ebene und tief liegende Län-
derstrecke zur Donau hinabschlingelt. Die ungeheuren Sumpfe,
durch welche sich die Theis ihrer größten Länge nach hindurch-
windet, sind ein Aufenthalt zahlloser Schaaren von Sumpf- und
Wasservögeln; wir hatten jedoch triftige Gründe dies Mal hier
nicht zu verweilen, obgleich die Erzählungen der Jagdliebhaber
von diesen Herrlichkeiten sehr lockend waren. Ich erfuhrt spä-
ter in Pesth von sich erster Hand, daß jene Gegenden, wegen der
vielen Fische, oft von Pelikanen besucht würden, daß sie sich
da sogar in Schaaren, aus mehreren Hunderten zusammengesetzt
zeigten, und wo solche einfielen, ganze Fischteiche, begreiflicher-
weise in sehr kurzer Zeit, von ihnen rein ausgefischt würden,
wobei ihnen gewöhnlich die Scharben (Halieus s. Carbo Cormoranus oder gar H. pygmaeus?) behüllisch wären, indem sie, auch schaarenweise, beständig untertauchten und das Wasser trübe machten, wodurch jener der Fang der größern Fische erleichtert würde. Wenn diese Nachrichten auch übertrieben scheinen möchten, so sind sie doch keineswegs grundlos, da man Pellikane und Scharben dort oft genug geschossen hat. — Die großen Sümpfe in Klein Cumanien ließen wir zur linken unseres Weges, ohne dort zu jagen, und setzten so die Reise, nach Pesth zurück, ohne weiteren Aufenthalt fort.

Der Rohrammer (Emberiza Schoeniclus) ist im ganzen Königreich ein allenthalben vorkommender Vogel; aber ich habe unter der großen Menge derselben keine andere Art aufgefunden. Emberiza miliaria ist jedoch nicht minder gemein, namentlich in den Wiesen und neben Sümpfen.

Freunden nützte ich die Zeit auf das Angenehmste mit Beschauen, Untersuchen, Zeichnen, Beschreiben u. s. w. Von den ehrenvollsten Bekanntschaften unter den dortigen Naturforschern nenne ich dankbar nur die Namen: Reilisiug, Szadler, Sche-
dius und Frivaldszky, weil ich mich diesen ganz besonders verpflichtet fühlte; wollte ich alle nennen, welche mir mit Güte und Liebe entgegen kamen, so würde eine lange Namensliste entstehen. Der Letztere, nämlich Hr. Dr. v. Frivaldszky, ist im Besitz einer ganz außerordentlichen Insekten-Sammlung, und als ausgezeichneter Entomolog auch unter uns in Norddeutsch-
land bekannt. Sein Augenmerk ist besonders auf südeuropäische Insekten gerichtet; er sammelt deshalb bis in die Türkei hinein, und hat Leute bis in das Balkangebirge gesendet, von woher er die köstlichsten Sachen und (wie natürlich) fast lauter Neués bekommt. Sie sammeln nicht allein Gegenstände der Entomolo-
gie, sondern auch der Botanik und Herpetologie. Leider sind aber seine Agenten (einer derselben war damals von Räubern ermordet) keine Ornithologen und Jäger, doch hatten sie nebenbei einiges gesendet, was mir Hr. Dr. v. F. zu mutern erlaubte, auch mir davon das zukommen ließ, was ich wünschte. Unter diesen befand sich auch eine Taube (Columba), welche in der Türkei in vielen Gegenden, namentlich am Balkan, häufig vor-
kam, dort völlig wild lebt und im Winter aus den rauhen Gegenden meistens wegzieht, in andern bleibt. Sie ähnelt unserer Lachtaube (Columba risoria), ist aber bedeutend größer, das Gefieder viel dunkler und unterscheidet sich schon durch diese beiden Merkmale auffallend genug von jener Art, die wir hier freilich bloß im gezähnten Zustande besitzen, welcher schon Jahrhunderte gedauert haben mag, wodurch sie in jenen Punkten verzärtelt sein kann. Ohne auf eine weithinländliche Untersuchung dieses Umstandes einzugehen, kann ich mich bloß auf das Zeug-
nifs des Hrn. Geheimeraths Lichtenstein beziehen, welcher nach Ansicht und genauem Vergleichen der drei von mir ihm zugesandten Exemplare dieser in der Türkei vorkommenden Taube mit denen im Königl. zoologischen Museum zu Berlin be-
findlichen, aus Nubien, überhaupt aus Afrika und Asien erhaltenen wilden Lachtauben keinen erheblichen Unterschied zwischen diesen und jenen gefunden hat. Auffallend ist jedoch,

daß sehr abweichende Umstände im Leben dieser sogenannten wilden Lachtauben vorkommen sollen, die sich mit denen der zahmen Art nicht vereinigen lassen wollen. Hr. Dr. v. F. schreibt mir hierüber nachträglich, was ihm einer seiner Sammler, Namens C. Hinke, aus der Türkei darüber schriftlich mittheilte und ich gebe es mit dessen eigenen Worten wieder.

*) Viele sollen auch wegziehen und den Bosphorus zwei Mal im Jahre passiren.

N.

von wenigen Türken; die meisten schonen sie, noch mehr die Christen, welche sie gar für heilig halten, und ihnen nie etwas zu Leide thun. Es zog mir daher viel Verdruss zu, als ich bei Filibe diese Tauben schuls, nicht sowal von Türken als vielmehr von Christen. So sehr sie in der Nähe des Menschen und menschlichen Verkehrs leben, so sollen sie doch nach allgemeiner Behauptung nicht zähmbar sein oder in der Gefangenschaft sich doch nie begatten. Ihrer ungemein zarten Haut wegen sind sie schwer auszubälgen. Ich sahe diese Tauben zu vielen Hunder- ten, und erlegte dereu selbst eine große Menge, konnte aber darunter nicht eine einzige entdecken, welche durch auffallende Farbenverschiedenheit oder sonst von den übrigen merklich abgewichen wäre, ausgenommen, daß die Weibchen ein wenig kleiner oder schwächlicher als die Männchen sind, und im Allgemeinen eine schmutzigere Färbung, und einen kleineren schwarzen Halsfleck haben; sie gehörten demnach alle einer selbstständigen, vielleicht neuen Art an."

Sehr schätzbar war mir, von Hrn. Dr. v. F. auch eine weibliche Otis Tetrax zu erhalten, die von jenem Sammler in der Türkei, und zwar auf dem Neste und über ihren 3 Eiern sitzend, getödtet war, so daß auch ein zuverlässig ächtes Ei derselben in meinem Besitz kam. Das Ei ist sehr schön, von der Größe eines etwas kleinen Hühnereies, schön eiförmig gestaltet, und
hat eine starke Schale, auf welcher die Poren sehr sichtbar sind, obgleich seine Oberfläche so starken Glanz hat, daß es aussieht, als wäre es künstlich polirt. Seine Grundfarbe ist, genau be- sehen, ein schönes Grün, dieses jedoch mit Braun gewölkt und dadurch däster gemacht, und dieses Braun tritt noch überdem auf der ganzen Fläche in meist länglichen, größern und kleineren Flecken vor, deren Umrisse sich aber nur aus der Nähe betrachtet deutlicher zeigen. Obgleich viel schöner gefärbt, viel glänzender und um Vieles kleiner als das der *O. Tarda*, ist der Charakter derGattung daran doch so stark ausgeprägt, daß man es augenblicklich für ein Trappeuei erkennen muß. — *Otis Tetrax* ist übrigens auch in Ungarn auf allen sogenannten Haiden (richtiger Steppen, denn Haidekraut — *Erica* — wächst dort nirgends) anzutreffen; man kennt die Art hin und wieder unter dem Namen: Haidehühner. Sie pflanzt sich dort auch fort, wird jedoch selten erlegt, weil nur der Zufall einen Jäger auf jene grünen Einöden führt, über welche sich theilweise ungeheure Viehherden ausbreiten, deren Hirten aber nie Schießgewehre mit sich führen. Es ist sogar gefährlich, auf den Wegen, welche über diese Steppen führen, sich weit von seinem Wagen zu entfernen, indem es den Hirten oft nicht möglich ist, zu verhindern, daß ihre fürchterlichen Hunde (sehr große, starke, zottige, weiße Wolfshunde, in ganz Ungarn von derselben Rasfe u. Farbe), oder gar ein böser Stier, über den Jäger herfallen, so daß harmlose Fußreisende beim Passiren solcher Herden oft in Lebensgefahr gerathen, und Beispiele von auf diese Weise zu Tode gekommenen Reisenden gar nicht selten sind. Auch hat man in solchen einsamen Gegenden alle Ursache, sich vor Zigeunerbanden und andern Raubgesindel zu fürchten. Es ist daher dem, der als Naturforscher Ungarn durchreisend will, dringend anzuraten, dies nicht ohne einen zuverlässigen, der Sprachen und Landessitten kundigen Begleiter zu unternehmen. Er muß sich vor langen Fußreisen hüten, wenigstens nie anders als am hellen Tage reisen; sein Nachtrtartier wo möglich in Städten nehmen, oder bei einem Landedelmann einkehren, wo er dort gute Wirthshäuser (mit deutschen Wirthen und Aufwärtern) und hier stets eine gastliche Aufnahme findet, u. s. w. In den südlichen Theilen des Landes steht das gemeine Volk der Raatzen, Wlachen

109

7 *
u. a. m. noch auf einer gar niedrigen Stufe der Kultur; Prügeleien bis auf den Tod, Blutrache und andere Verbrechen kommen häufig unter ihnen, und gegen Fremde Mord, Strafensraub, Diebereien u. dergl. vor. Die sonst so humane Regierung sah sich daher gezwungen, erst vor wenigen Jahren, jene rohen Völker mit mehr Strenge zu behandeln und ein Standrecht für auf der That ertappte Verbrecher einzuführen. Die gute Wirkung machte sich auch bald bemerklich, und seitdem Galgen und Richtstätten allenhalben ihre Opfer zur Schau tragen, steht es auch um die Sicherheit der Reisenden dort besser. Trotz aller Widerwärtigkeiten, welche in jenen Theilen von Ungarn den Reisenden Schritt vor Schritt aufstossen, haben gerade diese unwirthlichen Gegenden für den Naturforscher ein so hohes Interesse, daß ich zu einer zweiten Reise bis an die türkische Grenze mich mit Freuden entschließen würde; eine günstige Gelegenheit dazu werde ich gewiß nicht unbenutzt lassen; aber dann müß ich dieses Land im Frühlinge, in der Fortpflanzungsperiode der Vögel sehen.

„Quodsi suas quisque observationes protulerit, spec est aliquando fore, ut ex omnibus opus unum absolutum perficiatur.“ Gesnerus.

Ihr. Dr. v. Siebold hat öenlich behauptet, daß die Pflanzenart, welche man bisher als die Mutterpflanze des Sternanises des Handels betrachtet hat, denselben nicht verschafft, und von

112
dieser Pflanze specifisch verschieden ist *). Der Mitarbeiter der
Flora Japonica, der in unsere Wissenschaft so verdienstliche
Zuccarini, Professor an der Universität in München, hat diese
Meinung im erwähnten Werke ausführlich dargelegt, und ist über-
dies späterhin **), noch anderswo darauf zurückgekommen.

Ich hege gleichwohl hierüber stets dieselbe Meinung wie
früher, und man wird es mir daher nicht verargen, wenn ich,
nicht der Bescheidenheit, welche man gegen Gelhrte von aner-
kannten Verdiensten zu beobachten hat, bezweife, ob durch
Zuccarini's Gründe bewiesen ist, was nach seiner und v. Sie-
bold's Meinung, bewiesen werden müste. Ich hoffe, diese beiden
Herren werden sich wohl überzeugt halten, daß die meisten
Stimmhaber in Gegenständen wie der unsrige, Reisenden mehr
Befugnifs zuerkennen, als anderen, doch bleibt mir nicht destowe-
niger die Ueberzeugung, daß die Wissenschaften keine abgegrenzte
Eigenthumsrechte kennen, welche der eine oder der andere sich
anschließlich zueignen kann, um darüber ein unbestimmtes oder
willkürliches Urtheil zu fällen, sondern daß im Gegentheil zu
allen ihren Theilen einem Jeden der Zutritt und die Freiheit zum
Untersuchen gestattet ist, wenn man sich damit zu beschäftigen
wünscht.

In der That glaube ich, wird man mir zugeben, daß, unge-
achtet der größten Anstrengung von Reisenden, viele ihrer Un-
tersuchungen nicht immer zu völlig genügenden Resultaten ge-
bracht werden können, und daß auch dadurch oft ein Unterschied
von Meinungen zwischen früheren und späteren Reisenden ent-
steht, welche an denselben Orten dieselben Sachen zu Gegen-
ständen ihrer Untersuchungen machten, ohne daß man darum

*) Dr. Ph. Frid. de Siebold, Flora Japonica Sect. I. plantas
ornatui vel usui inserenties continens Digessit Dr. J. G. Zuccarini

**) Wiegmann's Archiv II. Jahrg. 2s Heft S. 204, wo man findet:
Berichtigung der Angaben des Hrn. Prof. de Vriese über
die Mutterpflanze des Sternanises, vom Prof. Zuccarini. In-
dem Zucc. mir diese Angaben zuschreibt, gibt er mir eine Ehre,
woarauf ich gar keinen Anspruch zu machen begehre, und die ich also
auch weit entfernt bin anzunehmen. Der Hr. Verf. wird mir eingestehen
müssen, daß alle Botaniker, nach Kämpfer, Thunberg und Linné,
dieselben Angaben angeführt haben.

Der Steruanis des Handels bietet ebenfalls ein merkwürdiges Beispiel dessen, was wir so eben behaupteten. Man war seit dem Jahre 1712 der Meinung, die Pflanze, die denselben hervorbringt, zu kennen, und auf einmal sehen wir durch einem späteren Schriftsteller das, was man nach der Behauptung von Kämpfer und Thunberg u. s. w. in derselben erkannt und als eine längst ausgemachte Sache betrachtet hat, und noch als solche betrachten kann, bei Seite gestellt. Wir wollen daher dasjenige, was die Herren v. Siebold und Zuccarini neulich über diese Sache zur allgemeinen Kunde gebracht haben, kurz aber genau auseinander setzen, um auf dessen Erwägung und Prüfung aus den früheren Angaben und aus unseren eigenen jetzt wiederholten Untersuchungen, die Folgerungen herzuleiten, welche daraus hervorgehen müssen.

Die Pflanzenart, welche von den botanischen Schriftstellern unter dem Namen Illicium anisatum angeführt ist, wird von v. Siebold und Zuccarini (Fl. Jap. p. 5.) Ill. religiosum ge-

Die Beschreibung, welche die Schriftsteller von diesem *Illicium anis.* gegeben haben, ist in allen Theilen sehr ausführlich. Dieselbe wächst in dem Japanischen Kaiserreich; es wird meistens in den Gärten und Wäldern, welche die Tempel umringen, gezogen und erscheint hier und da selten verwildert, es blühet im Monat April. (Man liest bei den Verfassern „hic inde effe- ratum.“ Ich hoffe, die Worte wohl verstanden zu haben, glaube aber nicht, daß die zwei ersten Wörter in dem gewöhnlichen lateinischen Style verbunden vorkommen.)

Das *Illicium anis.* wird von den Schriftstellern mit dieser Art verwechselt, diese kann aus der davon in Loureiro's *Flora S.* 353. vorkommenden [verwirrten] Beschreibung, auf folgende Weise bestimmt werden: „*Illicium frutescens, foliis ovatis, obtusis parvis, staminibus circiter triginta.*“ (Loureiro erwähnt *folia suboralia turbinato-orata.*)

Ich glaube, die Meinung der Herren Verfasser getreu dar-

*) „Täuschend ähnlichen Ansehen der Japanischen und Chinesischen Früchte“ sagt Zuecarini in Wiegmann’s Archiv l. l.

Sobald die Zurechtweisungen der genannten Herren Verfasser nur bekannt geworden sind, habe ich mich entschlossen, die Sache aufs neue zu untersuchen. Bevor ich nun das Resultat dieser Untersuchungen mittheile, habe ich mir in Betreff der Meinungen der zwei Gelehrten, welchen vorzüglich durch v. Sieb. u. Zucc. mit mir die Schuld der vermeinten Verwirrung zuerkennen will, die erforderliche Gewifsheit zu verschaffen gesucht. Ob ich nun gleich zur Vertheidigung dessen, was ich für wahr halte, nicht der Namen berühmter Gelehrten bedarf, um den meinigen zu beschützen, so gereicht es mir doch zum Vergnügen, anzeigen zu können, dass diese Gelehrten auf ihre frühere Aufseherung bestehen.

Als vor einigen Jahren unsere Wissenschaft durch den Tod des verdienstvollen Professor Hayne1, einen Verlust erlitt, der gewifs den schmerzlichsten, welche sie erleiden konnte, beigezählt werden mußte, wurde unter anderen eine Arbeit unvollendet nachgelassen, welche von ihm nach einem großen Maßstabe begonnen, meistens beendigt war, und den höchsten Beifall aller Sachkundigen erhalten hatte2).

Es mußte den Besitzern dieses schönen und kostbaren Werkes zum Vergnügen gereichen, daß die Herren Brandt und Ratzeburg, bekannt durch viele genaue und ausführliche Forschungen, die Kenntnifs der Pflanzen und Thiere betreffend, die Vollendung dieses Werks auf sich nehmen würden. Man hat wirklich von diesen Gelehrten schon einige Fortsetzungen dessen, was Hayne früher geleistet hatte. Die 29. Abbildung des XII. Theils ist von Dr. Brandt, Director des Museums zu St. Petersburg, besorgt und stellt dies \textit{Illicium anisatum Auctorum} vor3).

Zur fernern Erklärung dieser Figur kann ich noch hinzufügen, wie Dr. Brandt4) mir versichert hat, daß die Analyse der Blumentheile von Fig. 2—13, nach dem, von dem berühmten Hooker, als aus China stammend, an Prescott geschenkten,

1) Getrene Darstellung u. Beschreibung der Arzneigewächse u. s. w. von Dr. F. G. Hayne. Berlin. 1805. 4.

2) Wenn v. Siebold und Zuccarini von Heyne (Hayne) sprechen, wird man wohl Brandt und Ratzeburg darunter verstehen müssen. Es ist mir nicht bekannt, dafs Hayne selbst jemals etwas über diese Pflanzenart bekannt gemacht hat. Die Abtheilung dieses Werkes, warin diese Pflanze vorkommt, ist nach dem Titel in Deutschland, im J. 1833 erschienen. Mir kam es erst im Juli 1834 zur Ansicht.

3) In einem mir aus St. Petersburg zugesandten Briefe v. 10. Juli 1836.

Die Abbildung von Brandt zeigt schon, dafs die Blätter der Chinesischen Pflanze sich nicht von denen der Japanischen unterscheiden. Brandt hat überdies die Blätter der Pflanze mit den Ueberbleibseln derjenigen, welche im Sternanis des Handels vorkommen, verglichen, und die Uebereinkunft gescheu (*).

*) Er schreibt mir: „Ich habe die Blätterreste, wie sie sich sehr selten unter dem Sternanis befinden, ebenso wie Stengelreste mit ihm verglichen, und die Identität anerkennen zu müssen geglaubt.”
Dafs es nun die Blätter des Sternanises sind, unterliegt keinem Zweifel mehr. Sie haben einen schwachen, von den *capsulae anisi stellati*, angenommenen Geruch, welchen sie jedoch bald verlieren, wenn sie schon von dieser getrennt werden. Im Geschmack aber spürt man das Gewürzhafte des Anises sehr deutlich. Da nun dieser Geschmack erst nach langer Zeit und sehr feinem Zermalmen zwischen den Zähnen, entsteht, so zeigt sich, dafs auch dieser nicht von außen herrühre, sondern als ein Erzeugnifs der inneren Theile angesehen werden muß. Es ist daher gar nicht mehr zu bezweifeln, dafs diese die Blätter des Chinesischen *Ill. an.* sind. Dafs diese Blätter bei dem Einreihen der Früchte leicht unter die *capsulae anisi stellati* gerathen und damit vermischt werden können, ist leicht zu begreifen, weil so wohl das Vaterland der Art, wovon De Candolle sagt: „*folia anisum redolentia ubi contrita sunt*“ als auch die Gestalt ihrer Blätter, mit demjenigen, was mir vorgekommen, zu sehr verschieden ist, hinlänglich verbieten, diese Blätter oder Stücke von Blättern zu einer andern Art, als dem *Ill. anis.* zu bringen.

Wir sehen also in diesen angeführten Gründen einen neuen Beweis gegen die vermeinte Blätterform, und ich glaube also in dieser Hinsicht die obgenannten Schriftsteller widerlegt zu haben. Ich wende alle Eigenschaften der Blätter, die in dem *Ill. relig.* v. Sieb. und Zucc. vorkommen, auch auf die Chinesische Pflanze, und die von mir gefundenen Blätterüberreste an.

Es ist unumgänglich nützig, dafs, wenn man zur Unterscheidung der Geschlechter oder Arten die Anzahl der Theile anwenden will, man hierin bestimmt und fest, keinesweges schwankend verfahren muß. Da nun in der Anzahl der Blumentheile bei der Familie der *Magnoliaceae* eine solche Unbestimmtheit und Unregelmäßigkeit herrscht, dafs unter denselben kaum ein Geschlecht angegeben werden kann, worin man über diesen Punkt

Eine aufmerksame Erwägung der durch v. Siebold und
Zuccarini gegen meine Meinung angeführten Gründe, macht mich also stets geneigt, deren Werth in Zweifel zu ziehen. So ist es z. B. gleich auffallend, daß die Pflanze, welche v. Sieb. und Zuec. als eine neue Art anbieten, ursprünglich aus China, und in Japan von da eingeführt ist, und nur selten hier und da verwildert (hic inde efferatum) erscheint, aber übrigens nur an heiligen Orten gezogen wird.

Endlich muß ich noch bemerken, daß, im Fall die Angabe von v. Siebold und Zuccarini richtig ist, daß nämlich diese Pflanze auf Japan zwar gezogen wird, aber da nicht ursprünglich einheimisch ist, welches Niemand bezweifeln kann, diese Herren keine reine, sondern eine Flora mixta von Japan darbieten.

Ich bin der Meinung, daß durchaus kein botanischer Unterschied zwischen den *capsulae anis. stellati* des Handels und der Früchte der Japanischen Pflanze, besteht. Wenn also die Verfasser von einer *parfaite ressemblance* sprechen, so lese ich lieber vollkommene Gleichheit. Verschiedenheit aber waltet hier nicht ob, und wenn ich die Beschreibung und Abbildung Gaertner’s oder die von anderen Schriftstellern, oder die der erwähnten Herren Verfasser der *Flora Japonica* betrachte, so kann ich keinen Unterschied in wesentlichen Eigenschaften bemerken. Zur Vermeidung aller Weitschweifigkeit, überlasse ich es daher einem Jedem, der mit diesen Herren nur auf diesen Gegenstand einigen Werth legt, diese Vergleichung fortzusetzen. Den Geschmack haben die Japanischen Früchte zwar nicht so ausgezeichnet, Thunberg schrieb also mit Recht: „non eo gradu sa-

Führt uns nun die genaue Vergleichung der hier erwähnten Früchte nicht zur Annahme der geringsten Verschiedenheit, so bringt uns überdies die Betrachtung der capsulae anisi stellati so wie dieselben im Handel gefunden werden, von selbst zu dem Schlusse, daß der kleine Unterschied im Geschmack (denn der Geruch ist der nämliche), den v. Siebold und Zuccarini zur Bekräftigung ihrer Meinung anführen, nicht das mindeste Gewicht als spezifisches Kennzeichen der Chinesischen und Japanischen Sternanisfrüchte abgibt, und also auch nicht der ganzen Pflanze. Man kann wohl annehmen, daß mehr als einem Drittel der erwähnten capsulae des Handels das feine und wohlrückende Aroma fehlt, was man darin verlangt, wenn der Sternanis für den Gebrauch gut sein soll. Es wäre in diesem Punkte nicht unwichtig, diesen Handelsartikel etwas genauer zu betrachten. Doch, dem sei, wie ihm wolle, und so sehr wir in dem Chinesischen Sternanis des Handels sehr oft dieselbe Verschiedenheit im Geschmack erkennen, welche obgenannte Herren in dem Ja-
panischen beständig zu sein meinen, so glaube ich dessenungeachtet nicht berechtigt zu sein, einen botanischen Unterschied der Arten zu machen, wenn wir nicht gegen die ersten Regeln der Taxonomie sündig werden wollen.

Die Chinesische Sternanispflanze hat also durch vieljährige Kultur auf Japan, etwas von ihrem Arom verloren; allein sie ist als Art geblieben, was sie war: Sollen die Arten in der Naturgeschichte sich auf solche unbeständige Eigenschaften, welche Niemand als wesentliche Charaktere betrachtet hat, stützen, so frage ich, welches Schicksal steht den Wissenschaften bevor?

Ergiebt sich nun aus dem oben Behaupteten hinlänglich, daß die Frucht des Japanischen Sternanises, nicht so, wie jene Herren sagen, fade et rebutant ist, und das, wäre dies auch so, es doch nie zur Trennung einer Art in mehrere Arten, berechtigen kann, so glaube ich deutlich und außer allem Zweifel, auch diesen Grund von v. Sieb. u. Zuce. entkräften und bewiesen zu haben, daß nicht nur die Rinde, sondern auch die Früchte und Blätter aromatisch sind, und daß nicht bloß ein täuschend ähnliches Ansehen der Japanischen und Chinesischen Früchte, sondern eine vollkommene Uebereinkunft besteht, und daß also die Sternanispflanze aus Japan von der aus China nicht verschiedenartig sein kann. Um indessen solche Sachen zu beurtheilen oder zu begreifen, braucht man weder Botaniker zu sein, noch Beispiele von ausländischen Gewächsen anzuführen. Wenn

man nur eine sehr allgemeine Sachkenntnis besitzt, weiß man, dass die Produkte der einen Gegend sich oft von denen einer andern wegen Verschiedenheit des Klimas, der Temperatur u. s. w. unterscheiden. Um nur bei dem von Brand angeführten, wirklich populären Beispiel, stehen zu bleiben, so würde man in der That nicht bezweifeln, jemanden für parthisch zu halten, der der Meinung wäre, dass der Apfelsinenbaum (*Citrus sinensis* Risso) eine andere Art geworden wäre, weil die Früchte in Geschmack, das heißt, in den minder wesentlichen Eigenschaften verändert sind.

In dem Texte der *Flora Japonica* kommen, wo ich nicht irre, Worte von Kämpfer vor, welche über die Meinung der Herren Verl., wegen der Eigenschaften der Japanischen Früchte, näheren Aufschluss geben sollen. Ich halte es der Mühe wert, auf diese, schon oben von mir erwähnten Worte, die Aufmerksamkeit dieser Herren zurückzuführen. Sie schreiben: „*über saporis cum exigua adstrictione aromatici, fructus saporis vapidi.*“ — Es sei mir vergönnt zu bemerken, dass diese Worte hier sehr unzusammenhängend erscheinen, und zwischen den Worten *adstrictione aromatici* (die sich nicht auf die Frucht, sondern auf die Rinde beziehen), und den Worten *saporis vapidi* (denn *fructus saporis vapidi* steht nicht dabei), fünf ganze Sätze bei Kämpfer vorkommen, welche über das Holz, die Sprossen, Blumen, Blumenstiele und Früchtchen handeln, und ungefähr eine ganze Quartoseite einnehmen. — Hiergegen nun würde man vernünftigerweise nichts einwenden können, wenn einiger Zusammenhang zwischen den angeführten Worten wäre, und wenn in den letzten die Sachen erwähnt würden, zu deren Bestätigung v. Siebold und Zuccarini sich derselben bedienen; aber im Gegenteil, weder das eine noch das andere findet hier Statt. Die letzten Worte indessen *saporis vapidi*, deuten nicht auf die Frucht, nämlich die *pericarpia* (in welcher das Arom des Sternanises des Handels allein und ausschließlich sich befindet, was dagegen nicht im geringsten in dem Samen selbst angetroffen wird), sondern sie betreffen bei Kämpfer den Kern des Samens. Zur mehreren Deutlichlich der jämmerlich auseinander gerissenen, und unrichtig angeführten Stelle des vortrefflichen Kämpfer, werde ich dieselbe, in so weit es hier nöthig
sein wird, abschreiben. Wir lesen Seite 880. der Amoenitates Exoticae:

„Arbor sylvestris caudice recto ramoso ad Cerasi altitudinem consurgit, cortice obvoluta obscuro vel pullo, libero viridi carnoso nonnihil mucoso, saporis cum exigua adstrictione aromatici und 22 Zeilen weiter, auf Seite 882: „Ex his saepenumero capsulae aliae contahescunt et casae sicut, relique membrane validae arcte involuta claudunt semina singula, grani poni figura, et Ricini semini non disparia, in pallido splendentia; quae fracta, qua teguntur, corticula durissula, nucleum exhibent album carnosum mollern, non dividuum, saporis vapidi.“ — Diese beiden letzten Worte sind die durch v. Siebold und Zuccarini angeführten und auf die ganze Frucht angewandten, während Kämpfer sie nur auf einen Theil des Samens bezieht. Es findet sich also in diesem Theile des Textes ein Verstösse, welchen genannte Herren Verf. leicht mit mir bemerken werden *)

Ich könnte hier endigen, aber ich muß noch eine einzige Anmerkung hier beifügen.

Die Herren v. Siebold u. Zuccarini haben für die Meinung, die sie behaupteten, nur das Zeugniss des ungläubwürdigen Loureiro, das heifst kein Zeugniss; sie sahen seine Pflanze nicht, sie sahen auch nicht die Pflanze, von welcher sie behaupteten, daß sie von der von jeher und von allen Botanikern erkannten Art, specifisch verschieden sei. Sie entschieden desseunangeachtet über einen wissenschaftlichen Gegenstand auf eine leichtfertige Weise,

*) Im Vorbeigehen erinnere ich hier an einen andern, für das holländische Gefühl sehr anstößigen Fehler, welchen man jedoch jedem Anständigen leicht verzeihen kann. Wir lesen S. 22: Le genre Deutzia fut nommé ainsi par Thunberg, en l’honneur du Senateur van der Deutz à Amsterdam etc. Dieser Herr hiefs Johann Deutz van Assendelft, und war nicht allein Schöffe von Amsterdam, sondern auch Director (Bewindhebber) der ostindischen Compagnie, und einer der angesehensten Einwohner unserer Stadt, dem die Wissenschaft zu verdanken hat, was Thunberg durch seinen Einfluß und Eifer zur Beförderung der Wissenschaften in fremden Ländern hat verrichten können. Die Namen solcher Männer verdienen eher mit goldenen Buchstaben in unseren Geschichtsrollen geschrieben, als der Nachkommenschaft unnichtig übertragen zu werden.
während sie gar, ohne allen Grund, das Zeugnifs derjenigen um-
stießen, welchen man die erste Kenntnifs der Flora Japonica zu
verdanken hat. Ein Jeder fragt nun von selbst, beim Lesen des
Textes der Flora, welche ist doch nun die echte Sternanispflan-
ze? Giebt es denn vier Arten Illicium? Und warum haben
v. Siebold und Zuccarini diese Sache, und ihre behauptete
Meinung, nicht durch die Beschreibung der Chinesischen Pflanze,
die ihnen, aus dem Herbarium von Lambert zu Gebote stand,
außer allen Zweifel gesetzt? *)

Ich würde auf diese und ähnliche Fragen in wenig Worten
antworten, was ich oben ausführlich auseinander gesetzt habe.
Man brauchte den wahren Sternanis nicht mehr zu beschreiben
od abzubilden, dies ist schon ganz genügend geschehen. Es
giebt nicht vier, sondern drei Arten Illicium. Die Japanische
Pflanze ist als Art der Chinesischen gleich, obgleich die Frucht
nicht in den Handel kommt. Man hätte ganz unmöglich eine
di~ne Pflanze abbilden können; denn diese wäre eine aus dem
menschlichen Gehirn entsprossene Mißgestalt gewesen sein; man
würde endlich, um das Zeugnifs eines, in anderen Rücksichten
vielleicht mehr erfahrenen, aber als Botaniker durchaus unkundi-
gen, ungenauen portugiesischen Mönches (der selbst die Behaup-
tung Kämpfer's nicht bezweifelt hat **)), welchem nie ein Botaniker
(Wildenow ***) vielleicht allein ausgenommen), die in
wissenschaftlichen Angelegenheiten so unumgänglich nöthige Glaub-
widigkeit, in der Botanik zuerkannt hat, zu handhaben, Dinge
haben vortragen müssen, die mit der Wahrheit durchaus streiten.
Männer, die in unserer Wissenschaft erfahrner sind als ich, haben

**) Es ist unbegreiflich, wie man auf den Gedanken gerathen ist,
gerade das Zeugnifs Loureiro's zu gebrauchen, um dadurch allein an-
zuzweigen, daß Kämpfer und Thunberg sich geirrt haben. Loureiro
hat doch gar nicht daran gezweifelt, daß die von diesen Botanikern
beschriebene Pflanze eine andere als sein Chinesisches Ill. an. sein würde. Er
selbst bezog sich wegen dieses Artikels auf ihre Schriften. Er hielt die
Pflanzen also für identisch. S. Flora Coch. Lissabon. I. S. 353.

***) Wildenow hat Loureiro's Werk zwar herausgegeben, aber
es scheint nicht mit Gewißheit, daß er ihn für glaubwürdig hält; er sagt
unter andern von ihm in der Praefatio der Fl. Coch. Berolini. 1793. 8.:
"plantas longe diversas sub nomine plantarum Europaeorum descripsit,"
und anderswo: "in formandis generibus auctor minus facili, et in ter-
minus passim vacillans videtur."

Durch das oben Angeführte halte ich mich nun berechtigt, das *Illicium* *rel.* v. Sieb. und Zucc., als Art zu verwerfen, die durch diese Gelehrten dargestellte Synonymik verändern zu dürfen, und also den Namen von *Illicium anisatum* *Auctorum* (der bleiben mußte, wäre diese auch nicht die Mutterpflanze des Sternanises) wieder an die Stelle des *Il. relig.* v. Sieb. und Zucc. zu setzen.

Ich kann also diese Vertheidigung von dem, was einmal ein Kämpfer, ein Thunberg und ein Linné geschrieben haben, endigen. Wohl glaube ich, daß Einige dafür halten werden, daß ich Unrecht gehabt habe, so lang entschiedene und ausgemachte Sachen so ausführlich auseinander zu setzen. Indessen lasse ich diesen Tadlern ihre Meinung, aber ich meinte den zwei berühmten Schriftstellern, mit welchen ich mir die Freiheit nehme, nicht übereinzustimmen, schuldig zu sein, nicht mit wenigen Gründen oder kurzen Worten ihre Meinung zu bestreiten. Ich hege auf der andern Seite zu viel Achtung und Ehrfurcht für den Ruhm unserer Vorfahren in dem Gebiete der Wissenschaften, als daß ich die Mühe zu grosz achten würde, um Schritt für Schritt ihre auf unsicheren Gründen angegriffene und verworfene Behauptung zu verteidigen. Ich hoffe indessen, daß die Herren v. Siebold und Zuccarini meine Ansicht herein vollkommen gutheissen werden, und mit mir die Wahrheit der Worte des vorzüglichsten Gesners erkennen werden, die an der Spitze dieses Aufsatzes stehen, und womit ich denselben schließe:

„Quodsi suas quisque observationes protulerit, spes est uligando fore ut ex omnibus opus unum absolutum perficiatur.“

Amsterdam, September 1836.
Ueber die Gattung *Pteroloma*

von

Dr. W. F. Erichson.

In Rücksicht auf die einfachen, an der Innenseite nicht ausgeschnittenen Vorderschienen wird *Pteroloma* überall in die Nähe von *Nebria* gestellt, mit der es freilich auch, besonders in der Form des Halsschildes, einige Ähnlichkeit hat. Gyllenhals ist in diesem Punkte so sicher, daß er a. a. O. sagt: „*Labium* *)

*) So soll es offenbar heissen statt *Labrum*: denn einmal ist in dem zu vergleichenden Gattungsscharakter von *Nebria* (t. II. p. 37.) nur vom *tubium* die Rede, und zweitens ist das *Labrum* so deutlich zu sehen, daß G. dasselbe bei beiden Gattungen ohne Schwierigkeit vergleichen, und unmöglich überschen konnte, daß es bei *Nebria* vorn gerade abgeschnitten, bei *Pteroloma* ausgerandet ist.

Diesem Mangel einer vollständigen Beobachtung der Theile des Mundes ist durch die Darstellung, die Herr Sсhilling a.a.O. giebt, nicht abgeholfen worden: auf der diesem Käfer eingeräumten Tafel B. nämlich sind unter den Details Fig. a. die Maxilla mit ihren Tastern, Fig. b. der Kopf mit den Mundtheilen von oben, und Fig. c. die Unterlippe mit ihren Tastern in Umrissen abgebildet, jedoch sind alle diese Figuren so wenig richtig, dass Jemand, der nur einige Kenntniss von den Mundtheilen der Insekten sich erworben hat, dadurch nicht irre geleitet werden kann. Die Maxille mit ihrer carabenartig tasterförmigen äußeren Lade (die hier, abenteuerlich genug, aus dem ersten Gliede der eigentlichen Taster herauskommt) ist offenbar rein erfunden, denn im Texte wird nur auf die Taster hingewiesen. Dasselbe scheint mit der Unterlippe der Fall zu sein, denn auch hier ist nur von den Tastern die Rede: was diese letzteren betrifft, so zeigen sie nur die beiden letzten Glieder, und diese sind sowohl in Umriss als Verhältniss nicht ganz richtig, von der Unterlippe selbst aber lässt sich nichts sagen. Recht ist es wohl nicht, solche Abbildungen zu geben. Die Mandibeln sind auch hier als ungezähnt gezeichnet.

Bei aller äusseren Ähnlichkeit, die Pteroloma unleugbar mit einem Laufkäfer hat, entfremdet sie doch von diesem Mauches. Es fällt zunächst die Form der Fühler auf, die nach der Spitze zu leicht verdickt sind, etwas in der Abtheilung der Caraben, in der Pteroloma seine Stelle einnehmen müsste, ganz Ungewöhnliches. Ferner die Gestalt der Taster und selbst der Beine ist
fremd: es fehlt ihnen, so schlanke sie sind, das Leichte, Zierliche und zugleich Feste, Kräftige derselben bei einem Laufkäfer. Dazu kommt die Form des Kinnes, welches hier nach vorn verengt, und an der Spitze gerade abgeschnitten, bei den Caraben aber immer nach vorn erweitert und an der Spitze ausgebuchtet ist. Bei weiterem Vergleiche findet sich, dafs die Ausrandung, mit welcher bei den Caraben beständig das Mesosternum die zwischen den Mittelhüften vorspringende Spitze des Metasternum aufnimmt, hier nicht zu bemerken ist; dafs ferner der Hinterleib, zwar aus sechs Segmenten, wie bei den Caraben besteht, dafs hier aber alle Segmente frei sind, während, ohne alle Ausnahme bei jenen die drei ersten Segmente fest mit einander verwachsen sind; und endlich, dafs die Trochanteren der Hinterbeine, deren eigenthümliche Form die Caraben so sehr auszeichnet, indem sie zapfenförmig verlängert neben ihrem Schenkel liegen, hier ganz einfach sind, und dafs sich der Schenkel nicht, wie dort, zur Seite, sondern an der Spitze derselben anheftet.

Folgende Beschreibung habe ich von den letzteren entworfen:

P e *r* o *l* o *m* a.

Labrum corneum, transversum, apice emarginatum.

Mandibulae aquales, breves, validiusculae, subfaealatae, acutae, intus pluries acute dentatae.

Maxillae corneae, malis eoriaceis subaequalibus, exteriorae parallelipipedae, apice barbata, interiorae oblique truncatae, margini obliquo barbatae, apice uno corneo minuto armato.

Pulpi maxillares articulo primo minuto, secundo tertioque tere tibus, apicem versus sensim leviter inerassatis, illo paulo longiore: quarto tertio acquali, oblongo-ovato, apice acuminato.
Mentum transversum, apicem versus sensim angustatum, apice truncatum. Ligula porrecta, basi coriacea, apice membranacea, acuta emarginata, lobis rotundatis. Palpi labiales articulo primo minuto, secundo longiorc, apice incrassato, tertio minore, subovato.

Herpetologische Notizen

Vom Herausgeber.

Es scheint fast, als ob dies Archiv ein Archiv für Irrthümer und deren Berichtigungen werden sollte, denn an die Seite von *Syngamus* tritt auch mein *Amystes*, und ich muß von Glücke sagen, daß ich selbst diesen meinen Irrthum berichtigen kann und daß er weniger mir zur Last fällt, als demjenigen, welcher dies Thier mit unvollständiger Beschreibung in die Wissenschaft einführt.

Als eben der Druck meiner *Herpetologia mexicana* begonnen hatte, und bereits die synoptische Tabelle der *Brevilingues* in der Druckerei gesetzt war, erhielt ich von Hrn. Ménétries dessen *Catalogue raisonné des objets de Zoologie recueillis dans un voyage au Caucase etc.* (Petersbourg 1832. 4.), um diese Schrift der hiesigen naturforschenden Gesellschaft zu überreichen. Unter vielen sehr ungenügend bezeichneten Amphibien fand ich auch ein neues Genus der Eidechsen mit folgenden Worten (p. 63.) aufgestellt.

Ophiops (*οὖς* serpens et *οφι* facies).

Nares in apice canthi rostralis; palpebra inferior nulla; superioris tantummodo rudimenta; palatum (!) nullum (vielleicht deutes palatini nulli?); squamae supra carinatae, subitus imbricatae; collare nullum; pori sub femoribus; cauda verticillata.
Ich war in einiger Verlegenheit, was ich hieraus machen sollte. Die cauda verticillata paßte nicht auf die Scinke und Gymnophthalmen und ließ mich erst vermuten, daß das neue Genus zu meiner Familie der Ptychopleuren gehöre; aber der Verf. erwähnte keiner Seitenfalte und die squamae imbricatae der Bauchseite paßten hierauf eben so wenig. Da nun der Verf. am Schlusse der Artbeschreibung, die nur eine Farbenbeschreibung gibt, hinzufügte: Ce genre doit être placé dans la famille des Scincoides — so zweifelte ich nicht, daß dies neue Genus Ophiops (denn so muß der Name richtig gebildet lauten) zu meiner Familie der Gymnophthalmi gehöre, wohin ich es frageweise in meiner Herpetologia mexicana stellte. Ich beruhigte mich über die Cauda verticillata damit, daß der Verf., sowie er palatum nullum für dentes palatini nulli gebraucht, sich in dem gewählten terminus vergriffen habe, wie denn auch seine geringere Bekanntschaft mit der Herpetologie schon zur Genüge daraus hervorging, daß er zweifelt, ob sein Thier nicht vielleicht mit dem Gymnodactylus caspius Eichw. (einem Gecko) identisch sei. Wie erstaunte ich aber, als ich neulich von Hrn. Prof. Eichwald erfuhr, daß Ménétriers's Ophiops elegans ein den Lacern ähnliches Thier sei. Ich verfiel nun gleich auf meinen Amystes Ehrenbergii *, der denn auch sogleich von Hrn. Prof. Eichwald als dasselbe Thier erkannt wurde. So habe ich denn wieder in aller Unschuld die Zahl der Synonyme vermehrt, und nehme meinen Namen zurück, erlaube mir aber, hinsichtlich der von Hrn. Ménétriers erwähnten Charactere, noch einige Bemerkungen. Wenn derselbe seinem Ophiops ein Rudiment des oberen Augenlides zuschreibt, so irrt er; denn das Thier bat wirklich keine Augenlider, sondern sein Auge ist gleich dem der Schlangen gebildet, d. h. es liegt hinter einer durchsichtigen Kapsel und bewegt sich hinter derselben, und, wie dort, so besteht auch hier diese Kapsel aus drei Schichten, die von der Epidermis, Cutis und Conjunctiva gebildet werden. Indem aber die beiden erstgenannten, der Cornea gegenüber dünner und durchsichtig werdend, sich vor der Vorderfläche des Augapfels hinziehen, bilden sie rings um ihre durchsichtige Area, eine ringförmige,

mit Schuppen bekleidete Falte, so daß das Auge wie von einem Schuppenringe umgeben erscheint. Das Ansehen von Augenliedern erhält diese ringförmige Falte, wenn die durchsichtige Area (Augenkapsel), in welche sich ihre Ränder fortsetzen, bei Beschädigung des Auges herausgerissen ist, wie dies leicht geschieht, wenn man, nach Augenliedern suchend, jene Falten mit der Pinzette hervorzieht. In diesen Irrthum bin auch ich verfallen, indem ich dem Ablepharus Augenlieder zuschrieb *'). Auch hier ist von mir als Rudimente der Augenlieder die eben erwähnte Falte genommen. Augenlieder fehlen überall, wo die Haut, ohne eine Spalte zu bilden, über die Vorderfläche des Augapfels hingeleitet, und eine Augenkapsel (capsula ocularis), ein durchsichtiges, ungespaltenes Augenlied bildet, also auch bei den Geckonen, denen sie deshalb Prof. J. Müller richtig absprach **). Eine Andeutung zu einer Kapselbildung bei vorhandener Augenliedspalte treffen wir bei einigen Scinken, namentlich bei Sphenops Wagl. und vielen Arten derGattung Euprepes Wagl., wo das obere Augenlied rudimentär, das untere dagegen sehr entwickelt ist, und mitten in einer ovalen oder runden Area (gleichsam einer Staubbrille) dünn und durchsichtig wird, so daß diese Thiere bei geschlossenem Auge sehen können, indem die Staubbrille des unteren Augenliedes gerade vor ihrer Sehe sich befindet, eine Einrichtung, die mit dem Aufenthalte dieser Arten in Flugsand-reichen Wüsten wahrscheinlich in enger Beziehung steht. —

2. *Scincus* Fitz.

Scincus Fitz. (*Scincus* Daud. Merr. ex parte.)

Digitus scelidum tertius quintusque subaequales, quartus iis parum longior. Ungues validi, obtusi, subtilis canaliculati.

1. *Sc. officinalis* L. Scinc. scutellis supraciliaribus 6, squamis dorsi per series 18 longitudinalis dispositis, fasciatim fusco alboque guttulatis; lateribus immaculatis.

Caput ovato-pyramidatum, tetraédrum, subdepressum, scutellatum, scutis internasalibus contiguis 2, frontalibus 7 (2-3-2), intermedio rhomboeo-subhexagono, paribus 3 cincto, verticali primo maximo lato hexagono; posterioribus 5, intermedio paribus binis incluso; scuto occipitali subpentagono, solitario vel dnotus trapezoides, uno utrinque, adiacit. Oculi palpebris praediti, superiori brevissima, inferiori scutellato, infra scutellorum infraorbita infimis inclusi. Nares laterales, ovale, prope scutellum nasalis finem, pone scutellis accessorii binis inclusae. Lorí scutella duo, anterius parvum, posteriorius duplo maior. Lingua subdidyma, parte basali crassa, ovato-cordata, papillis densis filiformibus villosa, parte apicali tenui, sublineari, profunde excisa, apicibus acutissimis bicuspidis, papillis adpressis squamulosa, sub parte basali, Agamarum linguam forma referenti, quasi emergente. Dentès primores 9 conici, maxillares 16—18, quorum anteriores 4 obtusì conici, ceteri breviiores, latiores, coronide obtusa, compressa, obsolete triloba; palatini parvi obtusi, vix emergen-

A. Squamis non carinatis, antipedum digitis tertio quartoque subaequalibus:

1. *D. fasciatus*. Griseus, fascis 8 fusco-cinereis nigro marginatis, cauda fusco annullata; squamis non carinatis.

B. Squamis carinatis, digito antipedum tertio eetereis longiore.

2. *D. monotropis*. Supra rufus, fascis dorsalis albis fusco marginatis, subtus albidus; squamis medio obtuse carinatis.

Caput minus quam in praeecedente depressum; capitis superficie a vertice sensim declivi. — Scutellum lorum secundum in frontem adscendit, spatium inter scutella frontalia secundum ac

*) Dentes Dipl. monotropidis descripsi; in fasciatio maxillares palatines conicos, simplices 12 — 16, palatinos prorsus nullus inveni.

4. **Euprepes**

Palpebra inferior perspicillata; squamis dorsi carinatis:

E. pyrrhocephalus. E. supra olivaceo-grises, immaculatus; vitta laterali utrinque obsoleta, pallida, alteraque inferiori nigricante; capite unicore rufescente; squamulis meatus auditorii binis, obtusis; squamis dorsi carinatis; occipitis scutellis duobus.

E. brevicollis. E. supra olivaceo-grises, striis dorsi fuscis interruptis; vitta laterali pallide grisea, vitta fuscescenti marginata; capite brevi; rostro brevi obtusissimo, scutellis pilei fuscis marginatis; squamis carinatis.

Caput breve, ovatum, rostro brevi obtusissimo, declivi, capitis totiusque corporis pholidosis eadem quae in pyrrhocephaio. Squamae meatus auditorii ternaes, tennes, obtusae. Squamum dorsalium carinae ternaes; distinctiores quam in praeecedente, at intermediae saepius magis obsoleta. Color dorsi
plus minusve intense olivaceus, maculis fuscis lineas plures interruptae constituentibus, quarum exteriori utrinque vitta pallida subiacet, tres squamarem series occupans, infra vitta cineara maculis fuscis adpersa marginata. Labia pallida. Gastraeum albicat. Stria fusa haud procul ab oris angulo incipients, sub meatu auditorio procedit, in medio collo desinit. Alterum huius animalis exemplum colorem dorsi saturatorem, intense olivaceum, maculis pluribus maioribusque conspersum, vittam lateralem infima Titulae maculis fuscis adspersa marina. Labia pallida. Gastiaeum albicat. Stria fusca haud procul ab oris angulo ipsae, sub meataauditorio procul, in medio collo desinit. Alterum huius animalis exemplum colorem dorsi saturatorem, intense olivaceum, maculis pluribus maioribusque conspersum, vittam laterale infima Titulae maculis fuscis adspersa marina. — Differt potissimum capitis collique brevitate a pyrrhocephalo, quocum praeterea in omnibus convenit. Longitudo capitis |" (in pyrrhocephalo 1”), colli |" (in pyrrhoc. 11”), trunci reliqui a basi colli ad annum usque 3|" (in illo cadem), candaee regeneratae 4|". Habitat in Abyssinia.

agilis ist die Zügelgegend unten vertieft, und die Lippen treten mit einiger Wölbung stärker hervor. Ferner möchte bei letzterem das 6te Lippenschild, welches mit dem 7ten unter dem Auge liegt, einen Charakter abgeben, sofern es nach oben und vorn einen zapfenförmigen Fortsatz ausschickt, der das untere der beiden gleich großen vorderen Augenschildchen aufnimmt u. s. w. Dem brasilischen E. agilis steht nun der semifasciatus am nächsten. Der Kopf ist bei ihm kurz, vor den Augenhöhlen etwas eingezogen, die Schläfengegend convex, daher die obere Fläche länglich-eiförmig. Die Schnauze ist deutlicher abgesetzt als bei tristatus und von der Stirn ab allmählich abfallend. Die Zügelgegend nicht vertieft, sondern in einer Ebene mit den flachen Lippen. Von den Lippenschildern liegt das 5te und 6te unter dem Auge, das 5te gränzt an das untere der vorderen Augenschildchen ohne jenen Fortsatz zu bilden. Die Schuppen des Körpers sind glatt. Hierzu gesellt sich noch die bereits von Schneider erwähnte abweichende Zeichnung, nach welcher sich folgende Diagnose stellen ließe:

E. semitaienatus. E. flavescenti-grisens, vittis cervicalibus 3 albidis in rostro oriundis, cum vittis 4 laticribus russo-fuscis alternantibus, utrisque in dorsi initio latescentibus.

Long. corp. tot. 2" 3½", caudae 3" 7", capitis 5½", coli 4½", trunci 1" 6½", latitudo capiti in regione temporum 3¾", latitudo frontis ante orbitas 1½".

Der Kopf ist auch kürzer als bei agilis, wo er bei etwa gleicher Körpergröße 6" mißt.

E. spilonotus. E. olivaceo-grisens, vitta laterali lata cinoereo-fusca, altera angustiore subitus marginata, vittis cervicalibus 4, in dorso medio desinentibus, externis albidis, internis angustioribus fuscis, tergo punctis fuscis adspersos; squamis sublacivibus, capite obtuse trigono, rostro subhorizontali, acutissulo.

Caput depressum, pilo oblongo-triangulari, ante oculos haud coarctato, plano, superciliis appplanatis, fronte rostroque haud declivibus, fere in cadem planicie cum vertice sitis. Rostrum acu-
tius quam in *Sc. tristato*, longius quam in *Sc. agili*, neque ut in codem declive, neque ante orbitas coarctatum, sed cauthus rostralis rectus, cum frontali continuus. Tempora convexiuseula, nec ut in *Sc. tristato* complanata. Pilei color olivaceus, vitta pallida a rostro incipiente iuque dorsalem contionuata utrinque marginatus. Longit. capitis 6—7", colli 5—6", trunci 1"—2", caudae 4"—4" (mutil.).

5. *Xenodermus* Reinb.

Die Stylolithen sind anorganische Absonderungen.

Von

A. Quenstedt.

(Hierzu Taf. III.)

Im Allgemeinen trennen sie sich in bestimmte und unbestimmte Formen, die zwar unter sich die mannigfachsten Übergänge zeigen, aber in ihren Extremen festgehalten werden können. Ihre seitlichen Grenzflächen sind mit den verschiedenartigsten Längsstreifen versehen, die mit der Faser gespaltenen Tannenholzes verglichen werden, mit welcher sie allerdings entfernte Ähnlichkeit darbieten, wenn man sie nicht lieber mit der Bruchfläche faseriger oder feinstenglicher Gesteine vergleichen will. Wie alle Klüfte dieser Muschelkalkschicht, so ist auch ihre Außenfläche mit einer schmutzig gelben Eisenoxydhydratfärbung überzogen, wodurch sie sich leicht von dem umgebenden Gestein unterscheiden lassen.

Wären die Stylolithen Reste organischer Geschöpfe, so würden die Streifen der Abdruck der inneren Schalenzeichnung des Thieres sein müssen: denn dieselben haben durchaus keine Dick,
nen Exemplare in keinem Theile verletzt, den Parallelismus der Streifen aber immer streng bewahrt. Wollen wir demnach unbefangen urtheilen, so haben wir wohl Grund, die Streifen für Absonderungen, aber auf keine Weise für organischen Ursprungs zu halten.

Eine zweite Entscheidung der Frage ist aus den Formen zu entnehmen. Die eine Art derselben, welche mehr unbestimmt zu nennen sind, durchsetzen entweder die Schichten gleich queeren Gebirgsspalten, oder erheben sich senkrecht aus den Schichten, am liebsten da, wo eine Kluftfläche sich eingesetzt hat. Ihre Anfänge erinnern sehr an Duenumergelbildung, sie zeigen aber an der Außenfläche nur parallele Längenstreifen, nie wellenartige Queerstreifen. Man wird nicht leicht eine Spalte finden, an der nicht deutliche Anfänge dieser Streifung zu sehen wären. Oft sind die Streifen noch mit faßrigem Kalkspath überzogen, der sich über dieselben parallel hinweggelegt hat. Durch die unbestimmte Mannigfaltigkeit dieser Formen wird man am wenigsten an organische Überreste erinnert.

Bei weitem mehr zieheu die bestimmten Formen unsere Aufmerksamkeit auf sich (Fig. 1—6). Sie gleichen mehr oder weniger gerundeten Säulen, die selten 3—4 Zoll Länge übersteigen. Da sich diese unter einander ähnlichen Gestalten unge- mein häufig wiederholen, so können sie nicht in zufälliger Absonderung ihren gemeinsamen Grund haben. Überraschend ist es aber, daß die größte Anzahl derselben genau den Umrifs des kleinen glatten Pecten discites Schl. zeigt, der so häufig in diesen Gebirgschichten zerstreut liegt. Näher untersucht finden sich wirklich noch viele Exemplare, welche von diesem Pecten an einem Ende wie von einem rings passenden Deckel bedeckt werden (Fig. 2.). In den meisten Fällen liegt die Muschel so darauf, daß ihre convexe Fläche nach Außen gekehrt ist, nur ein umgekehrter Fall ist mir bekannt (Fig. 5.). Die parallelen Streifen des Stylolithen fallen genau mit dem Rande des Pecten zusammen, so daß jede Unebenheit und jede Verletzung desselben sich auf der Säule wiederholt. Exemplare mit gut erhaltenen Schalen sind nicht ganz häufig, gewöhnlich ist die Schalen- substanz weggeführt, und an ihre Stelle eine schnutzig gelbe Kalkmasse getreten: aber der Umrifs der Säule, so wie einige
Anwachsstreifen der Endfläche beweisen noch deutlich, daß ein *Pecten* darauf saß. Fehlen dem *Pecten* die Ohren, so fehlen sie auch der Säule. Kurz jede zufällige Verbrechung der Schale pflanzt sich mit mathematischer Bestimmtheit auf die Säule fort. Es ist daher unlänglich, daß die Muschel mit der Bildung des Stylolithen in engem Zusammenhange stand. Ja diese Behauptung trifft nicht bloß den kleinen *Pecten*, sondern ich habe auch mehrere Säulen von 1—1½ Zoll Durchmesser, dessen Endfläche deutliche Überreste des größern *P. laevigatus* Schl. bedecken. Ferner finden sich Säulen von der Gestalt und mit dem Deckel einer *Trigonia vulgaris*, *Terebratula vulgaris*, *Mytilus socialis*, kurz es kommt keine Muschel in der Schicht vor, welche nicht zu solchen Säulen Gelegenheit gegeben hätte, ja selbst die kleinen Trochiten des *Encrinites vulgaris* (Fig. 4.), welche in unendlicher Anzahl in einigen Stylolithenschichten liegen, machen keine Ausnahme. Am auffallendsten war mir aber eine kurze Säule, die von einer *Plagioistoma lineatum* (Fig. 3.) bedeckt ist, deren größter Durchmesser 3 Zoll beträgt. Die Streifen der Säule sind genau so breit, wie die der Muschel am Rande, ein Beweis, daß erstere von letzteren abhängen.

Durch diese Thatsachen ist es naturhistorisch erwiesen, daß die Form der Stylolithen von den sie bedeckenden Muscheln abhängt. Da die Absonderungen in einer sich einsetzenden Discantinuität der Masse ihren Grund haben, so ist es auch wunderlich, daß eine Muschel dazu den ersten Impuls geben konnte. Gehen wir némlich auf die Entstehung der Muschelkalkschichten zurück, wie sie im Urmeere als kalkige Schlammmassen niedergeschlagen wurden: so war natürlich die hohle Fläche der festen Kalkschalen, welche in der weichen Schlammsschicht zerstreut lagen, sehr dazu geeignet, bei der Erhärtung der Schichten die in sich aufgenommene Kalkmasse rings von der übrigen loszureißen. Das diese Absonderungen in so großer Regelmäßigkeit vor sich gegangen, kann uns zwar Wunder nehmen, aber durchaus keinen Einwurf gegen die Erklärung abgeben.

Die regelmäßigen Säulen erheben sich gewöhnlich senkrecht aus der Schichtungsebene (Fig. 1.). In den meisten Fällen bildet die Muschel ihre obere Grenze da, wo ein hohler mit Thanlettengesättigter Raum die Individuen von dem Bergmittel trennt.

Wenn es aber erwiesen ist, dafs eine Muschel zu solchen bestimmten Absonderungen Gelegenheit gab, und zwar auf ganz mechanische Weise durch ihr bloßes Dasein: so ist es nicht abzusehen, warum es nicht jede andere vom Kalkschlamm verschiedene Masse gethan haben sollte. Auf diese Weise sind augenblicklich die vielen verschiedenartigen Gestalten erklärt, die nach dadurch vermehrt werden, dafs die zwischen den gedrängt stehenden Individuen liegende Gebirgsmasse ebenfalls bestimmte
Formen zu haben scheint. Doch soll damit nicht gesagt sein, dafs jedesmal zur Erregung ein fremdartiger Körper notwendig wäre.

Die Stylolithen sind also, durch organische Körper geleitete A bs onderungen, wie sich Ihr. Prof. Weifs kurz aber bezeichnend ausdrückt. Wenigstens gilt dies von den bestimmten Formen, die zu geregelt waren, als dafs ein geübtes mineralogisches Auge sie hätte für zufällig erklären sollen.

Beiträge zur Petrefaktenkunde.
Von Demselben.

Seitdem durch L. v. Buch's gründliche Untersuchungen die Brachiopoden zu den ersten Leitmuscheln der Formationen erhoben sind, verdienen sie vor allen andern die sorgfältigste Beachtung. Sowohl ihre große Anzahl, als auch ihr vielfacher Formenreichtum zieben sogleich beim ersten Auftreten der organischen Schöpfung unsre ganze Aufmerksamkeit auf sich. Denn bekanntlich halten wir das horizontalgeschichtete Uebergangsgebirge des Norden bis jetzt mit Recht für die älteste Formation.
Ein höchst feinkörniger Sandstein, leicht gefärbt und oft denen des späten Kreidegebirges auffallend ähnlich, lagert sich entweder unmittelbar auf dem krystallinischen Urgebirge ab (Schweden), oder es liegt zwischen beiden noch eine wenig mächtige Thonschicht (Finnischer Meeresbusen); darauf folgt in Schweden und Livland ein Kalkstein mit Trilobiten und Orthoceratiten überfüllt. Doch noch ehe diese auftreten, sieht man an der ganzen Küste des Finnischen Meeresbusens von Reval bis Petersburg unter dem Trilobitenkalk eine kleine, kaum 6 Linien erreichende, zwei schalige Muschel in so gewaltiger Anzahl entwickelt, daß sie ganze Schichten bildet, die die in den Sandstein selbst noch hineingreifen, theils unmittelbar darüber liegen. Ihre genaue Symmetrie stellt sie ohne Zweifel zu den Brachiopoden, und Pander in seinen Beiträgen zur Geognosie des Russischen Reiches hat sie schon längst in vielen Arten abgebildet, und mit dem bezeichneten Geschlechtsnamen Ungulites benannt. Da sie als zu den ersten Bewohnern der Erde gehören ganz besonders Interesse haben, und sie über dies den meisten Petrefaktenkennern Deutschlands noch gänzlich unbekannt sein möchten, so dürfte eine kurze Beschreibung und Zeichnung besonders der inneren Organe, die selbst dem Entdecker noch unbekannt geblieben sind, nicht unwillkommen sein.

Wie Fig. 8. zeigt, so stechen auf der convexen Seite der einen Schale die feinen concentrischen Anwachsstreifen sehr deutlich hervor, ebenso feine Streifen, mehrmals sich in ihrem Verlaufe theilend, strahlen von dem Wirbel nach den Rändern. Im jugendlichen Zustande hat die Schale große Aehnlichkeit mit der Gestalt eines Fingernagels, allein später breitet sich der untere Rand schnell nach Außen aus, der Wirbelseitbleibt viel schmaler. Wichtiger ist die Innenseite. Der gleichschenkliche stumpfwinklig-dreieckige Raum der Schloßgegend ist dem einer Auster nicht unähnlich. Die deutliche Streifung, welche von den einzelnen Lamellen der Schale herrührt, geht der Basis parallel. Eine tiefe Furche trennt das Dreieck in zwei congruente Theile. In dieser lag, wie bei Lingula, ein Band, womit das Thier sich an äußere Gegenstände befestigte. Unter der Schloßfläche wird die convexe Seite des lamellösen Schalentheiles von einem flach ausgebreiteten glatten Kalkwulst überzogen, der, wie
Keiner von beiden angehörend, sind sie ein neuer Beweis, daß die Geschöpfe, besonders der Übergangsperiode nur selten in das System der lebenden passen, sondern meist verbindende Mittelglieder bilden.

Verlassen wir jetzt unsere Ungulitenschichten, in der noch eine andere sonderbare, bis jetzt aber nicht gekannte Brachiopodenart sich findet, und verweilen wir kurz bei der schönen 1 Zoll langen, und über 1 Zoll breiten Lingula (Fig. 9.), welche so ausgezeichnet in den überliegenden Trilobitenkalken von Eshland bei Orrenhofen südlich von Reval vorkommt. Leider ist wenig von ihrer äußern Schale übrig geblieben, aber selbst die Steinkerne behielten ihre charakteristische zungenförmige Gestalt noch bei, und die strahligen und concentrischen Streifen derselben deuten eine ähnliche der äußern Schale an. Die strahlenden Streifen der äußern Schale bestehen aus einer Reihe seiner Punkte, zu welchen sich die concentrischen Anwachsstreifen periodisch erheben. Obgleich einige Strahlen unter ihnen sich durch ihre Größe vor den übrigen auszeichnen, so scheint doch darin kein bestimmtes Gesetz zu sein. In der Mitte, dem Schloßrande näher zeigen die Kerne gewöhnlich beulenartige Vertiefungen, weil hier die innern Kalkwülste durch die Steinkernbildung hinweggenommen sind; von der Mitte aus fallen aber beide Schalen nach dem unteren gradi Stimnrande gleichmäßig ab, so daß dieser Theil mit der Schneide eines Meißels passend verglichen werden kann. Ausgezeichnet ist auf der einen Schale (Bauchschale) des Steinkernes eine tiefe Spalte, welche schmal im Wirbel beginnt, und in der Mitte der Schalenlänge bei einigen Abänderungen bedeutend breit wird. Beim ersten Anblick wird man hier an Orbicula erinnert, allein da wir es mit Steinkernen zu thun haben, so befand sich hier nuthwendig eine eben so gestaltete Leiste, die bekanntlich allen Lingulen zugehört, und ein Analogon des innern Kalkgerüstes der Terebraten oder des Rostellums der Cranien ist. Sie erweist sich dadurch bestimmt als Lingula.

Die Lingula ist demnach eins der wenigen Geschlechter, welche von der ersten Formation an bis in die lebende Welt sich fortpflanzten, ohne daß man wesentliche Veränderungen in ihren Organen nachweisen könnte. Dieselbe innere Leiste, die-

das Exemplar wohl bekannt, aber es weder benannt, noch in seiner Petrefaktenkunde aufgeführt.

aus der Sandsteingrube bei Kopenhagen aufliegen soll. Dem Ganzen liegt eine Betrügerei zum Grunde. Erstens ist das Ge-
stein, zwar im Allgemeinen ähnlich, doch näher betrachtet, von
den Geschieben (aus der Kreideformation) der Kopenhagener Grube
ganz verschieden. Es finden sich darin weder die sogenannten
Brattenburger Pfennige (Crania Brattenburgensis Schl.) noch die
Dentalen, sondern Versteinerungen, welche die Märkischen Ge-
schiebe auszeichnen. Als dann ist der vermeintliche Patellit nichts
anderes, als eine künstlich umgearbeitete gelblich übertünchte
Muschel, die, nachdem sie gewaschen war, sich deutlich als ein
kleiner gestreifter Productus zu erkennen gab, an dem der Grif-
sel auf der einen Seite nachgelassen hatte. In dem Pat. cornu-
copeiaformis Schl. auf einem Hornsteingeschiebe von Aachen er-
kannte L. v. Buch sogleich eine Arcacee, die feinen nach den
Rändern strahlenden Streifen dienten ihm als Beweis.

Aus Vorbesagtem sehen wir, daß die Orbicula ebenfalls sehr
allgemein verbreitet ist. Von ihren Schalen zeigt die obere we-
 nig ausgezeichnete Merkmale, so daß sie nicht nur schwer von
Patella, sondern ebenso schwer, wie bei Lingula der Fall war,
unter sich zu unterscheiden sind. So lange das Hauptinteresse
noch auf die generellen Kennzeichen gerichtet sein muß, ver-
meiden wir gesellschaftlich die speziellen Unterscheidungsamen.

Schon L. v. Buch macht in seinem klassischen Werke über
Terebrateln p. 72. darauf aufmerksam, wie ähnlich die leitende
Ter. prisca Schl. des Uebergangsgebirges der in der Magellani-
schen Meereuge lehenden Ter. dorsata sei. Und in der That ist
es oft auffallend, wie gerade die Geschöpfe des ältesten Gebirges
den noch lebenden gleichen, von denen man es am Wenigsten
erwartet würde. Vor allen gehört hier hin Madreporites stem-
latus Schl. der in der Silurischen Formation Englands sich an
vielen Orten findet. Aus der Eifel und von Bensberg hat ihn
Goldfuss als Astraea porosa beschrieben, und die schwedischen
Forscher nennen die Exemplare von der Insel Gothland Madre-
pora interstincta. Wegen ihrer zwölfstrahligen Zelle stellte sie
Ehrenberg zu den Milleporinen. Zwischen diesen größern
stehen kleine sechsseitige, heide, die großen und kleinen Zellen
sind eigentlich lange Röhren, welche vom Mittelpunkt nach der
Oberfläche des Korallenstockes ausstrahlen, und durch Queer-

Erklärung der Kupfertafel.

Fig. 1. Stylolithen, wie sie im Gestein sitzen, mit oben aufliegenden Muscheldeckeln, der obere hohe Raum zwischen Schale und Bergmasse sichtbar.

Fig. 2. Stylolith in geneigter Stellung mit aufsitzendem *Pecten discites* Schl., die Muschel von der Schlofskante sehen.

Fig. 3. Kurze Stylolithensäule mit aufsitzendem *Plagiostoma lineatum* Schl., die Streifen der Säule entsprechen den Streifen der Schale.

Fig. 4. Trochit von *Encrinites liliformis*, unter dem sich eine kleine Stylolithensäule gebildet hat.

Fig. 5. Stylolith mit einem Schalendeckel, dessen concave Seite nach Außen gekehrt ist.

Fig. 6. Stylolith mit einem Muschelbruchstück.

Fig. 7. *Ungulites* Pand. innere Ansicht, die 4 schmalen Muskelindrücke, die herzförmige Grube, das Rostellum und die Ligamentfurche des Schlosses deutlich.

Fig. 8. Außere Ansicht desselben Unguliteu.

Fig. 9. *Lingula* aus dem Übergangskalke bei Reval. Steinkern der Bauchscheibe, auf dem die Leiste einen tiefen Ein- druck zurückgelassen.

Fig. 10. Oberschale einer *Orbicula* aus dem Muschelkalke bei Toona.

Fig. 11. Die Unterschale derselben mit der deutlichen Spalte.
Über die gestielten Eier der Schlupfwespen

von

Prof. Dr. Th. Hartig. *)

(Hierzu Taf. IV.)

Die weiblichen Geschlechtsteile der Aderflügler enden ohne Ausnahme in einem, zwischen zwei hornigen Scheideklappen (Fig. 3. a.) liegenden Hülsorgan zum Ablegen und Versenken der Eier in das Innere der Pflanzen oder tierischer Körper. Dies letztere, der eigentliche Legstachel, ist in den verschiedenen Gruppen der wesenartigen Insekten sehr verschieden gebildet, er tritt als Säge, Messer, Raspel, Harpune, Bohr, Stachel geformt auf, stimmt aber bei Allen darin überein, daß er aus zwei Hauptstücken, einem oberen und einem unteren zusammengesetzt ist (Fig. 10. a. b.), von denen das obere meist die Form einer nach unten geöffneten Röhre hat (Fig. 8.) und als Eileiter dient, während das untere Stück, das eigentliche Organ zum Sägen, Stechen etc. stets seiner ganzen Länge nach gespalten und nur an der Basis verbunden ist. Daher teilt sich der Legstachel unter dem Pressschieber meist in drei Borsten, von denen die dickere ausgehöhlte der Eileiter, die schmalen, plattenförmigen, an der Spitze gezähnten Borsten hingegen die beiden symmetrischen Hälfte des unteren Theils sind, welche ich mit dem Ausdruck Gräten bezeichne. Bei mehreren Blattwespen ist auch der Eileiter der ganzen Länge nach bis zur Basis gespalten, wo dann

durch Druck zwischen Glasplatten eine Trennung in vier Theile bewirkt werden kann; da aber die Gräten mit dem Eileiter stets durch eine Nath an der oberen Seite der Gräten und eine hakig gebogene Längsleiste am Unterrande des Eileiters verbunden sind (S. Fig. 9 a. b. Legstachel von Tryphon rutilator im Durchschnitt), so zertheilt sich der Legstachel z. B bei Cimbex bei gelindem Druck zwischen den Fingern nicht in vier Theile, sondern in zwei seitlich auseinander weichende symmetrische Hälften, jede aus dem halben Eileiter und der entsprechenden Gräte bestehend, welche beide nur mit Gewalt aus ihrer innigen Verbindung gerissen werden können. Vermöge dieser Verbindung der Gräten mit dem Eileiter können erstere, ohne sich von letzterem zu trennen, hin- und hergeschoben werden, worauf besonders das feilenartige Wirken des Apparats beruht. Beim Versenken des Legstachels werden nämlich die Spitzen der Gräten über die des Eileiters hinausgeschoben, und der letztere in die gewonnene Öffnung versenkt, worauf durch wiederholtes Hin- und herschieben der Gräten am ruhenden aber eingedrückten Eileiter, die Öffnung bis zu der Stelle vertieft wird, an welcher ein zum Ablegen des Eis geeigneter Gegenstand sich darbietet. Das abzulegende Ei wird schon vor Beginn der Arbeit des Versenkens in den Eileiter gebracht und ruht während derselben an einer oft etwas erweiterten Stelle vor der Spitze des Eileiters. Ist der Ort zum Ablegen des Eies gefunden und bereitet, so wird es aus dem Eileiter zwischen den Gräten herausgedrückt, und bleibt, beim Zurückziehen des Legorgans in der Wunde zurück.

Bei den parasitischen Hymenopteren werden die Eier auf diese Weise in andere lebende Insekten versenkt; die ausgekommene Larve nährt sich bis zu ihrer Ausbildung vom Fettkörper der Raupe, unbeschadet deren weiterer Entwicklung bis zum Puppenstande hin; oder sie lebt pseudoparasitisch in Eiern oder Puppen, größtenteils pflanzenfressender Insekten, mitunter sogar äußerlich an ihren Feinden schmarotzend, wie ich dies bei Braconen an Holzkäferlarven, bei Pteromalinen an Gallwespenlarven direkt und häufig beobachtet habe.

Etwas Aehnliches wie bei jenen Letzteren findet bei vielen Schlupfwespen der Gattung Tryphon Grst. statt, deren Weibchen die gestielten Eier nicht in die Raupen ablegen, sondern nur mit
dem knopfartig erweiterten Ende des Stiels in der Raupenhaut befestigen, worauf die ausgereeckene Larve, mit der geplatzten Eischale in Verbindung bleibend, äußerlich die Säfte der Raupe saugt.

Die ersten und einzigen Nachrichten über gestielte Schlupfwespen-Eier verdanken wir Albin, Bonnet, Goedart und Degeer, von denen jedoch Degeer allein eine geauere Beschreibung und Abbildungen des Gegenstandes liefert. Nach Degeer versenkt das Weibchen, angeblich von Ophion luteus, seine schwarzen gestielten Eier, wie ich solche Fig. 7. nachgebildet habe, zu 6—8, mit dem knopförmig erweiterten Ende des Stiels in die Haut der Raupe von Harpyia vinula, und zwar auf die vorderen Segmente des Leibes. Beim Auskommen der Larve soll die obere Hälfte der Eischale wegschlagen, die Larve selbst aber mit dem Afterende so fest in dem napförmigen Überrest der Eischale hängen bleiben, daß sie sich von ihm nur unter Zerreissen der Haut absondern läßt. Auf diese Weise durch das Ei am Körper der Raupe befestigt, soll sich die Larve in die Raupenhaut einbeifsen, und bis zur nahenden Verwandlung die Säfte derselben aussaugen. Die Larve, mit dem Afterende in der gestielten Eischale hängend, habe ich Fig. 16. der Degeerschen Abbildung nachgezeichnet. Nach dem Einspinnen der Raupe sollen sich die Larven ebenfalls, innerhalb des Raupencoccons, eigene, ½ Zoll lange und 2 Linien dicke feste Gespinnste fertigen, aus welchen im folgenden Jahre die Wespen erscheinen. Die Eier sollen der Raupenhaut so fest angeheftet sein, daß sie nur durch Zerreissen von ihr getrennt, auch bei den Häutungen der Raupe nicht abgestreift werden.

Die Beschreibung, welche Degeer von der gezogenen Wespe gibt, stimmt sowohl mit Ophion luteus, als mit Paniscus testaceus und Mesoleptus testaceus, mit letzterem besonders in Rück- sicht der Fühlersärbung überein. Die Zahlung der Klauen kann nicht entscheiden, da sie bei allen drei genannten Arten vorhanden ist, eben so wenig Degeer's Bestimmung des Insekts als Ophion luteus, da zu jener Zeit die feineren Unterscheidungs merkmale im Verlauf des Flügelgeäders und der Bildung des Stiel segments noch nicht beachtet wurden. Vergleicht man die gegebenen Abbildungen, so läßt sich aus der Bildung des Stielseg-

Außerdem hat Hr. Gravenhorst solche Eiertrauben noch bei Tryphon albovinctus und varitarsus seiner Beschreibung gefunden.

Im hierigen entomologischen Kabinet befindet sich ein Weibchen von Tr. pinguis mit siebzehnbeeriger, zwei von Tr. varitarsus mit sechs- u. zehnbeeriger, ein anderes noch unbeschriebenes, Tr. varitarsus nahe verwandtes Tryphonen-Weibchen mit zwölfbeeriger Eiertraube.

Die größte Zahl der Eier, in sechs u. dreißigbeeriger Traube (Fig. 1.) trägt ein unbeschriebenes Weibchen meiner Sammlung (Tryph. cancer n.) Tr. varitarsus besitze ich mit neunbeeriger, Tr. albovinctus mit funfzehnbeeriger Eiertraube. Einzelne Eier im verlängerten Legstachel, wie dies Fig. 3. darstellt, fand ich unter den Tryphonen meiner Sammlung bei Tr. elongator Grhst., rutilator Grhst., caudatus n., mergator n. und Sphinctus seratii nus Grhst. In Folgendem werde ich die Resultate meiner mikroskopischen Untersuchungen dieses Gegenstandes im Auszuge mittheilen.

Das eben gelegte, mit dem Knopf im Eileiter hängende Ei der weiblichen Schlupfwespe ist vollkommen geschlossen, derbhäutig, keulenförmig, an der Spitze abgerundet, an der Basis in
einen längeren oder kürzeren Stiel auslaufend, dessen Substanz die der Eischale selbst ist (Fig. 4—7). Giebt man dem Objecte halbes Licht, so gewahrt man deutlich, daß die Membran der Eischale nicht einfach, sondern panzerähnlich gebildet ist (Fig. 11. 12.). In dem erweiterten Theile liegt ein, denselben fast ganz ausfüllendes, eiförmiges Ei (Fig. 4—6.) im Innern mit Bläschenhaufen, schwimmend in klarer Flüssigkeit, erfüllt. Die Membran dieses inneren Eies wird später zur Larvenhaut, und schon vor dem Zerplatzen der Eischale gewahrt man am oberen abgerundeten Ende die allmäßliche Entwicklung der hornigen Kopfhaut (Fig. 4.). Das Ende des Stiels ist knopfartig erweitert, wie dies aus den Abbildungen zu ersehen, der Knopf meist von derselben derbhäutigen Masse wie der Stiel selbst, bei Tryphon rutilator besonders groß, hornig, schwarz, spindelförmig, an einem Ende gabelförmig gespalten, am vorderen gekrümmt und vor der stumpfen Spitze verdickt.

Bei Sphinctus serotinus ist der kurze Stiel der Eischale seitlich inserirt (Fig. 5.), wie dies, nach Deg e e r's Abbildung auch bei Paniscus der Fall ist (Fig. 7.). Die Lage des Knopfes im Eileiter ist aus den Figuren 8 (der isolirte Eileiter von Tr. rut-tilator von unten gesehen) und 9 (der ganze Legstachel im Durchschnitt) zu entnehmen.

Bei den Tryphonen mit Banchus-ähnlichem Hinterleibe (Tr. [Monoblastus n.] caudatus Fig. 3. mergator, rutilator, elongator) kommt stets nur ein meist gelbliches Ei im Legstachel vor und ich habe sie hier nie anders als ungeöffnet gefunden. Dasselbe ist bei Sphinctus der Fall. Bei den Tryphonen mit Ichneumonen-ähnlichem Hinterleibe hingegen (bei Tr. [Polyblastus n.] cancer Fig. 1., varitarsus, albovinctus, pinguis) finden sich deren mehrene, und zwar in verschiedenen Entwickelungs-Stadien. Die äußersten Eier sind die zuerst gelegten, die Eischale ist bereits geplatzt, und die Larve sieht mit dem großen schwarzen hornigen Kopfe ans der Spalte hervor. Die mittleren Eier sind zwar nicht geplatzt, aber die schwarze Hirnschale scheint an der Spitze durch, und dunkelt diese. Die hintersten jüngst gelegten Eier sind ganz und einfarbig weifs oder gelb — letzteres nur bei Tr. pinguis. Hier hat man also die engste Entwicklung der gelegten Eier in fortlauender Veränderung vor Augen, die darin be-
ruht, daß die Spitze der Eischale der Länge nach spaltet (Daß dies auch bei der von Degeer beobachteten Larve der Fall ist, zeigt seine Abbildung, Fig. 16. unserer Tafel, und es ist wohl ein Irrthum, wem Degeer sagt, daß die obere Hälfte der Eischale abfalle), worauf mit dem allmäßlichen Wachsen der Larve, diese immer weiter mit dem Körper aus dem Kelche hervortritt. Bis jetzt ist es mir nicht geglückt, die weitere Entwicklung und Lebensweise der Larven zu erforschen, doch können hier Degeer's Beobachtungen mit ziemlicher Sicherheit als ergänzend angenommen werden. Fig. 17. habe ich den Kopf und die ersten Segmente einer Selandrien-Raupe meiner Sammlung, mit dem, genau zwischen Kopf und Prothorax abgelegten gestielten Ei einer Schlupfwespe abgebildet.

Bei einiger Behutsamkeit gelingt es ganz gut, die lebende Larve zwischen Glasplatten aus ihrer Schale herauszudrücken, ohne daß dabei der Körper verletzt wird, der demnach mit der Schale selbst in keiner Verbindung steht. Fig. 11. habe ich die in der Eischale steckende Larve mit hervorstehendem Kopf von der Seite, Fig. 12. von unten, Fig. 13. die Larve außer der Eischale abgebildet. Die Kopfbildung der Larven ist so eigenthümlich, daß sie sich in dieser Hinsicht mit keiner anderen Aderflüglerlarve auch nur entfernt vergleichen lassen *). Der Kopf

bildet, in den mir allein bekannten früheren Entwickelungsstadien über ¼ der ganzen Körperlänge. Seine Längenachse ist nicht parallel der des übrigen Körpers, sondern durchschneidet diese in einem Winkel von circa 140 Graden, so daß der ganze Kopf unbeweglich nach der Brust gekrömt erscheint. Der ganze obere Theil des Kopfes wird von zwei Hirnschalen (Fig. 15. a. a.) und einem langgedehnten hornigen Kopfschildchen (Fig. 15. b.) zwischen denselben beschützt. Schon darin liegt ein wesentlicher Unterschied von allen übrigen mir bekannten Aderlügler-Larven, daß das Kopfschild, welches sonst stets nur bis zur Mitte des Kopfes hinaufsteigt (Fig. 17.), hier bis zum Hinterrande der Hirnschale sich erstreckt, und letztere vollständig trennt. Der Hirnschädel selbst ist von einer derben hornigen Substanz und glänzend schwarz. Etwas unter der Gesichtsmitte, dicht neben dem Kopfschildchen steht jederseits ein außergewöhnlich kleiner Fühlerfleck. Augen fehlen wie bei allen Aderflüglerlarven, mit Ausnahme der Blattwespen, gänzlich. Dem vorderen Rande der hornigen Kopfschale ist eine häufige ungefärbte Oberlippe angehängt (Fig. 12. 14. 15. c.), welche die Mandibeln bedeckt, in der Mitte zwei kleine dunkle Hornflecke trägt. Die Mandibeln sind lang, ungezähnt, scharf zugespitzt, gewöhnlich gebildet, aber in der Mitte so stark gebogen, daß sie mit den Spitzen in den Mund hinein stehen, also wahre Haken. Ihrer Basis ist der gewöhnliche Kauknochen angehängt. Die Untermal (d.) ist weich, häufig, warzig; die gewöhnlichen Tasterwärzchen habe ich nicht aufgefunden. Dieser ganze Theil ragt bedeutend, fast sackähnlich hervor, und ist beim lebenden Insekt in einer steten Bewegung, indem die Membran abwechselnd eingezogen und aufgebläht wird, eine Verrichtung, die mit dem Geschäft des Saugens in Verbindung zu stehen scheint. Die Basis der Untermal wird durch das gewöhnliche Zungenbein, dessen unterer Theil breit, hornig, dreispitzig ist (Fig. 11. 12. e.), gestützt; die Spinnöffnung hat eine hornige Einfassung; den gewöhnlichen Spinnknochen an den Seiten des Zungenbeins vermisste ich hingegen. Fig. 14. habe ich zur bessern Versinnlichung den Kopf der Larve etwas von der Seite und schräg von vorn gesehen, Fig. 15. von oben und schräg von hinten gesehen in Umrissen dargestellt.

Ungewöhnlich ist ferner die Stellung der Prothorax-Stigmen,
welche, wie dies die Figuren 13 und 15. nachweisen auf dem Rücken des Prothorax, dicht hinter der Hirnschale nahe bei einander stehen. Der übrige, madenfarbige, mitunter gelber, zwölfringige walzige Körper hat nichts weiter Auszeichnendes, und mag die unter No. 13. gegebene Abbildung für das Weitere genügen.

Nur die eiertragenden Tryphonen mit vielbeeriger Trauhe lassen sich mit Bestimmtheit von Tryphon Grhst. trennen, indem die Klauen beider Geschlechter, wie bei den Ophionen bis zur Spitze stark kammzähnig sind (Fig. 18. von Tr. cancer n.), ein Charakter, den schon das einfach geschärfte Auge herausfindet. Ich würde daher für diese, schon wegen ihres, sowohl in Form als Wesen so sehr abweichenden Larvenstandes, bestimmt von Tryphon zu trennende Gruppe den Gattungsnamen Polyblastus vorschlagen. Die Klauen der Tryphonen mit einfachem Ei im Legstachel sind, wie die aller übrigen Tryphonen nur an der Basis mit einigen zugespitzten Zähnen besetzt, die gleich so tief stehen, daß sie ohne Zergliederung selten wahrnehmbar sind (Fig. 19.). Will man diese von Tryphon Grhst. trennen, so ist die Banchus-ähnliche Form des Hinterleibes und der hervorstehende Legstachel, der einzige beachtenswerthe Charakter der selben. Man könnte die Gruppe als Mono blasts bezeichnen.

Schließlich erlaube ich mir noch die Bemerkung in Beziehung auf das oben angekündigte Werk, daß dasselbe nach folgendem von mir entworfenen System der Aderflüglern

entworfen und geordnet ist. Die erste Abtheilung wird die Einleitung zur Geschichte der Aderflügler und, nebst meinen Erfah-
rungen über den Larvenstand der Blatt- und Holzwespen, eine vollständige Uebersicht sämtlicher bisher bekannt gewordenen, deutschen Aderflügler dieser Gruppen und zwar 381 Blattwespen-Arten, worunter über 96 Arten neu entdeckt oder noch unbeschrieben sind, und 20 Holzwespen-Arten, gewähren. Die bereits beschriebenen, im Larvenstande noch nicht beobachteten, oder ökonomisch unwichtigen Arten sind nur mit der Diagnose bezeichnet, während alle von mir neu aufgefundenen oder bisher unbeschriebenen, so wie die schon früher bekannt gewordenen, ökonomisch wichtigen Insekten speziell beschrieben sind.

Beobachtungen über den Dachs.

Von
Stanisl. Const. v. Siemuszowa-Pietruski,
mehrerer gelehrten Gesellschaften Mitgliede.

III. Jahrg. 1. Band. 11
Steganotoma*) nov. gen.
von
Dr. F. H. Troschel.
(Hierzu Taf. III. Fig. 12—13.)

Unter den Conchylien des französischen Reisenden Lamare Picquot, dessen Sammlung, meist aus ostindischen Arten bestehend, auf Befehl Sr. Maj. des Königs für die zoologischen Museen der Preußischen Universitäten angekauft ist, befindet sich eine Art, welche, obgleich der Gattung Cyclostoma nahestehend, doch unbedingt eine eigene Gattung bilden muß. Sie zeichnet sich durch eine ganz eigen tümliche Bildung der Apertur aus, was offenbar mit den Organen des Thieres in genauem Zusammenhange steht. Um so mehr ist es zu bedauern, daß nur die Schalen vorhanden sind, da doch gewiß eine Untersuchung des Thieres interessante Resultate geben würde.

Das Charakteristische der Gattung besteht in einem tiefen Einschnitt am Labrum, der oben dicht an der vorhergehenden Windung sich findet. Er krümmt sich ein wenig der früheren Windung zu und ist unten abgerundet, wie Taf. III. Fig. 13 zeigt. Schon das Vorhandensein dieses Einschnittes würde die Trennung von der Gattung Cyclostoma veranlassen, wenn auch keine andere Kennzeichen hinzukämen, und es würde dann diese neue Gattung Steganotoma zu Cyclostoma Lam. etwa in dem Verhält nisse stehen, wie Pleurotoma zu Fusus, welche sich im Wesentlichen nur durch das Vorhandensein oder Fehlen eines ähnlichen Einschnittes im Labrum unterscheiden. Es ist jedoch die Bildung der Apertur der vorliegenden Schalen nicht so einfach, und

*) von οὐτυγανός bedeckt, mit einem Dache versehen, und τομή der Einschnitt.
etwas Analoges ist mir in der Conchylologie nicht bekannt. Es scheint nämlich, als wenn das Gehäuse aus zwei ineinandersteckenden gewundenen Röhren bestünde, deren jede einen besonderen Mundsaum hätte. Der innere ist ziemlich scharf, nicht umgelegt, steht etwas vor dem äußern vor, und er ist es, in dem allein der charakteristische Einschnitt sich befindet. Der äussere Rand dagegen ist etwas umgelegt, daher etwas kürzer und bildet so fast in dem ganzen Umfange der Apertur einen scharfen Wulst. An der Stelle, welche dem Einschnitt des innern Mundsaumes entspricht, erhebt sich der äussere in eine starke Wulbung, und bildet so gleichsam ein Dach über dem Einschnitt, so daß die entsprechenden Theile des Thieres, die wir leider nicht kennen, durch die Spalte treten können, ohne deshalb einer festen schützenden Hülle zu entbehren (Taf. III. Fig. 12.).

darüber in diese Gattung gehören würde, wenn sie auch einen Deckel ganz anderer Art hätte. Deshalb bleibt auch die Beschreibung des Deckels bis zu der Beschreibung der Art vorbehalten.

Nach allem diesem würde sich der Gattungscharakter etwa so stellen lassen:

Steg anotoma.

Testa —, anfractibus cylindraceis, apertura rotunda, labro prope anfractum praecedentem incisura profunda praedito, incisura lamina distante extus tecta. Operculum.

Hierher als einzige bis jetzt bekannte Art:

Steg anotoma picta.

St. testa depressa, suborbiculari, solida, albida, fascia fusca cineta, maculis striisque fuscis fulgurantibus radiatis picta; supra subplana, spira prominula, infra late umbilicata; anfractibus subsenis, cylindraceis; suturis profundis; operculo acetabuliformi.

Das Gehäuse ist niedergedrückt, fast kreisförmig, fest, wenig durchscheinend, wenig glänzend. Auf dem schmutzig weißen Grunde finden sich außer einer braunen Binde, welche auf der Mitte der Windungen verläuft, Flecke und blitzähnlich geschlängelte Linien von derselben Farbe, die strahlenförmig vom Mittelpunkte auslaufen, doch so, daß sie auf der oberen Fläche breiter und dunkler, auf der unteren dagegen schmaler und heller sind. Die obere Fläche ist fast eben, und die Spira springt nur wenig hervor; die untere stark concava, und bildet einen offenen weiten Nabel, in dem man fast alle Windungen verfolgen kann. Die Windungen sind genau cylindrisch, nehmen allmählich an Weite zu, und legen sich nur in einer sehr schmalen Fläche einander, so daß die ruunde Gestalt der Mündung durchaus nicht durch die vorhergehende Windung verändert wird, und daß sowohl auf der oberen als unteren Fläche tiefe Nähle entstehen. Die Mündung ist schon im vorigen genau beschrieben worden.

Thier —?

Durchmesser der Schale 8" (Par. M.); Höhe der Schale 3¼", Durchmesser des Deckels 2¾", Höhe des Deckels 1½".

Der Deckel (Taf. III. Fig. a, b, c.) zeichnet sich durch eine saugnapfahnliche Gestalt aus. Die äußere concave Fläche ist glatt, glänzend, braun. Auf der innern convexen Fläche windet sich eine Lamelle in sieben bis acht ziemlich engen Windungen schrau-
benförmig nach dem Gipfel oder Mittelpunkt hin, und lässt oben einen mehr oder weniger großen runden, braunen, etwas glänzenden Fleck frei, der durchscheinend ist.

Fundort: Bengalen, gesammelt von Lamare Picquot.

Neue Süßwasser-Conchylien aus dem Ganges von Denselben.

Limnaeus Lam.

1) Limnaeus patulus nov. sp.

L. testa imperforata vel vix rimata, ovato-acuta, tenuissima, pellucidissima; spira mediocri, acuta; ultimo anfractu ventricoso, \(\frac{3}{4} \) testae longo, margine exteriore patulo. Anfr. 5—6.

Das Gehäuse ist ungelängt, länglich eiförmig, mit ziemlich ausgezogenem sehr spitzem Gewinde, hell gelblich hornfarbig, mit einem Stich ins Rotte, sehr leicht und zerknirschlich, seidenartig glänzend, regelmäßig und natt der Länge nach fein gestreift. Von den 5—6 Umgängen ist der letzte bei weitem der größte, so daß er \(\frac{3}{4} \) der ganzen Schale ausmacht; er ist nicht mit einer stumpfen Kante, wie dies bei L. stagnalis gewöhnlich ist, sondern, sondern wölbt sich flach von der Spira zur Basis hin. Die Spira, deren Windungen etwas gewölbt, und in merklichen Nähten vereinigt sind, ist kegelförmig und geht in eine sehr feine Spitze aus, die meist dunkelbraun und glänzend ist. Die Mündung ist länglich eirund, bei ganz ausgewachsenen Exemplaren halbrund, immer vorn breit gerundet, hinter einen spitzen Winkel bildend. Die Columella verhält sich ganz ähnlich wie bei L. stagnalis, und ihr Rand ragt etwas in die Mündung hinein. Die Columellarplatte liegt fest an der vorletzten Windung an, und läßt nur selten die Spur einer Nabelritze. Der Außenrand ist sehr weit vorgezogen, besonders nach vorn zu.

Länge des Gehäuses 20\(" \); Breite der letzten Windung 11\(" \); Höhe der letzten Windung 6\(" \); Länge der Mündung 15\(" \).

Thier: — ?

Anm. Diese Art, welche sich durch besondere Nettigkeit auszeichnet, ist am meisten dem L. stagnalis verwandt, unterscheidet sich jedoch wesentlich von ihm durch den vorgezogenen Außenrand bei erwachsenen Exemplaren, durch die kürzere Spira, und durch die geringe Wölbung des letzten Umganges.

2) Limnaeus sulcatus nov. sp.

L. testa rimata, ovata, acuta, tenui, longitudinaliter sulcata; spira mediocri, acuta; ultimo anfractu \(\frac{3}{4} \) testae longo; apertura ovata, plica columellari profunda. Anfr. 5—6.

Das Gehäuse ist eiförmig mit ausgezogenem spitzem Gewinde,

*) Die Massen sind in Pariser Linien angegeben.
hellgelb hornfarbig, und geht durch Ausbleichen gern in eine milchweiße Farbe über, wobei es jedoch seinen Glanz ziemlich behält; es ist zerbrechlich, aber doch in geringerem Grade, wie \textit{L. patulus}, auch bei weitem weniger durchsichtig, zumal in dem so eben erwähnten milchweissen Zustande, in dem sich die meisten vorhandenen Exemplare befinden, und zu dem selbst die frischsten schon hineigen. Die letzte Windung ist bauchig, wölbt sich ziemlich flach von der Spira zur Basis hin, und ist der Länge nach regelmäßig und seicht gefurcht. Diese Furchen machen einen Bogen nach dem Außenrande der Apertur hin, was darauf hindeutet, daß sie durch das fortschreitende Wachsthum der Schale entstanden sind; parallel mit diesen Furchen ist die Schale, wenn man sie durch die Loupe betrachtet, fein gestreift. Die Spira, welche außer der letzten noch aus 4—5 Windungen besteht, die durch eine bemerkliche Naht verbunden werden, ist kegelförmig, und geht in eine feine Spitze aus, die mit einem dunkelbraunen hellglänzenden durchsichtigen Punkte, der ersten Windung, endigt. An der Spira bemerkt man ebenfalls, wenigstens an den späteren Windungen derselben, die Furchen. Die Mündung ist länglich eirund, vorn ausgerundet, hinten spitz. Die Columellarfalte ist sehr tief, und in ihr schließt sich die Columellarplatte nicht genau an die Mündung an, sondern läßt einen sehr deutlichen Nabelrritz offen. Der Außenrand ist nie vorgezogen, sondern im Gegentheil häufig in der Mitte etwas ange- drückt, scharf und schneidend.

Länge des Gehäuses $15''$; Breite der letzten Windung $8''$; Höhe der letzten Windung $7''$; Länge der Mündung $10''$.

Thier: — ?

3) \textit{Limnaeus amygdalum nov. sp.}

Das Gehäuse ist gewöhnlich ungehäult, eiförmig, mit ausgezogenem spitzigen Gewinde, strohgelb oder sagofarbig (cycaceus), mit Wachsglanz. In der Festigkeit steht es dem \textit{L. sulcatulus} kaum nach, doch ist es um etwas mehr durchscheinend. Die letzte Windug ist bauchig, wölbt sich nicht eben stark

Länge des Gehäuses 13''; Breite der letzten Windung 8''; Höhe der letzten Windung 6''; Länge der Mündung 9''.

Thier: — ?

Anm. Diese Art ist, wie aus der Beschreibung hervorgeht, eine gut unterschiedene. Es befinden sich unter den vorhandenen Exempla- ren zwei verschiedene Färbungen, so dass man geneigt sein könnte, sie als verschiedene Arten zu betrachten, da sich kann ein Uebergang von einer Farbe in die andere findet. Da jedoch dies der einzige Un- terschied ist, der sich bei genauerer Untersuchung ergiebt, so scheint es, dass sie als Varietäten zu einer Species gestellt werden müssen. Es kann ja auch eine Lokalverschiedenheit leicht auf die Färbung der Schale einwirken. Wir unterscheiden also

a) *Var. colore straminea* die sich durch ihre strohgelbe Farbe leicht
kenntlich macht, und bei der die Columellarplatte meist nur sehr schwach angedeutet ist;

\(\beta \) var. cycacea wegen der dem getrockneten Sago so sehr ähnlichen Farbe. Bei ihr ist die Columellarplatte stärker, und schon wegen der Farbe schärfer begrenzt und kenntlicher.

4) **Limnacus prunum nov. sp.**

L. testa ovata, rimata, subglabra, subtiliter striata; spira globoso-acuta, anfractibus convexis, suturis profundis; ultimo anfractu testae dimidium superante; apertura ovato-acuta. Anfr. 6.

Länge des Gehäuses 12""; Breite der letzten Windung 7""; Höhe der letzten Windung 6""; Länge der Mündung 8"".

5) **Limnacus cerasum nov. sp.**

an Lymnea luteola Lam.?

L. testa subglobosa, rimata; spira prominula, acuta; ultimo anfractu ventricoso \(\frac{3}{4} \) testae longo; apertura ovato-acuta. Anfr. 6.

Das Gehäuse nähert sich schon sehr der Kugelgestalt, was durch die stärkere Wölbung der letzten Windung und durch die weniger ausgezogene Spira hervorgebracht wird. Obgleich in vielen Beziehungen eine Verwandtschaft dieser Art mit der vorhergehenden nicht zu läugnen ist, so berechtigt doch schon die Verschiedenheit der Gestalt, abgesehen von andern kleinen Un-
terschieden, sie als verschiedene Species anzusehen, und da sich beide in der Form etwa verhalten, wie die Pflaume zur Kirsche, so haben wir daher Gelegenheit genommen, sie mit diesen Namen zu belegen. Die folgende Art ist ihnen auch verwandt, und bildet in Hinsicht auf den Bau der Schale ein Mittelglied zwischen beiden, doch ist sie mit keiner von beiden zu verwchseln. Das Gehäuse ist ferner dünn, zerbrechlich, hell hornbraun, glänzend, durchscheinend, meist der Länge nach mit gebogenen, glatten, seichten Furchen versehen, die durch häufige kleine Querhervorragungen gern ein gegittertes Ansehn gewinnen. Von den sechs Windungen ist die letzte bei weitem die größeste, und wölbt sich ziemlich stark von der Spira zur Basis hin. Die Spira ist kurz und ziemlich spitz. Die Windungen derselben sind weni- ger gewölbte, als bei der vorigen Art; und deshalb die Nähte weniger, obgleich immer noch merklich, vertieft. Auch in der Gestalt weicht die Spira von der der vorigen Art ab, indem bei L. prunum die Wölbung derselben von der letzten Windung zur Spitze convex, bei L. cerasum dagegen concav ist. Die Mündung ist eiförmig, vom breit ausgerundet, hinten spitz. Die Columellarplatte ist breit umgelegt und dunkler als die Schale, und läßt in der nicht eben tiefen Columellarfalte einen sehr geringen Nabelrith offen.

Länge des Gehäuses 10''; Breite der letzten Windung 7½''; Höhe der letzten Windung 6''; Länge der Mündung 8''.

Thier: — ?

6) Limnaeus nucleus nov. sp.

L. testa ovata, vix rimata, cornea; anfractu ultimo ¾ testae longo, impresso; apertura ovata, margine exteriore impresso subcordata; margine columellari reflexo. Anfr. 6.

Das Gehäuse ist eiförmig, und erhält durch den Eindruck in die letzte Windung ein fast flaschen- oder birnförmiges Ansehn. Es ist im Verhältniss zu den übrigen Limnaeern fest, matt glänzend, und etwas durchsichtig an der letzten Windung, nicht aber an der Spira, welche fast immer mit einem leichten schwärzlichen Ueberzuge, der sich auch häufig bis auf die Hälfte der letzten Windung erstreckt, bekleidet ist. Von den 6 Windungen ist die letzte die größeste, und nimmt etwa ½ der Länge des Gehäuses ein. Sie ist ruudum nicht gleichmäßig von der Spira
zur Basis gewölbt, sondern etwas eingedrückt, wodurch, da in den Nähten der Ansatz zu einer bedeutenden Wölbung genommen wird, die Andeutung zu zwei stumpfen Kanten entsteht, von denen die nach der Spira zu gelegene die bemerklichere ist. Die Spira hat etwas gewölbte Umgänge, und vertiefe Nähte, doch nicht so stark, als bei L. pereger, mit dem man die in Rede stehende Art noch am ersten vergleichen könnte; sie endet spitz. Die Mündung ist länglich, am Außenrande seicht herzförmig ausgeschnitten; der Columellarand legt sich um; die Columellarplatte ist weit ausgebreitet, dick, von hellerer Farbe als das Gehäuse, und lässt keinen oder doch kaum einen Nabelrits in der vertieften Columellarfalte.

Länge des Gehäuses 10"; Breite der letzten Windung 7"; Höhe derselben 6"; Länge der Mündung 7".

Thier: — ?

7) Limnaeus impurus nov. sp.

L. testa ovato-oblonga, rimata, tenui, subtiliter striata, fusca, subolivacea; spira mediocri, acuta, suturis satis excavatis; ultimo anfracta subventricoso, testae diniidium superante, apertura ovata, plica columellari nulla vel exigua. Anfr. 5.

Länge des Gehäuses 7"; Breite der letzten Windung 4"; Höhe derselben 3"; Länge der Mündung 4".

Thier: — ?

Anm. Diese Art hat die meiste Verwandtschaft mit L. fuscus Pfeiff. und L. cinctus Nob., unterscheidet sich jedoch wesentlich von beiden
durch die mehr bauchige letzte Windung, die schwächere Columellar-
alte und die braungrüne Farbe.

Paludina Lam.

1) **Paludina obtusa nov. sp.**

P. testa perforata, ventricosa, solida, subglabra, carneo-vi-
rente; spira exserta, apice obtuso; anfractibus quinis, inflatis,
suturis profundis.

Das Gehäuse ist genabelt, bauchig mit sehr stumpfem Apex,
est, wenig durchscheinend, hellhorngrün, fast glatt, durch die
Loupe gesehen äußerst fein gegittert. Die fünf Umgänge nehmen
schnell an Weite zu, sind stark gewölbt, und lassen daher sehr
tiefe Nähte zwischen sich. Auf der letzten Windung bemerkt
man bei ganz alten Exemplaren durch schwürzliche Linien be-
merkliche Absätze, welche durch unterbrochenes Wachsthum ent-
standen sind. Ein Kiel fehlt, doch ist die letzte Windung nach
der Basis zu ein wenig gedrückt, so dass ganz dicht um den
Nabel herum ein Winkel entsteht. Die Spira ist ausgezogen,
hat aber eine sehr stumpfe Spitze. Mündung eiförmig, schräg,
innen weiß, hinten ziemlich deutlich, vor undeutlich gewin-
kelt. Der schwürzliche Mundsaum ist wegen der sehr dicken
Columellarplatte vollständig. Der Deckel ist leider an keinem
Exemplare vorhanden.

Länge des Gehäuses bis 10½"; Durchmesser der letzten Win-
dung bis 9"; Länge der Mündung 5". Diese Maasse sind nach
den größten vorhandenen Exemplaren genommen, die übrigen
sind meist nur 6" lang, die andern Maasse im Verhältniss.

Thier: — ?

Anm. Diese Art könnte nur allenfalls mit P. unicolor Lam. und
P. carinata Swains. verglichen werden, unterscheidet sich aber sehr gut
von erster durch die vollkommen gerundeten Windungen der Spira, die
mehr vertieften Nähte, und den stumpfen Apex; von letzterer durch das
Fehlen des Kiel, die stärkere Wölbung der Windungen, die bei weitem
tieferen Nähte, den stumpfen Apex, durch die beträchtliche Columellar-
platte und das Vorhandensein des Nabels.

2) **Paludina conica nov. sp.**

P. testa conico-acuta, sublaevi, subpellucida, pallide cornea,
fasciis quaternis fuscis cincta; spirae anfractibus planis, suturis
parum excavatis; ultimo anfractu subventricoso. Anfr: 8.
Die Schale dieser niedlichen Paludine ist spitz kegelförmig, an der Basis abgerundet. Sie ist fast glatt, mit ganz feinen Längsstreifen versehen, etwas glänzend und hellhorngelb, etwas durchscheinend. Die Spira, welche außer der letzten noch aus 7 wenig convexen Windungen besteht, ist sehr spitz; die letzte Windung ist etwas bauchig und mit 4 braunen schmalen Binden, die aber oft bis zum Verschwinden matt werden, umgeben. Die Mündung ist fast eirund mit kaum verdickten Rändern. Die Columellarplatte tritt kaum so weit vor, wie die Ränder der Mündung, so daß ein ganz kleiner Nabel vor ihrer Mitte offen bleibt.

Länge 4½"; Durchmesser der letzten Windung bis 3¼"; Länge der Apertur 1½".

Thier: — ?

Anm. Eine Varietät mit einer scharfbegrenzten weißen Binde auf der Mitte der letzten Windung scheint nicht selten zu sein.

Melania Lam.

1) *Melania varicosa* nov. sp.

M. testa turrita, olivacea; anfractibus subcarinatis, parte superiore longitudinaliter costatis, parte inferiore transversim sulcatis, ultimo subventricoso, varices irregulares formante. Aufr. 13.

Das Gehäuse ist thurniförmig und bei älteren Exemplaren ist die Spitze meist etwas abgebrochen; es ist etwas durchscheinend, von olivenbrauner Farbe, und von größerer oder geringerer Dunkelheit; gewöhnlich sind die älteren Exemplare die dunkleren. Die Windungen sind in der Mitte stumpf gekielt, und werden dadurch in zwei Hälften geteilt, die sich in Ansehung ihrer Oberfläche sehr von einander unterscheiden. Die der Spira anliegende Hälfte ist nämlich regelmäßig der Länge nach gerippt, die der Basis anliegende Hälfte ist quer gefurcht. Die Windungen legen sich so aneinander an, daß der Kiel nahe an der Naht einer jeden Windung frei heraussteht; daher denn die Spira längsgerippt mit wenig gewölbten Windungen aber sehr vertieften Nähten erscheint. Die Nähte sind nicht bei allen Exemplaren gleich tief, zuweilen jedoch so, daß die Schale das Ansehn einer Menge in einander geschobener Kegel gewährt. Die letzte Windung ist fast bauchig und zeichnet sich in der Regel durch
eine stark hervorstehende unregelmäßige Varices aus; die vor-
letzte Windung theilt diese Eigenschaft zwar zuweilen mit der
letzten, doch ist dies nicht häufig; daher denn auch jungen Ex-
emplaren die Varices fehlen. Die Mündung ist innen weifs, ei-
rund; die Columellarplatte dünn, aber deutlich vorhanden; der
Außenrand ist scharf, schneidend, und nach der Basis zu sehr
weit vorgezogen.

Länge der Schale bis 30″; Durchmesser der letzten Win-
dung 10″; Länge der Mündung 9″.

Thier: — ?

Anm. Als Varietät sehe ich ein Exemplar an, welches sich durch
lebhabte Färbung, durch das gänzliche Fehlen der Varices und dadurch
auszeichnet, daß die Längsrrippen auf den Windungen nicht bis zur Naht
mit der vorhergehenden Windung reichen, sondern früher in stark vor-
tretenden spitzen Hückern auftreten, und so noch eine glatte Vertiefung
bis zur Naht lassen, in deren Mitte eine schwache Querleiste verläuft.

2) Melania adspersa nov. sp.

M. testa turrita, apice truncata, subpellucida, transversim
sulcata, sulcis superioribus anfractus ultimi créberrime obsoletis,
longitudinaliter striata, fusco-viridi, maculis fuscis longitudinali-
bus raris adspersa; anfractibus convexis, denis, suturis excavatis.

Das Gehäuse ist thurmiform mit abgebrochener Spitze; es
ist etwas durchscheinend, was jedoch häufig durch einen roth-
braunen Ueberzug wegfällt; es ist quergefurcht, etwa 10 Furchen
auf jeder Windung der Spira. Die Furchen der letzten Windung
sind oft nach hinten zu sehr gering, so daß der Theil der letz-
ten Windung, welcher der Spira zunächst liegt, fast glatt wird;
es ist der Länge nach unregelmäßig gestreift. Die Farbe ist ein
etwas ins Braune übergehendes Grün, mit seltenen länglichen
braunen Flecken bestreut. Dicht um die Columella herum win-
det sich eine ¾ breite braune Binde, die, wenn gleich bei meh-
ern Melanien vorhanden, doch bei der vorliegenden besonders in
die Augen fällt. Die Spira ist sehr weit ausgezogen, und besteht
außer der letzten noch aus 9 gewölbten Windungen, die durch
vertiefte Nähte vereinigt werden. Die Mündung ist eiförmig,
innen weifs; die braune Binde in der Nähe der Columella ist
innen sichtbar. Die Columellarplatte ist als dünner Anflug vor-
handen.
Länge der Schale 15’’; Durchmesser der letzten Windung 5’’; Länge der Mündung 5’’.

Thier: — ?

3) **Melania lineata nov. sp.**

M. testa conica, exserta, tenui, subdiaphana, anfractibus applanatis, lineis elevatis spiralibus 7—8, quarum superiores ple-rumque tuberculatae sunt, cinetis; apertura ovato-acuta. Anfr.10.

Länge des Gehäuses 10’’; Durchmesser der letzten Windung 4’’; Länge der Mündung 4½’’. Thier: — ?

_Ne-
Neritina Lam.

1) *Neritina hamuligera* nov. sp.

N. testa globoso-oblonga, crassa, alba, fasciis et lineis fluvuosis longitudinalibus picta, sub epidermide pellucida; viridifusca; spira mediocri; aperture alba; saepe callo hamuliformi insignito; margine columnari denticulato, fulve maculato; operculi dente laterali bipartito. Anfr. 5.

Der Deckel ist auf der äussern Seite glatt und glänzend, und nur geringe Furchen, entsprechend dem fortschreitenden Wachs-
thum, sind bemerklich. Die innere Fläche ist ebenfalls glänzend; zur Seite steht ein starker platter oben abgestutzter Zahn, um den sich dicht eine erhabene Leiste im Halbkreise windet; die nach der geraden Seite des Deckels hin in einen fast eben so hohen Zahn ausläuft. In der Mitte des Deckels windet sich eine zweite Leiste entsprechend, die aber weniger bedeutend ist; dicht am gekrümmten Rande endlich ist die Spur einer dritten. Der Deckel von N. gagates hat mit dem vorliegenden außerordentlich viel Ähnlichkeit, doch ist er bei gleicher Breite länger, und der Hauptzahn ist kleiner. Die Länge des Deckels bei N. gagates ist 6½", die Breite 3½"; die Länge des Deckels von N. hamuligera 5½", die Breite 3½".

Länge des Gehäuses 12", Breite 10", Länge der Mündung 8½".

Thier: — 2) Neritina crepidularia Lam.

Lister Conch. tab. 601. f. 19.

N. testa oblonga, Navicellae similis, immaculata, spira brevi, obliqua, margini postico incumbente; apertura saturate flava, intus inerassata; labro acuto; margine columna medio 8—10 dentibus eremlato.

Länge des Gehäuses 8⅓"; Breite 5⅔", Höhe 5⅔".

Thier: — ?

3) *Neritina melanostoma* nov. sp.

N. testa ovata, Navicellae similis, spira brevissima, margini postico nunquam incumbente; apertura intus inerassata; labro acentissimo, marginem columellare circiter 25 dentibus denticolato, atro-fusco.

Länge der Schale 8⅓"; Breite 6⅔", Höhe 4⅔".

Thier: — ?

Anm. Unter den Neritin en befindet sich eine Gruppe, welche sich dadurch von den übrigen sehr auffallend unterscheidet, daß die Columellarplatte nach hinten in einen freien Rand ausläuft, der continuirlich mit dem Labrum zusammenhängt, so daß dadurch ein mehr oder weniger ovaler scharfer Rand entsteht, der fast die ganze Basis der Schale einnimmt. Hierdurch bekommen diese Conchyliden ein Ansehen, welches sehr auffallend an die Gattung *Naricella* erinnert. Von ihr unterscheiden sie sich jedoch wesentlich durch die kleinere Mündung, welche, indem der Columellarrand quer liegt, höchstens die Hälfte der Schale einnimmt, und dadurch, daß der Apex sich in schiefcr Richtung, und zwar von links
nach rechts zu, nach dem freien Hinterrande der Columellarplatte kümmt. Wahrscheinlich wird, wenn man die Thiere dieser Schalen kennen lernt, sich eine neue Gattung aus dieser Gruppe bilden lassen, was jedoch bis jetzt nur vermutet werden kann. Hierher gehören:

1) Neritina plumata Mke.
 Fundort: unbekannt.

2) Neritina mitrula Mke.
 Lepas neritoides Martini Conch. I. tab. XIII, fig. 133. 134.
 Fundort: Ostindien.

3) Nerita intermedia Desh.

4) Neritina melanostoma Nob. Sie unterscheidet sich von N. crepidularia Lam., Nerita intermedia Desh. u. N. mitrula Mke. besonders durch die Färbung und dadurch, daß die weniger gewundene und weniger nach rechts gekrümmte Spira nie auf dem Hinterrande aufliegt, sondern daß dieser frei vorragt, durch die fast punktförmige Gaumenschwiele und die grössere Anzahl scharferer Zähne auf dem Columellarrande.

5) Neritina crepidularia Lam. Sie unterscheidet sich von allen anderen durch die schmäleren länglichen Gestalt, die gleichmäßig braunviolette Farbe, die stark gekrümmte Spira, und die hochgelbe Farbe der Mündung.

6) Neritina auriculata Lam.

7) Neritina dilatata Brod.

Obgleich Neritina latissima Sow. den Übergang zu dieser Gruppe bildet, so kann sie doch nicht in dieselbe aufgenommen werden, da die seitlichen Vorwachstungen des Labrum bieten unter der Spira nicht mit einander verließen

Unio Retz.

1) Unio semiplicatus nov. sp.

U. coucha angulato-ovata, posterius altiore quam anterius, viridi, parte superiore plicata, margine inferiore intus incrassato; dentibus cardinalibus parvis, compressis, sinistrorum posteriori minore vel evanescente.
Die Muschel ist eiförmig, nach hinten höher werdend und dort drei stumpfe Ecken bildend. Sie ist grün gefärbt, doch nicht ganz gleichmäßig, indem einzelne Stellen mehr oder weniger ins Gelbe übergehen; von den Wirbeln laufen nach hinten zu auf jeder Schale drei dunkelgrüne Strahlen, von denen die unterste auf einer Art stumpfem Kiel liegt. Der Oberrand ist vorn ziemlich gerade und wendet sich dann in einem stumpfen Winkel schräg zur Hintern Spitze herab; der Vorderrand ist abgerundet; der Unterrand ist zuerst gerade und divergirt mit dem Oberrande nach hinten, dann macht er einen stumpfen Winkel und steigt schräg zu der hintern Spitze auf. Die Wirbel sind wenig aufgetrieben und mit dichten divergirenden Falten bedeckt, deren mittleren die Mitte der Schale nicht erreichen; die vorderen bilden sich vor den Wirbeln zu ziemlich scharfen Höckerehen und reichen bis zum Vorderrande; die hinteren sind weniger eng und erstrecken sich bis zu dem Hinterrande, so daß die ganze obere Hälfte der Muschel mit Falten bedeckt ist. Das Schloßband ist schmal und glatt. Innen ist die Muschel weißlich, etwas in Regenbogenfarben spielend; der untere Rand ist gewöhnlich stark verdickt. Die Schloßzähne sind klein, zusammengedrückt; in der linken Schale ist der hintere immer der kleinere und oft bis zum Verschwinden klein. Der vordere Muskeleindruck ist doppelt: der größere ist fast rund, hinter und unter desselben befindet sich ein zweiter ebenfalls runder fast punktförmiger Eindruck; der von dem ersteren ganz getrennt ist; der hintere Muskeleindruck ist ebenfalls ziemlich rund, wird aber durch einen nach vorn liegenden Einschnitt fast herzförmig.

Länge der Schale 13""; Breite 4½""; Höhe 7"".

Thier: — ?

Außer diesen sind durch Hrn. Lamare Picquot noch folgende schon beschriebene Süßwasser-Conchylien aus dem Ganges an das Königl. zoologische Museum gekommen:
1) Physa acuta Drap.
 Draparnaud: Hist. nat. des Moll.
2) Planorbis exustus Desh.
 Belanger: Voy. aux Ind. or. pl. 1, fig. 11—13.
3) Paludina Bengalensis Lam.
 P. Bengalensis Desh. in Belanger Voy. aux Ind. or. pl. 1.
 fig. 14—15.
4) Paludina carinata Swains.
5) Ampullaria globosa Swains.
6) Navicella elliptica Lam.
7) Unio marginalis Lam.
 Enc. meth. II. pl. 247. fig. 1, a. b. c.

Unsere Exemplare haben eine zu große Ähnlichkeit mit der
eben citirten Abbildung und dem im Museum vorhandenen Ex-
emplar, als daß man daraus eine besondere Species machen sollte,
zumal da der Fundort derselbe ist. Sie zeichnen sich aber da-
durch vor denselben aus, daß der Oberrand gerade ist, wogegen
er sich bei dem ächten U. marginalis Lam. etwas krümmt. Auch
die Gestalt weicht ab, indem das Hinterende bedeutend ausge-
zogen ist, weshalb ich eine Vergleichung der Maße hier beifüge:
 U. marginalis Lam.: Länge 29'', Höhe 15'', Dicke 9½''.
 U. marginalis var. rostratus Nob.: Länge 35'', Höhe 15½'',
 Dicke 9½—12''.

Außerdem verschwinden bei sonst gleicher Farbe und Skulptur
die gelben Randbinden entweder ganz, oder sind doch sehr un-
deutlich.

8) Unio corrugatus.
9) Cyrena Bengalensis.
Ueber südamerikanische Raupen, besonders über
die dortigen Brenn- und Giftraupen

von
C. Moritz.

Wer etwa die Ansicht hat, Raupen könnten als unvollkommene Larven etwa nur so viel Interesse haben, als eine in einen Blumentopf gepflanzte Zwiebel, deren Form und Farbe, Stengel und Blätter nicht in Betracht kommen, indem es nur um Erzielung der Blume zu thun ist, — der möchte als Reisender in einem fremden Welttheil die hier so unendlich mühsamere und müßlichere Raupenzucht mit wenig Eifer, auf rein mechanische Weise und somit ohne erheblichen Nutzen für die Wissenschaft selbst treiben. Um in einem fremden Welttheile sich mit Liebe dieser mühevollen, in ihrem Erfolge hier so zweifelhaften Beschäftigung hinzugeben, muß man dieser selbst schon ein gewisses Interesse abzugewinnen wissen. Obigen Vergleich mag man immer mit einiger Veränderung anwenden. Man betrachte die Raupe als Pflanze, die Puppe als Knospe, den Schmetterling als Blüthe, die Eier als Samen. Ein Botaniker wird die Blühe nicht ohne die Blätter einlegen und eben die Blätter, der Wuchs u. s. w. mancher Pflanzen, die selten nur oder unscheinbar blühn, haben oft das größeste Interesse für den Freund der Pflanzenkunde. Und was weiß oft der Entomolog von der großen Masse exotischer Bombyes, Noctuae etc., ja was läßt sich überhaupt von den verborgen lebenden nächtlichen Lepidopteren mehr sagen als zwei griechisch-lateinische Worte, worunter sie vielleicht in den entomologischen, unendlich längern Verzeichnissen als Don Juans große Liste, aufgeführt stehen! — denn ihre Blüthezeit ist kurz und einförmig, wie die Blühezeit der Gewächse. Lange dauernd ist dagegen ihr Pflanzenleben als Raupen und Puppe, ihre Nahrung bestimmt, ihre Lebensart, ihre Verwandlung eigentümlich und oft sehr merkwürdig.
Ferner wie in Europa jeder Forstmann und Gartenbesitzer, so kennt hier jeder Pflanzer, Indier oder Neger eine Menge Raupen, namentlich viele gesellschaftlich lebende Spinner-Larven, die er in lederfarbenen Beulein vor seiner Wohnung an den äußersten Zweigen der Fruchtbaume, oder in braunen Klumpen am Stamm derselben, oder beim Arbeiten in den Cacao- und Kaffeepflanzungen auf den Blättern der herabhängenden Erythrinen-Zweige oder wie grünen, bunten, schwarzen Pelzwerk ähnliche Massen am Stamm ruhend erblickt; er kennt die giftigen Eigenschaften vieler und — fürchtet alle. — Kaum weiß er jedoch etwas davon, daß diefer nur unvollkommene Larven eines vollkommenen Geschöpfes sind, geschweige das er diese selbst kennen sollte. Hierbei will mich bedüden, daß ein Insekt in diesem allgemein bekannten Zustande seiner langen Lebensperiode und seines eigentlichen Wirkens, wo es durch sein zerstörendes Gebiss, und seine anderweitigen Eigenschaften so mächtig in die Räder der Natur eingreift, eben sowohl und genauer noch von dem Freund der Entomologie beachtet zu werden verdient, als vom Indier und Neger.

Auf der andern Seite aber finden bedeutende Abweichungen und Eigenthümlichkeiten Statt.

Hierher gehört die sonderbarste mir bisher vorgekommene Raupe, deren Gestalt aber so eigenthümlich ist, daß ich sie durch einen eben so sonderbaren Vergleich vielleicht am deutlichsten machen kann. Man denke sich, d. h. im sehr verkleinerten Maasse, etwa von 1 Zoll Länge, einen Fuchsf- oder Eichhörnchenbalg flach ausgebreitet, den Schwanz hinten abgenommen und dafür an jeder Seite 5 dergleichen Schwänze, mit etwas nach hinten umgelegter Spitze, angesetzt, zwischen denselben kürzere Schwänze eingeschoben, so daß die Breite der Länge fast gleich kommt, den Rücken entlang 2 Reihen schwarze Haarknüpfe, einen braun verbränten Halskragen — so etwa sieht dieses Thierchen aus, nur muß die Farbe heller rotgelb gedacht werden. Ueber dieser kurzen dichten Behaarung erheben sich lange braune, oben mit einem Knopf (wie bei der Raupe von *N. Ahni*) versehene Haare; vorgegen jene kurzen Haare vielästig und durch Vergrößerung wie Moos erscheinen. Dieser ganze Pelz löst sich beim
Einspinnen der Raupe stückweise (wobei die Seitenschwänze ganz bleiben) ab und hängt um das mit einem Deckel sich öffnende Gespinst. Nach etwa 3 Wochen erscheint der Schmetterling, ein ächter *Bombyx*; es erschienen in diesen Tagen 2 ♂ und 1 ♀, bei denen die Geschlechtsverschiedenheit so groß ist, daß ♂ und ♀ fast nichts mit einander gemein haben als — das erste Fußpaar mit 2 rothen Wülsten versehen. Diese Raupe lebt im September und October auf der Oberseite der Blätter von *Malpighia crassifolia* et *cocclobaefolia* auf dürren sooxigen Höhen wachsend.

Auf letzteren Baume traf ich auch, jedoch leider nur in einem einzigen Exemplare, das nachher beim Einspinnen vertrocknete, eine noch etwas größere Raupe ganz von derselben Gestalt, doch pechschwarz wie die Stockflecke der Blätter, worauf sie sitzt, die Seitenschwänze noch etwas länger und an den Spitzen etwas umgerollt.

Sehr eigenthümlich in Gestalt und Lebensart ist ferner eine Abtheilung Raupen, deren Schmetterling sich am nächsten dem Gen. *Pygaera* O. Tr. anschließt, und die nach Art der Sackträger jedoch in einer von jenen Säcken durchaus verschiedenen, Kapsel wohnen, deren hintere Öffnung sie mit ihrer ungeheuren Schwanzklappe verschlossen halten. Diese Klappe kann gewissermaßen als Basis des langen Kegels gelten, den ihr hinten unformlich dicker, nach vorn allmählich verschmälter Körper bildet. Die Haut ist chagrinirt, die ersten Gelenke nach Art der Sacktragerraupen mit hellern Streifen oder Flecken ausgezeichnet, die Klappe dagegen graubraun wie ihre Wohnung. Eine Raupe dieser Abtheilung, die auf *Malpighia crassifolia* lebt, verfertigt ihre Wohnung auf folgende Art. Sie sucht die Seitenränder eines Blattes ihrer Nahrungspflanze, die ohnehin schon etwas nach oben gebogen sind, oberhalb zusammenzupinnen, gelingt dies wegen Steifheit des Blattes nicht, so nagt sie davon einen Theil ab und fügt nun ein anderes wohlabgepaltes Blattstück der Länge nach ein, so daß hiernach die Kapsel bald 1 bald 2 Längsnähte bekommt, die jedoch so genau schließen, daß dieselbe, zumal da innen die Wände durch eine dicke Lage Excremente und darüber gelegte innere Decke stellenweis bis zu ¼ Zoll stark werden, besonders von oben, wo man die starke Blattrope nicht
bemerkt, fast wie eine Nufsart aussieht. An beiden Enden ist
diese Kapsel schräg abgestutzt und hier jederseits mit einer niemals
geschlossenen runden Öffnung versehen, außer daß die hintere
durch die Afterklappe verdeckt ist. Sie wird so an beiden Enden
mit einigen kurzen aber stämmigen Bändern zwischen den Blättern in
der Schwebe wie eine Hangmatte aufgehangen. Die Raupe ver-
puppt sich darin, indem sie beide Öffnungen nur ein klein we-
nig verengt. Die Puppe liegt völlig frei, so daß sie durch Um-
kehren der Kapsel, bald nach oben, bald nach unten fallend das
Kopf- oder Schwanzende vor der Öffnung der Kapsel zeigt. —
Eine besondere Eigenthümlichkeit dieser Raupe sind noch 4 auf
der runzeligen Stirn im Trapez stehende kolbige Borsten etwa so
lang als der Kopf breit ist. Der nach 14 Tagen bis 3 Wochen
sich entwickelnden Bombyx von sanfter Chokolatfarbe hat nichts
mit der Gattung Psyche, dagegen mit der Gattung Pygaera
gemein, unterscheidet sich aber von letzterer wiederum durch
seine Stellung in der Ruhe, indem er nicht wie P. Curtula et Cons.,
die Flügel dicht um den Leib schließt, sondern nach Art
der Cidaria primata, dieselben seitwärts ausstreckt und eben so
den Leib aufwärts gebogen hält.
Ich übergehe eine zweite hierher gehörige Art, um noch
Einiges über die in Europa gänzlich unbekannte Klasse der
Brenn- oder Gift-Raupen
mitzuteilen. Es kann hier natürlich nicht von der Menge
hiesiger Haarräupen die Rede sein, deren kurzbrüchige Haare
mit feinen Aesten oder Widerhaken versehen, sich in die
Poren der zarteren Hauttheile einbohren, und Jucken, selbst
kleine Geschwüre z. B. an der Handwurzel in der Pulsgegend
erregen. Dergleichen kennt man unter den europäischen Räupen
ebensfalls. Ich meine hier diejenigen, dieser Zone eigenthümli-
chen Haar- und Dorn-Räupen, die mit ihren feinen Haar- oder
Dornspitzen willkürlich *) stechen und durch einfließendes
Gift (gleich dem Stich der Aculeata unter den Hymenopteren oder
dem Biss der Schlangen) einen heftig brennenden Schmerz und
unter gewissen Umständen Fieber zu Wege bringen können. Es

*) Mit dem Tode und nach Zusammen trocknen dieser Giftröhrchen
hört alle Wirkung auf.

1) Gift-Dornraupen, die zahlreichste Abtheilung, tragen auf jedem Gelenk queerüber 8 mit 10—30 und mehr Nebenästen besetzte dornähliche, mehr oder weniger lange Spitzen; ausgenommen, dafs auf jedem der 4 ersten Bauchfussglieder nur 6 Dornen stehen; so dafs der ganze Körper der Raupe mit 88 dergleichen Stachelbündelnu besetzt ist. Diese Dornen sind nicht hornartig, wie bei den Raupen mancher Tagfalter, sondern fleischig (trocknen über dem Feuer beim Aufblasen der Raupe zusammen), hohl, der Hauptstamm so wie die Nebenäste, alle für sich an der Wurzel beweglich. Mit den Giftzähnen der Schlangen dürfte vielleicht noch eine Analogie in der Bemerkung liegen, dafs nur ein Theil der Seitenäste, und zwar diejenigen, welche am Ende gleich dick bleiben und abgestumpft sind, die eigentliche etwa 1 Linie lange (zuweilen längere) feine Stechborste tragen, die man am häufigsten auf dem Vorder- und Hinterkörpren, und an den weniger ästigen Seitendornen über den Füssen, höchst einzelne aber nur auf den mittlern Rückendornen

*) Selbst ein sonst starker Mann versicherte, einst dasselbe Schicksal gehabt zu haben.
antrifft; dagegen die meisten Dornenäste des Mittelkörpers und einzelne ohne bestimmte Regel an den vorderen und hinteren Dornen bloß gleichförmig nadelartig zugespitzt sind. Diese letzteren, die ich unbewaffnet nennen will, sind an ihrer Spitze braun, doch heller gefärbt, als die dunkelbraune stumpfe Spitze der bewaffneten unterhalb ihrer Stechborste, welches stumpfe Ende stets durch dunkle Färbung stark abziichtet, so daß man leicht die Spitze der erstern für schwache unreife Knospen halten möchte, während bei letztern aus der gereiften, angeschwollenen, geöffneten Knospe die Stechborste hervorgetrieben wurde. Somit würden vielleicht die noch unbewaffneten Dornen bestimmt sein, bei etwamigem Verlust der Vertheidigungswaffe der übrigen, diese zu ersetzen, gleich den Keimen zu neuen Giftzähnen, welche die Schlangen neben ihrem ausgebildeten Gifzahn besitzen. Hierher gehören:

a) eine große an 4 Zoll lange und \(\frac{1}{2} \) Zoll dicke Raupen (von *Bomb. Janus* Cr.); grün wie das Laub der großen Erythrinen, der sogen. *Bucarcs*, die als Schattenbäume in allen Kaffee- und Cacaoplantagen von Venezuela stehen, auf welchen sie gesellschaftlich lebt. Uber den Gelenken stehen eine Anzahl kleiner brauner Querstriche und solche Flecke in den Einschnitten. Die Dornen stehen gleichmäßig nach allen Seiten gerichtet und ihr Stamm ist rosenrot. Sie verpuppt sich am Stamm in einem weitläufigen netzartigen schwarzbraunen Gespinst u. der Schmetterling erseheint unregelmäßig in 4 Wochen bis in eben so vielen Monaten. Um sich zu verteidigen, rollt sich die Raupen nach Art des Igels zusammen und dreht sich so, daß auf die Seite, wo sie berührt wird, möglichst viel Dornen mit ausgebreizten Aesten sich hinsträuben.

b) Etwas kleiner als die vorige, blau- auch gelblichgrün mit fleischfarbenem Seitenstreif, von welchem nach unten bis zwischen die Bauchfüße 6 eben so breite braune, fleischbroth punktierte Queräste hinzufügen. Uber dem Seitenstreif 6 schwarzblaue Spitzflecken zu jeder Seite. Die Bauchfusse fleischfarben mit blauschwarzen Querfleck. Von den Dornen mit gleichfarbigem Stamm stehen die vorderen nach hinten, die hintersten aber besonders auffallend nach vorn gerichtet, so daß sie auf dem Rücken gleichmäßig zusammengedrängt, eine Art langen Kamm bilden. Beim
Berühren schlägt die Raupe den Vorder- und Hinterkörper aufwärts, die Äste der Dornen sträubend und ein sonderbares Knistern hervorringsend, wobei man an das Rasseln der Stacheln beim Stachelschwein erinnert wird. Sie lebt auf dem *Alcornoque* und *Malpighia*. Der Schmetterling ist mit *B. Janus* etc. nahe verwandt.

c) d) e) f) Der vorigen mehr oder weniger ähnliche, in der relativen Größe der Dornen, wie in Zeichnungen der Seiten, Bauchfüße n. s. v. unterschiedene, auf verschiedenen Pflanzen lebende Raupen, von grüner Grundfarbe, deren Schmetterlinge noch nicht zur Entwickelung gekommen sind.

h) So groß wie die vorige, weislich mit vielen schwarzen gehäuften feinen Strichen und Punkten auf der Mitte jedes Gelenks, worunter ein Winkelzug in der Mitte und ein dickeres hieroglyphisches Zeichen zur Seite, besonders hervorstechen. Der Kopf weislich mit schwarzen Zügen. Die Seitendornen am längsten, die auf der Mitte des Rückens sehr kurz. Lebt auf Erythrinen in kleinen Gesellschaften gleich der vorigen.

Von den meisten besitle ich Puppen, deren Entwicklung täglich zu erwarten steht.

2) Gift-Haarraupen tragen quer auf jedem Gelenk 6 pinselartig von einem Punkt ausgehende Haarbüschele. Die Haare sind, theils kürzer und steifer (borstenartig), theils länger und

dann sehr fein anlaufend und oben gekrümmt, alle jedoch durch Vergrößerung mit kurzen Seitenästen erscheinend. Diese Haare errügen bei Berührung derselben brennenden Schmerz wie die Dornen der ersten Ordnung. Eine besondere Eigentümlichkeit ist bei den mir bekannten beiden Arten, daß vor dem ersten Paar Bauchfüße und hinter dem vierten Paar derselben noch ein Paar, wenn gleich schmälere, doch vollkommen ausgebildete Füße sich finden, die von der Raupe wirklich zum Gehen und Fests klammern ge braucht werden, so daß dies das erste mir vorgekommene Beispiel einer zwanzigfüßigen Schmetterlingslarve ist.

nique und frisst auch die Blätter der Malpighien. (Ich zweifle bei meiner nahen Abreise, sie bis zum Verpuppen zu bringen.)

Ueber die mit *Asterias aurantiaca* verwandten und verwechselten Asterien der sicilianischen Küste.

Aus einem Schreiben des Dr. Philippi in Cassel an den Herausgeber.

Die kurzen Diagnosen der mit *Asterias aurantiaca* verwandten und verwechselten Arten, die Sie wünschen, erfolgen hierbei; was allen gemeinschaftlich ist, der *Discus radiique complanati* und der *Margo articulatus* ist dabei weggelassen.

 A. ratione diametri disci ad longitudinem radii ut 1:1,3; articulis in margine radiorum circa 30; supra incrnisus, infra spina simplici armatis, caeterum laeviusculis. Magn. 3".

2. *Asterias spinulosa* n. sp.
 A. ratione diametri disci ad longitudinem radii ut 1:1,32; articulis in margine radiorum circa 25, omnino spinulosis, infra spina simplici armatis, supra spina distincta nulla. Magn. 3" 8".

3. *Asterias platyacantha* n. sp.
 A. ratione diametri disci ad longitudinem radii ut 1:1,4; articulis in margine radiorum circa 20—24, supra aceque atque infra spina simplici armatis, inferiore majore laeocolata. — Magn. 3" 9".

4. *Asterias subinermis* n. sp.
 A. ratione diametri disci ad longitudinem radii ut 1:1,78; sinibus inter radios rotundatis; articulis in margine radiorum circa 70—78, supra incrnisibus, infra spina minima simplici armatis. — Magn. 14".

5. *Asterias aurantiaca* L.
 A. ratione diametri disci ad longitudinem radii ut 1:2,12; articulis in margine radiorum circa 38, supra spinis parvis 1—2, infra spina simplici armatis. — Magn. 9" 10".

6. *Asterias pentacantha* Delle Chiaje Mem. vol. II. t. 18. f. 3.
A. ratione diametri dissecti ad longitudinem radii ut 1:2, 3; articulis in margine radiorum circa 40, supra inermibus, infra spinis quinis armatis. — Magn. 5° 3".

A. ratione diametri dissecti ad longitudinem radii ut 1:3, 1; articulis in margine radiorum circa 50, supra acque atque infra spinis longae, lanceolata armatis. — Magn. 6° 9".

Ich habe diese Arten nach dem wachsenden Verhältnis der Länge der Strahlen zum Durchmesser der Scheibe geordnet, und dieses Verhältnis lieber, durch Zahlen als durch Worte ausdriicken wollen, die Beschaffenheit der kalkigen Warze aber weggelassen, weil deren Beschreibung nicht mit wenigen Worten gegeben werden kann. Eine sehr ausgezeichnete neue Art der Schultz’schen Sammlung ist:

8. *Asterias ciliaris.*
A. disco parvo, radiisque septenis elongatis, angustis, depressis, paxillis truncatis obsitis; radiis non articulatis, margine subitusque spinis numerosissimis teretibus armatis. Diameter dissecti 15", longitudo radiorum 4" 9"; altitudo 2—3". Pedes biseriales; spinulae usque ad 3" longae.

Ich glaube, dass eine sehr gute Unteraufteilung nach der Zahl der Fußreihen in den Rinnen gemacht werden könne. Zwei Reihen Füschen haben die 8 oben erwähnten Arten, so wie laeavigata und variolata, 4 Reihen glacialis u. tenuispina und wahrscheinlich alle Verwandte derselben. Noch will ich bemerken, dass Agassiz das Wachsthum der Seesterne wahrscheinlich unrichtig angegeben hat, wenn er sagt (Isis 1834. p. 254 sq.): „die Wachstumsstücke treiben sich immer in den von den Strahlen gebildeten Winkel ein, und tragen so die Strahlen hinaus, dieselben verlängernd.“ Ich bin fest überzeugt, dass neue Gelenkglieder an der Spitze der Strahlen, nie am Grunde derselben gebildet werden.
Einige Bemerkungen über Guilding’s *Peripatus*

vom

Herausgeber.

13 *

Die Art P. iuliformis characterisirt er folgendermaßen:
P. atronfuscus, annulose flavido maculatus, ventre nigresco-roseo; corpore toto spinuloso-papilloso; linea dorsali atra.

Vorder- zum Hinterende. Der Kopf ist keineswegs so deutlich abgesetzt, wie ihn die Abbildung der französischen Zoologen darstellt; richtiger ist er von Guilding a.a.O. abgebildet. Die Antennen sind cylindrisch, an der Basis etwas verdickt, an der Spitze stumpf, undeutlich vielförmig, oder vielmehr geringelt und mit spitzigen stachelborstigen Höckern besetzt; sie sind dabei weich, und wie es scheint, bedeutender Verlängerung und Verkürzung fähig (semirectractilia Guild.). Augen sind nicht die körnigen Höcker, welche Guilding und die franz. Naturforscher dafür nahmen, sondern es sind 2 einfache Augen (ocelli) vorhanden, deren jederseits eins hinten am Grunde der Fühler liegt. Bei genauerer Ansicht sind sie leicht als ein runder, convexer, glänzender schwarzer Punkt wahrzunehmen. Was die genannten Naturforscher für Augen ansehen, ist vielmehr das rudimentäre erste Fußpaar, welches zur Seite des Mundes stehend, die Stelle der Taster zu vertreten scheint. Es kann bedeutend verkürzt werden, und erscheint in seiner größten Verkürzung als ein runderlicher Höcker, was zu jenem Versehen Anlass gab. Der Mund ist richtig von Milne-Edwards und Audouin beschrieben (s. oben), auch ihre Beschreibung und Darstellung der Kiefer stimmt mit dem überein, was ich davon bei bloßer Erweiterung der Mundöffnung erblicken konnte. Minder genau ist ihre Schil- derung der Füße, deren für jedes Körpersegment ein Paar vorhanden ist; bei unserem Exemplare mit Ausschlüsse des ersten rudimentären oder Tasterpaares, 30. Sie scheinen mir keineswegs den borstentragenden Fußstummeln der wahren Anneliden vergleichbar, sondern haben eine viel vollkommnere Bildung und ähneln vielmehr den Bewegungs-Organen der Insekten-Larven, jedoch nicht völlig, da sie zwischen den membranösen Afterfüßen und den wahren Füßen derselben gleichsam die Mitte halten. Sie sind nämlich weich und ungegliedert, wie jene, andererseits aber mit einem beweglichen, aber zweikralligen Klaunegliede versehen, wie diese. Jeder Fuß erscheint als ein fleischiger, stumpfs konischer Fortsatz, dessen IIaut durch etwa 10 Queer reihen kleiner spitziger Dornenwarzen geringelt ist. Er endigt mit einem treffsprechenden Klauengliede, welches an der Spitze seines mittleren Lappens die beiden gekrümmten spitzigen Krallen trägt. Unter der Spitze des Fusses zeigen sich querübereinander-
liegend, 4 schmale körnig-kurzborstige Schwielen *), deren äußester das meist nach außwärts umgeschlagene Klauneglied angesetzt ist. Man könnte vielleicht diese Schwielen als Spuren einer Glie-
ding beschriebene von 30 Länge 33 Fuβpaare zeigte. Das letzte Paar steht am letzten Körpsegmente, an dessen hinterem Ende der After sich findet, während eine andere längliche Öffnung (Geschlechtsöffnung?) an der Unterseite des vorletzten Segmentes, hart an dessen Gränze mit dem letzten, bemerkbar ist. Innen an der Basis eines jeden Fußes findet sich ein kleiner Schlitz mit wulstigen, faltigen Lippen umgeben. **SpiracuLa zu Tracheen sind dies indefs nicht, da ein ausgetrenntes Stückchen des Kör-
pers unter dem Mikroskope keine Spur von Tracheen zeigte; es sind also vielmehr die Öffnungeu von Absonderungs-Organen oder auch von Athmungs-Organen ähnlicher Art, wie die der Hirudineen, was nur in einer vollständigen Anatomie des Thieres ermittelt werden kann. Die von Hrn. Moritz mitgesandten Pa-
piere enthalten leider nichts Näheres über das Vorkommen des Thieres. Guilding fand es an Pflanzen, die er in den Urwäl-
dern gesammelt; Lacordaire, nach Audouin und Milne-
Edwards l. c., unter faulen, im Schlamme versunkenem Holze an den Ufern des Approuage im Braekwasser. Hiernach gewinnt es fast den Anschein, als ob das Thier beiden Elementen ange-
höre. Die drei bisher beschriebenen Individuen scheinen nur

*) Sie sind nämlich äußerst dicht mit kleinen Warzen besetzt, aus denen jeder eine kurze Borste entspringt. Aus Versehen sind in unserer Figur nur 3 Schwien dargestellt.
Bemerkungen
über das Vorkommen von Pflanzen in heißen Quellen und in ungewöhnlich warmem Boden
von
H. R. Goeppert.

*) Cl. Claudiani Oper. edit Gesner p. 165: Idyllium VI. Aponus.
Ilumida flammarum regio Vulcana, terrae
Uhera sulfureae servida regna plagae.
Quis sterilem non credat humum? fumantia vernant
Paseua, luxuriant gramine eucta silic.
Et cum sic rigidae cautes fervore liquescant,
Contentis audax ignibus herba viret.

*) Rideat florenti gramine facies decora campestris, quae etiam ardentis aquae fertilitate lactatur, miroque modo dum proxime salm general sterilem, nutriat pariter et virares.

****) Andreae Baccii libri septem, opus in quo agitur de universa aquarom natura Romae, 1622.

‡‡) Vandelli tractatus de thermis agri. Patavini 1701.

‡‡‡) Ivoldo Crotta (Carlu Dottori) poema eroicocomico l' Asino. Venezia 1652. Cant. VI etauz. 79.
Grotto eine Salzpunge (Sumolhus Valerandi), deren Wurzel in einem 54° R. warmen Schlamm steckte, während der Stengel mit noch heißerem, darüber stehendem Wasser umspült wurde, dessen angenehm aber frisch und kräftig vegetierte. Der Saame hatte sich wahrscheinlich im Herbste bei der Füllung des Schlamm-ervoirs verschleppt. Eine andere planerogamische Pflanze, die Hr. v. Andrejowski ebenfalls unter sehr hoher Temperatur er- hlichte, war Zanichellia palustris, die einen der kleinen 28° R. warmen Abfluße des Montiron bewohnte. — Der Tremel- len und Conferven findet man eine sehr große Menge, die mei- sten bei 40° R., wo z. B. nahe der Mühle die Conferva bullosa ganze Gräben anfüllt.

suvük blühet Murar, Argentina (Potentilla Anscrina), Suly Rammulus acris u. Tormentilla erecta. Die warmen Bäder zu Lagarnes haben folgende Pflanzen (Mura?), welche gemeinig-
lich und vorzüglich um die heißen Quellen wächst, desgleichen
Plantago major, Sisymbrium Nasturtium (Katter-Balsam). Leider
vernüßt man bei diesen Beobachtungen die nähere Angabe über
die Temperatur des Bodens. In neuerer Zeit soll ein Hr. John
Dauby, der Bruder des Vorstehers des botanischen Gartens zu
Liverpool, eine Art Chara aus Island mitgebracht haben, die er
in einer der heifsen Quellen, in denei ein Ei binnen vier Minu-
ten gekocht ward, blühend und saamentragend fand (Fror.
Nol. 36 Bd. n. 3. Febr. 1833. S. 38.). Nach Daubeny's Angabe sah
Dr. Hooker (Anual. der Pharm. 1834. a. a. O. S. 345.) nahe am
Rande des Geischer und wenige Zoll von siedendem Wasser die
Conserva limosa Dillw., eine neue Art Oscillatoria und die schön-
sten Exemplare von Jungermannia angulosa. Auch wurde im
Wasser von einem sehr hohen Wärmegrade in Menge üppig
wachsend die Conserva flavescens Roth und eine neue Art, die
der C. rivularis nahe steht, gefunden.

Georgi (Bemerk. v. J. G. Georgi, 1775. I. Bd. S. 75. 93 u. 141.)
beschreibt mehrere heiße Quellen um den Baikalsee. An einem
lauwarmen Wasserbecken auf Steinen und am Rande wuchsen
Conserva fontinalis u. C. gelatinosa, Mnium pellucidum u. fon-
tanum, Marchantia, Cardamine, u. mehrere Quellpflanzen (S. 93.).
In einem aus mehreren 53° Del. warmen Quellen entspringenden
Bache Conserva fontinalis, Mnium fontanum (S. 140.). Auch
ist die Bemerkung, dafs es hier keine besondere von der benach-
barten Flora verschiedene Pflanzen gäbe, die er noch an einem
ander Orte wiederholt (S. 73.), wichtig. Güldenstein (Reise
1815. p. 66.) sah eine Wassergallerte oder Ulva am Ausflus der
Bäder des heiligen Peter zu Bragun am Fuss des Kaukasus in
einem Bache von 30°. Im Sande von Senegambien steigt das
Thermometer nach Adanson (Sennebier Physiol. veget. T. 3sième
p. 284. Adans. Reise, übersetzt von Schreber) auf 60°, und doch
wachsen mehrere Pflanzen in dieser Hitze. Barrow (Voyage
to Cochinchina, p. 43.) und Stanton (in seiner Beschreibung
der Gesandtschaft des Grafen v. Macartney nach China auszüglich

Auf der Insel Trinidad in der Nähe des berühmten Pechsee's

sehr reichlich, *Erodium cicutarium*, und das überall verbreitete mit den Moosen an den heißesten Stellen vorkommende *Hype-
ricum humifusum* zeigte 6—8 Zoll lange Sprossen und eine reife Kapseln, wovon ich, wie auch aus dem Zustande der oben
erwähnten größtenteils perennirenden Pflanzen mit Recht schlofs,
daß auch im heißen Sommer diese Stellen keineswegs der Ve-
gestation gänzlich entbehren. Der wärmste Punkt war ein mit
6 Zoll dickem Rasen und einer leichten hölzeren Verkleidung
bedeckte Schachteneinmündung; nur *Dicranum purpureum, Bryum
cespitiscum und argenteum, Funaria hygrometrica*, und junge
Pflanzen von *Hypochaeris radicata, Poa annua, Polygonum av-
culare, Agrostis vulgaris*, waren hier in einem Boden, der durch
50° warmer, aus der Tiefe aufsteigende Dämpfe erhitzt ward und
selbst noch in 3 Zoll Tiefe 45° maafs. Ich bedaure nur, nicht
fortdauernd das Verhalten der Vegetation dort beobachten zu
können, doch hat mir Hr. Apotheker Laurentius in Zwickau
versprochen, dies namentlich im Winter zu thun, wo, wie begrei-
ßlich, auf jener Gegend der Schnee nie liegen bleibt, also nicht
niedere Temperatur des Bodens, sondern nur die der Atmosphäre
hemmend auf die sonst gewifs sehr weit vorschreitende Vege-
tation einzuwirken vermag. Wenn es nun erlaubt ist, aus die-
ser allerdings nur vereinzelten Beobachtung einige Resultate zu
ziehen, so ergiebt sich übereinstimmend mit andern ähnlichen
Erfahrungen, z. B. mit der des Hrn. A. v. Humboldt (s. oben),
 daß die hohe Temperatur des Bodens, da in der Umgebung die-
selben Pflanzen vorkommen, keinen Einfluß auf die Qualität der
Arten ausübte, was hier um so eher hätte hervortreten müssen,
da jene Gegend schon so lange Zeit in so hohem Grade erhitzt
ward: so wie ferner, daß auch hier an den wärmsten Punkten
nur Moose, also Pflanzen niederer Organisation gedeihen, was
sich an die oben erwähnte Beobachtungen anschließt, welche die
Existenz von den dieser Familien verwandten Algen in noch
höherer Temperatur nachweisen.
Ueber die Epidermis der Gewächse

von

J. Meyen.

Wir haben bisher unter Epidermis die äußere Zellschicht der Pflanzen verstanden; der Begriff der Epidermis ist indessen von anderen Phytotomen verschieden festgestellt. Man wollte z. B. nur das feine, abziehbare Häutchen als Epidermis gelten lassen, welches fast immer auf der unteren Fläche der Blätter
zu beobachten ist; indessen man sah sehr bald ein, daß die Eigenschaft der Oberhaut, sich von den darunter liegenden Zellen abzichen zu lassen, nicht zur Begriffs-Bestimmung dienen kann, denn sehr häufig ist die Oberhaut auf der oberen Blattfläche mit derjenigen der unteren Blattfläche von einem und demselben Bane und läßt sich dennoch nicht abziehen. Andere Botaniker erkennen zwar in der Epidermis die äußerste Zellenlage, indessen sie beschränken dieselbe nur auf die, über der Erde wachsenden Theile der vollkommenen Pflanzen, wozu auch einige Familien der Cryptogamen gehören sollen. Indessen ich glaube, daß man auch die äußerste Zellenschicht, welche die Wurzel umkleidet, eben sowohl als Oberhaut anerkennen kann, denn sie unterscheidet sich in mancher Hinsicht von den darunterliegenden Zellenschichten, und Abzeichbarkeit, Farbe und Dasein oder Fehlen der Spaltöffnungen kann wohl nicht bei der Begriffs-Bestimmung mit in Betrachtung gezogen werden.

Einige Pflanzen-Anatomien, als F. Bauer und L. Treviranus, haben von einer doppelten Epidermis gesprochen, d. h. von einer solchen, welche aus mehreren Zellenlagen bestehen soll, und man kann selbst von einer drei- und vierfachen Epidermis der Art sprechen. Da wir im Vorhergehenden nachgewiesen haben, daß sich die Selbstständigkeit der Epidermis von dem darunter liegenden Zellengewebe einmal durch eigenthümliche Form der Zellen, so wie durch besondere Festigkeit und innige Verbindung der Zellen auszeichnet, und da es sich zeigt, daß in verschiedenen Pflanzen die Zellen der zwei und der drei äußersten Schichten von gleicher Form und gleich fest mit einander verwachsen sind, so muß man diese verschiedenen Zellenschichten zusammen genommen als Epidermis betrachten. In dergleichen Fällen, wo die Zellen in den einzelnen Schichten der Epidermis zu gleichmäßigen Flächen vereinigt sind, da kann man immerhin eine solche Zusammensetzung der Epidermis aus verschiedenen Schichten annehmen, in anderen Fällen aber, wie z. B. auf der oberen Blattfläche der Zamien, findet man eine ganze dicke Schicht von Zellen, welche mit denen der äußersten Schicht übereinstimmend sind, und hier könnte man von sechsfacher und siebenfacher Epidermis sprechen, wenn die Zellen selbst regelmäßig schichtweise geordnet wären, was aber nicht

Die Zellen der Epidermis sind fast immer platt zusammendrückt, aber ihre seitliche Einfassung ist von sehr verschiedener Form. Am häufigsten sind die Zellen der Epidermis rautenförmig und sechseckig. Den Monokotyledonen ist diese Form fast ausschließlich eigen; complicirter, ja fast unregelmäßig ist

Noch führe ich hier die eigenthümliche Wellenform der Epidermis-Zellen an, wie sie sich auf den Blättern von Carex-Arten darstellt. Zwar zeigt die Epidermis auf beiden Blattflächen dieser Pflanze dergleichen wellenförmige Zellen, doch sind die der oberen Blattfläche stärker ausgebildet, als die der unteren. Das Merkwürdigste hierbei ist, daß diese seitlichen Scheidewände der Epidermis-Zellen nur an ihrem oberen und äußeren Rande eine solche Wellenform zeigen, während der untere Rand ganz gleichmäßig ist. Ihr. Unger (l. c. p. 136.) scheint diese Art von Vereinigung der Epidermis-Zellen rosenkrantzähnlich zu nennen. — Die Form der Epidermis-Zellen ist nicht nur bei verschiedenen Pflanzen verschieden, sondern sie ist häufig auf den verschiedenen Flächen der Blätter sehr abweichend, ja selbst auf einer und derselben Blattfläche in neben einander liegenden Reihen. Waren die Epidermis-Zellen auf dem Diachym der Blätter unregelmäßig oder wellenförmig gestaltet, so treten sie in den Zellenreihen, welche unmittelbar auf den Blattnerven liegen, regelmäßiger und stets länger gestreckt auf. In solchen Fällen müssen alle Erklärungen, über die Entstehung der Form der Zellen aus einer äußeren gemeinschaftlichen Ursache ihren Untergang finden; wäre der gegenseitige Druck auch nur eine der Hauptursachen, wodurch die Form der Zellen entsteht, so wäre hier nicht abzusehen, weshalb neben einander liegende Zellen so ganz verschieden groß und ganz verschieden geformt sind, aber hauptsächlich spricht hiergegen die große, sich immer wiederholende Regelmäßigkeit in der verschiedenen Form der Zellen, welche auf keine Weise einer mechanischen Ursache zugeschrieben werden kann. Ein solcher Bau der Epidermis, wie bei dem Zuckerrohre, wo einzelne kleinere und viereckige Zellen zwischen den größeren gelagert sind, kommt sehr allgemein bei den Gräsern vor, und bei solchen Gewächsen dieser Familie, wo die Blätter oder der Stengel rauh und mit Haaren bekleidet erscheint,
da sind es gerade diese kleinen und einliegenden, viereckigen Zellen, welche in diese Haare auswachsen, wie man es an der Epidermis einer großen Mais-Pflanze beobachten kann.

Im Allgemeinen sind die Zellen der Epidermis auf der oberen Blattfläche kleiner, als die auf der unteren, dagegen sind Letztere auch fast immer platter gedrückt, als die der oberen Blattfläche. Eine ganz auffallende Abweichung in der Form der Epidermis-Zellen kommt auf der oberen Blattfläche der *Begonia maculata* vor. Bei dieser Pflanze sind die Seitenwände der Epidermis-Zellen ganz besonders dick und an den Kanten, mit welchen diese Zellen zu drei und drei nebeneinander liegen, bilden sie durch ihre starke Dimension förmlich 3-seitige Prismen, was auch mehr oder weniger auf der unteren Blattfläche dieser Pflanze vorkommt. Sieht man die Epidermis dieser Pflanze in der horizontalen Lage an, so bemerkt man jene dreiseitigen Figuren überall an den Kanten, wo die Zellen der Epidermis zusammenstoßen, und betrachtet man Vertikalschnitte, die durch diese Epidermis geführt sind, so sieht man durch Vergleichung mit der horizontalen Ansicht, daß jene Zellen von der Epidermis der oberen Blattfläche außerordentlich groß und ganz prismatisch gestaltet sind. Hier ist also ein Fall, wo die Epidermis-Zellen nicht tafelförmig zusammengedrückt erscheinen, und wo besonders die Seitenwände eine auffallende Dickendimension erlangen, während sonst nur die oberen Wände der Epidermis-Zellen so außerordentlich dick werden, daß man dieselbe sogar für eine eigene Membran ansehen will.

Die Zellen der Epidermis verändern bei sehr vielen Pflanzen mit vorsichtigem Alter ihre Form, und auch der Inhalt derselben, so wie ihre Wände bekommen allmählich eine größere Festigkeit. Fast allgemein nimmt die obere Wand dieser Epidermis-Zellen an Dicke zu, und außerordentlich häufig verschwindet der Saft dieser Zellen und es bleibt nur eine, mehr oder weniger feuchte Luft in derselben zurück. Sehr häufig erhebt sich die obere Wand der Epidermis-Zelle in Form eines kleinen Wärzchens, welches von der Mitte der Wand ausgeht, und in der horizontalen Darstellung der Epidermis-Zelle als ein kleiner Kreis erscheint. Bei sehr vielen Pflanzen bleiben diese Wärzchen oder Papillchen sehr klein, während sich dieselben bei andern Pflanzen

Ihr. Unger hat die interessante Beobachtung gemacht, dass sich auf den Epidermis-Zellen des *Gladiolus communis* mehrere

Es wurde im Vorhergehenden die Entstehung der ungegliederten Haare aus papillenförmigen Auswüchsen der oberen Epidermis-Zellenwand nachgewiesen; hier noch Einiges über die Entstehung der gegliederten Haare. Die gegliederten Haare bestehen wie die Conferven-Fäden aus lineenförmig aneinander gereiheten cylindrischen Zellen; auch sie entstehen durch papillenförmige Auswüchse der unteren Wände der Epidermis-Zellen, doch bildet dieser Auswuchs immer nur das unterste Glied oder die unterste Zelle des Haares, und aus der Spitze dieses Gliedes wächst dann die zweite Zelle und aus dieser die dritte Zelle hervor, u. s. w. — Die Membran, welche die Epidermis-Zellen bildet, tritt ebenfalls getüpfelt auf, und diese Tüpfelung giebt oftmals einer solchen Epidermis ein sehr niedliches, punktiertes Aussehen, wenn man dieselbe unter dem Mikroskope betrachtet, wie z. B. bei der Epidermis von der oberen Blattfläche von Cycles-, Epidendrum-Arten u. s. w. Hier stehen die Tüpfel in Reihen
dicht neben den Seitenwänden der Epidermis-Zellen. In manchen Fällen treten die Tüpfel-Kanäle selbst in der oberen dicken Wand der Epidermis-Zellen auf, wie z. B. in der Epidermis von Cactus grandiflorus. In anderen Fällen zeigen sich die Tüpfelkanäle nur in den Seitenwänden dieser Epidermis-Zellen, was in Cactus grandiflorus ebenfalls zu sehen ist, und überhaupt gar nicht selten bei Blättern von lederartiger Struktur vorkommt. Aber noch häufiger kommen die Tüpfel auf den unteren Wänden der Zellen vor und communiciren hier mit den dicht darunter liegenden dickhäutigen Zellen, wie z. B. auf der oberen Blattfläche von Nerium-Arten, bei den Banksien u. s. w. Ich führe noch einige Pflanzen an, bei denen die Epidermis getüpfelt ist, z. B. Dracaena cernua und außerordentlich stark bei Epidendrum fuscom u. s. w.

Bei sehr vielen Pflanzen mit festen und lederartigen Blättern kann man verleitet werden, die obere gemeinschaftliche Wand der Epidermis-Zellen für eine eigene Membran zu halten, welche gleichsam die Epidermis-Zellen umschließt, denn diese äußeren Wände der Epidermis-Zellen werden zuweilen ganz außerordentlich dick, sie sind dabei so innig mit einander verschmolzen, daß meistens keine Spur einer Vereinigung der Wände aneinandergrenzender Zellen darin zu bemerken ist; ja es kommt sogar der Fall vor, daß diese gemeinschaftlichen dicken Wände der Epidermis-Zellen eine eigen tümliche Färbung erhalten, wie z. B. auf der oberen Blattfläche der Cycas-Arten, bei Phormium, bei Orchideen u. s. w., wo sie schön grün gefärbt werden, und wodurch man um so mehr veranlaßt zu sein glaubte, diese äußeren Wände der Zellen für eine eigene Membran zu halten. Von der Dickendimension dieser äußeren Wände der Epidermis-Zellen kann man sich nur durch gutgeführte Vertikalschnitte überzeugen. Führt man einen gutgeleiteten Schnitt parallel der Blattfläche durch diese dicken Wände der Epidermis-Zelle, so bemerkt man an einzelnen Stellen, besonders an den Rändern des Schnittes, daß daselbst die Membran ganz einfach erscheint, indem hier die Anheftungslinien der Seitenwände der Epidermis-Zellen gänzlich abgeschnitten sind.

Der erste Botaniker, welcher die Ansicht aussprach, daß die Epidermis der Gewächse, nämlich die äußere Zellenschicht

Ihr. Brongniart schied die Cuticula von den angrenzenden

*) Es ist hierbei zu beachten, daß Ihr. De Candolle (Organograph. végét. T. I. p. 67 etc.) unter Cuticula die wahre Epidermis der Blätter und überhaupt der krautartigen Theile versteht, während er unter Epidermis die ausgetrocknete Zellenschicht begriffen wissen will, welche die älteren Theile der Pflanze, wie z. B. die Rinde der Bäume überzieht. Was Ihr. De Candolle unter Epidermis versteht, ist keineswegs seine aus vertrockneten Zellen bestehende Cuticula, sondern diese ist längst abgefallen, und die darunter liegenden Zellenschichten bilden die neue Oberhaut. Die wahre Epidermis (die Cuticula D. C.) der jungen Triebe der Bäume besteht aus Zellen wie die Epidermis der Blätter, nur sind sie innen etwas länger gestreckt, gleichsam wie die Epidermis-Zellen auf den Blattnerven.

Im gegenwärtigen Aufsatze werden wir die Erscheinungen etwas näher erörtern, welche theils für, theils gegen die aufge-
führte Ansicht des Hrn. Brongniart und seiner Vorgänger sprechen; im Allgemeinen will ich nur noch bemerken, daß dieser Gegenstand einer von denjenigen ist, welche zwar leicht, als fachlich behauptet werden können, die aber sehr schwierig durch positive Gründe zu widerlegen sind, daher über diesen Gegenstand nicht so leicht die Physiologen zu einer und derselben Ansicht gebracht werden können. Ja man findet es sehr bequem eine solche Cuticula anzunehmen, welche die Zellenmasse umschließt, und für manche Hypothesen über die Organisation der Pflanzen sehr passend ist.

Eigen tümlichkeiten. Auf der Oberfläche der Wurzelspitzen, wo die Cuticula ebenfalls fehlt, sind die Zellen der äußeren Schicht haarsförmig ausgewachsen; es ist aber auch nicht schwer, wenigstens bei manchen Pflanzen, durch den verschiedenen Grad von Feuchtigkeit, welchen man der Wurzel dieser Pflanzen darbietet, dieselbe gleichsam zu zwingen, daß sich ähliche und noch längere Härchen aus den oberen Wänden der Epidermis-Zellen entwickeln und die sogenannten Wurzelhaare bilden, welche oft außerordentlich lang und ungleidertert sind. Hier müßte man annehmen, daß die Cuticula bei der papillenförmigen Erhebung der äußeren Wand der Epidermis-Zellen, so wie bei dem späteren Auswachsen derselben in lange Haare, nicht nur sich mit erhoben, sondern sich auch sogar um das ganze lange Haar herum ausgedehnt habe. So etwas wäre möglich, ist aber nicht wahrscheinlich, ja es möchte sogar als unrecht nachzuweisen sein, denn es läßt sich beweisen, daß die Membran, woraus ein solches Härrchen besteht, nicht als eine ausgedehnte obere Zellwand anzusehen, sondern für eine neue Bildung zu halten ist! Man untersuche übrigens jungen Individuen solcher Pflanzen, welche später eine sehr lederartige Struktur zeigen; man wird sich gewiß sehr bald überzeugen können, daß in der frühesten Zeit-Periode nur die feinen Härte da sind, welche die oberen Wände der Epidermis-Zellen bilden, und allmählich werden diese, auf das Innigste verwachsenen Zellenwände so dick, daß man sie für eine eigene Membran zu halten sich berechtigt fühlt. Die Cuticula bildet sich also erst mit fortschreitendem Wachstum der Pflanze; sie ist aber nicht ursprünglich, daher muß man sie doch für eine Bildung halten, welche von den Zellen der Epidermis dargestellt oder hervorgerufen wird, und dieses ist auch gauz damit übereinstimmend, wenn man die Cuticula für die verdickten, äußeren Wände der Epidermis-Zellen hält. Glaubt man annehmen zu müssen, daß eine solche Membran nöthig sei, um selbst die äußere Zellenschicht genau zu umkleiden, damit die äußere Luft nicht ungehindert und die Pflanzensubstanz eindringen kann, so möchte ich hierauf antworten, daß die seitliche Vereinigung der Epidermis-Zellen nach allen Beobachtungen so fest und innig ist, daß die Trennung dieser Zellen durch gewöhnliche Mittel gar nicht zu bewerkstelligen ist. Gerade dieses Mit-

Schließlich ist denn hierbei auch noch die Analogie zu beachten. Alle Membranen, welche in der Pflanzen-Substanz vorkommen, bilden stets geschlossene Behälter, als Zellen, Röhren, Gefäße und hier, bei der Cuticula, wäre der einzige Fall, wo eine Membran als bloßes einhüllendes, an vielen Stellen durchbrochenes Gebilde auftrete. Die eigenthümliche grüne Färbung, welche die Cuticula auf der oberen Blattfläche der Cycas-Arten und bei andern Pflanzen zeigt, kann eben so wenig als ein Beweis für die Selbständigkeit der Cuticula gelten, denn diese grüne Färbung erscheint zuweilen auch in der Zellmembran ganz im Innern des Gewebes der Cycas-Blätter.

Ganz neuerlich ist die Ansicht über die Verschiedenheit der Cuticula von den oberen Wänden der Zellen durch Hrn. Möhl (Erläuterung u. Vertheidigung meiner Ansicht von der Struktur der
Berichtigung
einer Stelle der Isis von Oken für 1836
von
Prof. J. van der Hoeven.
(Schreiben an den Herausgeber.)

In der Isis von Oken 1836, Heft 7, gibt der Herausgeber eine Anzeige des Aufsatzes von Milne-Edwards über die Farbenveränderung des Chamäleons, worin ich mit Verwunderung las (S. 496):

„Ein neuerer Schriftsteller meint, das violettblaue Blut scheine „bald mehr, bald weniger durch die gelbe Haut. (Warum ver- „schweigt der Verfasser, daß dies van der Hoeven ist?)“

Da nun die Zeitschrift von Oken sicher in die Hände vieler kommt, die meine Icones ad illustrandas coloris mutationes in Chamaeleonte, Lugduni Batav. 1831. 4. nicht kennen, so ersuche ich Sie, in Ihrem Archive für Naturgeschichte diesen meinen Brief zu übersetzen, da ich hiermit erkläre, so etwas keinesweges gesagt zu haben. Ich werde deshalb die betreffenden Stellen hier wörtlich anführen.

Auf pag. 9. sage ich geradezu das Gegentheil von dem, was mich Oken sagen läßt: „Non probanda videtur eorum sententia, qui statuunt adaeuctum sanguinis affluxum, qui pella- cida cute cerni possit, coloris mutati causam esse.“

pag. 10.: „caussa proxima mutati coloris est in mutato pig- mento.“

und pag. 11.: „sedem coloris in pigmento cutaneo esse, cuius mutatio qualiscunque diversi coloris causa sit.“

Warum Milne-Edwards meine Abhandlung nicht erwähnt,

Ursprung des Wuraly- oder Urary-Giftes.

Notiz.

Einige botanische Bemerkungen

von
C. S. Kunth.

Über Myosurus Linn.

Über die Narben der Gattung Popaver.

Hr. Lindley schreibt den Papaveraezen wandständige Placenta zu, welche mit den Narben abwechseln. Dies letztere

Über den Embryo der Cruciferen.

Schkuhr war der erste, welcher die Samen einer großen Anzahl von Cruciferen mit der ihm eigenen Genauigkeit abbildete, und hierbei auf die verschiedene Lage der Radicula zu den Cotyledonen, so wie auf die mannigfaltigen Formen der letztern aufmerksam machte. Nachdem später Hr. Brown den Bau des Embryo bei Feststellung der Gattungen mit Erfolg berücksichtigt hatte, ging Hr. De Candolle hierin noch weiter und bildete nach der Form der Cotyledonen und ihrer Lage zur Radicula seine Hauptabliterationen der Familie der Cruciferen. Man hat mehrmals versucht, die Beständigkeit jener Charaktere

Aus obigen Bemerkungen scheint hervorzugehen, 1) daß der Embryo der Cruciferen erst beim Reifwerden des Samens in Folge äußerer Ursachen die verschiedenen Formen annimmt, welche wir an ihm im vollkommen ausgebildeten Zustande wahrnehmen, und 2) daß jene Verschiedenheiten, da die Ursachen, welche sie erzeugen, bei derselben Pflanze jederzeit wieder eintreten müssen, sehr beständige und wichtige Charaktere liefern. Eine ähnliche Veränderung der ursprünglichen Lage der Theile während des Reifwerdens läßt sich gleichfalls an den
Früchten der Cruciferen wahrnehmen. Das Ovarium liegt näm-
lich bei allen Gewächsen dieser Familie jederzeit so zur Achse,
daß diese der Scheidewand entspricht. Jene Richtung erhält
sich bloß bei den Früchten, wo das Dissepimentum schmal
bleibt, sobald sich aber dieses ausbreitet, was bei der grösren
Anzahl derselben Statt findet, kommt es der Achse seitlich zu
liegen.

Ueber die Gattung Teesdalica.

Es ist zu verwundern, daß sowohl Hrn. Brown, dem
Gründer der Gattung Teesdalica, als allen andern Botanikern,
welche dieses Genus angenommen und beschrieben haben, ein
wichtiger Umstand im Blüthenbau derselben gänzlich entgangen
ist. Die beiden hierher gehörigen Linné'schen Pflanzen, Iberis
nudicaulis und Lepidium nudicaule, nämlich sind die einzigen
mir bekannten Cruciferen, deren Kelchblätter an der Basis napf-
artig verwachsen sind und die Blumenblätter, Staubgefäße und
Nektardrüsen tragen oder mit andern Worten die eine deutliche
perigynische Insertion zeigen. Der freibleibende Theil der Kelch-
blätter fällt in der Folge ab, der verwachsene dagegen bleibt
unter der Frucht in Gestalt eines kleinen Näpfehens stehen.
Ichthyologische Beiträge zur Fauna Grönlands

von

Prof. J. Reinhard.

I.

(Kongelige Danske Videnskabernes Selskabs Program for Aaret 1835—36.)

Genus Lycodes.

Corpus elongatum antice incassatum, rostro conico, trunco compresso, cauda eusiformi. Squamae corporis rotundae minutae tenuissimae, cuti immersae. Os dentibus validis, intermaxillaribus, mandibularibus, vomerinis et palatiuis armatum; rictus mediocris. Membrana branchiostega utriusque aperturae cum jugulo cunnata, radiis 6; apertura branchiali angusta postica. Pinnae ventrales obsoleta, brevissimae, latissimae, jugulares. Pinna dorsalis et analis longissimae apicem caudae circumdantes; radiis articulatis divisis. Vesica natatoria nulla. Iuter Zoarceum et Anarrhicham Genus medium.

1) **Lycodes Vahlii.**

Corpore fasciato; capite parum depresso; pinnis dorsali et anali squamis minutissimis adspersis; illa radiis 117, hae radiis 91; ano ante medium gastraeum sito.

Habitat in mari grönländico, prope Julianehaab et prope Omenak.

2) **Lycodes reticulatus.**

Corpore reticulato; capite compressiusculo; pinnis dorsali et anali nudis, illa radiis 95, hae radiis 75; ano fere in medio gastraeo sito. Habitat in mare grönländico ad Fiskeuasset, et ad Omenak.

Mit der Untergattung Brotula (Enchelyopus barbatus Bl.Schn.) stimmt sie wohl darin überein, daß Rücken- und Afterflosse sich
in einer Spitze zu einer nicht gesonderten Schwanzflosse ver- einigen und daß die verhältnismäßig lange Bauchflosse einstrahlig ist und vor der Brustflosse sitzt; aber sowohl von dieser Gattung, als von der ganzen Dorschefamilie unterscheidet sich der Fisch darin, daß er 8 Strahlen in der Kiemenhaut besitzt, und Zähne auf den Gaumenbeinen hat und daß er hinter dem After ein merkwürdig gebildetes äußeres Glied trägt, welches vermutlich die Parrung bei der Befruchtung Statt findet, und daß das Weibchen wahrscheinlich lebendige Junge zur Welt bringt. Er besitzt eine mit Drüsen versehene Schwimmblase, welche in Form und Lage nichts Auffallendes zeigt. Aus diesen und andern Gründen scheint es, daß diese Art eine besondere Gattung bilden müsse, für welche Hr. R. den Namen *Bythites* vorschlägt, weil sich dieser Fisch nach Angabe der Grönländer in großen Tiefen aufhält soll. Das beschriebene Individuum ist ein Männchen von 6½" Länge; sein Hoden ist bereits ausgebildet; weshalb man die Aussage der Grönländer, daß diese Art die Größe einer ausgewachsenen *Phoca hispida* erreiche, in Zweifel ziehen möchte.

Genus Bythites.

Ueber eine neue Ordnung der Myriapoden

von

J. F. Brandt.

Vor einigen Jahren stellte Hr. B. eine neue sehr auffallende Gattung der Myriapoden *Polyzonium* auf, welche er damals als Typus seiner zweiten Familie der Glomeridien oder Pentazonien benutzte. Spätere noch sorgfältigere Untersuchungen über die Mundtheile haben in ihm die Ansicht hervorgebracht, daß die Polyzonien keine harte Substanzen zu sich nehmen können, da ihnen Organe zur Zerkleinerung der Nahrung fehlen, und daß sie sich vielmehr von flüssigen Stoffen, welche sie saugend verschlingen, nähren. Während seines letzten Aufenthaltes in Berlin fand er in der reichen Myriapoden-Sammlung des zoologischen Museums zwei, dem *Polyzonium* in der Körperbildung sehr nahe stehende Arten, deren Mundtheile noch mehr zu Saugorganen ausgebildet waren. Die bereits früher von Brandt modifizte Einteilung der Myriapoden scheint ihm deshalb einer neuen Änderung zu bedürfen; denn Abwesenheit oder Entwicklung eines Kau-Apparates sei in der Physiologie der Thiere zu wichtig, so daß sie eins der ersten Prinzip der Classification sein müsse. Unter diesem Gesichtspunkte können die *Polyzonia* nicht mehr eine Abteilung der Chilognathen bilden, sondern müssen vielmehr eine besondere Ordnung ausmachen. Verf. schlägt daher folgende Einteilung vor:

1. Ord. *Gnathogena*

Die Chilognathen zeigen in der Struktur der Körperringe 3 sehr verschiedene Typen, nach welchen Br. bereits früher 3 verschiedene Familien aufgestellt hat.

b) Fam. *Trizonia* s. *Julidea*.
c) Fam. *Pentazonia* s. *Glomeridia*.

2. Ord. *Siphonozantia*.

Mandibulae et maxillae, nec non labia in proboscidem plus minusve evolutam coalita. Corpus valde elongatum, angustum. Corporis media cingula singula ut in Pentazoniis e partibus quinque composita.

Sect. 1. *Ommatophora*.

Oculi parvi simplices in fronte inter antennas, conspieni.

Gen. 2. *Siphonatus* Br.

Oculi duo distincti. Appendix palpiformis nulla. Rostrum elongatum, apice obtusisculum, antennis longitudine fere aequale. Antennae subrectae, clavatae.

Sect. 2. *Typhlogena*.

Oculi nulli.

Ueber die Benennungen des Tapir

*) Dem Verf. ist hier eine Angabe von Rengger (Natargesch. der Säugethiere von Paraguay p. 312., welches Buch er überhaupt nicht benutzte) unbekannt geblieben, welche den Schlüssel zur Bedeutung des Wortes liefern möchte. Rengger sagt dort: „In der Guarani-Sprache wird der Tapir Mbořeβi genannt, ein schmutziger Name, dessen Uebersetzung ich hier weglasse.“ Ist vielleicht Mbořeβi Bezeichnung des männlichen Gliedes? Wie denn auch unser Verf. (p. 25.) Piso’s Worte anführt: Mas membrum genitale longe exsercere potest instar cercopithecii, und hinzufügt: Comme le Tapir est le seul (?) des quadrupèdes américains qui le présente, les indigènes eux-mêmes l’avaient remarqué, ainsi qu’on peut le voir par le nom qu’ils donnaient au canecicier etc.
Beschreibung zweier misshäigedeter See-Igel, nebst Bemerkungen über die Echiniden überhaupt

von Dr. Philipp in Cassel.

(Hierzu Taf. V.)

1) Monströser Echinus Melo.

Im Januar 1832 bekam ich auf der Insel Lipari ein schönes trockenes Exemplar von Echinus Melo, welches sich durch eine merkwürdige Monstrosität auszeichnet. Es ist Fig. 1. 2. 3. in Zweidrittel der natürlichen Größe abgebildet. Die Gestalt ist nicht kugelförmig, sondern schieß, indem der After nach hinten, der Mund nach vorn gerückt ist, und der Theil über dem Munde in Gestalt eines Buckels hervortragt, der kurz vor seinem Aufhören eine flache Grube hat (s. Fig. 2.). Die beiden Seiten sind vollkommen symmetrisch. Die obere oder After-Seite zeigt nur vier Paar Fühlergänge, 4 Felder dazwischen, 4 Eierstocksplatten, ohne die mindeste Unregelmäßigkeit; die Zickzacklinien, welche die Felder zwischen den Ambulakren in zwei Hälften theilen, kreuzen sich unter rechten Winkel und zwei derselben bilden die Mittellinie, welche unseren See-Igel genau in zwei symmetrische Hälften theilt (s. Fig. 1.). Auf der unters oder Mund-Seite finden wir aber fünf Fühlergänge, und zwar bildet der fünfte, der obere fehlt, den vorhin erwähnten Buckel, indem er sich zwischen die beiden Hälften des einen Feldes eindrängt. Die Poren desselben sind längere Zeit ganz regelmässig und werden erst kurz vor ihrem gänzlichen Verschwinden unregelmässig. Dieser fünfte Fühlergang besteht aus 12 Plättchen jederseits und endigt mit einem unpaaren fünfundzwanzigsten, großen Plättchen. Die regelmässigen Ambulakren haben einige und fünfzig Plättchenpaare.
Da, wie Hr. Agassiz (Isis 1834. p. 254.) zuerst bemerkt hat, die Echinus-Arten durch Bildung neuer Täfelchen in der Aftergegend wachsen; so muß in vorliegendem Falle das fünfte Ambulakrum verkümmert sein, nachdem das Thier etwa den vierten Theil seines Wachstums erreicht hatte, und zwar muß dies durch innere Ursache geschehen sein, da alle Spuren einer äußeren Verletzung fehlen, wobei die dadurch entstandene vollkommene Symmetrie in der äußeren Gestalt noch besonders auffallend ist.

Da die fünf Fühlergänge nach Agassiz l. c. aus einem vordern, einem hintern Paar und einem unpaaren vorderen bestehen, so sollte man bei der äußern Symmetrie unseres Monstrums erwarten, es sei der vordere, unpaare Fühlergang verkümmert. Allein dem ist nicht so. Dieser unpaare Fühlergang liegt nämlich der größeren porösen Eierstocksplatte gegenüber; im gegenwärtigen Falle liegt diese Eierstocksplatte aber auf der Seite (s. Fig. 1.) und es ist demnach der linke vordere paarige Fühlergang der verkümmerte.

Ueberhaupt scheint bei den regelmäßigen Echiniden die Natur nicht selten wenig auf die Symmetrie der einmal vorkommenden Organe zu geben. So ist z. B. meist die Afteröffnung der Schale unregelmäßig (s. z. B. auch Fig. 8. u. 9.) und bei einer Abtheilung Echinus durch vier Schuppen verschlossen (s. Fig. 8.); und bei den ovalen See-Igeln, die man neuerdings zur Gattung Echinostraca erhoben hat, nämlich bei E. Quoyi Blainv. und E. acutus Blainv. finde ich den unpaaren Strahl nicht in der langen Axe der Ellipse, auch nicht, wie es in diesem Archiv (I. p. 37. Note) angegeben ist, in dem Queerdurchmesser, sondern in einem schiefen Durchmesser.

2) Beschädigter und geheilter Spatangus.

Wir haben eben einen aus innern Ursachen monströs gebildeten See-Igel betrachtet; Fig. 6. u. 7. zeigt uns dagegen einen in Folge äußerer Gewaltthätigkeit verkrüppelten Spatangus. Er gehört wohl Lamarck's Sp. arcuarius an, unterscheidet sich jedoch hinreichend von dem unter diesem Namen von Goldfußs vortrefflich abgebildeten fossilen. Diese Art ist gemein an den sandigen Ufern Siciliens, und Fig. 4. u. 5. geben zwei Ansichten
von oben und von hinten, von einem jungen normal gebildeten Exemplare, zur Vergleichung mit dem verkrüppelten. Dieses ist in seinem hinteren Theile durch einen Schlag von oben gequetscht, so daß der hintere Theil viel niedriger ist, als im normalen Zustande (vgl. Fig. 7. mit Fig. 5.). Es ist ein gewaltiger Rifs auf der linken Seite in der kalkigen Körperbedeckung entstanden (s. Fig. 6. 7.), der noch zum Theil unverheilt, und an mehreren Stellen nur durch ein dünnnes, durchsichtiges Häftchen geschlossen ist. Mit Substanzverlust ist die Verletzung nicht verbunden gewesen, es hat sich im Gegentheil auf beiden Seiten des Risses zu viel erzeugt. Denn es haben sich nicht nur die beiden Schenkel des lanzettförmigen, die Öffnungen der Eierleiter einschließenden, Vertikalfeldes (s. Fig. 4. a.) in Fig. 5. bedeutend auseinander begeben, und das Infraanalfeld (s. b. in Fig. 5.) ist viel breiter geworden, sondern der After (c. in Fig. 7.) ist ganz aus der Mittellinie heraus in die rechte Seite verschoben. Damit hängt die abweichende Gestaltung der beiden hinteren Fühlergänge (vergl. Fig. 6. mit Fig. 4.) zusammen. Gleichzeitig mit dem großen Längsrifs scheint ein Querrifs entstanden zu sein. Er ist in Fig. 6. und 7. durch die gezähnelte Linie angedeutet, deren Zähnen durch die hervorragenden, stacheltragenden Höcker entstehen, und die Hinterseite zeigt eine eben so breite längliche, flache Vertiefung, in deren rechtem Ende der After liegt. Dieser Querrifs scheint einfach zusammengeheilt zu sein, ohne Erzeugung neuer Schale, denn in der Richtung vom Risse nach unten, ist eher weniger als mehr Schale, verglichen mit dem gleich großen normalen Exemplar.

Dieser Fall beweist, daß die, die innere Fläche der Schale auskleidende, Haut bei Spatangus im Stande ist, überall neue Schale hervorzubringen, dies zeigt nicht nur die abnorme größere Breite der Schale in der Gegend des Risses, sondern auch der Umstand, daß man an beiden Stellen, wo der Rifs erst durch ein bloßes durchsichtiges Häftchen verschlossen ist, kleine ringsum abgesäumte Schlenstückchen in dieser Haut wahrnimmt.

Ich habe vorhin die Ausdrücke Vertikal- und Infraanalfeld gebräucht. Breite, glatte Linien schließen bei den Spatangenräume ein, deren verschiedene Gestalt ein vortreffliches Mittel abgibt die Arten zu unterscheiden. Es sind folgende: 1) das
Vertikalfeld area verticalis, zwischen den Fühlergängen, die Öffnungen der Eierleiter einschließend. 2) Das Ambulakralfeld area ambulacralis, wenn sämtliche Fühlergänge des Rückens durch eine sternförmige Figur scharf begrenzt sind (Es fehlt unserer Art). 3) Das Analfeld, area analis, welches den After einschließt, 4) das Infraanalfeld area infraanalis, 5) das Bauchfeld area ventralis. Diese Felder kommen nicht sämtlich bei allen Arten vor; ihr Vorhandensein oder Fehlen und ihre Gestaltgaben sehr beständige und scharfe Kennzeichen der einzelnen Arten.

3) Über das Wachsthum der Echiniden.

Die akten See-Igel aber mit schmalen Ambulakren, wo die Porenbänder gerade, nicht gezähnte Linien bilden (Blainville's erste Abtheilung), zeigen das zweite Gesetz; die Höcker in den Feldern gehen dem Poralrand derselben parallel. S. Fig. 8. von _E. aequituber-culatus_ Blainv. Die Höcker der Ambulakren scheinen allemal dem Poralrand parallel zu laufen. Bei den Täfelchen der Ambulakren findet das Wachsthum also allemal am Medianrand am stärksten Statt; bei den Täfelchen der Felder aber findet meist ein gleiches Wachsthum am Poral- und Mediaurand Statt; nur bei der ersten Abtheilung der akten _Echinus_, wie sie Blainville _Dict. d. Sc. nat._ aufstellt, findet das Wachsthum der Täfelchen der Felder nur am Meridianrand Statt. Wenn Klein’s Figuren in dieser Hinsicht Zutrauen verdienen, so findet sich der letztere Fall auch bei _Cidarites diadema_ t. 37. f. 1.

Daß die Schale durch Entstehung nemer Täfelchen vergrößert werde, gilt nur von den regelmässigen Echiniden. Bei _Spatangus_ scheint von Anfang an die gehörige Zahl von Täfelchen vorhan- den zu sein, wenigstens finde ich bei meinem kleinsten 9"" langen _Sp. arcuarius_ eben so viel als bei meinem grössten, welcher 27"" mißt. Sie scheinen überall am Rande zu wachsen, und die Zahl der Höcker und Stacheln nimmt auch bei ihnen mit dem Wachsthum zu, so daß z. B. zwischen den zwei Poren...
jeder Seite des Infraaualfeldes (s. Fig. 8.) bei einem jungen Exemplare ein einziger Höcker steht, während in demselben Raume bei einem Ausgewachsenen deren drei angetroffen werden.

4) Ueber die Füüschen der Echiniden.

Cuvier in den Leçons d'anat. comp. 1. édit. vol. I. p. 467. beschreibt die Füüschen also: „Leur forme est à- peu-près celle d'une ampoule à long tube, remplie d'une humeur très-fluide, dont les parois sont formées par des fibres circulaires. La portion tubuleuse ou allongée de ces ampoules est la seule, qui paraise au dehors de l'animal, quand il a le pied allongé…… D'après cette organisation du pied il est facile d'expliquer le mécanisme de son action. L'humeur contenue dans l'interieur de l'ampoule devient par son déplacement la cause du mouvement,“ u. s. w.

Es geht hieraus hervor, daß Cuvier die Ansicht gehabt hat, die Wände des Organes besäßen nur Kreisfasern. In diesem Falle ist es nicht möglich, sich die enorme Verlängerung und Verkürzung der Füüschen zu erklären. Die bloße Contraction der inneren Blase kann die Verlängerung nicht bewirken, denn eine kurze und weite Röhre enthält eben so viel Flüssigkeit als eine lange und enge. Die ungeheure Verkürzung der Füüschen erklärt Cuvier so: „Le pied rentre-t-il? c'est alors la tunique du tube, qui se contracte, et qui chasse l'humeur dans l'ampoule.“ Dies ist aber noch weniger zu begreifen. Die Contraction der Röhre d. i. des Füüscheus kann allerdings die Flüssigkeit in die Blase aber nicht das Füüschen selbst in den Körper des See-Igels hineintreiben. Die Contraction der Kreisfasern wird im Gegentheil eine Verengung und Verlängerung der Röhre bewirken.

Man kann sich, wie ich glaube, die Aktion der Seeigel-Füüschen nur dann erklären, wenn man annimmt, daß sie nicht bloße Kreisfasern, sondern auch Längsfasern besitzen. Von dem Dasein dieser letzteren habe ich mich auch beim E. lividus Blainv. überzeugt, von dem ich ein paar Füüschen abriß und unter dem Mikroskop betrachtete. Bei mäßiger Vergrößerung stellten sie sich dar, wie Fig. 10., nachdem ich sie zwischen zwei Glasplatten gelind gequetscht. Sie bestehen deutlich aus zwei Schichten, einer oberen schwärzlichen, die bei der durch den Spiritus bewirkten Contraction tief gerunzelt ist, und grüßtenthels aus
Kreisfasern besteht, wie ich sehr schön am untern Theil einmal sah, von welchem sie grösstentheils entfernt war und nur einzelne Fasern hinterlassen hatte. Die Längfasern sind gelblich gefärbt, scheinen in mehreren Bündeln zu stehen, und enden sich, strahlenförmig divergirend in den Saugnapf, der frei von Queerfasern zu sein scheint, und ebenfalls eine blasse gelbliche Farbe besitzt. Diese Längfasern sind viel feiner als die Queerfasern, und erst bei einer 240maligen Vergrößerung meines Pistor-Schickschen Mikroskops erkannte ich die einzelnen primitiven Fasern mit großer Deutlichkeit *)

Von derselben Beschaffenheit finde ich auch die zehn Fühler, welche kreisförmig in der Mitte der Mundhaut stehen, nur ist an ihrem Ende die Saugnapfgestalt weniger deutlich, und sie sind derselben ebenfalls mit der äusseren, dunklen, hauptsächlich aus Queerfasern bestehenden Haut überzogen.

Über Gorgonia paradoxa
von Denselben.

*) Längsmuskelfasern fand aehn Tiedemann: Anatomie der Röhrenholothurie etc. p. 85. Herausgeber.
recht gut zeigt, beschrieben habe, was sie wohl verdient, da sie von der gewöhnlichen Struktur der Dikotyledonen-Stämme, und selbst der andern Cactus-Gattungen so sehr abweicht.

Erklärung der Abbildungen auf Taf. V.

Fig. 1. 2. 3. monströser Echinus Melo, zwei Drittel der natürlichen Größe von oben, von der Seite, und von unten.
Fig. 4. Junger Spatangus arcuarius von oben,
Fig. 5. derselbe von hinten gesehen.
Fig. 6. Verkrüppelter Spatangus arcuarius von oben,
Fig. 7. derselbe von hinten gesehen. a. bezeichnet in diesen 4 Figuren die area verticalis, b. die area infraanalis mit vier Fühlerporen, c. der After.

Fig. 8. Theil von Echinus aequituberculatus Blainv. nr. 1. (der Name kommt bei Blainville Dict. d. Sc. nat. art. Oursin zwei Mal für zwei verschiedene Arten vor), wo die Längsreihen der Tuberkeln in den Feldern dem Poralrand der Felder parallel laufen.
Fig. 9. Theil von Echinus lividus Blainv. wo die Längsreihen der Tuberkeln in den Feldern dem Meridian parallel laufen.

v. Bär:
Ueber die Entstehungsweise der Schwimmblase ohne Ausführungsgang.

(Bullet. scientif. de l'Acad. de St. Petersbourg Tom. I. p. 15.)

Seine Vermuthung, daß die Schwimmblase ohne Ausführungsgang auf gleiche Weise wie die mit einem Ausführungsgange versehene, entstehe, und dieser aus der Schwimmblase in den Darmkanal führende Gang im Fortschritte der Entwicklung obliterate, hat Verf. durch Beobachtungen am Barsche völlig bestätigt gefunden. Wenn der Embryo das Ei verläßt, ist er noch ohne Schwimmblase; bald darauf tritt sie aber hervor. Der Gang ist schon am 4. Tage merklich enger, als in Cyprinus-Arten, obgleich noch deutlich hohl; am 5ten und 6ten Tage wird er noch enger, am 7ten und 8ten Tage fängt die Schwimmblase an rascher zuzunehmen und der Kanal wird so eng, daß man nicht mehr mit Gewißheit behaupten kann, daß er hohl sei.
Beitrag zur Kenntniss der Gattungen Campanularia und Syncoryne

von

S. L. Lowén.

(Uebersetzt aus den Verhandlungen der Königl. Schwedischen Akademie der Wissenschaften f. d. J. 1835.)

1. Campanularia.

(Hierzu Taf. VI.)

Die Gattung Campanularia Lam. ist nach ihren Charakteren völlig bekannt; ihre glöckenförmigen Zellen und knotigen, aus dünnem und farblosem Horn gebildeten Röhren sind eben so

**) Philos. Transactions, 1831.

***) Isis 1833.

bekannt, als leicht zu beobachten. Es bleibt daher nur übrig, einige geringere, überschene oder unzüreichend beschriebene Einzelheiten hinzuzufügen, welche an der an unseren Küsten ge- meinen *Sertularia* geniculata Müller *) wahrgenommen worden sind.

Man kann den ganzen Polypen in zwei Theile theilen, welche, wie weiterhin gezeigt werden soll, schon während seiner Entwicklung angedeutet sind, den Stamm nämlich (*Stirps*) und die Sprossen (*Stolones*), welche beide röhrenförmig und im Durch- schnitte zirkelrund sind **). Der Stamm trägt am Ende seiner Zweige und in den Axillen Zellen zweier Art, männliche (Fig. 1) und weibliche (Fig. 11) ***)), welche letzteren, ehe Ehrenberg ihre rechte Bedeutung nachwies, bald Ovarien, bald Bläschen genannt wurden. Jede männliche Zelle hat einen Buden (*Septum* Lister; Fig. 2, 3, a.), und dieser ist in der Mitte mit einem runden Luche (*Foramen septi ††*), Fig. 2, b.) versehen. Der Rand dieser Öffnung springt ein kurzes Ende weit in den umgekehrt-konischen Raum zwischen ihr und dem Anfange des Zweiges (Fig. 3, b.) vor und bildet so eine kurze Röhre †††). Die obere

*) *Zool. danica*, Tab. CXVII. — Es ist dieselbe Art, welche Lister zu seinen Untersuchungen benutzte und die er sehr gut abgebildet hat a. a. O. Tab. X. Fig. 1.

**) Bei den Sertularien, deren Zellen nicht auf Stielen stehen, sondern sitzend oder in die Röhre eingesenkt sind, sind diese im Durchschnitte (*Lumen*) ungleich und nie rund.

Herausgeber.

†) Das *Septum* und sein *Foramen*, welche zuerst von Lister, a. a. O., beschrieben wurden, finden sich an allen Sertularien, die ich untersucht habe, und ihre Gestaltung liefert sehr gute Charaktere.

††) Lister, a. a. O. S. 372, sagt nur: *a thin column of soft matter between it and the base of the cell*, und deutet etwas davon an in Tab. IX. Fig. 4, a. 5, a. Es ist indessen eine Hornlamelle, die sich unter mehreren verschiedenen Formen bei allen Sertularinen wiederfindet.
Fläche der Scheidewand ist etwas convex, und ihre Peripherie zeigt einen Kranz von kleinen Punkten, welche durch das Mikroskop angesehen, den Betrachter in Ungewissheit lassen, ob sie für Erhabenheiten oder für Eindrücke zu halten seien. Der Rand der Zellenöffnung ist bei dieser Art völlig glatt, und alle Zellen sitzen in der Längenachse ihrer Stielchen (Pedicelli) *

Mit Leichtigkeit unterscheidet man zwei Membranen, welche alle weichen Theile des Thieres bilden, eine äussere und eine innere. Die äussere (Fig. 1, 9, 10 etc. a.), durchsichtig und ungefärbt, begränzt dieselben und gibt die Bänder ab, welche sie an der Schale befestigen. Sie allein bildet die Fühler der männlichen Polypen und den grössern Theil des weiblichen Körpers.

Die innere Membran (Fig. 1, 9, 10 etc. b.), weniger durchsichtig und von einer körnigen Textur, wird überall von der äussern bedeckt, bekleidet die Wände der Darmröhre und der Mägen der Thiere, mit einem Worte, so viel ich weiss, alle Höhlen, in welchen sich eine Flüssigkeit bewegt, fehlt aber in

*) Bei anderen Arten von Campanularia ist der Zellenrand mit Stacheln besetzt, und diese sind mitunter so entwickelt, dass sie, sich zu einer Spitze zusammenschliessend, die Zelle zuschliessen, wenn sich das Thier hinüegewogen hat. So bei Camp. clausa Nob., und, obgleich in geringeren Grade, bei C. Syringa Lamk., welche letztere auch durch eine schiefe Stellung der Zellen von ihren Gattungsverwandten abweicht. — Camp. clausa nobis. Trilinearis, graecillima, tubulis $\frac{1}{2}$ crassis, hyalina, flexuosa, nudoso-annulata, alterne distantem ramosa, rami simplicibus, brevibus; cell. masculis ramus longitudine aequantibus, turbiante, elongatis (1:3,5), apertura dentibus 8 conniventibus, longis (=$\frac{1}{2}$ cellae), acutis clausili. — Hab. in fucis fundi petrosi maris Rahaniam alluentis, rara.
den Fühlern des Männchens und den größern Theile des weiblichen Körpers.

Bei der folgenden speciellen Beschreibung dürfte es passend sein, denselben Weg zu verfolgen, welchen die Entwicklung des Thieres nimmt, nachdem die erste Zelle — welche allemal eine männliche ist — sich geöffnet hat, also erst den männlichen Polypen und die Darmröhre, dann die Knospenbildung, dann das Weibchen und schließlich die Entwicklung zu beschreiben.

Die Fühler des Männchens (Fig. 1, c; Fig. 4.). An der Zahl fand ich sie von 16 bis 28, aber, vielleicht nur zufälligerweise, niemals gleich lang, und die Ursache dieser Veränderlichkeit liegt, wie es den Anschein hat, nicht in einer mit dem Alter zunehmenden Anzahl, sondern vielmehr in geringerer oder reichlicherer Nahrung während der Entwicklung. Sie sind durchsichtig, hohl und werden von einer dünnen Schicht der äußeren Membran gebildet. Auf ihrer Oberfläche sitzen unregelmäßige, hier und dort in unvollständiger Spirallinie gewundene Kränze von stachelähnlichen aufwärts gerichteten Wärzchen (Saugwärzchen?), welche gegen die Spitze zu ausgebildeter sind und gegen das unterste Viertel fast ganz verschwunden. Die innere Hülle ist durch kleine Quecrhäute in Zellen getheilt. Auf ihrer Oberfläche sitzen unregelmäßige, hier und dort in unvollständiger Spirallinie gewundene Kränze von stachelähnlichen aufwärts gerichteten Wärzchen (Saugwärzchen?), welche gegen die Spitze zu ausgebildeter sind und gegen das unterste Viertel fast ganz verschwunden. Die innere Hülle ist durch kleine Quecrhäute in Zellen getheilt. An der Basis sind die Fühler in einem Halsbande (Collare) (Fig. 1, d.) vereinigt, welches den Mund umgibt. In ihrem Innern findet man keine mit der in den übrigen Theilen des Thieres übereinstimmende Bewegung von Flüssigkeiten, und ihre Verrichtung ist nur die von Fangorganen. Sie werden meistens in der Stellung gehalten, daß der Eine mehr aufgerichtet, der Andere mehr herabgebogen ist *), und sind übrigens nach mehreren Richtun-

*) Diese Stellung, die unregelmäßige Bewegung und die geringere Lebendigkeit des ganzen Thieres geben einen Habitus ab, welcher es einem einigermaßen geübten, auch unbewaffneten Auge leicht macht, ein Sertularin von einem Bryozoon zu unterscheiden. Die Bryozen halten die Fühler in einer regelmäßigen, umgekehrt konischen Stellung ganz still, oder biegen sie plötzlich in scharfe Winkel. Auch ist hier die Verrichtung eine andere. Der Raub wird nicht unmittelbar mit dem Fühler erfaßt, sondern mit Hülfe des Strudels, welche ihre Wimpern (Ciță) im Wasser erregen. Im Innern der Fühler geht außerdem eine beständige Bewegung von Flüssigkeit mit eingemengten Körnchen vor sich, welche in Verbindung mit einem Ringgefäße steht, das den Mund umschließt.
gen bin biegsam, so dafs die Spitze eines jeden Füllers rückwärts zum Munde hinab geführt werden kann.

Der Mund (Fig. 1, e; Fig. 5, 6, 7), umgeben vom Halsbande, ist bei allen Campanularien, welche ich gesehen habe, mehr oder weniger stark vorstehend, doch bei dieser Art am meisten. Er ist hier hoch, bisweilen beinahe von der Höhe des halben Magens, und an der Basis stark zusammengezogen, so dafs der Zwischenraum zwischen ihm und der inneren Fläche des Halsbandes bedeutend ist. Der obere, weitere Theil bildet gleichsam Lippen. Er kann bald völlig geschlossen, bald trichterförmig ausgebreitet und auf mancherlei Weise gefaltet werden, ja, wenn der Polyp recht hungrig ist, wird er wie ein Kragen niedergelegt (Fig. 7.) Der unterste, zusammengezogene Theil dürfte als Speiseröhre zu betrachten sein.

Der Magen (Fig. 1, f.) ist eine weite Röhre, welcher an der Basis des Halsbandes anfängt und von da bis zur Scheidewand hinabsteigt. Er kann zusammengezogen und bedeutend verkürzt werden. So wie das Halband, ist er nach allen Seiten in der Zelle vollkommen frei, und nur seine Basis ist an der Scheidewand befestigt. An dieser breitet sich sein Pförtnertheil aus, befestigt sich durch strahlige Bänder (Fig. 8.) der äussern Membran in den Eindrücken (?), welche wir oben beschrieben haben, schlägt sich zurück und steigt durch das Loch der Scheidewand als Darm hinab.

Die Darmröhre (Fig. 1, g.) füllt nicht völlig den Raum der Hornröhre aus, ist ausdehnbar, demzufolge hier und da erweitert und durch Bänder von der äussern Membran an der Schale befestigt. Diese Bänder sitzen höchst unregelmäfsig, bald dicht, bald mehr aneinander, und man sieht bisweilen ein Solches von der Stelle, an welcher es erst war, verschwunden, und ein Anderes an einer andern Stelle entstanden, an welcher erst Keines war.

Im Magen, und noch deutlicher und minder unterbrochen in der Darmröhre dieses Thieres, zeigt das Mikroskop, wie bei allen Sertularin und Tubularin, eine Flüssigkeit, in welcher beigemengte Körnchen in ununterbrochener Bewegung sind, - eine Erscheinung, welche, schon von Cavolini wahrgenommen, bald als ein, entweder dem der höheren Thiere oder auch der Ge-
wächse (*Chara*) analoger Kreislauf, bald aber, von Ehrenberg *), als eine durch einen *Motus peristalticus* entstandene Bewegung der aufgenommenen Nahrungsstoffe betrachtet ward. Sorgfältige Beobachtungen haben letztere Ansicht auch zu der meini gen gemacht.

*) a. a. O. S. 75.

Die andere Art der Bewegung, welche dagegen den einzelnen Körnchen zukommt, besteht darin, daß — die Strömung mag fortgehen oder stillstehn — jedes Körnchen sich unablässig herumschwingt und hin und her wirft, vorwärts oder rückwärts, gegen ein nahe liegendes stößt und von ihm eine Strecke weit fortgeführt wird, oder auch dieses aus seiner Bahn treibt, und solcherweise auf unzähligen Umwegen weiter gefördert wird. Dabei vereinigen sich mitunter zwei oder mehr zu einem kleinen, unregelmäßigen Körper, welcher auf dieselbe Weise, während einer ununterbrochenen Drehung um seine Achse, hin und her geworfen wird. Geht nun, bisweilen, die allgemeine Strömung sehr stark vor sich, so hört diese Bewegung wohl bei einigen Körnern auf, welche dann gerade vorwärts geführt werden; aber niemand die allgemeine Strömung ab, und, wie es mir scheint, wenn das eine oder andere Korn den Wänden der Darmrohre nahe kommt, so fängt jene Bewegung sogleich von neuem an. Indessen finden sich Punkte, auf welchen sie nie aufhört, nämlich in den Theilen, welche noch in der Ausbildung begriffen sind, und in wel-
eher die Absonderung der Schale vor sich geht, ferner in den Röhren der weiblichen Zellen. Dort sind die Körnchen ohne Vergleich zahlreicher, als an irgend einer Stelle, und bilden ein, durchs Mikroskop betrachtet, ganz dunkles und so dichtes Gewimmel, daß es ganz unmöglich ist, den Bewegungen eines einzelnen Kernes mit dem Auge zu folgen. Von solchen Stellen scheint sich kein Korn zurückzuwenden — alle scheinen aufgesogen zu werden. Diese, so zu sagen, individuelle Bewegung, welche bis auf einen gewissen Grad von der allgemeinen Strömung unabhängig ist, muß auch eine andere Ursache haben und von einer Kraft herrühren, welche an der Fläche der inneren Darmwand so vertheilt ist, daß sie auf jedes Körnchen anders, als auf dessen Nachbar, einwirken kann, — denn so zeigt sich diese Erscheinung. Es findet sich eine Kraft von dieser Beschaffenheit nicht weiter, als in den schwingenden Wimpern, diesen kleinen Organen, welche zufolge der Entdeckungen neuerer Zeiten als wichtige Mittel zur Bewegung der Flüssigkeiten in den Organismen und an deren Oberfläche auftreten *). Es glückte mir zwar nicht, die Wimpern selbst hier wahrzunehmen; — aber je öfter ich sie vergebens suchte, desto fester wurde dennoch meine Ueberzeugung, daß sie zu finden sein müssen; so vollkommen gleichen die Bewegungen der Körnchen denen, welche von Wimpern, die man sehen kann, hervorgebracht werden.

Die Knospenbildung (Fig. 1, h.). Diese ist zwiefach, indem sie männliche Knospen hervorbringt, welche durch Bildung von Zweigen nach dem für die Art geltenden Gesetze, ihnen den Habitus dieser verleihet, oder weibliche, welche hier in den Axillen der ersteren sitzen. Die männliche Bildung ist hier, wie bei allen Sertularinen, die überwiegende; dagegen aber sind die Knospen der Weibchen größer und ihre Zellen enthalten mehrere Individuen. Hier ist es bemerkenswerth, daß bei Campanularia und Plumularia **) die weiblichen Knospen mehr ent-

*) Die Wimpern vibrieren an den Kiemen der meisten Ringelwürmer, auf den Fußrand der Gasteropoden, im Magen und hauptsächlich in der Kloake der Bryozoen, ja, sie fehlen nicht einmal bei den Hydrinen.

**) Man vergl. Plumularia setacea, — Plumularia falcata weicht hierin, so wie in vielem Andern ab.
entfernt von den Männchen ausgebildet werden, während bei
Sertularia die weibliche Zelle am häufigsten unmittelbar neben
der Basis der männlichen sitzt. — Der Fortgang der Knospenbil-
dung verhält sich folgendermaßen: An der nach dem Verzwei-
gungsge setze der Art bestimmten Stelle sieht man, daß die nicht
mehr in der Schale freistehende, noch bloß mit Bändern an ihr
angehängte Darmröhre jetzt dicht an ihr anliegt, und daß der
Zuflus der Körner dort stärker ist, als anderwärts. Dort sieht
man auch bald eine im Anfange geringe Ausbiegung an der äu-
ßern, harten Schale, welche allmählich zunimmt und zu einem
kleinen, kurzen Zweige wird. Dieser wächst nun auf die Weise,
dafs die in der geschlossenen Spitze des Zweiges angeschwollene
Darmröhre eine große Menge Flüssigkeit mit eingemengten Körn-
chen aufnimmt und aus ihnen die Hornschale bildet, innerhalb
dwalcher sie selbst wächst. Ueberall, wo die Schale ausgebildet
worden ist, zieht sich die Darmröhre von ihr zurück und bleibt
an ihr nur durch Bänder befestigt; aber ihre angeschwollene
Spitze, welche jetzt wie eine *Matrix* für die weitere Bildung der
Schale wirkt, liegt fortwährend der neuen Hornlamelle, welche
gebildet wird, dicht an. So bildet sich der Zweig nahe am
Stamme mehrerenteils durch Ausschwellungen und Einschnürungen
ausgezeichnet, dann glatt, endlich von neuem knotig, bis die
letzte Ausschwellung größer als die vorhergehenden, und der An-
fang der männlichen Zelle wird. Nun bildet sich deren Scheide-
wand (Fig. 1, *k*.), während der Darm eine ringförmige Ausbrei-
tung macht. Ueber dieser schließt sie kegelförmig auf und nimmt
allmählich an Weite aufwärts zu, so daß das Ganze am Ende die
Form der bleibenden Zelle, nämlich die eines umgekehrten Ke-
gels, bekommt (Fig. 9.). Ihr oberer Rand wird scharf, aber die
ganze Öffnung ist durch eine in der Mitte convexc, näher dem
Rande concave Haut geschlossen. Wenn diese fertig ist, zieht
sich der angeschwollene Darm, welcher die Zelle hervorgebracht
hat, zurück, steht frei in ihr, und nun erst bilden sich die Füh-
ler (Fig. 10.) aus. Wenn sie ausgewachsen sind, und das Thier
dann nach vollständig ist, durchbricht dieses mechanisch die die
Zelle bedeckende Haut, schlägt die Fühler heraus und lebt für
sich selbst.

Die weiblichen Knospen (Fig. 11.) bilden sich, wie
schon bemerkt, in den Axillen der Zweige. Ihre Stielchen sind kürzer, und die Zelle ist beinahe $2\frac{1}{2}$ Mal so groß, wie die der Männchen. Ihre Bildungsgeschichte ist dieselbe, bis dahin, wo die Darmröhre die Zelle fertig gebildet hat und noch unter der deckenden Haut eine große Anschwellung macht (a). In dieser Stellung bleibt sie stehen, und ihr dünner Theil, welcher, ungefähr in der Achse der Zelle, gerade abwärts steigt, ist an der einen Seite durch Bänder an der inneren Oberfläche der Zelle befestigt. Diese ganze Röhre und ihre obere große Erweiterung unter der Öffnung der Zelle lassen ein starkes Gewimmel von Körnern sehen. Nun zeigt sich auch bald — und mehrere Theil an einer Seite der Darmröhre, von welcher keine Bänder abgehen, — eine kleine Erhöhung (b.), in deren Höhle sich auch der Zufluß der Körner gleichsam zu konzentrieren scheint. Dies ist ein werdendes Weibchen. Die Erhöhung wird immer größer, kugelförmig, ihre Verbindungsstelle mit der Darmröhre schmäler, ihre Höhle größer, ausgebaut, gleichsam in mehrere Buchten getheilt (c, d, e; Fig. 13, a.). Diese Höhle steht jedoch immer durch eine enge Röhre mit der Darmröhre in Verbindung, gleichwie eine aus ihr ausgezogene Blase, innendisch bekleidet mit deren innerer Haut und ein dichtes Gewimmel von Körnern umschließend. Außen an dieser Blase erscheint, mit zunehmender Anbildung, ein kleiner kugelrunder Körper (f.) von einer dunkel, körnigen Materie, an dessen nach außen gewandter Seite man wieder einen hellen, cirkelrunden Flecken (g.) erkennt, welcher ziemlich deutlich, doch so umschrieben ist, daß er eher einer unter der Körperoberfläche verborgenen Blase mit hellerem Inhalte gleich. Alles dieses wird wieder von einer glasählichen, äußerst dünnen Hülle (h.) umgeben, an derenoberer und äußerem Seite man einen Krauz von kleinen Erhabenheiten (k.) sieht. Dies ist der Körper des Weibchens, die Erhabenheiten sind seine Fühler, der kleine kugelförmige Körper ist ein Ei mit dem Purkinje'schen Bläschen, und der aus der Darmröhre ausgezogene Sack entspricht dem Magen des Männchens. Es bilden sich allezeit auf einmal mehrere Weibchen, aber nicht in denselben Stadien aus. Zu äußerst bedeutet sie alle die äußere Membran des Darmes, und ihre Entwicklung geschieht demnach bloß durch die innere.
Das Weibchen, welches zu oberst liegt, ist immer am meisten ausgebildet, und sein Ei zuerst reif; die tiefer sitzenden sind nach der Reihe jüngere. Inzwischen ist der aus der Darmröhr e hervorgehtretene Sack, an dessen Oberfläche das Ei gebildet wurde, da er früher diesem an Größe überlegen war, nun viel kleiner, das Ei aber größer geworden. Der Flecken des letztern ist auch verschwunden. Das zwischen den beiden Hauten ausgebildete Weibchen hat nur die äußere zu durchbrechen. Dies geschieht nun so, daß der Kanal, durch welchen sein Sack mit der Darmröhr e in Verbindung steht, verlängert wird, so daß, wenn das ausgebildete Weibchen jene äußere Haut und die dünne Hornlamelle durchbricht, welche die Zelle zuschließt und deren Fragmente man dann auch abfallen sieht, wie dies Lister beschrieben hat, sein Zusammenhang mit dem gemeinschaftlichen Stamm (Fig. 12, 13.) damit nicht aufhört. Hat das Weibchen sich sonach hinausgedrückt, so sitzt es, wie eine beinahe kuglerunde, glashelle Blase, mit einem kurzen Stiel außen am Deckel der Zelle befestigt, wo die Öffnung, welche es sich gemacht hat, sich dicht zuschließt. Die Fühler, ungefähr 12 an der Zahl, sind bei einigen ausgestreckt, fast von gleicher Länge mit dem Durchmesser des Körpers, bei anderen sehr stark verkürzt. Bei allen sind sie mehr zugespitzt, als die der Männchen, und mit Spitzchen ohne Ordnung besetzt. Von ihrem Kranze gehen in die dünn e Membran aus welcher des Weibchens Körper zu äußerst gebildet wird, vier entsprechende Gefäß e ab, welche sämtlich sich in den jetzt bedeutend verkleinerten Sack an dessen Basis endigen. Nun sieht man auch, daß die äußerste dünne Eihülle an diesem Sacke befestigt ist (Fig. 12.). Diese Hülle platzt und es kommt ein Junges hervor, welches seiner Mutter ganz unähnlich ist (Fig. 12, a; Fig. 13, b.). Es hat die Gestalt eines kleinen Wurmes, einen elliptischen Umrifs und ist etwas flach gedrückt. Seine Oberfläche ist allenthalben mit vibrierenden Wimpern besetzt, mittelst deren es sich im Körper der Mutter bewegt. Nach einer Weile treibt es sein eines Ende zwischen den Fühlern derselben vor und gleitet hinaus, indem es zugleich eine mehr verlängerte Gestalt annimmt (Fig. 13.).

Jedes Weibchen trägt gewöhnlich zwei Eier, und eben so viele Jungen schlüpfen aus. Nur ein Mal habe ich drei Junge
gesehen, und vermuthe, daß sie auch aus eben so viel Eiern gekommen seien. Indessen findet hierbei eine Abweichung Statt, welche bemerkenswerth ist und eine Monstrosität genannt werden muß. Mehrere Male beobachtete ich nämlich, daß in Weibchen, welche die Zelle verlassen hatten, ein in seiner Hülle schon frei gewordenes Junges, durch eine Einschnürung erst getheilt und dann allmählich in zwei Hälften zerteilt wurde, welche später, jede für sich, sich auf dieselbe Weise vervielfältigten, und zwar bis zu einer Anzahl von mehr, als dreißig (Fig. 13, c.). Wie weit diese frühzeitig begonnene Selbsttheilung gehen kann, und welches Schicksal diese Thiertheilchen erwarte, habe ich zwar nie sehen können; aber ohne Zwei fel ist es dasjenige, was Lister a. a. O. S. 376. beschreibt und daselbst abzeichnet (Tab. X, 6, 4.): Ihm, welcher die Weibchen für die Jungen ansah, blieb jene Ausströmung einer Menge von Körnchen unerklärt.

Nachdem die Mutter sich ihrer Jungen entledigt hat, zieht sie sich immer mehr und mehr zusammen, hängt geneigt und leblos da, und die Fühler verschwinden fast. Lister's treffliche Beobachtungen überzeugen hinreichend, daß sie wirklich verschwindet („absorbiert wird,“), und damit stimmen auch meine Beobachtungen völlig überein. Ob sie etwa, nachdem sie sich auf's äußerste zusammengenommen hat, in die Zelle zurückgeht? — Für jedes Weibchen, welches hinaustritt, verringert sich die Ausbreitung der Darmröhrche in der Öffnung der Zelle, nachdem der Zufluß der Nahrungsstoffe nicht mehr so stark geblieben ist.

Wenn das Junge aus dem Körper der Mutter hervorgekommen ist, sügt es an, mittelst Schwingungen seiner Wimpern umher zu schwimmen. Seine Bewegung ist dabei gleichmäßig und gleichsam gleitend. Dabei dreht es sich beständig um seine Achse, bald horizontal liegend, bald lotrecht aufgerichtet stehend, wobei auch die Form des Körpers veränderlich (Fig. 14, 18.), bald eiförmig, bald mehr verlängert, nach vorne abgestumpft, nach hinten gleichmäßig verschmälert, bald verkürzt und birnförmig

*) a. a. O. S. 376. Er war völlig überzeugt, daß das, was er sah, die Jungen wären, und konnte sich natürlich nur höchstlich verwundern, daß sie „absorbiert würden“, nachdem sie mittelst einer so langen Procedure in ihr Element hinausgetreten waren.

Dieses Stadium der Entwicklung der Campanularia ist lange unter dem Namen der „beweglichen Eier“ bekannt gewesen, weil es schien, daß die Jungen eine Analogie mit dem Samen gewisser Algen haben. So sind auch die Weibchen Kapseln genannt worden*).

Nachdem die Jungen eine Zeit lang frei umher geschwommen, befestigen sie sich an irgend einem größeren Körper, einem Tangblatte u. s. w. Der Körper wird dabei platter und cirkelrund, wie ein kleines Küchelchen (Fig. 15.) und die Wimpeln, welche aufgehört haben, zu vibriren, legen sich rund um ihn, wie durchsichtige Fransen. In der Mitte der inneren Höhle erscheint ein dunkler Fleck, dessen Durchmesser ziemlich einem Fünftel des ganzen Körperlurchmessers gleich ist und von Körnchen herrührt, die um den Punkt concentirt sind, aus welchem der Stamm des Thieres hervorgehen soll, die äußere Membran ist jetzt etwas dicker, als bei dem ausgebildeten Thiere, und, wie es scheint, von Gefäßen (?) aus der inneren Höhle durchzogen. Nun entsteht über dem dunkeln Mittelfelde eine kleine halbkugelige Erhöhung (Fig. 16.), und zugleich zeigt es sich, daß die innere, nicht mehr zirkelrunde Höhle sich in vier oder fünf unregelmäßige Bucht en, und die äußere, cellolöse Haut, mit Beibehaltung des runden Umfangs des Ganzen, in eben so viele Lappen geteilt haben, welche letzteren nur durch schmale, concentrische Einschnitte getrennt sind. Diese Lappen sind Andeutungen der bleibenden horizontalen Theile dieses Phytozoon's — der Sprüssen. Schon ist die Bekleidung des Ganzen hornartig geworden; aber man überzeugt sich nicht leicht davon eher, als bis sich, während des Stammes weiterer Entwicklung, die Höhle

*) S. Grant's Abhandlung im Edinburgh New Philosophical Journal 1. p. 150.
so vermindert, daß ihre äußerste Haut sich in vier Lappen zurückzieht (Fig. 17.). Sie befestigt sich dann durch zerstreute Bänder an der hornartigen, glasernen Schale, welche mit ihren tiefen Einschnitten den ursprünglichen Umfang beibehält. Der Stamm, welcher jetzt allmählich lotrecht aufschießt, bekommt zuletzt an der Spitze eine männliche Zelle, und zeigt während seiner Ausbildung dieselben Erscheinungen der Bewegung der Körnchen in der Darmröhre u. s. w., wie die Knospen bei dem schon entwickelten Phytozoen. Nachdem solchergestalt das primitive Thier, welches jederzeit ein männliches ist, sich vollkommen ausgebildet hat, ist auch dessen äußere Membran bedeutend dünner geworden, als sie bei dem Jungen war. Man möchte deshalb vielleicht annehmen können, daß sie, während die Entwicklung innerhalb der Hornhülle ohne Hilfsmitteln einer Nahrung von außen her vor sich ging, die absorbirten Stoffe zurückgehalten habe.

(Der Schluß, die Beschreibung der Syncoryne, folgt nächstens.)
Ichthyologische Beiträge zur Fauna Grönlands

von

Prof. J. Reinhard.

II.

(Kongelige Danske Videnskabernes Selskabs Program for Aaret 1835 — 36.)

Professor Reinhard hat eine Beschreibung nebst Abbildung von dem isländischen *Trachypterus Bogmarus* Valenci mitgeteilt, der bei den Faröern im Sommer 1828 gefangen wurde, und von dem die Gesellschaft eine vorläufige Nachricht im Winter 1829 erhielt. Da das in Brantwein aufbewahrte Exemplar bis auf die Rücken- und Bauchflossen ganz vollständig ist, und bei seiner Empfangnahme, 10 Tage, nachdem es gefangen, die unpaarigen Flossen unbeschädigt und noch rothgefärbt waren, so hat die von Hrn. Schousboe verfertigte Zeichnung eine Genauigkeit erhalten, der sich keine der bisher gefertigten nähert. Seit 1829 scheinen die Beschreibungen dieser Art nicht durch Untersuchung besserer Exemplare vervollständigt worden zu sein. Hr. Yarrell hat in seiner *History of British Fishes* p. 191 nach eigenen Untersuchungen keinen Beilage liefern können; er hat in Beziehung auf die englische Fauna nur Flemming's Beschreibung und Abbildung eines Exemplars benutzt, welches an den schottischen Küsten gefangen war; aber ist die Restauration des verstümmelten Exemplars in derselben richtig ausgeführt, so kann dies Individuum nicht einmal zum Genus *Trachypterus* gerechnet werden.

Hr. Valenciennes hat in seinem gründlichen Artikel über dieses Genus im 10. Theil der *Histoire naturelle des poissons* zu den älteren Beschreibungen dieser Art, einige Bemerkungen hinzugefügt, welche von seinen eigenen Untersuchungen eines trockenen Exemplars vom Nordcap herrühren. Es ist einige Verschie-

Dasselbe Mitglied hat die Fortsetzung seiner ichthyologischen Beiträge zur Fauna Grönlands eingeliefert, von denen die erste eine

*) Jetzt erschienen in: Naturhistorisk Tidsskrift Heft 1. p. 25.

scheint auch eine unbeschriebene große Motella-Art zu besitzen, nach zwei aus dem Magen einer Klappmütze herausgenomm-

en, und sehr beschädigten Exemplaren zu urteilen, welche 1834 aus Omenak eingesandt, und in derselben Sammlung unter dem Namen von Motella Ensis aufgestellt wurden. Sie zeich-
nen sich aus durch die Länge des ersten Strahls der vordersten abortiven Rückenflosse, welche fast ebenso lang wie der Kopf ist, und dadurch am After weiter zurücksitzt als bei Motella Mustela.

Endlich schloss dieser Beitrag mit der Bemerkung, daß es in dem grönlandischen Meere außer Cyclopterus Liparis Fabric., welchen man wegen des besonders losen Anhängens der Haut Liparis tunicatus nennen könnte, noch eine andere Art gibt, wel-
che in ihrer Zeichnung viele Ähnlichkeit mit der von Yarrell in seinen british fishes abgebildeten europäischen Art hat, aber da das Museum nur ein einziges unvollständiges Exemplar besitzt, so kann eine sichere Bestimmung noch nicht Statt finden.

Gebler: Perdix altaica.

(Auszug aus dem Bullet. scientif. de l’Acad. de St. Petersb. I. p. 31.)

P. capite, collo pectoreque cinereis, dorso nigro, griseo undulato, gula abdomineque albis, pedibus nigris, tarsis subaurantiacis, intus callosis, rectricibus 24.

Die Geschlechter sollen nach Angabe der Jäger wenig ver-

schieden sein. Ganze Länge 26″ engl. Die Art wurde im ka-

tunischen Gebirge, namentlich am Flusse Argut gefunden. —

Ueber den Zubr oder Auerochsen des Kaukasus
von v. Bär.

Der Generalmajor Rosen hat eine Haut des Zubr oder Auerochsen (Bos ursus aut.) der Akademie eingesandt und dadurch die Zweifel über dessen Existenz am Kaukasus gehoben. Freilich geben die Handbücher außer Litauen auch den Kaukasus, die Moldau und oft selbst Preußen als sein Vaterland an, aber nur als Wiederholung dessen, was in der Vergangenheit der Fall war. Bojanus sagt im Eingange seiner Abhandlung: Fabulosae sunt, quae de Moldaviae et Caucasi Uro hodierno passim dicuntur; worin er zu weit ging, denn es ist gewifs, daß der Auerochs lange Zeit in der Moldau existirte und daß er sich dort noch im Anfange dieses Jahrhunderts in den waldischen Gräben fand. Das Exemplar zu Schönbrunn stammte aus dieser Gegend. Seit dieser Zeit hat man nichts weiter von ihm gehört, und Personen, welche davon unterrichtet sein konnten, versicherten Hrn. v. B., daß er dort nicht mehr existire. — In Hinsicht des Kaukasus beruhte die Meinung, daß der Zubr in dessen Gebirgen lebe, nur auf zwei von Pallas im Archive der Akademie gefundenen Noten, deren eine von Lowitz, die andere von Güldenstädt ist. Der erstere scheint aber nur vom Hörensagen darüber zu sprechen; der andere, welcher nur Schädel sah, hat diese für die des Zubr genommen. Zu Güldenstädt's Zeit war es indessen fast unmöglich, Arten durch die vergleichende Osteologie zu unterscheiden. Pallas gibt uns davon einen Beweis, indem er den Auerochsen für den Stammmater unseres Haasochsen hielt. Angenommen aber, daß Güldenstädt die Schädel der verschiedenen Ochsenarten kannte; so halte er diese Schädel in einer Höhle mit anderen gefunden, und Niemand konnte angeben, seit
wann sie sich dort vorfanden.

Bei Vergleichung der Zubrhaut, welche vom Kaukasus eingesandt ist, mit dem ausgestopften Exemplare aus dem Bialowiezer Walde, findet man, daß bei jener die Hörner merklich dünner (griles) und kürzer sind, und daß der Abstand der Hörner oder die Breite der Stirn geringer ist. Diese Verschiedenheiten scheinen aber vom Geschlechte abhängig, denn die vom Kaukasus eingesandte Haut ist die einer Kuh, wie die deutlichen Zitzen beweisen. Die Farbe des Felles ist bei der kaukasischen Haut weniger dunkel und sichtlich mit grau gemischt. Auch ist die Behaarung am Vordertheile kürzer und nur auf der Stirn und einem Theile des Nackens gekräuselt. Diese Verschiedenheiten

Über die fossilen Infusorien-Gattungen Xanthidium und Peridinium.

von

C. G. Ehrenberg.

(Auszug a. d. gedruckten 38. Bogen des größeren Infusorienwerkes.)

Herr Turpin in Paris hat 1837 mein obiges Urtheil über die fossilen Formen der Xanthidien und Peridinien ganz auf die Seite geschoben und sie für Polypeneier der Cristatella vagans erklärt. Derselbe mikroskopische Beobachter hat auch früher die Eier der Salpina mucronata, eines Räderthierchens, welche an Conferven angeheftet sind, unter dem Namen Bursella olivacea als eigene Pflanzengattung beschrieben, und im Diction. des sc. nat. Tab. XI. Fig. 18. abgebildet. Auch die Eier der Triarthra, eines andern
Räderthierchens, hat er als Pflanzengattung, \textit{Erythrynella annularis}, ebenda beschrieben und Fig. 17. abgebildet. Das erstere wurde nebenbei schon im Jahre 1831 bei Gyges (Abhandl. d. berl. Akad. der Wiss. 1831, p. 61.) ausgezeigt. Man sieht daraus, dafs auch eine vielfache Uebung im mikroskopischen Beobachten ohne gute Critik zu starken Fehlgriffen leitet. Im Uebrigen ist es erfreulich, dafs Hr. Turpin die fossilen Formen keineswegs als Fragmente, sondern als wohl erhaltene geschlossene Organismen miterkaunt und gezeichnet hat. Die Täfelchen des Feuersteins, wonach Herr Turpin seine Zeichnungen gemacht hat, hatte ich auf den Wunsch des Hrn. v. Humboldt, Hrn. Arrago und der pariser Akademie, wie es auch Herr Turpin meldet, überreicht, aber ich hatte auch vorher, was dieser nicht meldet, sowohl Berichte als noch weit detaillirtere Zeichnungen, sowol im September 1836 der Versammlung der deutschen Naturforscher in Jena, als im December der berliner Akademie vorgelegt (s. den Bericht der Akad.). Die Besorgnifs des Hrn. Turpin, dafs die damals von mir gegebenen Namen das Schicksal rascher Vergänglichkeit mit andern theilen und der Wissenschaft lästig werden möchten, weswegen ihm nöthig dünkt, noch andere (unvergängliche) Namen zu geben (!), scheint nicht nahe zu liegen. Die Vergleichung mit Cristatellen-Eiern, deren Form nicht, wie es dort scheinen könnte, Hr. Turpin 1837 entdeckt hat, sondern welche der englische Gelehrte Graham Dalzell im Jahre 1834 (\textit{Jamesons New Edinb. Philos. Journ.}, XVII. p. 411.) zuerst beobachtete, ist deshalb unstattthaft, weil die fossilen Körperehen des Feuersteins eine viel geringere und sehr variale Gröfse haben, wie sie bei Eiern nur als seltene Ausbildung vorkommt, auch nicht linsenförmig und nicht blofs am Rande, sondern überall stachlig sind (wie überhaupt die Genauigkeit von Hrn. Turpin's Abbildungen der Fossilen keineswegs genügend ist), endlich weil sie öfter doppelt vorkommen. — Durch eine Missdeutung der kleinen Federzeichnungen, welche ich auf die Couverte der Täfelchen zur Orientirung entworfen hatte, hat Herr Turpin vermutet, dafs ich die mit seiner Fig. C. C. bezeichneten Körper ebenso \textit{Peridinium} genannt habe, als die mit seiner Fig. E. bezeichneten. Das wird ihm aber Niemand glauben, da nur Fig. E. das glatte \textit{Peridinium}, Krauzthierchen, und Fig. C.

C. G. Ehrenberg:

U e b e r f o s s i l e I n f u s o r i e n.

1.

(Bericht der Akad. d. Wissensch. vom 9. Febr.)

in der neuesten Zeit in das Bergmehl eingewehlt sein. Es haben sich zwar ähnliche Körper neuerlich auch in den Feuersteinen von Delitzsch gefunden, die sich jedoch nun wahrscheinlicher als Polythalamien angehörige ganze Formen oder Fragmente zu erkennen gegeben haben.

2.

3.

Der Polirschiefer scheint darüber zu entscheiden, ob der Name Terra tripolitana des Mittelalters sich auf das Tripolis der Barbarei oder das in Syrien beziehe. Von Syrien kennt man noch keinen Polirschiefer in seinen geognostischen Verhältnissen, und es ist demnach durch den bei Oran vorkommenden entschieden, daß es in der Barbarei dergleichen giebt. Die Venetianer sollen ihn (nach Fougeroux) später aus Corfu bezogen haben, wodurch der tripolitanische ganz in Vergessenheit geriet.
Notiz über die Einwirkung freier Kohlensäure auf die Ernährung der Pflanzen
mitgetheilt

von

Dr. M. J. Schleiden.

In C. L. Treviranus Physiologie der Gewächse Bd. I. p. 403. findet sich folgende Stelle:

„Auch müfste in der Nähe und am Rande kohlensaurer Quellen, so wie in einem von Kohlensäure durchdrungenen Boden die Vegetation üppiger sein, was man doch ebenfalls "nicht wahrnimmt."

Das Thal von Göttingen, welches bekanntlich fast ganz von Muschelkalk-Bergen gebildet wird, hat eine Menge Quellen, die theils aus dem Muschelkalke selbst, theils auf der Sohle desselben, auf dem bunten Sandstein entspringen. — Alle, besonders aber die Ersteren, enthalten viele freie Kohlensäure. Vorzugsweise merkwürdig ist in dieser Hinsicht die Quelle, deren Abfluss die Wehnder Papiermühle treibt. In einem engen Kessel bilden sich durch dieselbe 4—5 kleine Bassins, in einem Umkreise von etwa 50 Schritt im Durchmesser, und ihr Gewässe fällt unmittelbar darauf vereinigt auf die Mühlenräder. — Dieses Wasser enthält große Mengen kohlensauren Kalks in überschüssiger Kohlensäure gelöst, und derselbe wird schon unterhalb des Mühlengefalles als sogenannter Duckstein abgesetzt, in größerer
Menge jedoch nach weiterem Verlauf des Baches beim Dorfe Wehnde, wo er zu Bausteinen gebrochen wird. Diese Quellen entwickeln nun eine solche Menge Kohlensäure, daß das Wasser, zumal in dem einen Becken, fast zu kochen scheint, und man in wenigen Minuten mehrere Cubikfüße Kohlensäure auffangen kann.

Diagnosen einiger neuen Conchylien-Arten

von

Anton in Halle.

Die Bekanntmachung einiger neuen Conchylien aus meiner Sammlung bedarf um so mehr der Nachsicht, als ich den Conchyliologen bis jetzt völlig unbekannt bin, und es auch nicht unmöglich wäre, daß die eine oder die andere Art, trotz meinen ziemlich reichen literarischen Hülfsmitteln, in neuester Zeit bereits bekannt gemacht wäre.

Ich beabsichtigte eigentlich, den ziemlich speziell ausgeführten, mit vielen, vielleicht nicht ganz uninteressanten Bemerkungen versehenen Catalog meiner Sammlung drucken zu lassen; meine überhäßten Geschäfte machten aber, mindestens für jetzt, diesen Plan scheitern. Ich muß es daher dabei bewenden lassen, einige neue Arten anzuzeigen.

1. Solen macrodon.

Testa ovali-oblonga, medio coarctata, inaequilatera; transverse striata, antiquata, striis longitudinalibus obliquis insculptis; sub epidermide albida; natibus minimis; in valva dextra dentibus card. duobus, magnis, coarctatis, in valva sinistra rudimento dentis unius. Long. 9", Lat. 1" 10".

2. Lutaria mactroides.

Testa ovali-trigona, subaequilatera, solida, transverse striata, hiante, albida; dentibus card. in utraque valva quaternis, fovea magna, recta; inlus alba. Long. 3" 1", Lat. 4".

*) Ich stelle die Bivalven wie Deshayes, nicht wie Lamarck.
Dies Exemplar ist nicht gut gehalten. Es hat noch Reste eines grünbraunen Epiderms. Muskeleindruck äußerst flach.
Vaterland unbekannt.

Testa ovata-subtetrogonata, subrostrata, subgibba, pallide-alba, diaphana, tenui, transverse plicata, plicatum intertitiis tenuissime reticulatis; natibus minimis; an ovato-oblongo; vulva nulla, Long. 1" 2'", Lat. 1" 7'".
Die Falten dichter und minder flach, als bei *M. plicataria*; gegen die Wirbel ziemlich bauchig, an den Rändern zusammengepreßt; äußerst dünnshaalig, so daß die Falten innen eben so stark hervortreten, als außen. Muskeleindruck äußerst flach.
Vaterland: Brasilien.

Testa ovali-trigona, solida, subantiquata, transverse subtiliter, longitudinaliter subtilissime striata; dentibus lateralibus brevibus, laevibus; intus alba, extus albida cum epidermide ferruginea. Long. 1" 4'", Lat. 1" 9'".
Stellt der *M. solida* sehr nahe, ist aber mehr gerundet, hat seine Längsstreifen, und kürzere, nicht gekerbte Seitenzähne.
Vaterland: Cojimbo.

5. *Amphidesma trigonella.*
Testa trigona, albida, solida, transverse dense striata; natibus minimis, curvatis; sine ano et vulva; dentibus cardinalibus tribus in valvula dextra, duobus in valvula sinistra, dentibus lateralibus nullis; intus alba; impressionibus ut in *Maetra stultorum*. Long. 9'", Lat. 11'". Vaterland: rothes Meer.

Testa ovali, inaequilatera, antice rotundata, postice subangulata, transverse subtilliter, longitudinaliter subtillissime striata, alba, obscure roseo zonata et radiata, diaphana; dentibus eard. in valva dextra tribus, tertio plicato-canaliculato, in valva sinistra duobus, altero bifido, altero minimo, dentibus lat. nullis; intus alba, Long. 1" 1", Lat. 1" 10".

Sie steht der *Psammobia laevigata* Lam. (was übrigens eine Telline ist) nahe, unterseheidet sich aber durch das Schlofs, und den sehr geraden unteren Rand; eben so wenig ist sie mit *Tellina nymphalis* Lam. zu verwechseln.

7. *Donax seminuda*.

Testa ovalo-trigona, compressa, transverse sulcata, antice sublaevi, longitudinaliter et transverse subtillissime striata; albido-rosea, lineis roseis et punctis lividis reticulatis pieta; valva excavata; in valva dextra dente cardin. uno, in valva sinistra duobus; dentibus lateral duobus. Lang. 11", Lat. 1" 4".

Der Rand ist gezähnt, innen ist sie weifs, unter den Wirbeln rosenvroth. Die Zahl der Zähne, besonders aber die starken
Querfurchen, die auf der vorderen Seite verschwinden, unterscheiden sie von *Donax meroe*. Nahe steht sie der fossilen *Cytherea semisulcata* Lam., aus dem Grobkalk des Pariser Beckens, kann aber nicht mit ihr verwechselt werden. Vaterland unbekannt.

Ich stelle übrigens in meiner Sammlung diese Muschel mit *Don. meroe u. scripta* Lam., unter Venus Blainv. (*Cytherea Lam.*)

8. *Cyclus maculata.*

Testa cordato-obliqua, inaequilatera, fragili, transverse striata; natibus protuberantibus; epidermide olivacea, nigro maculata. Long. $\frac{3}{4}$", Lat. $\frac{1}{4}$".

Sie ist wenig bauchig, vordere Seite sehr breit, sehr ungleichseitig. Vaterland: Südamerika.

9. *Cyclus modioliformis.*

Testa oblonga, ventricosa, rostrata, rostro curvato, diaphauna, nitida, laevi; natibus minimis, vix conspicuis. Long. $1\frac{1}{4}$", Lat. $\frac{3}{4}$".

Vaterland: Südamerika.

10. *Venus obliqua.*

Testa solida, oblique-cordata, inaequilatera, umbonibus et autice posticeque transverse sulcata, in medio laevi; pallidealba, maculis et lineis trigonis brunneis radiatim picta; natibus obliquis; ano striato, lanceolato; vulva alba, castaneo maculata; ligamento subinuterno; intus albo-flavicante; margine crenato. Long. $1'' 9''$, Lat. $2'' 2''$.

11. *Venus impressa.*

Testa cordata-trigona, latere posici productiori, transverse sulcata, postice longitudinaliter striata et cancellata; umbonibus magnis; natibus obliquis; ano et pube valde impressis; dentibus cardinalibus in utraque valva duobus, dentibus lat. nullis; margine laevi; intus alba, c. radio rosacco, extus einaascens cum radiis tribus olivaceis; natibus roseis. Long. $11''$, Lat. $1'' 3''$.

Von *Cyth. flexuosa* Lam. unterscheidet sie sich durch die nicht gekielte hintere Seite, durch den nicht gekerbten Rand, durch die tiefere Einpression von *Anus* und *Vulva*, durch die zum Theil gegitterten und enger stehenden Furchen, durch den

Testa longitudinali-subquadrata, compressa, sine rostro: natibus minimis, dentibus octo, intus violascence, extus rubro-violascente. Long. 1” 3”, Lat. 11”.

13. Anomia aenigmatica.

Testa membranacea, ovali-oblonga, inaequivalvi, inaequilatera, fragili, diaphana, concentrice subtilissime striata; valva superiore operculiformi, plana; vertice inembrosate, laterali; valva inferiori alveata, affixa; supra rubra, infra argentea. Long. 6”, Lat. 1” 1”.

Chemnitz kannte blos die obere Schale. Dieser sorgfältige Beobachter würde sie sonst gewiss gleich als eine Anomia Linn. erkannt haben. Die obere Schale ist weit schmäler, so dass die untere weit übersteht, und sich nur in der Nähe des Wirbels die Ränder beider Schalen berühren, an welcher Stelle zugleich ein kleiner Einschnitt ist. Ich wagte nicht, diese Muschel zu öffnen, um sie, bei ihrer äußerst zarten Natur nicht der Gefahr des Zerbrechens auszusetzen.

Vaterland, nach Chemnitz: Ostindien **).

Testa oblonga, rostrata, gibbosa, tenui, diaphana, albida; striis concentricis; marginibus acutis; a vertice ad marginem anteriorem sulcis duobus, ad marg. posteriorem sulco uno; intus mediocriter concava; cum sinu plano ad marginem anteriorem, carina ad marginem posteriorem. Long. 1” 1”, Lat. 7”.

Die gebogene schuabelartige Form, und der Kiel an der hinteren Seite unterscheiden sie genügend von anderen bekannten Art. **) Die Exemplare der hiesigen Sammlung stammen aus dem indischen Ocean.

*) Die Exemplare der hiesigen Sammlung stammen aus dem indischen Ocean.

**) Daher stammen auch unsere Exemplare.

Ich bleibe, mit Ausnahme des *Parmophorus* bei den Conchifercn stehen, und gebe die Diagnosen neuer Mollusken in einer späteren Zeit. Erwähnen wollte ich nur noch schließlich, daß die *Patella mamillaris* Lam. eine *Siphonaria* ist, was bis jetzt noch Niemand bemerkt zu haben scheint. Eine Menge solcher und ähnlicher Natizen befinden sich in meinem Catalog, mit deren Aufzählung ich aber zurückhalten muß, soll ich nicht befürchten, lästig zu werden.

Halle im November 1836.

Bemerkung über das Thier der *Argonauta* von R a n g.

(Sitzung der Akademie zu Paris d. 30. Jan. 1837. *Instit.* Nr. 195.)

Herr Rang bestätigt die Angabe der Mifs Power, daß dieses Mollusk die Fähigkeit besitze, einen Schaden seines Gehäuses auszubessern; er beobachtete im Hafen von Algier ein Individuum, welches mit zerbrochener Schale 6 Tage lang lebte. In dieser Zeit war das Gehäuse ausgebessert und vollständig geschlossen. Gleichwohl scheint ihm diese Entdeckung nicht als entscheidender Beweis dafür zu dienen, daß der Bewohner der wahre Eigenthümer des Gehäuses ist. Das ersetzte Stück ist nur eine dünne, durchsichtige Lamelle, welche weder die Textur, noch die Festigkeit und Weiß der übrigen Schale besitzt. Es hat eine unregelmäßige Gestalt, als ob es nicht durch dieselben Organe hervorgebracht wäre, kurz es hat hier derselbe Vorgang Statt, wie bei den Schnecken, wenn deren Gehäuse zerbrochen ist; und man weiß, daß in letzterem Falle es die Halskrause des Thieres ist, welche allein die Schale producirte hat, bei dessen Ausbesserung aber nicht mitwirkt. — **Hr. Rang**
suchte die eigentliche Function der elliptischen, sehr ausdehn-
baren Lappen, welche am Ende zweier Arme befindlich sind, zu erforschen. Dass das Thier sich ihrer zum Segeln bediene, wie man angegeben, fand er an lebenden Exemplaren, die er im Meere und auf einem Wasserbecken beobachtete, nicht bestätigt. Mehrere Schriftsteller (früher auch der Verf.) haben das Thier ver-
kehr in seinem Gehäuse dargestellt. Die beiden gelappten Arme
sind immer hinten, d. h. sie liegen nahe am Gewinde des Gehäuses.
Hr. R. betrachtet den Theil des Thieres, den sie vorn begrün-
zen, als die Bauchseite, und den entgegengesetzten Theil, wel-
cher den Sack und die zu den Kiemen führende Spalten be-
greift, als die Rückenseite *). Wenn das Thier kriecht, lassen
die gelappten Arme das hintere Armpaar vermissen, denn sie
endigen nach hinten die Bauchscheibe. Hr. R. beobachtete, dass
diese gelappten Arme von ihrem Austritt aus der Schale an,
sich umfassen, indem sie sich längs den beiden Seiten des Kieles
hin erstrecken, während ihre häutigen Lappen sich an den Sei-
teilflächen der Schale enthalten, die sie bis zum Rande der Mün-
dung völlig bekleiden. Fragt man, wie es der freien Bewegung
seiner Arme verhüht, sich zur Oberfläche des Meeres erheben
könne, so geschickt dies einfach auf dieselbe Weise, wie bei Octa-
pus, Sepia, Loligo u. s. w. durch Ausstoßen und Aufnehmen des
im Sacke enthaltenen Wassers, wodurch eine zuweilen sehr
rasche Bewegung von vorn nach hinten hervorgebracht wird.
Wenn eins dieser Thiere am Grunde des Beckens kroch, hatte
es ganz das Ansehen eines kammkiemenen Gasteropoden. Die
Mundscheibe, welche leicht einer ziemlich großen Ausdehnung
fähig ist, war wie der Fu§ eines Gasteropoden ausgebreitet.
Darüber zeigte sich der Kopf mit seitlichen Augen und Tenta-
keln versehen, der Körper darüber verbarg sich in ein Gehäuse,
dessen äusserer Rand vorn dem den After entsprechenden Trich-
ter schützte, welcher, ähnlich der Athenröhre der Kammkiener,
nach außen hervorging. Die beiden vordersten Arme stellten
die Fühler vor, die vier seitlichen Arme die fühlermählichen

*) Der Verf. hat dabei, wie aus dem Folgenden erheilt, die ziemlich
ferne Analogie der Gasteropoden im Sinne, deren Bauchscheibe er den
von ihm als Bauchseite betrachteten Körperteil später verglich.
Anhänge, welche bei Monodontia, Litiopä sich während der Be-
wegung des Thiers um dasselbe schlängeln. Die beiden hinte-
ren Arme endlich ließen, indem sie mit ihren Lappen die beiden
Seiten der Schale bekleideten, nur einen schmalen Zwischen-
raum zwischen sich auf der Linie des Kieles. Aber diesmal
wurde seine sehr langsame Bewegung von hinten nach vorn be-
werkstellt. Wurde das Thier durch irgend etwas beunruhigt,
so trat sogleich das Ganze in das Gehäuse zurück, welches da-
durch sein Gleichgewicht verlor, und sich umkehrte. Hr. Rang
macht dann auf die Verwandtschaft zwischen Cephalopoden und
Gasteropoden, welche einerseits durch Argonauta, andererseits
durch Carinaria und Atlanta bewerkstellt werde, aufmerksam.
Endlich scheint es ihm, als ob die Kenntnifs von der eigentli-
chen Function der lappigen Arme die Ansicht derer bekräftige,
welche das Thier als den Urheber des Gehäuses ansehen. Wel-
che Folgerungen werde man nicht gern ableiten 1) aus den so
genauen Beziehungen zwischen dem Thiere und dem Gehäuse,
2) aus der Gestalt der Lappen, welche sich bei keinem andern
Cephalopoden, sondern nur bei den Thieren der Argonauten-
Arten finden, und bei keiner der bekannten fehlen, was hinrei-
chend beweise, dass diese Einrichtung eigens für das Gehäuse ist;
3) aus dem Gebrauche dieser Lappen als eines das Gehäuse be-
deckenden Mantels, indem diese Lappen unnöthig sein würden,
 wenn das Thier nicht von seiner Geburt an ein Gehäuse gehabt
hätte, endlich 4) aus der merkwürdigen Färbung des Grundthei-
les dieser gelappten Arme, welche sich so vollständig an der
den entsprechenden Stelle des Gehäuses wiederholt.
Einige Blicke auf die Entwicklungsgeschichte des vegetabilischen Organismus bei den Phanerogamen

von

Dr. M. J. Schleiden.

(Hierzu Taf. VII.)

Nullo modo generationem explicasse, judicare possum, eos, qui ne ullam quidem partem, ne ullam attributum quidem corporis ex traditis suis principiis explicuerunt, sed sermones saltem de ea re fecisse, utcunque doctos, veros et elegantes.

C. Fr. Wolff, Theoria generationis.

Wenn es sich auch nicht in Abrede stellen läßt, daß schon Linné die Metamorphose der Pflanzen ziemlich klar aufgefaßt hatte, so ist es doch eigentlich Göt he, von dem an die höhere Botanik die Einführung dieser Lehre in die Wissenschaft datirt.

Aber schon lange vor Göt he hatte der geniale C. Fr. Wolff gezeigt, was sich mit dieser Idee anfangen lasse; er wurde aber leider von Botanikern kaum gelesen, gar nicht verstanden und bald vergessen. So überkam die Wissenschaft zu ihrem großen Nachtheil nicht von ihm, sondern von Göt he diesen Gedanken, der so fruchtbar für sie hätte werden können, und doch in Folge der Art, wie Göt he ihn einführte, verhältnismäßig so wenig genutzt hat.

Verstehen wir nämlich unter Metamorphose, die Thatsache, daß die Pflanze nur eine gewisse geringe Anzahl differenter Organe habe, und daß sich alle übrigen von diesen Grundorganen nur dynamisch so unterscheiden, daß sie in ihnen die Tendenz liegt, eine bestimmte eigenthümliche Aus- und Umbildung zu erleiden, welche Tendenz aber nicht so absolut ist, daß sie nicht unter Umständen unterdrückt werden und die gewöhnliche Erscheinungsform des Organs wieder eintreten könne; — legen wir, sage ich, diesen Begriff zum Grunde, so ist für sich klar, daß eine solche Lehre die wichtigsten Resultate für die ganze
Wissenschaft haben müsse, und ihr eine innere Einheit geben könne, deren sich noch keine empirische Naturkunde erfreut, — wenn nämlich dieser Gedanke sich auch als in der Wirklichkeit begründet nachweisen läßt und dann auch nur so weit, als dieses möglich ist; denn was von der Sache nicht in der Natur selbst vorhanden und sinnlich anschaulich verfolgt werden kann, ist auch kein Gegenstand der wahren Naturwissenschaft, und kann nie dazu dienen, unsere Erkenntnisse der Erfahrungswelt in ihrem Wesen zu fördern.

Den einzig richtigen Weg, die Beobachtung der Entwicklungsgeschichte, hatte nun C. Fr. Wolff eingeschlagen und für den größten Theil der Foliartheile ihre Identität recht gut nachgewiesen. Er wurde aber ignoriert, und erst Goethe führte die Lehre von der Metamorphose in die Wissenschaft ein, aber nicht als eine Abstraction aus erfahrungsmäßiger Anschauung des Entwicklungsganges, sondern als speculatives Resultat der Vergleichung der verschieden Formen des Entwickelten. Nun kann allerdings eine solche Vergleichung wohl dazu führen, uns ein Gesetz ahnen zu lassen, aber nie dahin, es vollständig zu begründen. Goethe selbst sagt anderswo:

„Alle Gestalten sind ähnlich, doch keine gleichet der Andern;“
„Und so deutet der Chor auf ein geheimes Gesetz.“

So bildete sich denn in der wissenschaftlichen Botanik allmählich eine eigene Abtheilung aus, nämlich die Lehre von der Metamorphose, oder über die morphologische Bedeutung der Pflanzenorgane, und diese wurde nächst dem Felde, auf dem
sich die ausgezeichnetsten Männer mit Ruhm bedeckten, zugleich auch recht eigentlich der Spielplatz für alle Freunde vom Räthselrathen, für Träumer und Paradoxenkrämer, auf dem oft die allerwunderlichsten Sachen ausgeheckt wurden, die man wohl gar mit dem stolzen Namen Philosophie, oder Speculation belegte. — Speculation aber, die ächte nämlich, hat nur da ihr Gebiet, wo die Erfahrung nicht hinreicht, macht sie sich aber unnütz breit und will an die Stelle der Anschauung treten, so thut man an besten, ihr, als einem überlastigen Gaste, die Thüre zu weisen. Um wie vieles könnten wir weiter sein in Allem, und selbst in den speculativen Wissenschaften, wenn die Speculation nicht so oft ihre beste Zeit und besten Kräfte an Plätzen verschwendete, wo man ihrer gar nicht bedarf, ja ohne sie viel besser fertig wird. Gerade bei der Lehre von der Entwicklungs geschichte liegen die Beispiele dafür nur allzu nahe.

Soll die Bearbeitung dieser Lehre aber Erfolg haben und soll sie in allen Theilen fest begründet sein, so darf man sich freilich nicht damit begnügen, etwa mit einer Bohne anzufangen, die sich bequem im Vetturino auf einem iter italicum mit dem Taschenmesser analysiren läßt, sondern man muß viel weiter zurückgehen auf den ersten Ursprung des Embryo. — Am reifen Saamen zeigt die junge Pflanze schon so mannigfache Organe, daß hier der bloßen Träumerei ein Feld geöffnet wird, weit genug, um alle folgenden Betrachtungen vage und unsicher zu machen.

Beim ersten Auftreten erscheint nun der Embryo, als ein membranöser Cylindcr (Fig. 9 u. 13.) nach oben abgerundet und geschlossen, nach unten offen, indem die Haut, die ihn bildet, stetig in die des Embryosackes übergeht (von dem er nur eine Einstülpung zu sein scheint) und erfüllt mit organisirbarer, meist wasserheller flüssiger Masse, die sich allmäßlic in Zellenverwandelt (Fig. 6 u. 10.), wobei sich die bei der Zellenbildung überall eine höchst wichtige Rolle spielenden Zellenkerne zeigen (Fig. 12 u. 24.). Hier findet nun gleich eine wesentliche Erscheinung im Pflanzenleben ihre Deutung. Der Embryo tritt nämlich auf als ein Axengebild, welches nach oben geschlossen nur eine fernere Entwicklung von innen heraus gestattet, nach unten aber nicht begrenzt ist und
und durch Ausscheiden organisierbaren Stoffes und dessen allmäßlichen Uebergang in Zellen eine bloße Verlängerung ins Unendliche zulässt, woraus sich einfach der so verschiedene Wachsthum des Stengels und der Wurzel der Richtung sowohl, wie der Art nach zu erklären scheint. — Auf der zweiten Stufe der Fortbildung schwillt nun das obere Ende des Keimes kugelförmig an (Fig. 6, 7, 11, 12, 14 u. 15.) und aus den Seiten der Kugel entwickeln sich mit mehr oder weniger deutlichem Freibleiben der Spitze*) (Fig. 16 u. 17.) bei den Dikotyledonen die beiden Herzblätter, als zwei zellige Auswüchse, in denen, wie im Stengel selbst, immer erst sehr spät die länger gestreckten Zellen und Spiralgefäße sich bilden und zwar auf eine Weise, die schon von C. Fr. Wolff im Wesentlichen ganz richtig geschilddert worden. Bei den Monokotyledonen dagegen bildet sich um die Spitze des cylindrischen Embryo's eine ungleichseitige Erhebung (Fig. 8.), die zum stengelumfassenden Kotyledonarblatt anwächst, welches späterhin die Terminalknospe (plumula) mehr oder weniger einschließt **). Mit diesem Vorgang ist nur die zweite und höchste Differeenz gegeben, zu der sich die Pflanze überhaupt erhebt, nämlich der Gegensatz zwischen vertikaler Längsbildung und horizontaler Flächenausbreitung. Alle folgenden Entwicklungsgang der Pflanze, alle ferneren Organe sind nun.

*) Punctum vegetationis nach C. Fr. Wolff.

**) Aus diesem Entwicklungsgang ergiebt sich, daß ursprünglich jeder monokotyledone Embryo eine plumula exserta hat und dafs, wo dieselbe eingeschlossen wird, überall eine Spalte, wenn auch noch so klein, vorhanden sein muß. Zu den Familien mit einer plumula exserta zählt man gewöhnlich auch die Gräser, welche aber durchaus nicht hierher gehören. Die Plumula bei diese Familie wird nämlich vollständig durch eine Erhebung des Kotyledons bis auf eine schmale Spalte eingeschlossen (das äussere geschlossene Blatt der Auctoren), und dieser Theil des Kotyledons wiederholt sich, wie jede Eigenständigkeit desselben, an den spätern Blättern durch ein analoges Gebilde, die ligula, während das sogen. seuntellum, die eigentliche Hauptmasse des Kotyledons, dem Blatte selbst entspricht. Zweiseit faltet sich nun der Kotyledon noch einmal zusammen wie bei Zea Mays, was man ganz falsch der Spalte des Kotyledons bei den Arroideen verglichen hat, oder er bildet nach vorn kleine Auswüchse, die aber schon deshalb nicht als zweite Kotyledonen betrachtet werden können, weil sie tiefer mit der Axe zusammenhängen, als der Kotyledon selbst. Ein zweites Blatt kann sich aber unmöglich unterhalb des früheren bilden.
nur Modificationen dieser beiden Theile der Axe, des Stengels, und der seitlichen Organe, der Blätter. Dieser Gegensatz erscheint also als etwas Ursprüngliches, ja die Axe ist sogar früher vorhanden als die Kotyledonen, und damit ergiebt sich sogleich die Verkehrtheit der Ansicht, den Stengel als verwachsenes Blattstiele und die Terminalknospe als eine axillare anzusehen, wie es z. B. Agardh thut. Die wichtigsten Verschiedenheiten der Cotyledonen wiederholen sich nun auch bei den Blättern, die nur Nachbildungen jener sind, so findet man z. B. bei Stapelien, wo die Blätter verkümmert sind, auch die Kotyledonen nur sehr klein, und bei Cusenta dentet schon der kotyledonlose Embryo den spätern Habitus der Pflanze an. Der großen Uebereinstimmung des Kotyledons und der Blätter bei den Gräsern wurde schon in der Note erwähnt.

Einen eigenen interessanten Abschnitt dieser Untersuchungen bildet nun die Verfolgung der Gesetze der Blattstellung, wie sich aus den ursprünglich opponirten und durchaus gleichzeitig erscheinenden Kotyledonen die mannigfachen Verhältnisse der Laubblätter entwickeln, bis sich die Natur endlich am Ende der Pflanze häufig wieder zu ihrem ursprünglichen Typus zweier opponirter Blätter zurückzufinden scheint. Doch dieses würde mich zu weit über die Grenzen dieser kurzen Bemerkungen hinausführen.

Die Euphorbien hat man, weil man die Entwicklung nicht verfolgte, ganz ungerechter Weise auf ein Pflichttheil ge-
setzt, statt ihnen ihr Intestaterbe ungeschmälert zu lassen. Das Involucrum derselben bildet sich nämlich nicht aus 5 Blattstük-
ken, sondern aus 2 fünfscheitigen Wirteln, von denen der äußere die sogenannten Drüsen entwickelt; diese zeigen auch sogar früher, als die fünf innern Blätter, einen Mittelnerven mit deut-
lchen Spiralgefäßen, die daher nicht von jenen, als vasa recur-
rentia, abgeleitet werden können. Für die ursprüngliche Regel-
mäßigkeit der Blüthe gibt es kein besseres Beispiel, als die Gräser, deren Blüthe nachher durch ungleichseitige Entwickele-
lung, Verwachsung und Unterdrückung einzelner Theile so sehr verdreht wird, daß man an ihr alle möglichen Erklärungen,
aber wohl kaum die in der Natur begründete versucht hat. Bei secale cereale z. B. besteht die Spicula ans einer seitlichen rachis,
an der sich ohngefähr 5 alternirende Blüthen bilden. An diesen bleiben die obern drei mit dem ihnen angehöri gen Stücke der Axe gänzlich rudimentär, die beiden Untern dagegen werden anfänglich vollständig regelmäßig entwickelt. In der Achsel einer jeden Bractee nämlich (gluma Auct.) findet sich eine Blu-
me, bestehend aus drei ganz getrennten, gleich grossen und auf gleicher Höhe stehenden Kelchtheilen, wovon die zwei innern allmählich verwachsen und mit der äußern, über-
mäßig vegetirenden die spätern paleas Auct. bilden. — Natürlich zeigt die innere dann die beiden Mittelnerven der anfangs ge-
trennten Blätter. Mit diesen Kelchtheilen alterniren 3 Corollen-
blätter (squamulae Auct.), einem innern Kreise angehöri gen und ebenfalls auf gleichcr Höhe stehend, von denen erst später das der Axe zugewendete wegen des Druckes abhörtirt. Ferner mit diesen Blumenblättern ganz regelmäßig abwechselnd findet man 3 Staubfäden, von denen aber die beiden innern, jedoch erst später, gleichfalls durch den seitlichen Druck mehr zur Seite des Fruchtknotens geschoben werden. Endlich kann sich die Basis der gauzen Blume, der sehr kurze pedunculus, wegen des Andrängens an die secundäre Rachis nicht horizontal ausdehnen und muß daher an der innern Seite in die Höhe steigen, wo-
durch die der rachis spiculae zugewendeten Theile der Blume
eine obwohl nur scheinbar höhere Stellung, als die äußern an-
nehmen. Auf diesem Wege werden sich die anscheinend so sehr verwickelten Gräser vielleicht höchst einfach erklären lassen.

Gehen wir nun zu den Staubfäden über. Diese sind einiger Worte mehr welth, weil einige (unter andern Agardh, jedoch nach C. Fr. Wolff, den er aber nicht anführt, obwohl er ihn doch sonst recht gut kennt) ihnen die Bedeutung von Knospen haben beilegen wollen, und man auch über die Antherenbildung noch nicht allgemein ganz einig ist.

Dass die Stamina modificirte Blätter sind, ist nun ebenfalls aus ihrer Entwicklungsgeschichte deutlich, denn sie erscheinen stets später, als die petala (obwohl sie sich nachher rascher entwickeln), stehen im Anfang, wo sich wegen Kleinheit der einzelnen Theile die relativen Verhältnisse deutlicher beobachten lassen, höher an der Axe, als der vorhergehende Kreis der Blumenblätter und mit diesen durchaus immer alternirend *), und können deshalb nicht Axillarknospen der Kelchtheilc sein.

Die Falschheit der Agardhschen Ansicht geht auch schon einfach aus einer Betrachtung der Blumen hervor, wo das Internodium zwischen petala und stamina vollständig entwickelt ist, wie bei einigen Capparideen.

Es besteht nun das regelmäfsig entwickelte Blatt aus einer Mittelrippe und an beiden Seiten aus einem doppelten Zellgewebe, zwischen dem die Nerven verlaufen. Daraus bildet sich natürlich eine Anthere, deren oberes und unteres Zellgewebe **)

*) Bei einigen Familien bestehen (wie cs bei den Staubfäden so häufig ist) auch die petala und sepala, oder sonstigen Perigonaltheile aus mehr, als einem Blattkreis z. B. bei den Berberideen aus je 2 3-blättrigen, bei den Thymeleen aus 2-blättrigen Kreisen, und man kann daher hier eben so wenig von Opposition sprechen, als bei den Liliaceen etc.; wo wahre Opposition des äussern Staubfadengreises gegen den inneren Kreis der petala statt findet, wird sich immer ein dazwischenliegender Staubfadengreis als abortirt ergeben.

**) Das normale Blatt zeigt bekanntlich auf der oberen und untern Blattfläche verschieden gebautes Zellgewebe und diesem entspricht der Pollen der vorderen und hintern Zelle jedes Loculaments. Es wäre möglicblich und gewifs nicht uninteressant, durch Experimente auszumachen, ob vielleicht der Pollen einer von beiden, nur der Form nach Pollen sei, und bei der Befruchtung sich verschieden verhalte, oder gar bei Dickeilen die eine Art vorzugsweise männliche, die andere weibliche Embryonen hervorrufe.
zu beiden Seiten des Hauptnerven sich in Pollen verwandelt, also eine 4-zellige Anthere, die wir auch als allgemeines Gesetz antreffen. Bei mehr als 100 Familien fand ich die Anthere vor dem Aufspringen 4-zellig und darunter sind die Gräser, Cyperaceen, Liliaceen, Labiaten, Borragineen, Scrophularinen, Synanthereen, Umbellisereen, Ranunculaceen mit den Verwandten, Rosaceen (Juss.) und Leguminosen, welche allein schon fast die Hälfte der ganzen irdischen Vegetation ausmachen. Man führt häufig an, die Anthere könne nicht ursprünglich 4-zellig sein, weil sie nur mit 2 Spalten aufspringt; das bieße, zwei Zimmer für eins erklären, weil sie nicht Flügelthüren, sondern näheneinanderliegende einfache Thüren haben. Eigentlich springt jede Anthere wirklich mit 4 Spalten auf, die aber, weil sie je 2 an der Seite der gemeinschaftlichen Scheidewand liegen, nur wie zwei erscheinen. Der Unterschied zwischen 4-fächrigen und 2-fächrigen Antheren der beschreibenden Botanik besteht (die Antherae dimidiaae und wenige andere ausgenommen) einzig darin, ob sich die Klappen etwas früher oder später von der Scheidewand losreifen, wo man denn hinsichtlich des Zeitpunkts alle möglichen Übergänge beobachten kann.

Nur selten scheint die ursprüngliche mittlere Schicht nicht entwickelt und dann auch die Treueung in je 2 seitliche Zellen nicht vorhanden. Noch seltener entwickelt sich nur die eine seitliche Hälfte des Blattes zur Anthere und die andere bleibt blattartig, wie es bei den Marantaceen Typus ist und sehr häufig, als Monstrosität, bei Umwandlung der Blumenblätter in Staubfäden, oder dieser in petala beobachtet wird. In beiden Fällen beweist aber der Verlauf der Oberhaut unwidersprechlich, was auch schon die Entwicklungsgeschichte ergiebt, daß sich der Pollen im Innern des Blattes bilde, daß also die Anthere nicht als ein rückwärts, oder vorwärts eingerolltes Blatt zu betrachten sei, welches auf seiner Fläche den Pollen erzeugt.

Verfolgen wir die Anthere bis zu ihrem ersten Erscheinen, so finden wir, daß alle in ihren früheren Zuständen dieselbe Formenreieh durchlaufen und das alle so abweichenden Erscheinungen bei Orchideen, Asclepiadeen, Cucurbitaceen, Styllideen etc. nur spätere Entfaltungen desselben Grundtypus sind und nur physiologisch unwesentliche Modificationen auf
einem Gebiete, auf dem sich die Natur, wie überall, wo es sich
nur um äußerliche Formendifferenzen handelt, das bunteste Spiel
der Mannigfaltigkeit vorbehalten hat.

Die Ausbildung des Pollens geschieht nun auf die Weise,
 daß sich die vier für den Pollen bestimmten Zellengruppen von
dem übrigen Gewebe des Blattes absondern, ihre einzelnen Zel-
len sich vergrössern und im Innern jeder derselben sich wahr-
scheinlich meist vier andere Zellen bilden, in deren jeder ein
Pollenkorn erzeugt wird, wozu die Mutterzellen sammeln und
sonders resorbirt werden. Oft scheinen sich auch die 4 Pollen-
körner in einer Zelle zu entwickeln, wenn man nicht annehmen
will, daß die zarten sie eng umschließenden Zellen nur über-
seben worden sind. Zuwarten, obwohl selten, finden sich nur
zwei Pollenkörner in der größten Mutterzelle z. B. bei Podos-
stemon Ceratophyllum, die denn nachher beide aneinanderhängend
bleiben (Fig. 29 u. 30.). Doch ist die Vierzahl gewöhnlich
allgemeinere Fall, woraus sich das so häufig vorkommende pollen
quaternarium erklärt.

Geschieht indefs die eben erwähnte Resorption der Mutter-
zellen nicht, oder nicht vollständig, so zeigt sich eine eigen-
thümliche Hemmungsbildung, die, typisch bei Orchideen und
Asclepiadaceen, den Botanikern so viel zu schaffen gemacht
hat, während die Sache doch ganz einfach die ist, daß die Pol-
lentwicklung in einem früheren Stadium stehen bleibt. Man
cann dieselbe Erscheinung, als vorübergehende Bildungsstufe, z. B.
im Januar und Februar bei Picea und Abies, im Februar und
März bei Pinus beobachten, wo in jedem Antherenfach eine
wachsartige Pollenmasse lose eingebettet liegt. Etwas später
zieht man bei Picea und Abies noch die 4 Zellen, in denen sich
die einzelnen Pollenkörner befinden, eng verbunden, und es ge-
währt ein hübsches Schauspiel, wie sich dann aus dem Objekt-
träger des Mikroskops durch Einsaugung des Wassers jedesPol-
lenkorn ausdehnt und seine Hülle sprengt, um hervorzutreten,
woran die 4 Zellen leer zurückbleiben (Fig. 25 bis 28.).

Auf diese Weise erkennen wir in der Anthere nur eine Ent-
wicklungsstufe der seitlichen Organe der Pflanze.

Gehen wir nun weiter, so treffen wir zunächst auf den
Fruchtknoten, den Endpunkt des ganzen vegetabilischen Or-
ganismus. In ihm sind alle constituirenden Theile so eng zusam-
mengedrängt, daß die Unterscheidung äußerst schwer erscheint,
und hier ist denn auch der weiteste Spielplatz für Hypothesen
aller Art gewesen, ja manche haben es selbst bis zu den exorbi-
tantesten Träumereien gebracht, weil sie statt zuzusehen, sich
aufs Rathen legten, wobei freilich zuweilen auch ganz zufällig
das Rechte getroffen wurde, wofür Agardh's Organographie
eine Reihe der vortrefflichsten Beispiele liefert.

Nach der gewöhnlichen, jetzt ziemlich allgemein angenom-
menen Ansicht besteht das Ovarium aus Knospen (ovulis),
die an den Rändern von Blättern (carpellis) sich bilden.

Prüfen wir einmal diese Ansicht von dem gewöhnlichen
Standpunkte aus, so ergibt sich leider eine logische Mangelhaft
igkeit des Räsonnements, welche diese Ansicht allein hinstellen
und haltbar finden konnte. Es ist dies nicht der einzige Fall,
wo sich in die Wissenschaft eine ganz unbegründete Annahme
vor Jahren Eingang verschafft hat, und durch Tradition fortge-
pflanzt gleichsam als heilig und unantastbar angesehen worden
ist, so daß es keiner gewagt hat, der augeehnten Gottheit den
Schleier zu entreffen und zu zeigen, daß es nur eine hohle,
selft-geschnitzte Puppe sei, die man angebetet. Man scheint
sich immer vor den hohen Autoritäten gefürchtet zu haben, die
eine solche Lehre zuerst einführten, während doch in der Natur-
kunde die einzig gültige Autorität die Natur selbst ist und alle
andern nur als Zeugenaussagen über Thatsachen einen Werth
gewinnen, wo man sie selbst nicht befragen kann.

Betrachten wir den ganzen Complex der Pflanzenwelt, so
finden wir es als durchgreifendes Gesetz, daß sich niemals eine
Knospe an einem Blatte bildet, sondern nur an der Axe und
den von ihr abgeleiteten Organen. Sicht man nun die Ovula
als Knospen an, so hätte man auch consequent weiter schließen
müssen, daß die Placenta eine umgebildete Axe sei. Was hat
man aber, um diese einfache und nothwendige Folgerung um-
zuwerfen, angeführt?

1) Die bekannte Erscheinung bei Bryophyllum;
2) Eine zweimal beobachtete monströse Gemmenbildung an
dem Blatte einer Malaxis und eines Ornithogalum.

Der letzte Fall ist eben eine Abnormität und daher am we-
nigsten geeignet, eine Regel zu begründen, die allen bekannten Erscheinungen widerspricht, auch wird er in dem später vorzugenden, ebenso wie der folgende, seine genügende Erklärung finden. Der erste Fall aber ist eine singuläre Ausnahme, wovon auch dazu sehr zweifelhaft ist, ob es wirklich eine Ausnahme sei oder ob nicht vielmehr das angebliche Blatt von Bryophyllum ein blattartig ausgebreiteter Steugel ist. Seit wann sind aber solche Gründe genügend, um eine allgemeine Regel, die natürlich aus dem Princip der Einheit folgt, umzustößen? Es ist ferner ein bekannter Satz der Logik, daß eine Hypothese um so mehr gerechtfertigt erscheint, je leichter sie alle Erscheinungen erklärt, und je weniger sie Hülfs hypotesen zu ihrem Bestehen bedarf. Nun aber frage ich, um gleich einen extremen Fall zu nehmen, welche abnorme Voraussetzungen erfordert nicht nach der gewöhnlichen Ansicht die Erklärung der ächten placentā centralis libera z. B. bei den Plumbagineen (Fig. 20 bis 23); hier hätten sich 5 Carpellblätter eingebogen, wären mit den Rändern verwachsen, hätten sich dann von ihren Rändern getrennt, wieder ausgefaltet, und wären ans Neue mit einander verwachsen, und endlich sogar an dem Mittelsäulehen von wenigstens 10 Eieren 9 abortirt, und das einzig übrigbleibende habe noch dazu die ganz wunderbare Stellung auf der Spitze des Säulchens angenommen, und wohl gemerkt, das alles ohne, daß man in der Wirklichkeit auch nur eine Spur dieses ganzen complicirten Vorganges entdecken könne. Ueberhaupt wäre man schon gezwungen, bei allen uniovulaten Ovarien zu einem angeblichen Abort seine Zuflucht zu nehmen, den die Natur nicht im geringsten angedeutet hätte.

Der zweite entgegengesetzte Fall ist aber fast noch gefährlicher für die gewöhnliche Ansicht, wenn nämlich, wie bei den Gentianeeen, Nymphaeaceae, Butomeeen etc. die ganze Fläche des Carpellblattes eiertragend ist, und ich wüßte wirklich gar keine nur irgend haltbare Erklärung dieses Phänomens aus der gewöhnlichen Hypothese herzuleiten. Man hat nun auch eben deshalb zu vielen Hülfsen seine Zuflucht genommen, und läßt die Ovula bald am Rande des Carpellblattes, bald an der Mittelrippe *), bald an beiden entstehen.

*) In dem Werke eines Herrn Eisengrein: „Die Familie der
Auf diese Weise hat man mit wahrlich sehr schwachen Gründen eine exorbitante Ansicht der Wissenschaft aufgezwungen, sich selbst die Sache nnendlich schwer gemacht und die natürliche Auffassung ganz und gar vernachlässigt. Wir werden weiterhin sehen, wie leicht sich aus der Annahme, dass die placenta ein Axengebilde sei, die einzige scheinbar entgegenstehende Thatsache der placenta parietalis, und zwar ohne alle Hilfshypothesen aus ganz bekannten Modifikationen des Stengels erklären lässt. — Gehen wir aber jetzt zur Anschauung der Natur selbst über, so finden wir, um mit dem leichter anzufangen, im Anfange jedes einzelne Carpellblatt isolirt, jedem jungen Blatte oder seitlichen Organ der Pflanze gleich gebaut. Erst bei ziemlich weit vorgerückter Entwicklung fängt es an sich mit den Rändern einwärts zu schlagen, wenn das Carpell geschlossen ist, oder mit den Rändern des benachbarten zu verwachsen, wenn es ein uniloculares vielblättriges Pistill ist.

Zu den Familien, die hierdurch wieder zum Theil eine andere als die gewöhnliche Deutung erhalten, gehören auch unter andern die Gräser und Cyperaceen. Bei beiden Familien ergibt die Entwicklungsgeschichte, dass das Ovarium nur aus einem Carpellblatt besteht. Bei beiden Familien sind die zwei vorder *) Stigmata für das Carpellblatt nur eine weitere Entwicklung der ligula, das hintere dagegen, welches bei den

*) Wenn man das Ovarium von der Axe aus betrachtet.
Gräsern so oft verknüpfert, der Blattfläche, das Ovarium selbst aber dem Scheidentheil des Blattes analog.

Wir können hier nun stufenweise die ganze Ausbildung des Pistills vom ersten Erscheinen, als flaches Blattrohr, bis zur Differenzierung im Ovarium, Stylus und Stigma verfolgen. Für diese Theile wird sich dann ein bestimmter Begriff aufstellen lassen, wofür bis jetzt wenig geschehen ist, indem die ihrer Bedeutung und Function nach verschiedenartigsten Theile oft mit demselben Namen belegt sind.

Ovarium wird dann der Theil des Blattes, so weit es die Ovula einschließt, Stylus so weit es aufgerollt ist, ohne Ovula zu entfalten, bestimmt die Pollenschläuche zu leiten und Stigma endlich die freie Ausbreitung des obersten Theiles, bestimmt den Pollen aufzufangen.

Es hat bisher den Worten Stylus und Stigma fast nur eine traditionelle Bedeutung zum Grunde gelegen, die zum Theil vielfach durch angeblich logische Unterscheidungen noch mehr verdorben ist. Es ist aber leicht einzusehen, dass, wenn die Botanik wahrhaft wissenschaftlich behandelt werden soll, den terminis Begriffe zum Grunde gelegt werden müssen, die, aus der Natur der Pflanze hergenommen, wirklich wesentliche organische Differenzen bezeichnen und dann auch auf solche enische Weise gefasst werden können, dass man nicht Gefahr läuft, die verschiedensten Dinge in denselben Worte zusammenzufassen und wiederum identische Theile durch die Bezeichnung zu trennen. — Es ergiebt sich ferner aus dem Verfolgen dieses Entwickelungsganges sehr einfach die Erledigung des alten Streites, ob der Stylus einen Canal habe, oder nicht. Da der Stylus aber entweder aus der Zusammenrollung eines einzelnen Blattes (apocarpe Frucht Lindl.), oder durch das Zusammenwachsen der Ränder mehrerer Blätter (syncarpe Frucht Lindl.) entstanden ist, muss er immer einen Canal haben, der freilich bei der geöffneten Blume nicht immer noch auf dem Querschnitte als scharf umschriebene Höhle erkennbar ist, da die innere Zellgewebe-Schicht (Tissu conducteur Brogniart, eigentlich die Oberhaut der oberen Blattfläche) durch Umbildung der Zellenform und Ergießung von Schleim in die Intercellularräume so ausgedehnt wird, dass selbst die einzelnen Zellen sich ganz aus ihrem Zusammenhang trennen und lose im Schleim eingebettet liegen, z. B. bei den Orchideen, vielen Liliaceen etc.

Dies wäre nun wiederum die wesentlichen Momente, die die Natur überall beim Pflanzenorganismus festhält, während sie sich in Hinsicht der außerwesentlichen Formverschiedenheiten wieder eine grosse Mannigfaltigkeit erlaubt. Die wunderbarsten Formenspiele zeigen sich besonders in der Gestaltung des Stigma's, und deshalb ist gerade dieser Theil am häufigsten missverstanden. Doch bietet auch der Stylus und selbst das Carpellblatt; letzteres besonders bei Bildung der falschen Scheidewände durch cellulöse Excrecenzen, z. B. bei den Aroideen, viele Eigenthümlichkeiten dar. Wir finden ferner das Carpellblatt bei den Conifereen gar nicht geschlossen; drei zu einer oben offenen Becherform vereinigt bei den Resedaceen; enggeschlossen
bei den meisten Familien; oft aber auch gegen die Axe zu eingebogen und dann wieder rückwärts geschlagen, so daß der eiertragende Theil einen Bauch bildet und der Stylus von der Basis zu entspringen scheint, wo sich dann die Übergänge beim Studium der Entwicklung von den Euphorbiaceen, durch die Phytolacceen, Alismaceen bis zu den Borragineen und Labiaten und in der ganzen Familie der Dryaden stetig verfolgen lassen. Das junge Ovarium bei den Labiaten, Borragineen z. B. ist ein gewöhnliches 2-blättriges Carpel (Fig. 2.), die Blattränder verwachsen aber sehr früh zum Stylus und bei der Entwicklung des Ovuli wird der dasselbe umschließende Theil bauchig nach oben und außen ausgedehnt, während die obere Hälfte des Blattes, der Stylus, dieser Erhebung und Ausdehnung nicht mehr folgen kann. Eine ganz ähnliche Erscheinung bietet die Frucht der Palmen dar, wo ursprünglich bald nach der Befruchtung der Embryo vollständig erect ist. Die innere Seite des Ovariums wächst aber beim reifenden Samen nicht mit in die Höhe. So wird die Spitze des Embryo fixirt und zum Mittelpunkt, um den die Radicula bei der einseitigen Entwicklung einen Quadranten beschreibt, wodurch der Embryo horizontalis lateralis entsteht. — Über eine Menge solcher scheinbaren Abnormitäten sind viele Worte verloren, die man sich hätte sparen können, wenn man statt zu raten, lieber untersucht hätte. Wenden wir uns nun zur Placenta und zum Ovulum, so wird es zweckmäßig sein, mit dem einfachsten Falle anzufangen und das ist ohne Zweifel derjenige, welcher für die gewöhnliche Theorie die unübersteiglichsten Schwierigkeiten darbietet, nämlich wo gar kein Carpellarblatt vorhanden ist. Dieser Fall tritt z. B. bei Taxus ein. Die ganze weibliche Blüte ist hier nichts anderes, als die terminale Blattknospe der Nebenaxe, welcher sie angehört. Die Blätter setzen ihre gewöhnliche spiralige Blattstellung fort bis zur äußersten Spitze, und keines deutet auch nur im Entferntesten an, daß es dem wirklichen Theile mehr angehöre, als ein anderes (Fig. 1.). Wie gewöhnlich endigt sich hier die Axe mit einer kleinen Warze (dem punctum vegetationis Wolff) und diese ist der Nucleus des Eichens. Es ist also die zweite Differenz der Pflanze die Axe, welche den sogenannten
weiblichen Theil bildet, und wir sehen jetzt schon ein, daß die Befruchtung und Züchtung in Nichts besteht, als in einem Zusammenreten und Ausgleichen der beiden wichtigsten Differenzen, die in der Pflanze gegeben sind, der horizontalen und vertikalen Gebilde.

Doch verfolgen wir den Gang der Untersuchung ruhig weiter. Das Ende der Axe also ist der Nucleus des Eichens und dieser ist der allein wesentliche, nie fehlende Theil des ganzen weiblichen Organs, während alle übrigen teilweise bald bei der einen, bald bei der andern Pflanze vermißt werden. Dieses Ende der Axe erleidet nun häufig eine Krümmung, so daß seine Spitze auf sich selbst zurückgeht (Ovulum anatropum) und mit dem gerade bleibenden Theil (raphe) verwächst; ein Vorgang, der leicht in der Wirklichkeit zu verfolgen ist. In diesem Zustande (ovulum ex nucleo nudato constans) finden wir das Eichen in mehreren Familien z. B. den Santa-

læcen, Rubiæcen, Dipsaceen, Cuseuteen, Aselepiadeen *). Es ist zwar kein Grund vorhanden, warum der Nucleus nicht auch, ohne diese Umdrehung zu leiden (als ovulum atropum ex nucleo nudato constans), vorkommen könnte, indess ist mir bis jetzt doch noch kein Beispiel davon bekannt geworden.

Auf diesem äußersten Punkte der Vegetation concentriert sich nun aber die Bildung so, daß, was sonst als gesonderte seitliche Organe erscheint, hier zu einer scheidenartigen Hülle zusammenfließt. Diese stengelumfassenden Hülblätter der letzten Knospe werden nun hier Eihäute genannt und unterscheiden sich durch gänzlichen Mangel aller Sprioden, welche immer nur der Raphe oder dem nicht in Nucleus und Integumente geschiedenen Theil des Eichens angehören, und ihre Anwesenheit gibt immer einen bestimmten Beweis, daß man es mit einer nur scheinbaren Eihaut zu thun habe. Erst in späterer Zeit nach der Befruchtung ent-

*) R. Brown zählt auch die Apocyneen hierher. Sie haben aber ein einfaches Integument. Bei diesen sowohl wie bei den Asclepiadeen ist es nicht der Nucleus, der sich nach der Befruchtung im Innern bildet, sondern der Embryosack, der sich frühzeitig mit opakem Albumen ausfüllt, welches dann als ein dunkler durchscheinender Kern nach der Befruchtung sichtbar wird.
entwickeln sich in einigen seltenen Fällen in den wirklichen Integumenten Gefäßbündel.

Eine solche einfache Hülle (*integumentum simplex mihi*) *) findet sich nun:

1) Ohne daß die Axe gekrümmt ist (*Ovulum atropum cum integumento simplici*) bei Taxus zur Zeit der Blüte, bei den Cupressineen, den Juglandineen, Ceratophyllenen,

2) oder die Axe erleidet die oben erwähnte Krümmung, wobei die Hülle mit der verlängerten Axe verwächst (*raphe*) (*Ovulum onatropum cum integumento simplici*). Hierher gehören die Abietineen, Synanthereen, Lobeliaceen, Campanulaceen, Goodenovieen, Lentihularien, Scrophularinen, Orobancheen, Gesnerieen, Sesameen, Labiaten, Bignoniaceen, Polemoniaceen, Convolvulaceen, Solaneen, Borragineen, Gentianeeen (einschließlich der Menyantheen, welche ebenfalls nur ein Integument haben, denn die am reifen Samen zu trennende äußere harte Haut ist nichts, als die Epidermis des Integuments, deren Zellen stark verholzt sind), ferner die Apocyneeen, Umbelliferen, Ranunculeen, Loaseneen etc.

Endlich bildet sich auch noch eine zweite Hülle, die die Spitze der Axe umschließt (*Integumentum externum et internum mihi*), wobei wieder beide Modificationen vorkommen können.

1) Die Axe bleibt gerade z. B. bei den Polygonineen (Fig. 4.), Cystineen, Urticeen, einem Theile der Aroidiceen,

2) oder die Axe krümmt sich und verwächst mit dem äußern Integument (Fig. 20—23.). Hier sieht man besonders bei den übrigen Aroidicen alle möglichen Übergänge von einer verlängerten Axe, von der das gekrümnte Stück mit seinen Häuten frei herabhängt (wie es nach R. Brown auch bei Rafflesia der Fall ist) bis zur gänzlichen Anwachsung, wo denn der ungebogene Theil der Axe als *Raphe* erscheint. Ferner gehören hierher wohl alle übrigen Monokotyloden; bei den Orchideen

*) Die Worte Testa u. Membrana interna, so wie die andern, von reifen Samen herkommenen und nirgend passenden Ausdrücke mußte ich aufgeben, da sie wegen der vielen, historisch ihnen anklopfenden Irrthümer nur dazu dienen konnten, die Begriffe zu verwirren.

20
drückt sich zwar R. Brown nicht bestimmt darüber aus, sie haben indes deutlich beide Integumente, die aber nur in ihren jüngsten Zuständen zu erkennen sind (Fig. 5.), da der schon früh auftretende Embryosack zur Zeit der Befruchtung den Nucleus meist spurlos verdrängt hat und man leicht versucht wird, das sehr dünne innere Integument für die Membrana nuclei zu nehmen. Von den Dikotyledonen will ich nur beispielsweise die Nymphaeaceen und Cabombeen, die Plumbagineen, Resedaceen, Passifloren, Caryophylleen und Cruciferen nennen, um den Raum nicht nutzlos mit Pflanzen-Namen zu füllen.

Ueber die Bildung dieser Integumente des Nucleus im Allgemeinen hat zuerst Mirbel etwas Ausführlicheres publicirt, da er aber zwar die Erscheinungen, die dabei vorkommen, zum Theil gesehen, aber keineswegs selbst richtig verstanden hatte, so konnte er die Sache auch nicht deutlich vortragen und es ist kaum thunlich, aus seinen Worten sich mit Sicherheit abzuleiten, wie er sich den Vorgang gedacht. Die erste richtige Darstellung der Art der Bildung gab der, hier, wie überall, neue Bahnen brechende R. Brown 1831 für die Orchideen und später 1834 in seiner Abhandlung über die weibliche Blüthe der Rafflesia, wo er seine Beobachtungen schon über mehrere Familien ausgedehnt hatte. Am Ausführlichsten hat sich über diese Sache Fritsche in dieses Archiv ausgesprochen, doch hatte er seine übrigens höchst vortrefflichen Beobachtungen nur an einer einzigen Species angestellt, die noch dazu wegen des zusammenge- drängten Baues und des anatropen Eies am wenigsten günstig für solche Untersuchungen war. Auch hatte er versäumt, die hierbei höchst nöthigen mikrometrischen Messungen anzustellen, wodurch er einige Irrthümer hätte vermeiden können. So z. B. sind eine Verdickung an einem Cylinder unterhalb einer gegebenen Linie und eine Einschnürung oberhalb derselben bei so kleinen Gegenständen, zumal da man nicht alle Stadien zugleich übersicht, nur durch vergleichende Messungen zu erkennen und doch ihrem Wesen und ihrer Bedeutung nach so sehr verschiedene. Einstheils ist Fritsche auf diese Weise zu der unrichtigen Ansicht von der simultanen Bildung beider Integumente durch Einsenken der ersten Falte in die Masse des Ovulum
gekommen, und anderseits hat er die Bildung des innern Integuments als einer bloßen Falte der Epidermis nuclei zu einseitig aufgefasst.

Der Gang, den die Natur nimmt, ist einfach folgender, wenn wir bei dem atropen Eichen z. B. der Polygoneen (Fig. 4.) als dem einfachsten Falle stehen bleiben. In gewisser Entfernung unterhalb der Spitze der ursprünglichen Warze markirt sich eine ideale Linie als Basis des Nucleus (Fig. 4, b.), welche fernerhin nicht mehr in der Tiefe zunimmt. Oberhalb derselben bildet sich die Spitze in den Nucleus ans, unterhalb derselben selbwillt die Substanz an und bildet eine Wulst (Fig. 4, b.), die, sich als eine Art von Hautfalte ansdehnend, allmählich den Nucleus überzieht (Integumentum primum aut internum mihi; Secondine Mirb.; Membrana interna Auct.). Oft bald nachher, ja fast gleichzeitig, oft erst später (am auffallendsten bei Taxus, wo das zweite Integument (Fig. 1, b.) erst nach der Befruchtung sich ausbildet [Cupula Auct.]) oft unmittelbar unter der ersten Wulst, oft in einiger Entfernung darunter (so namentlich bei vielen Polygoneen und Cystineen) bildet sich denn eine zweite Anschwellung, welche als zweites Integument (Integumentum secundum sive externum mihi; Prininc Mirb.; Testa Auctor.) das erstere überzieht *). Das zuerst sich bildende Integument besteht freilich häufig nur aus einer Falte der Oberhaut des Nucleus, aber in fast allen Familien, die gar kein zweites Integument bilden und auch in einigen, die beide Eihüllen haben, z. B. bei den Euphorbiaceen, Cystineen und Thymeleen nimmt auch ein ziemlich dickes Parenchyma an dieser Bildung Theil. Bei den drei genannten Familien tritt der eigen tümliche Fall ein, daß beim Reifen des Samens das äußere Integument allmählich bis auf eine dünne Membran absorbirt wird, die denn gewöhnlich bei Samenbeschreibung als epidermis testac, oder bei den Euphorbien wohl gar als Arillus angege-
ben wird, wogegen in andern Fällen die wirkliche modifizierte *epidermis testae* wieder als *Arillus* beschrieben worden ist z. B. bei den Oxalideen. Die Spitze der ursprünglichen Papille, welche als *nucleus* auftritt, ist ihrer Größe nach im Verhältnis zur Masse des ganzen Eichens bei verschiedenen Familien äußerst verschieden. Oft ist es ein sehr langes, fast zylindrisches Stück, z. B. *Loasa, Pedicularis*, oft kürzer, so daß diejenige Masse des *Ovuli*, wo keine Differenzirrung in *Nucleus* und *Integument* eingetreten ist (gleichsam ein fleischig angeschwollener Stengel), bei Weitem überwiegt z. B. alle *Synanthereen, Canna, Phlox, Polemonium*; oft ist es nur die äußerste Spitze der Papille selbst z. B. *Convolvulus*, oder es bleibt nur ein idealer Punkt, der als eigner Körper gar nicht mehr zu unterscheiden ist, über den sich aber noch eine Wulst erhebt, und so eine *Micropyle* bildet z. B. bei den *Dipsaceen*.

Uebrigens wird der hier geschilderte Vorgang im Einzelnen vielfach durch die einseitige Entwicklung des *ovuli* (*ovul. campylotropum Mitb.*) oder durch die oben schon auseinandergesetzte Umdrehung (*ovul. anatropum*) modifizirt. Es würde aber die Grenze dieses Aufsatzes überschreiten, wollte ich mich hier auf eine detaillierte Ausführung aller der unzähligen von mir beobachteten Einzelheiten einlassen. Nur beiläufig kann ich hier noch bemerken, daß Mirbel's *Quartine* gar nicht existirt und nichts als ein transitorisches *Endosperm* ist bei Familien, bei denen der Embryosack frühzeitig den ganzen *Nucleus* verdrängt, gleichwohl aber nicht bestimmt ist, durch ein persistentes *Endosperm* späterhin ein *Albumen* zu bilden.

Da nun oft in derselben Familie *) die größten Verschiedenhei-
ten in dieser Beziehung am reifen Sameu vorkommen, wie oben
schon von der Gruppe der Menyanthes erwähnt wurde, beim
Ovulum dagegen das Vorkommen von keinem, einem oder zwei-e
Integumenten für Familien und Gruppen durchgehends sehr con-
stant erscheint, so möchte es zweckmäßiger sein, bei Beschrei-
bungen überall zur alten Richardschen Terminologie zurückzu-
kehren und beim reifen Samen nur von einem Episperm zu
reden, dessen verschiedene Lagen man denn ja näher charakte-
risieren kann, dafür aber desto genauer in der Beschreibung des
Ovulum zu sein. Wahrscheinlich werden noch manche interes-
ssante Resultate sich herausstellen, wenn diese Untersuchungen
erst über alle Pflanzenfamilien ausgedehnt sind; schon der ge-
rings Umfang meiner Beobachtungen giebt manche Andeutungen.
Auffallend ist es z. B., daß keine einzige monokotyledone
Familie weniger als zwei Integumente zeigt, und bei der oben
gegebenen Übersicht muß es Jedem auffallen, daß unter den
Dikotyledonen die meisten monopetalen Familien nur ein
Integument haben, die meisten Polypetalen dagegen zwei.
Doch kehren wir zum ruhigen Gang unserer Betrachtungen
zurück. Wenn wir nun freilich bei Pflanzen mit ächter placen-
ta centralis libera, oder noch auffallender bei solchen, wo,
wie bei den Polygonacaeen, Taxus, Juglans, Myrica von einer
Placenta als einem besonderen Organ gar nicht die Rede sein
cann, nicht einen Augenblick in Zweifel sein können, daß der
Nucleus des Eichens nur die Spitze der Axe ist, so fragt sich
nun aber, wie denn die wandständige placenta zu erklären sei;
doeh scheint mir die Sache so schwierig nicht. Wir finden
schon bei vielen Aroideen, das Ende der Axe scheibenförmig
ausgebreitet, und auf dieser Fläche eine Menge Knospen als Ei-
chen tragen, ähnlich wie es bei den Synantheren und andern
Familien unterhalb der Blumenknospen etwas Gewöhnliches ist;
Wir finden diese Scheibe dann in lappige Fortsätze ausgezogen

*) Ja selbst im selben genre. So hat z. B. ein Theil der Salvien
Spiralzellen in der Epidermis des Samen-Integumentes, ein anderer
Theil nicht.
und mit den Rändern der Carpellarblätter verwachsen bei allen wandständigen oder pseudocentralen Placenten, eine Modification des Stengelgebildes, die man z. B. bei Dorstenia findet; auch könnte man die wandständigen Placenten eben so gut und vielleicht einfacher und naturgemäßer als eine bloße Verästelung der Axe deuten. Es kann dabei nicht auffallen, daß die Knospen dieser Aeste (Ovula) nur an der inneren der Axe zugewendeten Seite sitzen, da man dasselbe bei vielen Inflorescenzten z. B. bei Aesculus findet. Endlich finden wir die Axe becherförmig ausgedehnt bei den Pflanzen, wo die ganze Wand des einschrägigen Ovariums mit Ovulis besetzt ist, wie wir eine ähnliche Umbildung des Stengels bei vielen Rosaceen und bei Ficus sehen. Es ist aber kein Grund erfindlich, warum man solche Formabweichungen der Axe bei einem tieferen Internodium zwischen Laubblatt und Blüthenknospen annehmen wollte, wenn man sie bei einem höheren zwischen Carpellblatt und Eiknospen leugnet, oder für unhülfsich erklärt. Nun findet sich aber auch in der Natur selbst, daß bei wandständigen Placenten die Blattränder sich nie in ihrer ganzen Länge an einander legen und verwachsen, sondern von unten auf durch einen nachwachsenden oft mehr oft weniger deutlichen Zwischenkörper verbunden werden. Sehr deutlich ist dieser Zwischenkörper z. B. bei den Pumariaceen und Cruciferen, wo er viel später als die Carpellblätter erscheint, gradezu innerhalb derselben steht, und bei der letzten Familie durch seine allmäliche Ausbreitung gegen die Mitte und späteres Verwachsen die falsche Scheidewand bildet. Am deutlichsten zeigt sich aber die Placenta als ein von dem Carpellblatt in seinem Wachsthum völlig unabhängiger Theil bei den Abietineen. Meine Untersuchungen der frühesten Zustände haben mir nämlich gezeigt, daß das, was man seit Rob. Brown als offenes Ovarium ansieht, nur eine schuppenförmig ausgebreitete Placenta ist, daß aber, was Rob. Brown bractea genannt hat, das wirkliche Carpellarblatt (Fig. 18.) ist. Auf das glänzendste wird dieses Ergebnis durch einen Zapfen von pinus alba bestätigt, den ich in diesem Frühjahr fand, an welchem die untere Hälfte der Blüthen männlich, die obere weiblich war.—Bei den Abietineen entwickelt sich nun die durch nichts gehinderte Placenta, so sehr, daß sie zuletzt selbst das Carpellblatt
nur als einen untergeordneten Nebentheil erscheinen lässt. Die weitläufigere Ausführung dieser Untersuchungen ist hier nicht am Orte, und ich mufs daher vorläufig auf ein späteres Werk verweisen, an welchem ich schon seit Jahren mit großer Liebe arbeite und das die Entwicklungsgeschichte der Pflanze in ihrem ganzen Umfange zum Gegenstande hat.

Bei allen den Formverschiedenheiten der eiertragenden Axe, wo dieselbe an den Carpellblättern in die Höhe wächst, oder wo sie frei in der Mitte sich erhebt, kommt nun oft noch die Eigenheit vor, dass dieselbe außer der früher schon erwähnten Umbiegung noch eine andere erleidet, indem nämlich der Raum nach oben zu für die Entwicklung der Eiknospen zu beschränkt ist; hieraus entsteht nun das ovulum horizontale und pendulum mit den mannigfachsten Zwischenstufen. Diese Modification ist aber eben, weil sie nur aus einer außen Notwendigkeit, der Form des Raumes, hervorzugehen scheint, bei weitem weniger wesentlich, als jene zuerst erwähnte Umkehrung, und wir finden wohl hängende und aufrechte Eierchen in derselben Familie z. B. bei den Dryadeen, selten aber in einer höher entwickelten Familie und überhaupt wohl nur bei den Aroideen, atrope und anatrope Eier vereinigt. Die bloße Angabe einer radicula supera oder infera in Pflanzenbeschreibungen ist daher an sich wenig oder gar nichts wert, wenn nicht zugleich auf die innere Eibildung Rücksicht genommen ist.

Hatten wir nun aber bei den Aulheren eine eigenthümliche Entwicklung des Zellgewebes beobachtet, wodurch eben das Blatt zum Pollentragenden Organ wird, so finden wir wiederum eine besondere Modification des Zellgewebes in der Spitze der Axe, dem Nucleus, wodurch er sich für die Aufnahme eines neuen Organismus vorbereitet. Es bildet sich nämlich in demselben eine einzelne Zelle unverhältnismässig gegen die anderen Parenchymzellen aus, indem sie sich zum Embryossaek entwickelt. Dieser ist bei allen Phanerogamen stets vorhanden und immer lange vor der sogenannten Befruchtung. Aber auch nur so viel ist hier das Wesentliche. Im übrigen ist er den mannigfachsten Verschiedenheiten unterworfen, in Bezug auf Form (indem er bald rund bald oval, bald cylindrisch, flaschenförmig, oder selbst geigenförmig wird, oder ganz formlose Aussackungen
zeigt, wie bei \textit{Lathraea squamaria}, Lage zur Spitze des \textit{Nucleus} (der er bald näher, bald ferner ist), Inhalt (der bald wasserhell, homogen und flüssig, bald opak und granulös, bald sogar zellig ist), die Zeit seines Entstehens (ob längere, oder kürzere Zeit vor Entfaltung der Blume) und endlich das mehrere oder mindere Verdrängen des \textit{Nucleus}. Allein über die Verschiedenheiten des Embryosackes vor der Befruchtung könnte man eine lange Abhandlung schreiben.

Verfolgt man nun, was allerdings zu den delicatesten Untersuchungen gehört, die in der Botanik vorkommen, den Pollenschlauch weiter im \textit{Ovulum} (Fig. 3 u. 24.), so findet man, daß von den in die \textit{Micropyle} eintretenden Schlängchen gewöhnlich nur einer, selten mehrere, wie bei den regelmäßigen oder zufälligen \textit{Polyembryonaten} (zu welchen letztern besonders die
Cynanchum-Arten gehören *), die Interzellulargänge des Nucleus durchkriecht und den Embryosack erreicht, diesen vor sich herdrängend in sich selbst hineinstülpt und dann selbst, als der im Eingange dieser Betrachtungen beschriebene cylindrische Schlauch, den ersten Anfang des Embryo bildet, der auf diese Weise nichts anderes ist, als eine auf die Spitze der Axe gepfropfte Zelle des Blattparenchymas. Er wird also mit Ausnahme des nicht geschlossenen Radicularendes von einer doppelten Membran gebildet, von dem eingestülpten Embryosacke und von der Haut des Pollenschlauches selbst (Fig. 12, 13.). Zur Bestätigung dieser Thatsache kann ich mich erstlich auf direkte Beobachtungen an Taxus, Abies, Juniperus, Lathraea, Phormium tenax, Canna Sellowii, Oenothera crassipes, Mirabilis longiflora u. Jalappa, Veronica serpyllifolia, Limnanthes Douglasii und minder gut bei Martynia dioandra und Cynanchum nigrum, dagegen am ausgezeichnetsten bei Orchis Morio und latifolia. Bei allen diesen Pflanzen beobachtete ich das Hineintreten des Pollenschlauches in den Embryosack und die allmäßliche Umbildung des Endes desselben in den Embryo unmittelbar und bei Taxus, und leicht bei Orchis konnte ich sogar den Theil des Schlauches, der die erste Grundlage des Embryo darstellte, noch in ziemlich später Zeit wieder aus dem Embryosack herausziehen **).

*) Bei Cynanchum nigrum et fuscatum fand ich im Sommer 1835 wenigstens in jedem dritten Samen 2 — 5 Embryonen.

Indes ist nicht bei allen Pflanzen die Verfolgung des Pollenschlauchs ins Innere des Embryosacks so leicht, da gewöhnlich die Zellen des *Nucleus* um die Spitze des Embryosacks herum sehr fest und opak sind, so daß sich dieser und der Pollenschlauch nicht ganz frei darstellen lassen. Es spricht aber in
solchen Fällen für die Identität des Embryo's mit den Pollenschlauch: 1) der stets gleiche Durchmesser des letzteren dicht außerhalb des Embryosacks und des ersteren dicht innerhalb desselben; 2) der stets chemisch-gleiche Inhalt beider, wie es sich durch die Reactionen bei Anwendung von Wasser, süßem Mandelöl, Jodine, Schwefelsäure und Alcalien ergibt. Der Inhalt des Pollenkornes besteht im wesentlichen aus Stärke. Diese steigt nun entweder unverändert durch den Pollenschlauch herab, oder geht schon vorher durch lebendig-chemische Prozesse in eine wasserhelle Flüssigkeit über, die sich nach und nach mehr oder weniger trübt, durch Alcohol coagulirbar wird und aus welcher sich durch einen organisirenden Proces dann Zellen bilden, die das Ende des Pollenschlauches bei *Orchis Morio* selbst bis weit aus dem Eichen heraus, ausfüllen und so das Parenchyma des Embryo's bilden. Doch ich würde die Grenzen dieses Aufsatzes überschreiten, wollte ich auch die Zellenbildung hier weiter verfolgen. 3) Endlich spricht noch für die Identität des Embryo's und des Pollenschlauchs, daß bei den Pflanzen, die mehrere Embryonen haben, stets gerade so viele Pollenschläuche vorhanden sind, als sich Embryonen zeigen.

Die höchst wichtige Folge dieser Thatsache, die ich hier aber nur andeutete, nicht in ihrem ganzen Umfange ausführen darf, ist nun, daß man bisher die beiden Geschlechter bei den Pflanzen geradezu falsch benannt hat. Versteht man nämlich bis jetzt in der Physiologie unter Ovulum diejenige materielle Grundlage, aus welcher sich das neue Wesen unmittelbar entwickelt, und nennen wir den Theil, wo diese materiellen Anfänge, die sie zur Entwicklung kommen, deponirt sind, das weibliche Organ, — während der Theil, der nur durch dynamische Einwirkung die Entwicklung des Keimes hervorruft, oder befördert, das männliche Organ genannt wird, so ist die Anthere der Pflanze offenbar nichts anders, als ein weiblicher Eierstock, indem jedes Pollenkorn der Keim eines neuen Individuums ist. Dagegen wirkt der Embryosaack nur dynamisch die Organisation und Entwicklung der materiellen Grundlage bestimmend, und wäre also als das männliche Princip zu betrachten, wenn man nicht vielleicht richtiger annahmen will (alle ohnehin hinkenden Analogieen aus der Thierwelt bei Seite
gesetzt) daß der Embryosack nur durch Transsudation neue organisierbare Säfte zuführe und so nur ernährt *).

Zweitens ergiebt sich aber aus der vorgetragenen Geschichte der Embryobildung leicht die höhere Einheit für die Phanerogamen und diejenigen Kryptogamen, bei denen die Sporen offensichtliche Umbildungen des Zellgewebes der Blattorgane, oder blattartigen Ausbreitungen sind, indem bei beiden Gruppen derselbe Theil die Grundlage der jungen Pflanze abgiebt und der Unterschied nur darin besteht, daß bei den Phanerogamen erst eine vorläufige Ausbildung im Innern der Pflanze dem Zeitraum der ruhenden Vegetation vorangeht, während bei den Kryptogamen sich die Spore (das Pollenkorn) sogleich ohne jene Vorbereitung zur Pflanze entwickelt. Schwierigkeiten machen hier noch die Laub- und Lebermoose, und ganz besonders die räthselsaften Rhizocarpeen. Doch scheint mir, daß auch gerade bei dieser letzten Familie noch vieles zu beobachten ist.

Endlich erklärt dieser Vorgang der Embryo-Entwicklung sehr leicht und natürlich das, obwohl doch nur hochst selten vorkommende, Knospenbildungen an Blättern (mag ihnen dies nun immer eigen sein, oder als Abnormität zukommen), als ein bloßes theilweises Zurücksinken auf eine niedere (kryptogamische) Bildungsstufe.

Zum Schlufs dieser kurzen Darstellung muß ich mir noch einige Bemerkungen erlauben, theils um ungerechten Urtheilungen zu verhüten, theils um ein richtiges Verständnifs dieses Aufsatzes zu veranlassen.

Erstens bin ich weit entfernt, alle im Vorstehenden vorgetragenen Ansichten, als meine eigenen neuen Entdeckungen, in

Im Gegensatz dazu muß ich aber zweitens bemerken, daß alles Vorstehende auf eigenen Untersuchungen beruht und daß ich auch nicht den geringsten Nebenpunkt selbst auf die beste Autorität hin angenommen habe, ohne selbst zuzusehen.

Endlich dritte maß ich noch erklären, daß alles Gesagte das Resultat wirklicher Beobachtung in der Natur ist, und nirgends der Speculation (unmittelbare Folgerungen im engsten logischen Sinne ausgenommen) auch nur der geringste Anteil gehört. Alles was etwa Neues von einiger Bedeutung vorkommt, lag schon vor Jahren klar vor mir, ich verschob aber mit Bedacht die Veröffentlichung, um meinen Untersuchungen durch möglichstße Benutzung der reichen in Berlin mir eröffneten Mittel eine solche Ausdehnung zu geben, daß die Ergebnisse nicht als vereinzelte Thatsachen, sondern als Gesetze für den ganzen vegetabilischen Organismus begründet erscheinen möchten.

Es lag in der Natur der Sache, daß ich hier nur einige wenige Abbildungen geben konnte, um notdürftig einige der wichtigsten Punkte meiner Untersuchungen zu erläutern, und ich will wünschen, daß ich durch diesen Mangel nur nicht allzu häufig unverständlichen geworden bin.

Als Beurtheiler wünsche ich nur solche Leute, die die Natur selbst als Richterin befragen, und keinen andern Zweck vor Augen haben, als die Wahrheit, das einzige würdige Motiv
aller wissenschaftlichen Bestrebungen, welches auch mich allein bei allen meinen Forschungen geführt hat; sollte ich dadurch die Wissenschaft auch nur um ein kleines gefördert haben, so würde ich mich unendlich glücklich schätzen.

Sic quid his rectius novisti, candidus imperti, si non, his utere mecum.

tyledonen nicht etwa als ein dritter Gegensatz zu den Mono- und Dikotyledonen anzusehen und ist die Wichtigkeit dieses Merkmals nur sehr untergeordnet. Bei jeder Art von Pflanzen kann die Erscheinung vorkommen. Die Sache ist nämlich nur die, dass der Zeitpunkt der ruhenden Vegetation etwas früher eintritt, indem die Ausbildung des Embryo in der Frucht nur bis zu dem Punkte fortschreitet, wo er kugelförmig wird, die fernere Entwicklung aber außer der Frucht stetig in die Kei
mung übergeht, wie dies bei der ganzen Familie der Orchideen der Fall ist.

Pag. 51 will Unger die Orobancheen zu den Labiaten gezogen wissen. Gerade der einzige Differenzialcharakter der
Labiaten, der Bau des Fruchtknotens, geht aber den Orobancheen ab. Dagegen stimmen Lathraea (die beiläufig be-merkt, ebenfalls Spaltöffnungen hat) und Orobanche in allen Be-zeichnungen mit Ausnahme des lediglich dem Standorte zuzuschrei-benden Habitus so völlig mit den Scrophularinen überein, dass ich durchaus auch gar keinen haltbaren Grund finden kann, sie von jenen zu trennen. Es würde doch gewiss keinem Zoologen einfallen, ein Thier bloß, weil es als Schmarotzer lebt, von seiner natürlichen Familie zu trennen; warum will man es bei den Pflanzen anders halten?

Erklärung der Kupfertafel.

Fig. 1. Blüthenknospe von Taxus baccata im Längsschnitt (femina). aa. Blätter. b. Grundlage des zweiten Integuments, welches die Beere bildet. c. Erstes, inneres Integument. d. Nucleus. Bei dem Ovulum und den beiden innersten Blättern ist durch eine feine Linie der Verlauf der Oberhaut angedeutet, ebenso später in Fig. 4, 18, 22 u. 23.

Fig. 2. Längsschnitt eines ganz jungen Pistills von Salvia Clusii. a. Carpellblätter. b. Ovulum. c. Styluskanal.

Fig. 4. Junges Ovulum von Polygonum orientale, Längsschnitt. a. Nucleus. b. Wulst, aus welcher sich das Integumentum internum bildet. c. Anfang des Integ. externum.

Fig. 5. Sehr kleines Eichen von Goodyera procera. a. Integum. extern. b. Integ. intern. c. Rest des Nucleus. d. Embryosack.

Fig. 6 u. 7. Jugendliche Zustände des Embryo's von Potamogeton lucens.

Fig. 8. Ein späteres Stadium für Potamag. heterophyllus. a. Plumula. b. Cotyledon noch ungeschlossen.

Fig. 9 — 11. Entwicklungsstufen des Embryo’s bei Echium vul-gare. a. Embryosack. b. Embryo.

Fig. 12. Spitze des Embryosacks von Phormium tenax mit dem entstehenden Embryo. a. Embryosack. b. Pollenschlauch. c. Embryo.
Fig. 13—17. Bildung des Embryo's bei *Oenothera crassipes.*

Fig. 18. Weibliche Blüte von *Pinus Abies* im Längsschnitt, aus einem etwa 3/4" langen Zapfen. a. Carpellblatt (spätere Bractee *R. Brown*). b. *placenta* (später offenes *Ovarium* *R. Brown*). c. *Nucleus*. d. Beginnendes Integument (*Cupula* *auct.*). e. Embryosack. Um diese Zeit ist das Carpellblatt schon grün, die *Placenta* aber aus wasserhellem saftigem Zellgewebe gebildet.

Fig. 19—23. Zur Bildungsgeschichte von *Statice atropurpurea.*
Fig. 19. Innerer Theil einer ganz kleinen Knospe *aa.* *Stamina.*
 b. *Carpellblätter.* Fig. 20. Etwas späterer Zustand. a. Vier noch getrennte *Carpellblätter.* b. Anfang der Eibildung. c. Stelle des fünften abgeschnittenen *Carpellblattes.* Fig. 21. Junges *Ovulum* bei welchem die erste Anschwellung zur Bildung des inneren Integuments schon angedeutet ist. Fig. 22. Späterer Zustand im Längsschnitt. Das innere Integument *a.* hat schon den ganzen *Nucleus* *b.* überzogen, das äußere Integument *c.* fängt kaum an sich zu zeigen. Fig. 23. Noch später *a*, *b*, *c* wie vor.

Fig. 25. Antherenzelle von *Pinus Abies*, vier pollenbildende Zellen umschließend.

Fig. 25. Pollenbildende Zellen ebendaher nach Absorption der Mutterzelle. Man sieht in jeder ein Pollenkorn.

Fig. 26. Dieselben nach Einwirkung von Wasser. Zwei Pollenkörner sind noch im Austreten begriffen.

Fig. 28. Ausgetretenes Pollenkorn ebendaher.

Fig. 29. Zwei pollenbildende Zellen aus *Podostemon Ceratophyllum.*

Fig. 30. Pollen von *Podostemon Ceratophyllum* vom Stigma genommen mit einem Pollenschlauch.
Beitrag zur Kenntnifs der Gattungen *Campanularia* und *Syncoryne* (Schluß.)

vom

S. L. Löwen.

2. *Syncoryna*.

(Hierzu Taf. VI. Fig. 19—28.)

Syncoryna ramosa Ehrb. ist durch Sars’s Beschreibung hinlänglich bekannt; es dürften nur folgende Details hinzugefügt werden. Der männliche Polyp (Fig. 19 a.), versehen mit einem ganz kleinen Munde, der nicht jene Art Lippe hat, welche wir bei der *Campanularia* bemerkten, trägt 16 Tentakeln um den keulenförmigen Kopf zerstreut, welche von der Länge des letzteren sind. Ihr Bau (Fig. 22.) ist ziemlich unähnlich dem bei den Sertularinen geltenden. Sie sind zwar, wie bei diesen, von der äußeren Membran gebildet, und in ihrer Höhle findet man keine Bewegung einer Flüssigkeit, aber ihre Oberfläche ist vollkommen glatt, und die Hörner sind nicht über ihre ganze Länge zerstreut, sondern an der Spitze gesammelt, so daß sie die Form einer Knopfnadel haben. Die innere Höhle ist, wie dort, in Zellen geteilt, aber die kleinen Querlamellen, welche diese bilden, sitzen mehr unregelmäßig, fast in einer Spirale, und sind durch eine schmale, der Länge nach laufende, membranöse Columelle vereinigt. An dieser sitzen hier auch die kleinen, gefärbten, aber unbeweglichen Körner. Der Endknopf ist ganz bedeutend, sphärisch, und nur aus Papillen zusammenge- setzt, deren Natur als Saugwarzen hier deshalb deutlicher zu sein scheint, weil jede in der Mitte einen kleinen Knopf hat.

*) Die Diagnosen beider Arten siehe am Schlusse.
Auf sen um das ganze Capitolum legt sich die äußere Mem-
bran sehr nahe an die innere, welche die Cavität selbst bildet; unterhalb des Magens dagegen außen an dem Stücke, welches noch nicht von einer Hornröhre umschlossen ist, verselbmäst sich der Darm bedeutend, und hier ist die äußere Membran durch ein cellulöses Gewebe damit vereinigt.

Die Weibchen (Fig. 19, b. Fig. 20.), deren eins oder zwei an der Basis eines jeden männlichen Capitolums saßen, sind von einer höchst merkwürdigen Gestalt. Gleich unter dem untersten Fühler des Männchens geht ein kurzer Stiel ab, ein Ausläufer aus dessen Darmröhre. Dieser trägt eine glashelle, vier- oder fünfeckige Glocke, in deren Innerem ein freistehender, keulenförmiger, gegen die Spitze schmäl erer Körper befindlich ist, welcher eine mit der Darmröhre deutlich in Gemeinschaft stehende Höhle enthält. Dieser Körper ist des Thieres Magen; er ist in der Spitze mit einem sehr kleinen Munde (Fig. 20, a.) versehen, welcher von etwa 10 kleinen Erhabenheiten (Fig. 26.), Rudimenten von Mundfühllern, umgeben wird. Er ist seiner ganzen Länge nach von einer gelbgrauen gefärbten Hülse umgeben, welche, wie eine genauere Untersuchung ergiebt, aus Eiern besteht, die reihenweise dicht hinter einander liegen. Wendet man den Pressschieber an, so springen sie durch die Haut, welche sie bedeckt, mitten auf der Stelle, an welcher sie liegen, heraus, drängen sich aber nicht nach oben. Die äußerste, glockenförmige Hülle besteht aus einer sehr dünnen, glashellen Membran, deren äußere Fläche ein unregelmäßiges Netz von feinen, wenig zusammenhängenden Maschen (Fig. 24.) und kleine, ohne Ordnung und nicht sonderlich dicht verstreute Papillen zeigt. Der obere Rand der Glocke ist in vier, bisweilen fünf, Abtheilungen getheilt, welche durch eben so viele knopfförmige, nach innen und unten in Lappen verlängerte Erhabenheiten — Fühler, Randcirri (Fig. 20, b. Fig. 21, a.) geschieden sind. Von der Basis des Magens gehen eben so viele Gefäße ab (Fig. 20, e. Fig. 21, b.), welche entsprechender Weise aufwärts laufen und innerhalb der Fühler sich zu kleinen Cavitäten erweitern. An der ganzen Länge eines jeden Gefäßes ist die Substanz der Glocke etwas dicker, so daß sie davon ein eckiges Ansehen bekommt. Vom Magen des männlichen Polypen aus durch das Stiechlen des
Weibchens in den ihren, und aus diesem durch jene Gefäße in deren obere Erweiterungen hinein geht eine beständige Bewegung von Kugelchen, derjenigen gleich, welche wir bei der Campanularia beschrieben haben, vor sich. Vorzüglich stark ist das Gewimmel und sind die vibrierenden Schwenkungen der Körnchen lebhaft in den letzteren. Unter dem Rande der Glocke, und zwischen jenen, läuft rund herum ein Band (Fig. 21, c.), welches man für ein Ringgefäß ansehen möchte; aber ich sah in ihm nie die Bewegung sich fortsetzen, und betrachte es daher vielmehr als einen Muskel.

Die lebhaften Bewegungen der Glocke bestehen in häufigen transversellen und selteneren longitudinalen Zusammenziehungen und Erweiterungen, eine Abwechselung der Systole und Diastole, denen der Akalephen völlig gleich. Der Magen bewegte sich dagegen unbedeutend.

Syncoryna Sarsii nob. Einige Tage später, als die eben angeführten Beobachtungen gemacht worden waren, erhielt ich diese Art, auch mit Weibchen, deren zwar wenigere da waren, aber dagegen in solcher Gestalt, daß ich beinahe vermutete, es wären die vorher beobachteten, nur nicht ganz ausgebildet. Was mir zuerst bemerkenswerth vorkam, war, daß sich die Weibchen nicht bloß an den männlichen Capilulis festbanden, sondern auch von Bohren ohne Männchen (Fig. 25.) ausgingen. Bei allen war die Glocke mehr kugelrund und niedergedrückt, und der Magen, flaschenförmig und ohne Eier, machte lebhafte Bewegungen, indem er sich bald ausstreckte, bald nach den Seiten bogen. Die Glocke war oben nicht ganz offen, sondern mit einer in der Mitte durchbohrten, der bei Oceania, Thaumantias etc. gleichen, Haut (Fig. 25, a.) bedeckt, welche, wie es bei diesen Quallen geschieht, sich mit jeder Diastole der Glocke einwärts zog. Ferner waren die Randcirren hier zu langen, knotigen, sehr beweglichen, ausdehnbaren, hohlen Fäden ausgebildet, und an der Basis eines jeden von diesen erschien, über der Erweiterung des Längsgefäßes, ein Punkt von glänzend rother Farbe (Fig. 25, b. Fig. 28, a.), ein Auge, wie Ehrenberg uns gelehrt hat, dergleichen Organe bei den Echinodermen und Akalephen zu deuten.

Die Anzahl der Weibchen war hier im Verhältnisse zu der
der Männchen viel geringer, als bei S. ramosa, und keines der-
selben hatte Eier. Ich vermuthe deswegen, daß sie sich, nach-
dem die Eier entwickelt worden sind, freiwillig ablösen und
ihre Leben als freie Thiere fortsetzen. Indessen ward es mir
icht möglich, dies zu beobachten; denn alle ferneren Beobach-
tungen wurden unglücklicherweise abgebrochen, und die Hoff-
nung, sie erneuern zu können, wurde getäuscht. Zur weiteren
Erklärung muß ich daher anführen, was zwei ausgezeichnete
Forscher von hierher gehörrenden Beobachtungen berichten.

Rud. Wagner *) fand an vielen Individuen der Coryne
aculeata Wagn. hinter den Fühlern größere und kleinere ge-
stielte Knospen, welche, — man vergleiche seine Beschreibung
mit der unsrigen — nichts anderes, als Weibchen waren. Seine
Zeichnung (Fig. 26.) insbesondere läßt hierüber keinen Zweifel
übrig. Die Lage der Eier, die vier „Hörner“ und die Bewegun-
gen, „welche ganz denen der Medusen glichen,“ sind völlig die-
selben. Als Resultat der Beobachtung ging die folgende Ansicht
hervor: der Polyp treibt, sobald er selbst so weit ausgebildet
ist, daß er fünf Fühler hat, aus seinem Innern nach der Seite
gerichtete Fortsätze oder Kapseln hervor, welche allmählich durch
eine Einschnürung gestielt werden und inwendig aus dem Schleim
Eier oder Gemmen hervorbringen; wenn diese reif sind, so fallen
die Kapseln ab, bewegen sich, die Eier treten heraus, fallen auf
den Boden und befestigen sich.

Sars beschreibt in seiner letzten vortrefflichen Arbeit **)
ähnliche Knospen an Corymorpha nutans Sars. Dicht über den
langen Fühlern stehen dichotomisch verzweigte Fäden, „Eier-
stöcke,“ an deren Enden die („uneigentlich so genannteu“) Eier
traubenweise sitzen. Diese sind gestielt, oben breiter, und ent-
halten in ihrem Innern die „wichtigsten Theile eines werdenden
Polypen,“ nämlich in der Mitte einen Theil, welcher nach Form
und Bedeutung der „Keule“ (dem männlichen Capitulum) ent-
spricht, und am oberen, breiten Ende vier Knoten, die sich in-
wendig nach unten als Röhren fortsetzen. Der eine von diesen

*) Isis 1833, S. 256, Tab. XI

**) Beskrivelser og Jagttagelser over nogle mærkelige eller nye i
flavet ved den Bergenske Kyst levende Dyr etc. Bergen, 1835.
ist allezeit grüber, als die anderen, und endigt sich mit einer
dichten Knospe. Diese soll sich, nach des Verfassers Ansicht,
zum Stiele entwickeln, während der innere Theil zum Polypen-
kopfe wird. Denen, welche wir beschrieben, gleiche

tenden bestätigten diese Deutung.

Wagner's Beobachtungen stimmen völlig mit den meini-
gen überein, und, hätte er die von Ehrenberg hervorgerufene

Deutung der „Kapseln“ gekannt, so würde sicher nichts hinzu-
zuügen gewesen sein. Sars, dessen Erklärung des von ihm

Geschehen durch die Ansichten älterer Schriftsteller veranlaßt

worden zu sein scheint, hat überdies die vier Gefässe in der

Glocke gesehen. Beide erwähnen die, denen der Acalphen

ähnlichen Bewegungen. Aber noch ist übrig, genau zu beob-

achten, wie die Weibchen sich frei machen und die Eier sich

entwickeln.

Lebhaft erinnern diese Gestalten der Weibchen an verschiedene

Medusen, z. B. Cylaeis tetrastyla Eschsch. *); sie sind viel-

leicht bisweilen mit ihnen verwechselt worden. Die Analogie
der äußern Glocke mit der „Scheibe“ der letzteren, die vier

Gefässe, die Randeirren, die Lage des Magens, Alles ist gleich **).

Die Vergleichung mit den Weibchen der Campanularia bietet
folgende Ähnlichkeiten und Verschiedenheiten dar. Beiden

gemeinschaftlich sind: eine äußere, sackförmige, glashelle Hülle,
deren Rand Fühler (Cirri) trägt, und in deren Wänden Gefässe
den Nahrungssaft aus dem Magen führen, welcher selbst ent-

standen ist durch ein Hervorsprossen aus des Thieres gemeins-

chaftlicher Darmröhre und von Eiern umgeben wird. Aber die

unähnliche Form der äußern Hülle, die verschiedene Anzahl der

Fühler, die Anwesenheit von Augen, wenigstens bei Syncoryna

*) System der Acalphen, Tab. 8, Fig. 2.

**) Noch merkwürdiger erscheint uns diese Ähnlichkeit, wenn wir
die Strobila octoradiata Sars, nach Sars's neuesten Beobachtungen,
a. a. O. S. 16, Taf. 3., vergleichend betrachten. Diese völlig acalephenn
ähnlichen Thiere, welche in Menge aus dem Körper eines Polypen hervorwachsen, welcher das ganze Ansehn und die Organisation eines Hy-

drin's hat, -- sehen wir nicht in ihnen eine so anlockende Analogie mit

Syncoryna, dass wir nicht anders, als mit großer Sehnsucht, der Kennt-

nifs ihrer weiteren Entwicklung entgegensehen können?
Sarsii, die Lebhaftigkeit der Bewegungen bei dieser Gattung, die fast völlige Unbeweglichkeit der Campanularia, das wahrscheinliche Freiwerden der Erstcren, das räthselhafte Verschwinden der Letzteren — Alles deutet auf wichtige Verschiedenheiten. Wenn einmal die Entwicklungsgeschichte der Tubularinen bekannt sein wird, dann wird eine künftige Systematik von ihr und von den oben erwähnten Unähnlichkeiten die Charaktere für neue Ordnungen entnehmen.

Diagnosen der beiden Arten.

1. Syncoryna ramosa Ehreb. Sesquipollicaris, tubulis \(\frac{1}{15} \) crassis, rugosis, gemmis arrectis, flexnosis fruticulosa et intricata; \(\mathcal{F} \) tentaculis 16; \(\mathcal{Q} \) elongato-campanula, coecis, campanula aperta cirris evanidis. Hab. in fundo petroso inter ostraeas et algas, profundit. 12—16 org.

2. Sync. Sarsii Low. Semipollicaris, capillacea, tubulis \(\frac{1}{15}—\frac{1}{12} \) crassis, laevibus, gemmis elongatis arrectis parce ramosa, \(\mathcal{F} \) tent. 10—16; \(\mathcal{Q} \) globosis, cirris elongatis, oculis exquisite rubris, campanula membrana perforata clausa. Hab. in fissuris rupium, etiam in aqua stagnante ad insulam Mäskär etc. Babusiae.

Erklärung der Figuren auf Taf. VI.

Campanularia geniculata (Sertularia geniculata Müll.) \(\mathcal{F} \).

Fig. 1, männliche Zelle mit einer männlichen Knospe. 2, leere männliche Zelle mit ihrer Scheidewand. 3, die Scheidewand von der Seite. 4, ein Fühler. 5, 6, 7, der Mund in verschiedenen Stellungen. 8, der auf der Scheidewand ausgebreitete Pylorusheil des Magens. 9, eine neugebildete Zelle. 10, eine ähnliche, noch mit einer buechtigen Haut bedeckte, während das eingeschlossene Thier sich ausbildet.

Campanularia geniculata \(\mathcal{Q} \) und Junge.

Fig. 11, weibliche Zelle. 12, der obere Theil einer solchen, nachdem die Weibchen heraus sind. 13, eine ähnliche. 14, ein freies Junges oder Larve. 15, ein Junge, welches sich kürzlich festgelat hat. 16, ein ähnliches mit neu angefanganem Stamme. 17, ein ähnliches, mehr entwickeltes, 18, verschiedene Formen von Jungen.

Syncoryna ramosa Ehrenb. \(\mathcal{F} \ \mathcal{Q} \) und Syncoryna Sarsii nob. \(\mathcal{Q} \).

Fig. 19, Syncor. ram. Ehrenb. \(\mathcal{F} \ \mathcal{Q} \). 20, dieselbe \(\mathcal{Q} \). 21, der Rand der äusseren Hülle des Weibchens. 22, ein \(\mathcal{F} \) Fühler. 23, die rudimentären Mundfühler des Weibchens. 24, ein Stück der äussersten Haut. 25, Syncor. Sars. nob. \(\mathcal{Q} \). 26, 27, deren Mund mit den Fühlern. 28, die Basis eines Randcirrus mit dem Auge.
Ueber die
Fortpflanzung des *Pteroptus Vespertilionis* Dufour
von
Chr. L. Nitzsch.

(Ihre Taf. VIII. Fig. I—III.)

Man findet auf der nackten Flughaut unserer Fledermäuse sehr gewöhnlich, jedoch meist nur sparsam, eine, das haarige Fell durchaus meidende Schmarotzer-Milbe, welche seit Frisch von mehreren Schriftstellern, theils unter dem Namen *Acarus Vespertilionis* beschrieben und abgebildet, von Latreille zur Gattung *Gamasus* gezogen, von Leon Dufour aber *Pteroptus Vespertilionis* genannt wurde *).

Sundevall, *Conspertus Arachnidum p. 37. Pteroptus*
Wiewohl ich diese Fledermaus-Milben einigemal ziemlich häufig auf Vespertilio Myotis und V. Daubentonii vorfand, so bin ich doch bis jetzt nicht im Stande gewesen, mich mit ihrer Untersuchung ernstlich zu beschäftigen und derselben so viel Zeit zu widmen, als nötig gewesen wäre, um manche in den vorhandenen Beschreibungen gebliebene Lücken auszufüllen, besonders die erheblichen Verschiedenheiten, welche die gegebenen Darstellungen solcher Milben bemerken lassen, nach Alter und Geschlecht gehörig bestimmen und über ihre sehr wahrscheinliche spezifische Uebereinstimmung entscheiden zu können.

Indessen habe ich vollkommen ausgemittelt: daß der Pteroptus vespertilionis keineswegs eierlegend (wie Göze glaubte *)), sondern lebendig-gebarend ist; daß derselbe nur ein Junges auf ein Mal gebiert; daß dieses gleich mit acht Füßen zur Welt kommt, aber als jüngerer Foetus oder Embryo nur sechs Füße hat, also im Mutterleibe schon eine Verwandlung erfährt, welche bei vielen andern, namentlich auch parasitischen Milbengattungen erst nach der Geburt oder dem Ausschlüpfen aus dem Eie vor sich geht.

Ich unterlasse Geoffroy, Scopoli, Fabricius u. A. anzuführen, welche diese Milbe nicht selbst gesehen zu haben scheinen, und nur eine entlehnte sehr dürftige Bezeichnung derselben oder wenig mehr als den bloßen Namen geben, was freilich auch von Linné, Schrank und Latreille gilt. Die Gattungsnamen Gamasus und Pteroptus anlangend, so bekenne ich, nicht zu wissen, wohner der erste genommen ist, und wie Pteroptus nach Hrn. Leon Dufour (a. a. O. S. 98.) „suceur de l'aile“ bedeuten kann. Da aber der letztere Name, vielleicht eine andere angemessene Deutung (qui in ala conspicitur) erlaubt, so habe ich denselben nicht ändern wollen.

*) Göze nahm unglücklicher Weise die schwarzen kugeligen Excremente für Eier, und bildete sich ein, dass eine junge Milbe, die er daneben fand (und am angef. Orte in einer verzerrten Figur dargestellt hat) aus einem solchen vermeintlichen Ei ausgewachsen sei. N.
der nackten Flughaut der Fledermäuse wahrnahm, wenn selbige auch zahlreich mit alten und jungen Milben besetzt war. Eben diese Vermuthung veranlafste mich, im Juni des Jahres 1825 einige auf Vespertilio Daubentonii gefundene Individuen, welche wegen ihres angeschwollenen Leibes trächliche Weibchen zu sein schienen, zu öffnen. Wirklich fand ich in jedem dieser Individuen zwei bis drei, ein Mal sogar vier als solche leicht erkennbare Foetus, und zwar theirs unreife sechsfüßige von verschiedener Größe, theils meist außerdem noch einen ausgetragenen, zur Geburt reifen, mit acht Füßen, dergleichen in einer trächlichen Milbe aber nie mehr als ein einziger vorhanden war, welcher freilich fehlte und fehlen musste, wenn die Muttermilbe eben geboren, oder noch keine Frucht so weit ausgetragen hatte.

Bei einem der jüngsten Individuen schien der weiche Panzer auf der Rückseite noch nicht geschlossen zu sein, wie denn a priori schon anzunehmen ist, daß der Dotter von der Rückseite cindringt.

Der ausgetragene achtfüßige Foetus hat den Rumpf rundlich und auf dem Rücken am Rande deutlich begrenzt, was bei den vorigen noch nicht der Fall war. Jederseits sind drei stumpfe Ecken desselben angedeutet, eine spitze nupaare ist hinten (diese statt des breiten abdominalartigen Hintertheils der unreifen Individuen). Die Füsse zeigen Gliederung; aber die Zahl der Glieder, deren sieben sind, ist, so wie die der eingekräumten Palpen, schwer genau zu erkennen. Der Haftapparat ist am Ende aller vier Fußpaare deutlich und besteht, wie bei den alten Milben dieser Gattung, aus zwei Krallen und einem breiten, fast

Mehr als die angegebenen beiden Foetusformen hat mir die Anatomie dieser Fledermausflügelmilben, welche, im Collegio vor vielen Zeugen auf gut Glück in der Eile unternommen, bei der Kleinheit der Thiere und der pergamentartigen Härte ihres Panzers sehr roh sein musste, damals nicht eingetragen. Ich bedauere zumal, die früheren Bildungsstände nicht untersucht zu haben; denn es ist durch die fortgehende successive Ausbildung einzelner Früchte die Möglichkeit gegeben, in einer Muttermilbe dieser Gattung alle Stufen der Entwicklung von der Wagnerschen Keimschicht an bis zur ausgebildeten achtfüssigen Form zu gleicher Zeit zu finden und zu verfolgen.

Die Abbildungen auf Taf. VIII stellen drei in einer trächtigen Milbe heisammern gefundenene Embryonen vergrössert dar.

Fig. I, ein jüngerer Embryo von der Bauchseite gesehen; vorn die Palpen; an jeder Seite drei nach unten gekrümmte stumpfe Füsse.

Fig. II, ein älterer unreifer Embryo, ebenfalls noch mit sechs Füssen, von der Rückseite gesehen.

Fig. III, ein ausgetragener achtfüssiger Foetus von der Rückseite; die Beine, welche wie bei den vorigen, eingekrümmt und an die Brust angelegt waren, sind hier hervorgezogen, um sie von der Rückseite sichtbar zu machen. Die Nebenfigur stellt ein stärker vergrössertes Füsendsch mit zwei Krallen und einem dreieinigen Haftlappen desselben Foetus dar.
Neues Genus von Wasserschlangen
beschrieben
von

(Hierzu Taf. VIII. Fig. 1—7.)

In einigen Sendungen von Amphibien, die Hr. Prof. Schönlein aus Celebes erhielt, befanden sich auch mehrere Hydern aus den Genera Hydrophis Wagl., Platurus Latr., Pelamys Daud., Acrochordus Hornst., außer diesen aber auch eine neue Species von Wasserschlangen, die ich als Typus eines eignen Genus betrachtete und hier näher charakterisiren will.

*) Hier findet sich außer den 2 Paar Stirnschilder, auch noch ein Paar wirklicher Nasenschilder, die aber, nicht wie bei den Columbroiden seitlich, sondern zwischen dem Lippen schild und den vorderen Stirnschildern liegen, also ihrer Lage nach vorderate Stirnschilder heissen sollten.
Beschreibung der Species: Der Kopf ist nicht unterschie-
den, von oben zusammengedrückt, stark nach vorn abfallend, sehr kurz und stumpf. Die Maulwinkel gegen das Hinterhaupt
rasch emporsteigend. Nasenlöcher nicht weit von der Mund-
kante absteigend im hintern äußern Winkel der Nasenlöcher.
Die Augen sind seitlich, doch hoch oben, mittelmäßig groß,
wenig hervorstehend, rund mit runder Pupille. Ihre Entfernung
von den Nasenlöchern gleich weit, wie von den Mundwinkeln.
Eine Linie von einem Mundwinkel zum Nase amloche auf der näm-
lichen Seite gezogen berührt die untere Seite des Auges kaum *).

Schilder. Das Rüsselschild, *sc. rostrale*, ist vieleckig,
nasalia*, unregelmäßig sechseckig, die Seiten, mit denen sie ans
sc. rostrale stoßen, abgerundet; die vorderen Stirnschilder,
sc. front. ant., ziemlich klein, ebenfalls unregelmäßig hexagonal.
Die hintern Stirnschilder, *sc. front. post.*, bedeutend klei-
ner, als die vorigen, unregelmäßig vieleckig. Das Wirbel-
schild, *sc. vertebrale*, polygonisch, fast rund, ziemlich groß;
die Hinterhauptschilder, *sc. occipitalia*, ablang pentagonal.
Auf diese folgt eine unregelmäßige Schuppenbildung, neben ih-
nen liegen die Schlafenschilder, *sc. temporalia*, länglich un-
regelmäßig vieleckig. Die Zügelschilder, *sc. lorea*, auf jeder
Seite eins, sind ziemlich klein, fünfeckig, die vorderen Augen-
schilder, *sc. ocul. anter.*, zwei, von denen das obere länglich,
das untere mehr quadratisch ist. Die hintern Augenschilder,
sc. ocularia post., zwei, ziemlich gleich groß, fünfeckig.
Die Augenbrauenschilder sehr stark entwickelt, ablang pen-
marg. lab. sup.*, sind die äußersten sehr klein, schuppenartig,
fast cylindrisch, die übrigen länglich rhombisch oder fünfeckig,
die Unterlippenschilder, *scut. lab. med.*, herzförmig, schmal.
Eigentliche Randschilder des Unterkiefers viere, wovon
das den Lippenschildern nächste, das längste und rhombisch.

*) Ich fand fast immer, als sehr constantes generisches Kennzeichen
bei den oft sehr schwierig zu unterscheidenden Sippen der Schlange,
das Verhältnifs des Auges zu einer Linie, die man sich von einem Mund-
winkel zum entsprechenden Nasenloche gezogen denkt.
Das zweite ist klein, das dritte und vierte fast gleichlang quadratisch. Von der Mitte des Unterkiefers bis zum Maulwinkel sind noch vier Schuppen, von denen die ersten regelmässig fünfeckig, die nächsten viereckig sind. Die Kinnschilde, \textit{scut. mentalia}, sind groß, fast rund. Durch die kreisförmige Anordnung der \textit{scut. occip.}, \textit{tempor.}, \textit{supercill.}, \textit{front. post. et ant.}, um das Wirbelschild bekommt der Kopf das ausfallende Ansehn, als wäre er mit einer Krone geziert, wozu die mehr oder weniger rundliche Form eines jeden dieser Schilde bedeutend beiträgt. Eben so ist die Anordnung der Schilder um die Augen mehr oder weniger kreisförmig, was dem Kopfe ein sehr schönes Ansehn gibt. Die Nasenschilde (siehe Profil Fig. 4.) bilden einen Absatz, indem der Kopf bis zu den vorderen Stirnschildern eben fortläuft, dann schnell abfällt; was dem Profile den tückischen Ausdruck, der den meisten Giftschlangen eigen ist, verleiht. Die Schuppen an der Kehle sind ziemlich klein, der Rumpf ist drall bis fast gegen die Mitte, wo er anfängt zusammengedrückt zu werden und anschwillt, seine Dicke nimmt gegen den After zu ab, die Compression bleiht. Die Schuppen am Halse sind kleiner, als am Rücken, wo sie, wie an den Seiten, eine ziemliche Größe erlangen. Der Typus derselben ist ein regelmässiges Sechseck, sie verschieben sich aber in einen Rhombus mit fast abgerundeten gegenüberstehenden Winkeln. Sie liegen übereinander. An den Seiten liegen mehrere Reihen solcher Schuppen, deren jede mit einem kleinen hervorspringenden Punkte versehen ist. Die Bauchschildeben sind gegen den Hals zu sehr regelmässig, schmal, weiter nach der Mitte des Leibes zu werden sie größer und an der hinteren Seite ausgebuchtet, und bilden auf diese Weise einen Kiel nach der ganzen Länge des Bauches. Jedes dieser Schildchen ist gewöhnlich mit 7 kleinen Punkten bedeckt, von denen 3 von jeder Seite her gegen die Mitte des Kiels kommen, das siebente auf dem Kiele selbst steht, oberhalb der sechs andern, wodurch die Kante, der Länge nach das Ansehn der Schenkelpapillen der Eidechsen erhält. Der After ist mit zwei rhombischen Schildchen bedeckt, die seitlich über einander liegen. Der Schwanz ist ziemlich kurz, sehr stark zusammengedrückt, ruderförmig, und wenig niedriger als der Rumpf. Die Höhe beim After ist die geringste des ganzen Körpers. Die Be-
schuppung des Schwanzes ist sehr regelmäßig. Sie wird von großen Sechsecken gebildet, die nicht, wie am übrigen Körper, auseinander, sondern nebeneinander liegen. Es sind auf jeder Seite sechs Reihen, von denen die oberste und unterste sich um die Schwanzkante herumbiegt, und auf der andern Seite fortsetzt, im Ganzen also nur 10 vollständige Reihen. Das Schwanzende nimmt ein großes unregelmäßiges Schild ein. Die untere Schwanzkante ist ausgebuchtet.

Farbe. Diese Schlange gehört zu den einfarbigen Wasserschlangen, deren auch Peron in seiner Reise nach Australien Erwähnung thut. Sie ist am ganzen Körper brann, scheint die Sonne auf sie oder wird die Schlange trocken, so schillert sie ins stahlblaue und hernach ins silberweisse. Die Seiten des Kopfes und die Kehle sind gelblichbrann, die Punkte auf den Schuppen sind dunkler als die Schuppen selbst. Häutet sich die Schlange im Weingeist, so wird sie schmutzigweiss.

Länge der ganzen Schlange von der Schnauze zur Schwanzspitze 30° 6" par.
Länge des Schwanzes 4° 6"
Länge des Kopfes 9 3/4"
Breite des Kopfes gerade vor den Augen 5 1/2"
Umfang des Leibes bei seiner größten Dicke 3° 4"
Höhe des Schwanzes 11 1/2"
Höhe des Leibes beim After 9 1/4"

Den Zahnbaus dieser Schlange anbelangend bemerke ich Folgendes:

Genus *) Stephanohydra mihi.

Species. Stephanohydra fusca. mihi.
St. corpore supra fusco, infra helvolo-fusco. Long. corp. 30" 6".

Erklärung der Figuren.

Fig. 1. Stephanohydra fusca Tsch. natürliche Größe.
Fig. 2. Kopf derselben von oben — —
Fig. 3. Kopf derselben von unten — —
Fig. 4. Profil des Kopfes — —
Fig. 5. Durchschnitt der Schlange am Hals —
Fig. 6. Durchschnitt der Schlange am Körper in seiner grössten Höhe.
Fig. 7. Durchschnitt des Schwanzes.

Filaria? im Gehirn eines Eidechsen-Fötus.

(Briefliche Mittheilung vom Prof. Rathke.)

In den nachfolgenden Zeilen will ich Ihnen über einen Fall Bericht geben, der deshalb, weil bis jetzt, so'viel mir wenigstens bewusst, kein ihm ähnlicher bekannt geworden ist, wohl wert hieh fürchte, dem gelehrten Publikum vorgelegt zu werden.

*) Ich zeige hier nicht an, welche Stelle dieser Genus im natürlichen Systeme einnehmen muss, indem ich es, da die Systematik der Wasserschlangen, so wie ihre Einreihung in die Systeme, noch höchst unbefriedigend ist, später in einer Monographie dieser Familie thun werde.
Wollen Sie ihm eine Stelle in Ihrem Archive gestatten, so würden Sie mich recht sehr erfreuen.

Beitrag zur Kenntniss der Trilobiten, mit besonderer Rücksicht auf ihre bestimmte Gliederzahl.

Von

A. Quenstedt.

Betrachtet man die Decke eines Molukkenkrebses (Limulus), so findet sich, dass die beiden kalkig-lornigen Schildplatten (Kopf- und Schwanzschild), rings an ihrem äussern Rande nach innen umgeschlagen, unterhalb noch eine Zeitlang als feste Platte fortgehen, dann sich aber in eine dünne Membran verwandeln, die mit den in der Mitte gelegenen Organen des Thieres in Verbindung stehen. Zwischen diesen Oberen und unteren Schildlamellen befinden sich viele weiche Theile. Aehnlich ist auch das Schwanz- und Kopfschild des Trilobiten gebildet. Die obere Schilddecke des einfachen Trilobiten-Schwanzes schlägt sich nämlich rings an ihrem elliptischen hintern Auflasseende nach unten um, läuft noch eine Strecke als feste hornig-kalkige Masse fort, bis sie in der Spindelgegend sich als dünne Membran im Gestein verliert. Dasselbe findet auch am vorderen geraden Rand so weit Statt, als sich die Flossen an das Schild anlegen, wo aber die mittlere Spindel des Rumpfes sich mit dem Schwanzschild verbindet, ist es geöffnet, so dass der ganze Schwanz oben vollständig, unten nur zum Theil vom Schildede bedeckt war, indem die Mitte des Vorderrandes und der mittlere Vordertheil der ganzen untern Schildplatte keine Spur einer kalkigen Lamelle zeigt. In dieser Gegend waren die weichern Theile des Thieres an das Schild gehaltet. Die untere unvollständige Schildplatte zeigt auf ihrer Unterfläche sehr regelmässige, hin und wieder dichotomirende, Streifen, die dem elliptischen Auflasseende sehr genau parallel laufen. Auf dem homogenen Kalke drückten sich diese Streifen.

Wie das Schwanz-, so zeigt auch das Kopfschild eine obere halbmondförmige Platte, welche durch die Gesichtslinien in das Stirnschild und die seitlichen Wangenschilder geteilt wird. Obgleich bei manchen Individuen die Wangen vollkommen durch jene Linie von der Stirn getrennt erscheinen, so hängen diese Theile doch bei andern derselben Species so genau mit einander zusammen, daß man glauben muß, jene Trennung sei durch geologische Prozesse erst künstlich herbeigeführt. Diese ganze obere Kopfsplatte schlägt sich nach vorn um, und bildet eine, vorzüglich mit den Wangenschildern zusammenhängende untere Platte, denn von dem Stirnschilde ist sie durch die Gesichtslinien getrennt, die sich an der vorderen Spitze des Kopfes vereinigen. Diese untere Schildplatte zeigt auf ihrer Unterseite wieder dieselbe Streifung, wie die analoge am Schwanz, doch laufen die Streifen nicht immer genau den äußern mehr gebogenen Rändern genau parallel; zuweilen muß sie wohl noch durch eine besondere Naht von den Wangen getrennt sein, denn man findet,
z. B. von *Entomolites paradoxissimus* Wahl., diese untern Kopfschildplatten isolirt im Gesteine liegen, aus denen hin und wieder besondere Trilobiten gemacht sind, obgleich schon die Streifung allein uns hinlänglich belehrt, daß sie keine Oberschildplatten sein können. (Wahlenberg's *Entom. bucephalus* tab. 1. fig. 6. ist die zu *Ent. paradoxissimus* tab. 1. fig. 1. gehörige Unterplatte.) Zwischen der untern und obren Schildplatte ist ein großer mit Bergmittel erfüllter Raum für die weichen Theile des Kopfes, und um diesen Raum so geräumig als möglich zu machen, schwoll der mittlere Theil des Stirnschildes noch zu einer Wulst empor (Glabella, Stirnhöhung). Bei *Isotelus gigas* findet sich hinterhalb der Unterplatte ein scheinbar rings von hörnigen an ihrer Oberfläche gestreiften Kalkplatten umschlossener Apparat, der sich durch mehrere säulenartige Fortsätze der überliegenden Stirnplatte zu nähern strebt; sein allgemeiner Umriss ist in der Biggyschen Fig. 1. tab. 27. der *Transact. of the Geol. Soc. Vol. I. 2 Ser.* ungefähr dargestellt, doch sind die einzelnen Fortsätze nach oben nicht gezeichnet, über die mich ein einziges Exemplar aus Nordamerika nur unvollständig in Kenntnis setzte. Ob dieses innen hohle Organ frei im Fleische des Thieres lag, oder ob es sich durch Fortsätze mit den übrigen Schildplatten verband, konnte nicht ermittelt werden. Von Mundtheilen ist noch nichts ansündig gemacht.

und da dieselbe bedeutend dick und wie das ganze Schild mit Kalk imprägnirt ist, so kann man die Facetten, so fern das Schild des Trilobiten nicht zerstört ist, stets beobachten. Dafs über die Facetten sich noch eine glatte Oberhaut hinweggelegt hätte, hat man gar keinen Grund anzunehmen, da diese sich gleich den übrigen unversehrten Schildtheilen erhalten haben müfste. Sprengt man die dicke facettierte Hornhaut weg, oder ist sie, wie in manchen märkischen Gesteinen, schon durch geologische Processe weggeführt, so sieht man auch noch im versteinerten Auge die deutlichste Facettierung, indem jeder Facette ursprünglich eine Krystalllinse und ein dahinter liegender Glaskörper entsprach, welche tief in das Auge eindringen. Da die Facetten bei dieser ersten Abtheilung bedeutend grösser sind, als bei der folgenden, so fallen sie dem unbewallneten Auge viel mehr auf. Die zweite Abtheilung (zusammengesetzte Augen mit glatter Hornhaut z. B. Trilobites Esmarkii) zeigt uns Augen mit einer Oberfläche, die von der des Schildes nicht zu unterscheiden ist, nur das die Augengegend etwas lichter und durchsichtiger erscheint. Ein Querschnitt darauf zeigt bei sehr wohl erhaltenen Exemplaren, wie sie in den Marken und dem Kambrischen Systeme des Nordens vorkommen, deutlich, dass die Hornhaut in 2 Lamellen zerfällt, von denen die äussere durchaus glatt, die innere hingegen sehr fein netzartig gestreift ist. Denn auf der schmalen Durchschnittsfläche muss man eine solche Struktur aus den feinen Querstreifen erschließen, die sich nur auf der untern Lamelle befinden, wo das Netz durchschnitten wurde; wo hingegen die obere Lamelle beginnt, setzen sie ab, und gehen nicht hindurch. Bei der Durchsichtigkeit der oberr glatten Lamelle sieht man daher in manchen günstigen Fällen die feine netzartig gestreifte untere Lamelle hindurch schimmern, nie aber zeigt die Oberfläche der Oberlamelle solche Zeichnung. Sprengt man die ganze Hornhaut hinweg, so tritt die Oberfläche des versteinerten Auges sein chagrinartig hervor, mit bloßem Auge nur schwer erkennbar, weshalb ich lange der Meinung lebte, die Augen dieser Abtheilung seien glatt. An der bei weitem grössern Kleinheit der Facetten kann man diese zweite Abtheilung leicht von ersterer unterscheiden. Wunderbar ist es, wie eine so feine Zeichnung sich auf dem verkalkten Auge er-
halten konnte. Diese Thatsache erlangt dadurch noch größeres Interesse, daß Burmeister bei Branchiopus denselben Augen-}
ban nachgewiesen hat, wo zwischen der glatten Hornhaut und den Krystallinsen noch eine feingegitterte membranöse Hant sich
vorand, die unserer gegitterten Lamelle entsprechen würde.

Der Rumpf zwischen dem Schwanz- und Kopfschild besteht
aus Gliedern, die in keinem Theile mit einander verwachsen sind,
sondern im ursprünglichen Zustande durch Membranen in der
Mitte zusammen gehalten wurden. Zwei Längsfurchen, welche
den Rumpf zu einem Trilobus machen, theilen die einzelnen Glied-
der in drei Theile: den mittlern Spindeltheil und die äußern Sei-
tentheile. Solche Glieder waren durch ihre freie Verbin-
dung geeignet, zu Bewegungswerkzeugen zu dienen, deshalb
nennt man auch die Seitentheile Flossen, die an ihrem Ende
ein plattens Ruder ausgebreitet sind. Die Flossen sind in-
nen hohl, bestehen daher auch aus 2 Lamellen, von denen die
untere in der Spindelgegend wahrscheinlich membranös wird.
Mau findet die Flossen gewöhnlich in einer übereinandergescho-
benen Lage, und dadurch kann man sie leicht von den ähnli-
chen Streifen des Schwanzschildes unterscheiden, die an ihren Enden
innig mit einander verwachsen sind. Besonders muß
man sich hüten, den vorderen aufgeworfenen Rand des Schwanz-
es, so wie den hintern des Kopfes, mit zu den Gliedern zu
zählen. Dieses kann leicht geschehen, da diese Theile, so weit
die Flossen sich anlegen, Gestalt und Ansehn der Flossen zeigen.
Bewahren wir uns vor solchen Irrungen, so finden sich die Zahn-
lenverhältnisse der Glieder bei den Trilobiten auf das Bestimmt-
teste ausgesprochen.

Ueber weitere Organe der Bruchseite des Thieres sind nur
Vermuthungen vorhanden. Mit Bestimmtheit sind weder Ten-
takeln, noch Füße, noch Fresswerkzeuge nachgewiesen. Wir
dürfen dieselben auf der Unterseite nur da vermuten, wo die
untern Schildlamellen membranös geworden sind. Daher müssen
alle systematischen Stellungen dieser Thiere nur Versuche blei-
ben. Jedoch sind die von verschiedenen Forschern schon längst
nachgewiesenen Analogien mit dem indischen Limulus, mit der
auf tiefen Meeresgründe lebenden Serolus des südl. atlantischen
Oceans und mit den Phyllopoden unserer Sumpfe unverkennbar.
Dreizehngliedrige.

Schlotheim’s Tr. tentaculatus, Nachträge I. Tab. 29. Fig. 9. auf einem Geschiebe von Oberviederstedt (im Mannsfeldschen), den Märkischen Geschieben gleich, ist ein Kopfschild des Tr. Blumenbachii, neben welchem mehrere Individuen von Tentaculites scalaris Schl. liegen. Schlotheim war bekanntlich der Meinung, dass diese sonderbaren Tentakuliten auf den Tuberkeln der Stirnerhöhung des Trilobiten gesessen hätten, da es zufällig 6 Stück sind, die in der Nähe der 6 Tuberkeln liegen; eine Meinung, die jetzt kein Forscher mehr mit ihm theilen wird.

Vielleicht machen Trimerus delphinocephalus Green, Calymene polytama Dalm., Calymene bellatula Dalm. und Asaphus Fischeri Eichw. eine zweite Abtheilung unter den 13-gliedrigen, ihre Glieder sind glatt und nicht gefurcht. Sie sind mir nur durch die Zeichnungen bekannt.

Zwölfgliedrige.

Trilobites Hoffii Schl. mit tief gefurchten Flossen. Stirn sehr breit, Wangen schmal. Daher liegen die Augen sehr seitlich

Wahlenbergs *Ent. scaraboidis* tab. 1. fig. 2. soll ebenfalls zwölfgliedrig sein, zeigt aber mit *Hoffii* wenig gemeinsame Kennzeichen.

Elfgliedrige.

Trilobites macrophthalmus Brongu. (*Calymene*). Eifel, Dillenburg, Harz. Die sorgfältige Vergleichung vieler Exemplare
zeigte nie mehr oder weniger als 11 Glieder, was auch alle neun Schriftsteller bestätigen.

Green's Modelle von Calymene bufo und microps zeigen deutlich facettierte Hornhaut und 11 Glieder; anchiops und diops wahrscheinlich auch hierher gehörig.

Calymene variolaris Brougn. tab. 1. fig. 3. A. zeigt 11 Glieder nebst facettierten Hornhaut.

Asaphus Wetherilli Green, von Rochester in New-York, elf Glieder, aber die Augen verletzt.

Calymene sclerops Dalm. tab. 2. fig. 1. deutlich 11 Glieder und Augen mit facettierten Hornhaut.

Mehrere Gyps-Modelle bestätigen das Gesetz, darunter das eines Trilobiten aus dem Thonschiefer des Westerwaldes vom Kaluercopf in der Dietzhalze, ohnweit Dillenburg, dessen Stirnerhöhung gelöst ist.

Asaphus macronatus, selenurus Eat. mit doppelter Schwanzspitze, scheinen elfgliedrig.

Calymene arachnoides des Honinghaus von Gerolstein mit großen facettierten zusammengesetzten Augen, ist aus 2 Stücken ideal zusammengesetzt, daraus wird denn auch die Zahl von 13 Gliedern in der Figur erklärlich; hätte man ihr 11 Glieder gezeichnet, so würde das der Wahrheit bestimmt näher gekommen sein.

Zehngliedrige.

Eichwald’s Cryptonymus Wahlenbergii, Rudolphii, Parkinsonii und Rosenbergeii bezeichnen denselben Trilobiten. Trilobites Schroteri Schl. ist das Schwanzschild desselben.

Calymene concinna Dalm. schließt sich zwar durch ihre 10 Glieder hier an, aber die gefurchten Füsse, das gerippte Schwanzschild, die hervortretende Stirnerhöhung, nähern sie mehr der Blumenbachii. Augen stehen sehr hervor mit glatter Hornhaut, würde sie weggesehert, so müßten bei wohl erhaltenen Exemplaren die Spuren der früheren Krystallinsen chagrinarntig hervortreten. Ob Asaphus Dalmanii Goldf. sich von ihr unterscheidet?

Zenker’s Oturion diffraction soll auch 10 Glieder haben, doch nach Sternberg sehr willkürlich aus Bruchstücken zusammengesetzt sein.

Asaphus centrorsus Dalm. mit gehörnem Kopfschild ist der einzige, von dem bestimmt 9 Glieder angegeben werden, dem Habitus nach ist er übrigens dem Esmarkii sehr verwandt.

Achtgliedrige.

Dalman’s Asaphus angustifrons und frontalis unterscheiden sich wohl nur individuell, und nicht spezifisch. Eichwald’s Cryptonymus Schlotheimii, Weissii, Panderi und Lichtensteinii unter sich gleich, von cornigerus nicht verschieden.

In Nordamerika ist Isotelus gigas Dek. gleich I. megalops
Green, die Ersatzform, an welchen sich *I. stegops* Gr., *planus* Gr., *Tril. grandis* Boeck., *Asaphus extenuatus* etc. sehr eng anschlies-

sen. Der Unterkiefer der vereinigten Wangen ist sehr breit, nach hinten ausgebuchtet, in dieser Bucht liegt mehr nach oben jener vielleicht mit den übrigen Kopfschuppen nicht zusammen-

hängendes Apparat, ebenfalls aus Lamellen bestehend, der hinten wieder ausgebuchtet ist, wo Buckland den Mund ver-

mathet.

Alle bilden eine sehr natürliche Gruppe, ihre Stirnerhöhung ist glatt, lässt sich von den Wangen gänzlich ablesen. Die tief-

gefurchten Glieder sammt dem glatten Schwanzende bedeutend hohl.

Die Streifung auf der Unterseite der Unterschildlamellen sehr deutlich.

Asaphus laeviceps, palpebrusus und *armadilla* Dalm. tab. 4. stehen durch ihre Gliederzahl in dieser Abtheilung, die Glieder selbts sind aber, wie bei *Esmarkii*, glänzend glatt und die Stirn-

erhöhung flach. Sie geboren ebenfalls, unter sich von einander nur wenig verschieden, dem Kambrischen Systeme an. WENN bei *Armadilla* mit breitem Rücken die Längsfurchen nicht sehr ausgezeichnet sind (vorhanden sind sie aber gewifs), so ist die-

ses ein schwacher Grund, den alten eingebürgerten Namen Tril-

obiten durch einen viel unzweckmäfsigern Palaeaden verdrän-

gen zu dürfen.

Siebengliedrige.

Asaphus Buchii Brongn. tab. 2. fig. 2. a. zeigt richtig 7 Glieder, während man fig. 2. c. deren 8 zählt. Das Königt. Kabinet hat ein deutliches Exemplar unbekannten Fundortes ebenfalls mit 7 Gliedern. Nach Boeck soll es *Trilobites dilatatus* Brünn. sein, den Dalman tab. 3. fig. 1. anch richtig mit 7 Gliedern gezeichnet hat. Das breite Schwanzschild zeigt we-

 nig markirte, wie Radien von einem vordern Punkte nach dem Rande strahlende, Streifen; die Stirnerhöhung fein und schwach gelobt, aber keine facetfirse Hornhaut. Silurische Formation?

Ogygia Guettardi Brongn. hat wahrscheinlich auch nur 7 Glieder, denn das erste Glied dürfte nichts anderes als der über-

Ogygin Desmarestii Brongn., sehr unbestimmtes Bruchstück, ob hierher gehörig?

Die 7-gliedrigen Trilobiten bilden durch die flache feingelobte Stirnerhöhung, durch das radialgestreifte Schwanzschild eine sehr natürliche Gruppe.

Sechsgliedrige.

Viergliedrige.

Triarthrus Beckii Gr. cast. 34 von Cahoosfalls im Staate von New-York und an vielen andern Orten Nordamerikas. Es sollen mehrere Species daselbst vorkommen, die nach Harlan sich alle durch ihre 4 Glieder auszeichnen.

Gliederlose.

Wahrscheinlich ist es, daß den Agnosten Brongn. (Battus Dalm.) die Glieder gänzlich fehlen, wenigstens hat man sich von dem Dasein derselben noch nicht bestimmt überzeugen können. Auch kann man ihre Augen nicht nachweisen.

Vierzehngliedrige.

für Augen an, und machte deshalb sein neues Geschlecht Conophthalmus daraus. Mit dem wahren Tr. Sulzeri kommen zugleich Kopfschilder vor, wo unzweifelbare Gesichtslinien seitlich Wangenschilder abtrennen, diese Species darf mit jenen nicht verwechselt werden. Dass die Flossen mit den Ringen der Spindel in der Gegend der Furchen wirklich articulirten, ist vielleicht nur Täuschung, die durch die Steinkerne veranlasst wird. (Wenigstens ist bei allen übrigen erhaltenen Trilobiten noch nie eine solche Articulation bemerkt worden.)

Calymene Tristani Brougn. schliesst sich durch ihren Habitus und durch ihre gelobte Stirnerhöhung eng an. Ihre Gliederzahl wird gewöhnlich auch als 14 angegeben.

Entomolithes gibbosus Wahl. ist wahrscheinlich vierzehngliedrig, obgleich Wahlenberg 15 angiebt. Asaphus tetragonocephalus Gr. ist ihm sehr verwandt, und zeigt im Modelle, wiewohl nicht ganz evident, 14 Glieder (Green gibt 12 an). Beide kommen im bituminösen Alaunschiefer des Uebergausgebirges vor, ersterer in Norwegen, letzterer in New-York. Sie bilden unter den vierzehngliedrigen eine besondere Gruppe. (Schliesen sich vielleicht noch mehr an die folgenden an.)

Green's Dipleura mit 14 tief gespaltenen Gliedern, wie sie Green selbst angibt, hat wenig mit den vorhergehenden gemein. Das Geschlecht ist durch die nur schwach angedeuteten Längsfurchen des Rumpfes merkwürdig.

Unbestimmtegliedrige.

Entomostr. paradoxissimus Wahl. tab. 1. fig. 1. ist nach einem wohl erhaltenen Exemplare aus dem Bjelkianischen Museum gezeichnet. Brongniart tab. 4. fig. 1. copiirte als Paradoxides Tessini die Wahlenbergische Figur. Nach diesen Zeichnungen (denn leider gibt Wahlenberg die Zahl nicht genau an) hätte die Rachis 21 Glieder, und das kurze Schwanzschild mit seinem Flossenfortsätze wäre das 22ste. Dalman's

Parad. latus Zenk. nur unvollkommen, in der Zeichnung 19 Glieder angegeben, Zenker vermutet sogar 22.

Tritob. gracilis Boeck, 20 Glieder?

Entomolithes spinulosus Wahl. tab. 1. fig. 3. Spindel 17 Glieder und 1 Schwanzschild, aber nur 17 Flossen, demnach das Schwanzschild keinen Flossenanhang. Dalman, tab. 6. fig. 4., bildet dieselbe Gliederzahl ab, analog dem paradoxissimus, was zu glauben man am gernigtesten sein möchte. Auffallend geung spricht er aber im Texte p. 56: segmentorum numerus videtur

Trilobites problematicus Schl. II. tab. 22. fig. 8. aus dem Zechein von Glückshülln, ist ein in seiner Sammlung nicht mehr vorgefundenes Exemplar. Die Zeichnung ist jedoch einem Trilobiten nicht eben ähnlich.

Trilobites bituminosus Schl. II. tab. 22. fig. 9. aus dem bituminösen Kupferschiefer ist bestimmt kein Trilobit, sondern fällt, wenn nicht etwa den Fischzähnen, mehr der Pflanzenwelt anheim; wenigstens scheinen die dicken, oblongen, auf beiden Seiten ver- tieften Täfelchen nach Art der Schuppen der Tannenzapfen aneinander gereiht. Schlotheim's Figur ist sehr idealisiert, die zwei Furchen haben ihn auf den Gedanken an einen Trilobiten gebracht, die Schuppen gehen jedoch tief hinein, und sind, wie bei einer Frucht, um eine innere Axe gelagert. Dafs Coniferenzapfen im Kupferschiefer vorkommen, darf uns nun so weniger Wunder nehmen, da sämtliche sogenannte Fucoiden desselben Schiefers, wie die Frankenberger Kornähren, bestimmt nicht Fucoiden, sondern Coniferen angehören möchten.

Wäre es zur Zeit schon Bedürfnis geworden, die noch leicht übersehbare Familic der Trilobiten in Geschlechter zu theilen, so dürfte eine gute Systematik in keiner Weise die Zahlenver-

2) Unsere Autorität, die wir dem Namen hinzufügen, wie z. B. Schl., Dalim. etc., bezieht sich nie auf den generischen, sondern nur auf

den spezifischen Namen, und anders sollte es billig von keinem Schriftsteller genommen werden. Schlotheim nannte unsern Asaphus cornigerus freilich Trilobites cornigerus; daß nun Brongniart aus dieser Species einen Asaphus, Dekay einen Isotelus machte, muß jeder Petrefaktologe wissen, und braucht ihm nicht erst durch Autorität ange deutet zu werden, die Species heisst darum immer Asaphus cornigerus Schl., Isotelus cornigerus Schl.

dessen Eifer für die Naturgeschichte wir so manche interessante Bereicherung unserer Sammlung verdanken, zwei lebende Waschbären aus Neu-Orleans für die Königl. Menagerie auf der Pfauen-Insell mitbrachte, ward ich auf eine spezifische Verschiedenheit beider Formen aufmerksam, und das Absterben eines dieser Thiere und eines andern Exemplares derselben Menagerie, machte es mir später möglich, mich durch genanere Vergleichungen von der Richtigkeit meiner früheren Mutmaßungen zu überzeugen. Nicht allein die relative Länge des Schwanzes, sondern auch dessen Behaarung und Bindenzeichnung, und die Form der Schnauze ist bei beiden Arten ganz verschieden. Bei Pr. brachyurus ist nämlich die Behaarung des Schwanzes äußerst dicht, bei Pr. lotor ungleich lockerer. Bei Pr. lotor sind die Binden vollständig, umgeben den Schwanz auf der Ober- und Unterseite, bei Pr. brachyurus finden sich nur halbe Binden, d. h. sie umgeben nur die Oberseite des Schwanzes, sind auf dessen Unterseite unterbrochen. Da überdies die Zahl der Binden bei beiden Arten dieselbe, nämlich 6, ist, so folgt daraus ferner, dafs die Binden auf dem kurzen Schwanz des Pr. brachyurus viel dichter zusammen stehen. Hiermit fällt zugleich die Besorgnis weg, dafs der Schwanz der kurzschwänzigen Waschbären nur verstümmelt sei. Endlich ist auch die Schnauze derselben ungleich dicker und stumpfer. Sie stammen aus der Menagerie eines Hrn. Boisset. und haben auf der Etiquette, wahrscheinlich nach Aussage des früheren Besitzers, Westindien als Vaterland angegeben. Ist dieser Angabe zu trauen, so hätten wir in die Art den von Hans Sloane erwähnten Waschbären der Antillen *)

In tieferes Dunkel gehüllt ist das Vaterland der andern unbeschriebenen Art, von welcher das hiesige zoologische Museum.

*) Hans Sloane (Nat. Hist. of Jamaica p. 329.) sagt: „The Raccoons are commonly here in the Mountains and live in hollow fiddlewood trees, from whence they make paths to go to seek sugar canes, which is their chief, if not only sustenance.“ — Hierbei ist aber nicht aufser Acht zu lassen, dafs Sloane Ray's Synopsis citirt dessen Beschreibung theils aus eigener Anschauung, theils aus Markgraf's Beschreibung des Coati zusammengewebt ist. Das Vorhandensein einer Procyon-Art in Westindien ist nach dieser Quelle immer nur problematisch.

1. *Procyon Lotor.*

P. flavescenti-griscus, nigro variegatus, pedibus flavescenti-griscis, cauda mediocris, laxa, fulvescenti, apice annulisque sex integris fusco-nigris. *Americia septentrionalis.*

Körperfarbe gelblichgrau mit schwarzbrauner Beimischung. Die Borstenhaare an der Basis braun, in der Mitte graugelb, von der Hälfte ihrer Länge bis zur Spitze schwarz, wodurch die schwarzbraune Farbe auf dem Rücken und den Seiten des
Rumpes die vorherrschende wird. Nur in der Gegend des Vor-
derarmes sind die Borstenhaare einfarbig gelblich weifsgrau, so
auch ein Busch in der Ohrgegend, der hinter dem Ohre von
einem braunschwarzen Flecke begrämt wird. Der Wollpelz ist
graubraun, der von der Stirn zur Nasenspitze verlaufende Streif
und der das Auge umgebende Fleck sind schwarzbraun, die
zur Schläfe verlaufende Binde über den Augen, die Seiten der
Schauze und das Kinn sind nicht reinweis, sondern mehr
gelblich weifs. Vorderbeine und Vorder- und Hinterfüße sind
bräunlichgelbgrau, die langen Haare des Unterschenkels und der
Unterarme über der Fußwurzel tief dunkelbraun. Der Schwanz
ist bis zur Spitze fast gleichförmig dick (etwa 3" im Durchmes-
ser), locker behaart, grangelb, endigt mit schwarzbrauner Spitze
und ist von 6 schwarzbraunen Querbinden vollständig umgeben,
von denen nur die der Basis zunächst stehende auf der Unter-
seite unterbrochen ist. Die Schauze ist ziemlich spitz, die ver-
kehrt eiförmigen Ohren haben fast die halbe Kopfeslänge.

Länge von Kopf und Rumpf beim Männchen 2 F. 3½"
Länge des Schwanzes 10"
Länge des Kopfes von der Schnauzenspitze bis hin-
ter das Ohr 5"
Länge der Schauze vom vorderen Augenwinkel
zur Nasenspitze 2"
Breite der Schnauze vor den Augenhöhlen 1" 6½"
Breite der Schnauze am Hundsahne 1" 1½"
Länge der Ohren 2" 1½"
Weibchen. Länge von Kopf und Rumpf 1 F. 8½"
Länge des Schwanzes 9½"

2. Procyon Hernandesii Wagl.

Albido-grises, fusco variegatus, pedibus fuscis, cauda me-
diocri, fulvescente, apice annulisque 6, infra subinterruptis (?)
fusco-nigris. Patria: Mexico.

Procyon Hernandesii Wagl. Isis 1831. p. 513. Schreber's
Sägethiere. Taf. 143. A. Suppl.

Die Körperfärbe ist weißlichgrau mit Schwarzbraun melirt,
fällt nach der Mitte des Rückens mehr ins Schwarzbraune, an
den Seiten mehr ins Weiße, denn das lange Borstenhaar des
Rückens ist an der Basis braun, in der Mitte weifs, und von der
Hälfte seiner Länge bis zur Spitze schwarz, an den Seiten des Rumpfes, besonders am Oberarm und Oberschenkel ist es seiner ganzen Länge nach, bis zur Spitze hin, schmutzigweiss. Der Wollepelz ist graubräun. Die Spitzen und die dicht behaarte Innenseite der Ohren, die Seiten der Schnauze, das Kinn und die Binde über den Augen sind nicht gelblichweiss, sondern schneeweiss; der Streif auf der Schnauzenmitte und der Fleck um das Auge und auf der Wange fällt mehr ins Kastanienbraune. Am meisten unterschiedend ist die tief braune Färbung der Füße. Auch würde der kürzer behaarte, nach der Spitze zu merklich dünner werdende Schwanz, welcher mit einem schwarzen Haarbüscheel endigt, die Art gut von Pr. lotor unterscheiden, wenn sich dies als constante Eigenthümlichkeit aller Individuen ausweisen sollte. Die Abbildung in Schreber’s Säugethieren stellt indessen den Schwanz so buschig dar, wie beim Pr. lotor. Die fast schwarzen Ringel sind an unserm Exemplar auf der Unterseite des graugelblichen Schwanzes unterbrochen, und wo sie fehlen, wie bei P. brachyurus, durch eine etwas dunklere Färbung angedeutet. Die Schnauzenbildung wie bei Lotor, die Ohren mehr länglich, etwas schmäler, so lang, als die Entfernung der Schnauzenspitze vom vorderen Augenwinkel. Die Art bedarf einer genaueren Prüfung nach mehreren Exemplaren. Das einzige Exemplar unseres Museums empfangen wir aus München. Das Gebiss gibt es als ein junges Thier zu erkennen, welches noch im Zahnwechsel begriffen war. Die Eckzähne sind noch nicht gewechselt, die Vorderzähne sind es zum grossen Theil, und diesem Umstande mag es zuzuschreiben sein, dass sich die creaulirte Schneide derselben noch erhalten hat, welche dem verstorbenen Wagler so auffiel, dass er hierdurch eine eigene Gruppe der Gattung Procyon angedeutet glaubte. Schon die geringe Grösse der erst eben durchbrechenden äussern Schneidezähne des Unterkiefers, die Anwesenheit eines Milchvorderzahnes und die krüppelige Gestalt der Eckzähne, hätte ihn eines besseren hierüber belehren können.

Länge des Körpers bis zur Schwanzspitze (beim nicht ausgewachsenen Thiere) 17", des Schwanzes 7", des Ohres 1" 6". Ebensoviel beträgt die Entfernung vom vorderen Augenwinkel zur Schnauzenspitze.
3. *Procyon brachyurus* n. sp.

Albido-grisæus, nigro-fusco variegatus, pedibus griseo-albis, cauda brevissima, densissime pilosa, fulvescente, annulis 6 confertis, nigro-fuscis, inferne interruptis, apice extus fulvescenti, medio nigra. Patria: Antilacæ?

Entfernung vom Auge zur Schnauzenspitze 1" 10"

Breite der Schnauze am Hundsahme 1" 2"

Breite der Schnauze vor den Augenhöhlen 1" 10"

Länge der Ohren 2" 1"
Länge des Kopfes 4\(\frac{1}{2}\)". Kopf und Rumpf 1 F. 9", Länge des Schwanzes 5".

4. *Procyon obscuros* n. sp.

Supra e badio nigricans subunicolor, nitore pilorum eximio, infra cinereo-fuscus, pedibus fuscescenti-griseis, cauda medio-nigri, densa, supra unicolor, subtus cinereo-fusca annulisque nigri sursum evanescentibus semicincta. Patria ignota.

Länge von Kopf und Rumpf 2 F. 4\(\frac{1}{2}\)"

Länge des Kopfes bis hinter die Ohren 4\(\frac{3}{4}\)"

Länge der Ohren 1" 8"

Länge der Schnauze vom vorderen Augenwinkel gemessen 1" 8"
Länge des Schwanzes 9½"
Umfang des Schwanzes in seiner Mitte 7"
Breite der Schnauze vor den Augenhöhlen 1" 10"'
Breite der Schnauze am Hundezaune 1"
Länge der Hinterfüße zum Hacken 3½".

5. Procyon cancrivorus III.

Supra cinereo-fulvus, fusco irroratus, subtus albicans, capite nuchaque canescentibus, macula ocelum eingenie fusco-nigra, parva, in genum baud porrecta, cum opposita supra naribus in rostro medio confluente, fascia superciliari alba fuscescenti-cinereis, antibrachis cruribusque fuscis, pedibus digitisque subrasis (parce pilosis) e fusc-cinereis, cauda gracili, griseo nigroque annulata. America meridionalis.

Fossile Quadrumanen.

bemerkt, und was diesen zu der Ansicht bewogen hatte, daß der fossile Affe den Gibbons angehöre, obgleich dieser Höcker weit weniger ausgebildet ist als bei den Langarmen. Der hinterste, etwas schmalere, und merklich längere Backenzahn hat außer den vier Höckern in zwei sehr schief gestellten Paaren, deutlich einen ziemlich kräftigen, fast in zwei oder drei Höckern getheilten (hinteren) Anhang, etwa wie bei den Makaken, nur minder deutlich als bei diesen. Der Unterkiefer gehörte also offenbar einem Affen des alten Continents der obersten Genera an, wofür sowohl die gleiche Breite der Vorderzähne, ihre fast vertikale Stellung in einer fast geraden Querlinie, und die kurzen, vertikalen Eckzähne sprechen, die sich kreuzten, ohne einander zu überragen, als auch, daß der erste falsche Backenzahn keinesweges durch den Druck des oberen Eckzahnes nach hinten gedrängt, sondern ganz vertikal ist, daß die Backenzähne eine Krone mit stumpfen in schiefen Paaren gestellten Höckern haben. Die Deutung des Hrn. Lartet kommt also der Wahrheit sehr nahe, besonders durch den für die Gibbons charakteristischen fünften Höcker, da jedoch dieser in dem fossilen minder ausgeprägt ist, und der hinterste Backenzahn desselben eine verschiedene Proportion zeigt, wie sie sich bei denen der *Semnopithecus* und Magot's findet, so scheint es, als ob der fossile Affe eine besondere kleine Abtheilung bilden müsse, es sei denn, daß er hierin mit der Gattung *Colobus*, welche die indischen Semnopithecen in Afrika ersetzt, übereinstimmt

Der einzelne Backzahn, welchen Hr. Lartet für den eines Affen aus der Familie der Sapaju hielt, hat allerdings in der Totalform und den Proportionen einige Ähnlichkeit, scheint aber eher ein hinterer Höckerzahn eines bärenartigen Raubthieres zu sein, und der hintere obere Backenzahn der Gattung *Arctitis* zeigte die meiste Ähnlichkeit, vier sehr niedere Höcker, aber den (äußeren) Ansatz viel mehr entwickelt. Dafs er dem

großen jüngst bei Sansan von Lartet entdeckten Raubthiere angehört habe, läßt seine große Kleinheit nicht zu. Auch das Os cuboideum wird von den Berichterstattern einem Raubthiere zugeschrieben, desgleichen die zweite Phalanx. Der zuletzt erwähnte Unterkiefer soll keineswegs einem Maki angehören, wie Hr. Lartet glaubte, sondern entweder einem insectivoren Raubthiere oder einem schweineartigen Pachydermen*).

*) Da dieses fossile Bruchstück fast nur aus der Symphyse bestand und nur die Vorderzähne erhalten, Eckzähne und falsche Backenzähne aber bis zur Wurzel abgebrochen und ausgefallen waren, so erklärt sich hieraus diese seltsame Alternative. Die gegebene Beschreibung spricht mehr für die letztere Deutung, zu welcher sich auch die Berichterstatter mehr hinneigen.
Ehrenberg’s neuere Entdeckungen über die Bacillarien.

Elektrische Erscheinungen am Zitterrochen.

Elektrische Funken erhielt Herr Santi Linari, Professor zu Siena, mittelst des Zitterrochens. Auch hat er mit Hülfe

Notiz über das Gebiss des Moco (Cavia rupestris Neuw. Kerodon Fr. Cuv.)

vom Herausgeber.

*) S. dies. Archiv Jahrg. t. 2. p. 213.
Familien unter den Kamm-Muscheln.

Von

A. Roemer, Amts-Assessor.

Die Arten der schönen Gattung *Pecten* haben sich in neuester Zeit und namentlich durch Anfinden vieler fossiler Formen so gemehrt, daß schon zur Erleichterung der Bestimmung eine Zusammenstellung derselben in natürliche Familien gewiß sehr wünschenswert erseheinen dürfte.

In den bisherigen Naturgeschichten sind die einzelnen Species stets nur in zwei Abtheilungen gebracht, je nachdem die Ohren gleich oder ungleich sind; es finden sich indessen so allmäßliche Übergänge von einem Extreme zum andern, daß häufig nahe verwandte Arten dort getrennt werden; einem gleichen Uebelstände begegnen wir bei fast allen übrigen Merkmalen, wenn wir sie einzeln zur Sonderung benutzen wollen, und nur zwischen den Formen, deren rechte Schale ganz flach oder concav, und denen, wo sie gewölbt ist, sind Uebergangsformen mir nicht bekannt.

Durchaus erforderlich scheint es daher, den ganzen Habitus der einzelnen Species ins Auge zu fassen und den Inbegriff aller einzelnen Verschiedenheiten uns zu verdeutlichen. Manche, bisher bei Beschreibung der Arten, benutzte Merkmale müssen hiebei durchaus bei Seite gesetzt werden, da sie bei den Formen derselben Gattung vielen Abänderungen unterworfen sind; ich rechne hieher die Farbe, Anzahl der ausstrahlenden Falten und Streifen, so wie meist auch die Stärke der concentrischen Anwachsmustreifen und Rundung der Schärfe der Rippen.

Sichere Kennzeichen scheinen die Wölbung der Schalen, Richtung der Schloßlinien, Größe des Schloßkantenwinkels,
größte Breite über, unter oder in der Mitte der Länge, gleiche oder ungleiche Größe der Falten, Dichotomie und Nebeneinanderlegen der Rippen und Form der Ohren zu seyn.

Es hat mir bei meinen Untersuchungen über diese Gattung leider kaum ein Dreitheil der bekannten Arten vorgelegen, ich hoffe aber dennoch, daß in die folgenden Familien auch die übrigen Species sich einordnen lassen werden.

I. Pleuronectides.

Die Schalen sind kreisrund, beide flach gewölbt, außen glatt und der Länge nach weder gefaltet noch gerippt, nur selten fein gestreift; auch die Anwachungsstreifen sind meist sehr fein, selten als zarte blättrige Linien bemerkbar. Die rechte Schale ist oft heller gefärbt. Der Schloßkantenwinkel ist größer als ein rechter; die Ohren sind glatt, meist klein, die hinteren und das vordere der linken Schale stumpfwinkelig; der Byssusausschnitt des vorderen rechten Ohres fehlt ganz oder ist doch sehr klein; Zähne scheinen ihn in ihm auf der vorderen Schloßkante ganz zu fehlen. Die Schloßlinie der linken Schale ist gerade und horizontal, die der linken Schale ragt beiderseits über jener etwas hervor. Im Inneren der Schalen finden sich häufig ausstrahlende, scharf hervorstehende, leistenähnliche Rippen.

II. Arcuatia.

Die Schalen sind kreisrund oder (bei jüngeren Arten) oval; beide flach bis stark gewölbt, innen glatt, außen aber mit mehr oder minder starken Streifen bedeckt, welche nur zum Theil an den Buckeln entspringen, gegen den Umfang hin an Zahl sehr zunehmen, dichotome Zwischenräume bilden und so gebogen sind, daß sie den Schloßkanten nicht parallel laufen, wie dies bei allen übrigen Arten der Fall ist, sondern auf alle Kanten in fast rechtem Winkel aufstößen. Die Ohren sind häufig nur durch
eine sanfte Niederbiegung vom übrigen Theile der Schale getrennt, immer ungleich; die hinteren stumpfwinkelig; die vorderen viel größer und das der rechten Schale meist mit deutlichem Byssusauschnitt versehen, auf dessen unterer Kante kleine Zähne zu sehen sind. Der Schloßskantenwinkel ist ein rechter oder größer. Die Schloßlinien beider Schalen sind ziemlich gerade und horizontal. Anwachstreußtreifen sind meist wenig und oft nur dadurch bemerkbar, daß sie im Grunde der Streifen zarte Punkte bilden, selten schneiden sie die Zwischenräume der Streifen tief ein.

Angedeutet ist der Typus dieser Familie bereits bei einigen Arten der vorhergehenden, indem wir auf ihren Schalen büschelförmige Linien bemerken, welche die Richtung der eben beschriebenen Streifen teilen; auch bei einigen Arten der folgenden Familien hat sich das Organ, welches diese Streifen gebildet, noch zwischen den Rippen ausgesprochen.

III. Pusiones.

Die Schalen sind eirund, flach gewölbt, innen gefurcht, aussen mit geraden ausstrahlenden Rippen bedeckt, zwischen welche sich im Verlaufe oft schwächere zwischenlegen; die vordere Schloßkante ist meist sehr deutlich ausgebuchtet und bildet mit der hinteren einen stets spitzen Winkel. Die Ohren sind immer gerippt und sehr ungleich; die hinteren äusserst klein und stumpfwinkelig; die vorderen sehr groß und spitzwinkelig; das der rechten Schale ragt über dem der linken bedeutend hervor, ist mit einem weiten Byssusauschnitt versehen und stößt im rechten Winkel auf die vordere Schloßskante, auf der sich darunter mehrere spitze Zähne befinden. Die Schloßlinie ist gerade und steigt nach vorn auffallend schräg in die Höhe. Die concentrische Streifung ist meist sehr deutlich und oft werden dadurch die Rippen scharf und rauh.

Aus den älteren Schöpfungen sind mir keine Arten mit Be-

IV. *Plicati.*

Die Schalen sind ziemlich kreisrund, bisweilen breiter als lang, beide flach gewölbt, innen gefurcht, außen mit fünf bis dreizehn anstrahlenden, geraden Falten bedeckt; von diesen wechseln auf der linken Schale immer eine stärkere, und eine schwächere ab, während auf der rechten Schale immer zwei gleichstarke Falten genähert und von den benachbarten durch einen breiten Zwischenraum getrennt sind. Gegen die Basis hin werden die Falten oft schwächer oder verschwinden ganz; endlich werden sie, wie auch ihre Zwischenräume, gewöhnlich von anstrahlenden Streifen oder Furchen bedeckt; die concentrische Streifung pflegt sehr fein und regelmäßig zu sein. Die langen Schloßskanten bilden einen ziemlich rechten Winkel. Die Ohren sind gewöhnlich ziemlich groß und gleich; die hinteren sind etwas stumpf-, recht- oder selbst spitzwinkelig, die vorderen etwas größer; das rechte vordere hat einen spitzen Byssusauschnitt und zeigt darin kleine Zähne. Die Schloßlinie der linken Schale ist gerade und horizontal; die der rechten Schale steigt beiderseits etwas an.

Es gehören hieher von lebenden Arten: *P. hyalinus* Philipp.; *polymorphus* Bronn, *glaber* Chemn.; *Plica, distans, adspersus* und *sulcatus et griseus* Lam.

V. *Islandicoides.*

Der Umfang beider flach gewölbten Schalen ist ziemlich kreisrund; sie sind außen mit zahlreichen, geraden anstrahlen- den Rippen und Linien bedeckt, neben welche sich im Verlaufe feinere zwischenlegen; auch findet sich auf dem Rücken der Rippen wohl eine Furche ein, diese wird aber nicht so tief, daß sie eine wirkliche Dichotomie herbeiführte. Die vorn saft ausgebuchteten Schloßskanten bilden einen rechten Winkel; die mit anstrahlenden Rippen versehenen Ohren sind ungleich; die hinteren klein und stumpfwinkelig; das vordere rechte hat einen tiefen, spitzen Byssusauschnitt, in dem man mehrere kleine Zähne bemerkt. Die Schloßlinie ist horizontal und gerade, nur wenig steigt sie an der rechten Schale nach beiden Seiten an.

VI. Tranquebarini.

Der Umfang der Schalen nähert sich dem Kreiszylinder; beide sind ziemlich flach gewölbt, in der Mitte der Länge am breitesten und außen mit gleichstarken, zahlreichen, ausstrahlenden Rippen bedeckt, welche bisweilen wieder längsgereiht sind. Die Schloßskanten bilden einen rechten Winkel; die Ohren sind meist ungleich; die hinteren bald stumpf-, bald rechtwinkelig; das vordere rechte hat einen spitzen, tiefen Byssusausschnitt, in dem man einige kleine Zähne bemerkt. Die Schloßlinie der linken Schale ist gerade und horizontal; die der rechten Schale steigt vorn etwas an. Häufig finden sich scharfe, oft blättrige Anwachslinien, wenn auch nur in den Zwischenräumen der Rippen sichtbar.

VII. Opercularini.

Die Schalen sind kreiszylinder, meist etwas breiter als lang; bisweilen sehr ungleich gewölbt und außen mit zahlreichen, gleichstarken, ausstrahlenden, oft gestreiften Rippen versehen. Die Schloßskanten bilden einen stumpfen Winkel. Von den Ohren sind die hinteren bisweilen die größeren und stumpfwinkelig; das vordere linke ist etwas spitzwinkelig, das vordere rechte mit tiefem Byssusausschnitt und darunter mit einigen kleinen Zähnen versehen. Die linke Schloßlinie ist gerade und horizontal, die rechte steigt vorn etwas an.

Es gehören hieher: *P. acutiradiatus* v. M.; *aequivalvis* Sow; *subpunctatus* v. M.; *multicoasterus* Nils.; *striato-punctatus* v. M.; *gibbus*, *senatorius*, *turgidus*, *opercularis*, *lineatus*, *irradiatus* und *purpuratus* Lam.
VIII. Jacobaei.

Die Schalen sind ziemlich kreisrund, oft breiter als lang und ungleich; die rechte ist stark gewölbt; die linke ganz flach oder selbst concav; beide werden außen von ziemlich zahlreichen, geraden, gleichstarken, oft gefurchten Längsrippen bedeckt und zeigen innen Längsfurchen. Die Ohren sind alle gleich groß und spitz- oder rechtwinkelig; der Byssusausschnitt des rechten Vorderohres fehlt ganz oder ist doch sehr undeutlich und sind auf der vorderen Schloßkante keine Zähne zu bemerken. Der Schloßkantenwinkel ist ein spitzer, rechter oder stumpfer.

Besitzer größerer Sammlungen mögen diesen flüchtigen Versuch einer Eintheilung der Kamm-Muscheln einer Verbesserung werth halten.

Pododesmus,
ein neues Genus der Acephalen.

Von
Dr. Philippi in Kassel.

(Hiezu Tab. IX. Fig. 1.)

Aus Havanna habe ich durch meinen jüngern Bruder ein neues Genus der austerartigen Acephalen erhalten, welches dort nicht eben selten zu sein scheint, aber wahrscheinlich bisher mit Austern verwechselt und deshalb nicht erkannt worden ist. Es steht in der Mitte zwischen Ostrea und Anomia, und seine wesentlichsten Charaktere sind folgende:

Testa sublamellosa, adhaerens, inaequivalvis, irregularis, apicibus inaequalibus (apice valvulae inferioris spirali). Cardo edentulus; ligamentum internum, in valvula inferiore lamellae porrectae cum margine vix cohaerenti affixum, in valvula superiori fossulae transversae, margini propinquae. Impressio muscularis unica, ovata.

zusammen. Ganz ebenso ist das Schlofs der untern durchbohrten Schale von Anomia beschaffen; wo jedoch diese Lamelle mehr horizontal ausgestreckt ist. Auch zeigt bei Pododesmus die Lamelle auf ihrer innern Seite eine tiefe nach oben schwächer werdende Furche, die aber vielleicht nicht zu den generischen Kennzeichen gehört.

Die obere Schale ist so genau wie bei Anomia gebildet, dass ich kein Kennzeichen anzugeben weiß, wodurch sich die Ober schalen dieser beiden Gattungen von einander unterscheiden.

Eine matte ovale Stelle, die vom Ligament bis zur Hälfte der Schalenlänge reicht und ungefähr den vierten Theil der Breite der Schale einnimmt, halte ich für den Manteleindruck, für den Muskeleindruck eine in derselben befundliche, den dritten Theil so große, braune Stelle, die sich auf der untern Schale nur durch ihren Glanz auszeichnet, auf der untern dagegen seitlich mit scharfen erhabenen Rändern eingefasst ist, und auch diesen parallel ein paar erhabene Linien zeigt.

Der Gattungsname, von πορφυρίως, der Fuß, Stiel, und αυγάμιον, das Band, gebildet, bezieht sich auf das gleichsam gestielte Ligament; die Art nenne ich P. decipiens, füge aber keine Diagnose bei, denn diese soll ja nur die Kennzeichen angeben, wodurch sich eine Art von der andern unterscheidet, und kann folglich nicht wohl aufgenommen werden, so lange nur eine Art existirt.
Erklärung der Figuren.
Fig. 1. a. ist die Ansicht der oberen Schale von außen; Fig. 1. b. dieselbe von innen. Fig. 1. c. ist die untere Schale von innen geschliffen, und Fig. 1. d. zeigt den spiralformig gewundenen Wirbel der unteren Schale.

Beweis,
dafs die Nulliporen Pflanzen sind.
Von
Dr. Philippi in Kassel.
Hierzu Taf. IX. Fig. 2—6.

Die Nulliporen zerfallen in zwei äusserlich sehr verschieden gestaltete Gruppen, die man allenfalls Genera nennen kann, nämlich:

I. Lithothamnium mihi; stirps calcarea rigida, e ramis cylindricis vel compressiusculis dichotome ramosis constans.

II. Lithophyllum mihi; stirps calcarea rigida, ex expansionibus foliaceis constans.

Von Lithothamnium habe ich folgende Arten untersucht, sämmtlich aus dem Sicilischen Meere:
1) Lithothamnium byssoides.
L. glomeratum, pulvinatum, ramosissimum; ramulis brevissimis cylindricis, subverrucosis.
Nullipora byssoides A. Lamk. Hist. nat. II. p. 203. „Fasciculus globosus, ramulis minus compressis”.
Millepora polymorpha globosa Esper. I. t. 13. bene.

2) Lithothamnium gracile n. sp.
L. album, ramulis divergentibus, linearibus, subfiliformibus strictis, compressis.
Von diesen in seiner Gattung zierlichen Gewächs habe ich wegen seiner Zerbrechlichkeit nur Bruchstücke heimgebracht, die einen 1 — 2" hohen Busch gebildet haben mögen; der Durchmesser der Zweige beträgt 3/4"; die Länge der Endzweigelchen bis 4".

3) Lithothamnium rubrum n. sp.
L. roseum, ramis gracilibus, filiformibus, teretibus, subflexuosis.
Diese Art bildet ungefähr 1" hohe Büsche; die Dicke der Zweige beträgt höchstens 1/4", die Länge der Endzweigelchen 1 — 2".

4) Lithothamnium crassum n. sp.?
L. album, fasciculare, ramis brevissimis, crassis, rotundatis, nodiformibus.
Nullipora racemosa Goldf. Petref.?
Diese Art bildet beinahe kugelige Massen, besitzt 1 1/2 — 2" dicke Zweige, deren Länge zwischen den Verästelungen meist geringer ist, als die Dicke.

5) Lithothamnium ramulosum n. sp.
L. album, fasciculato-pulvinatum, laxum; ramulis teretisculis, tenuibus, gracilibus, flexosis, apice sublobatis.
Das größte Büschchen ist 1 1/4" lang, 1" breit, 1/2" hoch. Die krummen, gewundenen Aeste sind 1/3 — 1/4" dick.
Von Lithophyllum besitze ich folgende Arten, ebenfalls aus dem Sicilischen Meere:

1) Lithophyllum incrustans milii.
L. crusta crassa, rufo-albida corpora aliena incrustans, margine integro, vix lobato.
Ellis Corallin. t. 27. f. 2. d. D. p. 83 der deutschen Uebers.
2) Lithophyllum expansum mihi.

L. supra pallidum, subtus discolor, album; lamellis maximis, expansis, horizontalibus, subimbricatis, orbicularibus; marginis lobis obtusissimis integris.

Mein größtes Exemplar ist 4½” lang und 3” breit.

3) Lithophyllum decussatum.

L. lamellis crassis, suborbicularibus, marginie integerrimis, decussatis et varie congestis.

Millepora decussata Soland. et Ellis t. 23. f. 9. — Esper. suppl. t. 25. f. 4.

4) Lithophyllum lichenoides n. sp.?

L. lamellis tenuibus, conflertissimis, varie congestis, subsemicircularibus; marginie undato, incliso-lobato.

Diese Art bildet zusammenhängende, mehrere Zoll dicke Massen, welche oft mehr als Fußlänge und verbältissmäßige Breite haben.

So groß auch der Unterschied in der äußern Gestalt zwischen Lithothamnium und Lithophyllum ist, so ist doch ihre Struktur genau dieselbe. Eine Epidermis, gewöhnlich aus sechseckigen, ziemlich regelmäßigen Zellen bestehend, umschließt eine markige Masse, die aus parallelen, gegliederten Röhren besteht. Die Glieder derselben stehen bei allen Arten genau in derselben Höhe, und lösen sich oft leichter in der Quere des Gewächses, als von einander, wie z. B. Fig. 4. d. zeigt. Deshalb erscheint das Gewächs gegliedert, wie der Durchschnitt von Lithophyllum decussatum (Fig. 4. a.) und ein Stückchen von Lithothamnium rubrum (Fig. 5. a.) bei schwacher Vergrößerung sehen lassen. Das Verhältnifs zwischen Länge und Breite der Glieder der Röhren ist bei den verschiedenen Arten auch verschieden (s. Fig. 4. d. u. Fig. 5. b.), bei einer Art aber ziemlich gleich, nur pflegen die Glieder nach der Epidermis hin kürzer zu werden. Ob die äußere Wandung eine continuierliche cylindrische Gestalt habe und nur durch Einschnürungen inwendig in Glie-
der getheilt sei, wie ich dies bei Corallina officinalis deutlich gesehen habe (s. Fig. 3. c.), konnte ich bei Nullipora nicht erkennen, möchte es aber der Analogie wegen glauben. Zuweilen theilen sich die Röhren dichotomisch (s. Fig. 5. b. und Fig. 5. c.).

Die Zellen der Epidermis, und desgleichen die Gliederröhren, wenigstens in den jüngern Theilen, enthalten ungefärbte Chlorophyllkörner, die sich gegen die chemischen Reagentien gerade wie die mit Alkohol entfärbten Chlorophyllkörner der höheren Gewächse verhalten. In den Gliederröhren sind sie meist zu beiden Enden der Glieder angehäuft. Bei vielen Arten finden sich aber in den Gliederröhren der älteren Theile statt dieser Chlorophyllkörner Körner von Stärkemehl. Sie werden nämlich durch Jod blau, violett, oder braunrath gefärbt, lösen sich in kochendem Wasser auf, desgleichen in concentrirter Salpetersäure und kastischem Kali; die durch Jod hervorgebrachte Färbung wird durch verdünntes kastisches Kali weggewaschen, kommt aber beim Zusatz einer schwachen Säure wieder. Diese Reaktionen lassen keinen Zweifel übrig, daß die Körner wirklich Amyluni sind.

Auch die Früchte der Nulliporen glaube ich bei mehreren Arten deutlich erkannt zu haben. Ich suche sie nämlich in den regelmäßigen, kreisförmigen, beinahe halbkugelförmig gewölbten, und meist mit einer kleinen sitzenförmigen Erhebung im Centrum versehenen Körpern, die bei mehreren Arten Nulliporen von mir beobachtet sind. Sie sind hohl und oft in der Mitte mit einer regelmäßigen runden Öffnung durchbohrt. Ich habe sie (Fig. 5. a.) von Lithothamnium rubrum abgebildet. Bei Lithothamnium crassum ragen sie wenig hervor, und hier zeigt der Boden ihrer Höhlung eine kegelförmige Erhabenheit, an welcher wahrscheinlich die Sporen befestigt waren. Es sind mir auch ein paar Mal Körperchen vorgekommen, die ich geneigt wäre für Sporen zu halten.

Da mehrere Naturforscher die Struktur der Nulliporen auf denselben Wege untersucht haben, wie ich, indem sie nämlich Stückehen, die durch Säuren von ihrem Kalkgehalt befreit waren, unter dem Mikroskop betrachteten, ohne dasselbe Resultat zu finden, so will ich in der Kürze den Grund angeben, weis-

Was die Stellung anbetrifft, welche die Nulliporen im System der Algen erhalten müssen, so erlaube ich mir darüber kein Urtheil, indem ich die Struktur dieser Pflanzenfamilie nicht hinlänglich kenne; nur bemerke ich, daß sie nothwendig dicht neben Corallina zu stehen kommen müssen. Diese unterscheiden sich lediglich durch die Gliederung, und die aus hornartigen Fäden (hohlen Röhren? s. Fig. 3. a.) gebildeten Gelenke, gerade wie Isis von Corallium. Sie haben dieselbe Epidermis, dieselben gegliederten Röhren (s. Fig. 3. c.), dieselben Früchte, die schon Ellis erkannt hatte. Die länglichen Körner nämlich, welche mein hochverehrter Lehrer Link dafür anspricht, und welche Fig. 3. b. vorgestellt sind, geben sich bei der Behandlung mit Jod und andern Reagentien deutlich als Stärkemehl zu erkennen, wogegen die durchlöcherten Hämker, die man zuweilen an der Oberfläche sieht, wie sie Ellis abbildet, ganz so beschaffen sind, wie die ähnlichen von Nullipora.

Hier von etwas abweichend gebildet sind die Galaxauren, von denen ich G. rugosa untersucht habe (s. Fig. 2.). Unter der aus sechseckigen Zellen gebildeten Epidermis (a.) finden sich noch rundliche oder eiförmige Zellen (b.), und das im trocknen Zustande wergartige Innere besteht aus lockeren, nicht dicht anliegenden Gliederröhren, die durch die ganze Masse (nicht etwa bloß an der Theilung der Äste) dichotomisch verzweigt sind (s. Fig. 2. c.).

Noch anders gebildet ist die Gattung Melobesia Lamouroux, von der ich ebenfalls mehrere Arten untersucht und eine der selben, M. membranacea Lam. (Fig. 6.), abgebildet habe. Die
ganze Substanz besteht nämlich durchweg aus Zellen, ohne Gliederröhren, die aber bei anderen Arten nicht so regelmäßigege stellt und gebildet sind, wie bei der hier vorgestellten. Die Früchte scheinen ähnlich zu sein, wie bei Corallina und Nullipora.

Halimeda zeigt ebenfalls eine verschiedene, schon früher erkannte Bildung, an welche ich hier nur erinnern will. Die Rinde besteht bei ihnen aus sehr großen sechseckig-dodecaedrischen Zellen, die mehrere Schichten bilden, das vergartige In nere dagegen aus regelmäßig trikotomisch verzweigten und nicht gegliederten Bändern, die lose nebeneinander liegen. Dafs sie sich zuletzt in eine Membran ausbreiten, welche die blasigen Zellen zwischen sich aufnimmt, habe ich nicht gesehen.

Es folgt hieraus, dafs die erwähnten Gattungen der Kalk algeng: Nullipora, Corallina (und Jania, die in ihrem Bau ganz mit Corallina übereinstimmt), Galaxaura, Melobesia, Halimeda in ihrem Bau von einander so abweichen, dafs ihnen nichts Gemeinschaftliches bleibt, als die sehr merkwürdige Eigenschaft zu verkalken, und dafs sie daher nicht füglich in eine Familie gebracht werden können, wie Blainville dies versucht hat, in dem er (Manuel d'Actinologie p. 545.) die Familie der Calciphy tae aufstellt.

Erklärung der Figuren.

Fig. 2. Ein vergrößertes Stück von Galaxaura rugosa Lamx. a die Epidermis; b die darunterliegenden Zellen von eiformi ger Gestalt; c die dichotomischen, gegliederten Röhren, welche das Innere bilden.

Fig. 3. Ein Gelenkstück von Corallina officinalis L. vergrößert. a die hornartigen Fäden der Gelenke; b längliche Körper, welche nichts anders als getrennte, mit Amylunkörnern dicht er fällte Glieder der Gliederröhren sind; c eine einzelne Gliederröhre stärker vergrößert.

Fig. 4. Struktur von Lithophyllum decussatum Ph. a im senkrechten Durchschnitt, maßig vergrößert; b die Epidermis; c 2 Schichten von Gliedern des Innern; d 4 an einander lie gende Gliederröhren; e eine Gliederröhre stark vergrößert; die punktierte Linie deutet die muthmaßliche äussere Wandung der Röhre an.

Fig. 5. Lithothamnium rubrum Ph. a ein Stück schwach ver-
größert, man sieht von außen die Gliederung und 2 Früchte; b Gliederröhren stark vergrößert; bei * Spuren ihrer dichotomischen Theilung; c dichotomisch geteilte Gliederröhren aus der Nähe der Epidermis.

Fig. 6. Melobesia membranacea Lamx. a natürliche Größe auf einem Stück Sphaerococcus nervosus; b ein Stück schwach vergrößert; c ein Theil desselben stärker vergrößert.

Zur Verbreitung von Cyprinus Farenus.

Notiz von Kröyer.

In Bezug auf die Mittheilung vom Herrn Dr. v. Siebold, daß Cyprinus Farenus sich in Westpreußen finde, bemerkt Herr Kröyer, daß er ihn schon mehrere Jahre als einen dänischen Fisch kenne, obwohl er bisher in keinem Verzeichnisse der dänischen Fische aufgeführt sei. Er finde sich häufig auf Seeland, zum Beispiel in Lyngby-See, in großer Menge im Nivaa u. s. w. Als Merkwürdigkeit verdiente aber angeführt zu werden, daß er auch im nördlichsten Theil des Sundes vorkomme. In der Sammlung des naturhistorischen Vereins zu Kopenhagen findet sich ein ungewöhnlich großes Exemplar, welches im Spätjahre 1835 bei Snedkersteen in einer Aalreuse gefangen wurde. Der gemeinsame Mann kennt den Fisch unter dem Namen Flirce.

(Kröyer Naturhistorisk Tidsskrift. Heft 4. p. 414.)
Ueber die Gattungen der Plagiostomen.

Von

Joh. Müller und Henle.

Die Verwirrung, welche noch in der Naturgeschichte der Knorpelfische herrscht, hängt theils von der mangelhaften Beschreibung der Arten, theils von der Vernachlässigung wichtiger und in den Species sich wiederholender Gattungskennzeichen ab. Indem die Verfasser bei ihrer Arbeit sicherere Prinzipien für die Bestimmungen der Gattungen und Species aufsuchten, schien ihnen eine Vermehrung der bisherigen Gattungen und Untergattungen unabweisbar. Eben so nothwendig schien aber, die Gattungen nur auf durchaus wesentliche Kennzeichen zu gründen. Bei den Haifischen fanden sie die wichtigsten Gattungscharaktere im Zahnsystem, im Bau des Mauls und der Lippen, der Anwesenheit der Nickhaut, der Spritzlöcher, der Grube an der Schwanzwurzel und in der Stellung der Flossen; bei den Rochen, in der Form der Nasenklappen und Kiefersegel, in der Zahl und Stellung der Flossen und im Bau der Zähne. Nur in der Gattung Raja sind die Zähne unzuverlässig, da sie nach Alter und Geschlecht sich verändern und daher nicht einmal zur Bestimmung der Species zu gebrauchen. Dies gilt auch in gewissem Maße von der Beschuppung der Haut und der Form der Schnauze. Glücklicher Weise besitzen die Verf. durch die zweckmäßige Art, in welcher Herr Dr. Schultz seine, dem anatomischen Museum geschenkte Sammlung sicilianischer Fische angelegt hat, die

Die nächsten Gattungen haben gemeinsam die Nickhaut, Schwanzgruben, kleine After- und 2te Rückenflosse, übereinander stehend und eine gerollte Längsklappe im Darm. Die Spritzlöcher fehlen den meisten; bei andern finden sich im Fötuszustande Spuren davon, noch andere haben auch, wenn sie erwachsen sind, deutliche, aber sehr kleine Spritzlöcher. Hierher gehören die Gattungen *Carcharias*, *Scoliodon*, *Zygacna* und *Galeocerdo*. Die *Carcharias* haben immer auf beiden Rändern gezähnelte, platte Zähne entweder in beiden Kiefern, oder nur im oberen, und niemals im erwachsenen, selten im Fötuszustande, eine Spur von Spritzlöchern (11 Sp. 8 neue). Die Gattung *Scoliodon* N. unterscheidet sich nur durch ihre schneidenden, mit der Spitze nach außen gewand-

Die Gattungen *Mustelus* und *Cestracion* mit Roehenzähnen sind unverändert geblieben; außer dass die beiden Species von *Mustelus* in eine vereinigt wurden.

Die dritte Abtheilung der Haißsche mit Afterflosse aber nur einer Rückenflosse und mehr als 5 Kiemenlöchern, Gattung *Notidanus* Cuvier, zerfallen wir, Rafinesque folgend, in 2 Gattungen, *Hexanchus* mit 6 Kiemenlöchern (1 Spez.) und *Heptanchus* mit 7 Kiemenlöchern (2 Spez.).

Die Abtheilung der Haißsche, mit Spritzlöchern und Stacheln vor den Rückenflossen, ohne Afterflosse (Acanthorhinus Bl.) ist in 4 Gattungen zerfallen: *Acanthias* Bonap., *Spinax* Bonap., *Centrina* Cuv. und *Centrophorus* N. *Acanthias* hat schneidende Zähne mit ganz nach außen gerichteter Spitze, oben und unten gleich (4 Sp. 1 neu); bei *Spinax* sind die Zähne des Unterkiefers wie bei *Acanthias*, die des Oberkiefers haben eine mittlere längere Zacke und 2 Nebenzacken jederseits (1 Sp.). Die Zähne von *Centrina*, deren sonstige Gattungseigenschaften bekannt sind, sind unten fast gerade, schneidend, blattförmig mit aufwärts gerichteter Spitze, am Rande fein gezähnelt; ein unpaariger Mittelzahn. Oben sind sie schmaler, gerade, konisch, wenig schneidend, zu einem Hanfen vereinigt auf dem vordersten Theil des Kiefers (1 Sp.). Bei *Centrophorus* (Sq. granulosus Bl. Sehn.) haben die unteren Zähne eine liegende Schneide mit undeutlicher Zähnelung und nach auswärts gerichteter Spitze. An

Endlich bilden die *Squatinae* ohne Afterflosse mit vorstreckbarem Maule am vorderm Theil des Kopfes und der bekannten eigenthümlichen Bildung der Brustflossen noch eine Abtheilung der Haifische. Die einzige Gattung *Squatina* (2 Spec.).

Die Familie der *Rhinobatus* enthält 3 Gattungen. Der Name *Rhinobatus* wurde auf Cuvier's 2te Abtheilung seines Genus *Rhinobatus* beschränkt (9 Sp. 3 neu). *Rhynchosbatus* N. (*R. lucis*) steht *Rhiu* Sthn. näher, welche sich nur durch die
Schnautze, Nasenklappen und die stärkeren Maulbiegungen unterscheidet.

Die Zitterrachen bilden 3 Gattungen, Torpedo im engeren Sinne (3 Sp.), Narcine Henle (4 Sp.) und Astrape M. u. H. (T. capensis und dipterygia aut.).

Aus Cuvier's Gattung Trygon wurden 6 Gattungen: Trygon im engern Sinne umfaßt die Stachelrochen, deren Zähne in der Mitte einen Querwulst haben und deren Schwanz oben und unten eine niedrige, das Schwanzende nicht erreicht. Pteroplatea N. enthält die Stachelrochen, deren Breite viel größer, als die Länge, deren Schwanz viel kürzer, als der Körper ist und deren Zähne in eine oder 3 Spitzen auflaufen (3 Sp.). Die ebenfalls neue Gattung Himantura enthält die Stachelrochen ohne Spur einer Schwanzflosse, doch gehören nicht alle Rochen hierher, bei denen man die Flossen ganz zu vernessen glaubte. Die Abtheilung der Trygon, bei welchen die obere Schwanzflosse fehlt, die untere bis zur Spitze reicht (Tr. ornatum Gray u. Hardw.) bildet die Gattung Taeniura N. Diejenigen, welche man wegen ihrer hohen, segelartigen, untern Schwanzflosse, die nicht bis ans Ende reicht, unterschieden, bilden die Gattung Hypolophus N. Endlich ist die Raja cruciata Lapep. der Typus des Genus Urolophus N., welches sich durch eine Flosse an der Schwanzspitze auszeichnet.

Eine andere Familie vereinigt mit dem Schwanz der Stachelrochen den gänzlichen Mangel des Stachels. Dahin gehören 2 Gattungen: Ehrenberg's Gattung Anacanthus, deren Charaktere Cuvier angiebt (ohne Spur von Flossen am Schwanz) und einer neuen Gattung Gymnura N. mit einer saumförmigen untern Flosse am Schwanz (wie bei Trygon), die das Schwanzende nicht erreicht (Raja asperrima Bl. Schm.). Die Gattungen My-
Notiz.

Zur Entwicklungsgeschichte der Mollusken und Zoophyten

von

M. Sars in Norwegen.

(Briefliche Mittheilung an den Herausgeber.)

I.

1. Tritonia Ascanii.

Im Anfange Decembers zeigen sich gewöhnlich die Tritonien, Eolidien, Doris etc. in Menge am Ufer der Westküste Norwegens; im Sommer dagegen halten diese Thiere sich mehr in den Tiefen der Fjorde (Meerbuchten) auf. Zu jener Zeit sieht man oft die Tritonia Ascanii in der Paarung, und am Ende Januars oder Anfang Februars legt sie ihren Laich auf den Tangen, Felsen u. s. w. Ich habe selbst mehrere Male dies gesehen.

1) Der Laich ist wie ein rundes buchtiges Band, spiralförmig aufgewunden, aus einer ungeheuren Anzahl Eiern bestehend, das Ganze von einer weichen Schleimhülle umgeben.

2) Die einzelnen Eier sind oval; die Eibaut umschließt immer mehrere Dotter (5 bis 11), nur in den beiden äußersten Enden der Eierschnur sieht man wenige (1 bis 3) Dotter in jedem Ei. Diese Dotter sind kugelig; man bemerkt daran die Vesicula Purkinji, die aber schon am zweiten Tage zu verschwinden anfängt.

3) Vom 2ten Tage an zeigt sich nun eine Reihe merkwürdiger regelmäßiger Theilungen des Vitellus oder Entwicklung von Gegensätzen darin. Im Anfange des 2ten Tages theilt sich nämlich der Vitellus in 2, am Ende desselben Tages viele schon in 4; am 3ten Tage sind alle in 4 getheilt und viele schon in 8. So geht es nun mit den Theilungen fort, bis der Vitellus am
10ten oder 11ten Tage an seiner kugeligen Oberfläche die feinste Granulation zeigt.

4) Am 12ten oder 14ten Tage zeigt sich ein Einschnitt in dem nunmehr zum Embryo umgestalteten Vitellus: es ist die Hervorwachssung der runden Lappen einerseits und der Conchylie andererseits. Doch wird dies nicht ganz deutlich eher als am 17ten oder 18ten Tage. Da aber wachsen die Cilien am Rande der zwei runden Lappen hervor, einige Embryonen fangen mit ihrer Hülse an sich langsam im Kreise zu drehen. Doch werden die Bewegungen nicht lebhaft und allgemein eher als am 25sten oder 26sten Tage, wo die Embryonen äußerst rasch in allerlei Directionen durcheinander laufen. Man sieht nun deutlich, daß der Embryo in einer Conchylie steckt, die im Anfange schmächtig ist, später aber (23ten bis 26sten Tag etc.) in die Länge wächst und nautilusförmig wird. Der Embryo, in einem sackförmigen, durchsichtigen Mantel gelegen, der sich zuweilen ein wenig zusammenzieht, zeigt inwendig schon den Darm völlig ausgebildet; der Magen, von einer leberartigen, undurchsichtigen kugeligen Masse umgeben, ist hinten durch ein Ligament an die Schale befestigt. Er streckt das Fußrudiment, das mit einem kleinen Deckel zum Schließen der Schale versehen ist, samt den runden, mit führenden Cilien besetzten Lappen, aus, und schwimmt so im flüssigen Eiweifs umher.

5) Am 31sten bis 36sten Tage ungefähr sind die Embryonen so weit herangewachsen und so groß geworden, daß sie nur mit Mühe Platz im Ei finden; sie stoßen immer gegen die sehr dünne Eihaut an, welche zuletzt platzt: sie treten nun heraus und schwimmen im Wasser lustig und sehr rasch durch Hülse ihrer Cilien herum. Dieses Herausschlüpfen der Jungen geht aber nur sehr langsam fort; erst am 38sten Tage war die ganze Eischale aufgelöst, und in dem mit Seewasser angefüllten Gefäßes wimmelte es von Tausenden dieser frei herumschwimmenden Jungen.

6) Nun wird die Conchylie, die früher weich war, hart, hornartig, glänzend und ausgezeichnet deutlich; sie ist in sich selbst eingebogen, wie eine Nautiluschale, die Öffnung länglich rund; rührt man das Thier an, so zieht es sich in seine Schale ganz ein, wie eine wahre Gehäuschnicke. So hielt ich diese
Jungen noch eine Woche oder mehr lebendig in täglich erneuten Seewasser; dann aber starben sie, ohne weitere Metamorphose gezeigt zu haben, die weichen Theile lösten sich auf und die Conchylie stiegen zu Tausenden an die Oberfläche des Wasse rs auf.

2. *Eolidia bodoensis.*

Fast ebenso verhält es sich mit der Entwicklung der *Eolidia*, die auch zu selbiger Zeit ihren ebenso gestalteten Laich legt. Auch hier sind mehrere Vitellus (bis 7) in einer Eihaut eingeschlossen.

3. *Doris muricata.*

Die Entwicklung ganz wie bei *Tritonia*. Im Anfange März legt die Doris ihren Laich, der bandförmig, stark zusammengedrückt ist und mit der einen scharfen Kante an Felsen etc. festklebt. Die Eier weichen darin von denen der *Tritonia* ab, daß sie immer nur einen Vitellus enthalten. Die Theilungen der Vitellus sind ganz wie bei *Tritonia*. Am 24sten Tage sieht man die beiden runden Lappen hervorwachsen; am 27sten Tage sah ich die Embryonen sich mit Hilfe ihrer Cilien im Ei herumdrehen, und am 36sten Tage war schon eine ungeheure Menge herausgeschlüpft und schwamm frei im Wasser herum. Die Conchylie ist wie bei der *Tritonia*, nur kürzer, mehr eingerollt und die Mündung größer.

II.

* Asterias sanguinolenta *Müll.

kleinen Thierchen in ein Glas mit Seewasser angefüllt warf, fielen die letzteren ab und bewegten sich langsam auf dem Boden des Gefässes umher. Noch immer konnten aber diese Thierchen doch Parasiten sein; um darüber ins Reine zu kommen, schnitt ich den Seestern auf und fand danu in den unter den bekannten lichtbraunen verästelten Blinddärmen in jedem Strahle liegenden, ebenfalls verästelten Ovarien eine große Menge Eier, von derselben schönen rothen Farbe, wie die oben erwähnten kleinen Thierchen; sie waren fast kugelrund, doch etwas flacher auf der einen Seite, die convexé Fläche zeigte sehr deutlich die Vesicula Purkinji. Ich konnte nunmehr nicht länger zueifeln, daß die erwähnten Thierchen, obwohl der Form nach sehr vom Mutterthiere verschieden, eben ausgeschlüpfte Junge von dem Seestern waren, welches sich auch im Fortgänge der Entwicklung derselben zur völligen Überzeugung bestätigt hat. — Die Jungen also sind rundlich, flachgedrückt; an dem Ende, das sich bei der Bewegung als das vordere zeigt, mit 4 kurzen kelenförmigen Armen oder Appendices versehen. Bei einigen der grössten Exemplare konnte man auf der oberen Fläche des Körpers einige in 5 ausstrahlenden Reihen gestellte Warzen wahrnehmen: es sind die hervorwachsenden Füßen. — Diese Junge bewegten sich langsam, aber gleichförmig, meistens in gerader Linie vorwärts, immer mit den 4 Armen voran. Die die Bewegung bewirkenden Organe habe ich nicht erkennen können; es sind aber zweifelsohne sehr kleine Cilien, obwohl ich sie mit meinem Mikroskope, das eins von den alten englischen ist, nicht bemerken konnte. Mit den 4 Armen konnten sich die Thierchen festheften, auch ein wenig längs den Wänden des Gefässes heraufkriechen. — Nach Verlauf von 12 Tagen fing die 5 Strahlen des Körpers, der bisher rundlich war, an hervorzuwachsen, und nach 8 Tage später waren die Füßen, 2 Reihen in jedem Strahle, schon in lange Röhren, die sich ausstreckten und festsaugten und wieder einzogen, ausgewachsen, so daß die Thierchen mit ihrer Hülle auf dem Boden und längs den Wänden des Gefässes herumkrachten. (Die schwimmenden Bewegungen hatten nun gänzlich aufgehört.) Nach Verlauf eines Monats verschwanden die 4 Arme nach und nach, und das Thier, das im Anfange symmetrisch oder
binares [binair] war, ist nun völlig radiair geworden — eine retrograde Bildung, deren wir schon mehrere Beispiele in den niederen Thierklassen kennen. Uebrigens gleicht jetzt das Junge dem Mutterthiere in Allem, nur sind die Strahlen des Körpers noch ganz kurz und breit, die Füschen wenig zahlreich u. s. w. —

Obige Beobachtungen sind zwar noch unvollständig, und vieles ist noch auszumitteln übrig; jetzt aber, da wir die Zeit der Fortpflanzung und die Umstände dabei kennen, wird es wohl bald, entweder mir oder einem andern Naturforscher, gelingen, die Entwickelungsfolge vollständiger darzustellen. —

Auch war ich so glücklich, eine neue Art der Fortpflanzung bei einigen Acalephen, und namentlich bei meiner Cytaeis octopunctata, zu entdecken. Die Jungen wachsen nämlich aus dem Leibe des Mutterthieres nach und nach hervor, ganz wie bei den Hydren, bekommen allmälig die verschiedenen, die Art charakterisirenden Organe, fangen dann an, sich durch Systole und Diastole zu bewegen, reifen sich endlich eins nach dem anderen vom Mutterthiere los, und schwimmen nun frei herum. Hinsichtlich der früher von mir aufgestellten Acalephen-Gattung Strobila, die sich durch ihre sonderbare Fortpflanzung so auszeichnet 1), bin ich zu der Ueberzeugung gelangt, daß sie nur der Jugendzustand der Medusa aurita ist, welches ich durch eine Reihe von Abbildungen, die den allmäßigen Übergang von der Form und Organisation der Ephyra-artigen Acalephe bis zu denen der Medusa aurita darstellen, bei der Versammlung der Naturforscher in Prag beweisen zu können hoffte. Leider aber war die Zeit der Versammlung von andern Rednern so in Anspruch genommen, daß ich nur die obigen Beobachtungen über die Entwicklung einiger Mollusken, nicht aber die der Seesterne mittheilen konnte. Auch war es mir nicht möglich, meine Abbildungen einer neuen Physopboride des Nordmeeres vorzulegen, die eine Länge von 1—2 F. erreicht. Ich bedauere dies um so mehr, als nur wenige Naturforscher diese unglaublich leicht zerstörbaren Thiere in ihrer Integrität beobachtet haben, und viele unhaltbare Gattungen und Arten nur nach Bruchstücken aufgestellt sind. Diese, sowie eine eben-

1) S. dieses Archiv. II. 2. p. 198.
falls im Nordmeere gefundene Diphyes und mehrere andere Seethiere werde ich in einer bald herauskommenden Schrift mit Abbildungen ausführlicher beschreiben.

Elium modontia,
neues Nagethier-Genus
von
F. Cuvier.

Aus der ausführlichen Charakteristik lassen sich folgende Hauptcharaktere hervorheben. Allgemeine Gestalt mäuseähnlich, aber die Hinterbeine sehr lang, 3mal so lang als die vorderen (bei Mus nur doppelt so lang); Tarsus besonders sehr lang, hat \(\frac{1}{2} \) der Körperlänge (bei Mus \(\frac{1}{2} \)), zeigt auf seiner Unterseite nur eine mit steifem Haar bedeckte Schwiele. Vorderfüße 4-zehig, Daumen rudimentär, mit plattem, stumpfem Nagel. Hinterfüße 5-zehig. Krallen schildförmig. Schwanz sehr lang, mit kurzeu platten Haaren bekleidet, und unter diesen schuppig geringelt. Augen mäßig groß; Obren dünn, oval, \(\frac{1}{4} \) der Kopfslänge; lange Schnurrborsten; Backenzähne jederseits \(\frac{1}{2} \), mit deutlichen Wurzeln und alternirenden Einbuchtungen, deren der vorderste größte Zahn außen und innen 2, der zweite außen 2, innen eine, der dritte sehr kleine jederseits eine zeigt. Schneidezähne glatt, gelb. — Die einzige Art, \(E. typus \), bildet eine kleine, oberhalb graulich braune, unterhalb weisse Maus von Buenos-Ayres (t. c. tab. 5. abgebildet). Körperlänge 2\(\frac{1}{2} \)", Schwanz 3" 4".
Auszüge aus den Schreiben des reisenden Naturforschers C. Moritz in Süd-Amerika,
mitgetheilt
von
Herrn v. Bredow auf Wagenitz.

Puerto-Cabello, im Juli 1836.

Unter den Vögeln aus der Gattung Cassicus zeichnen sich bekanntlich viele, wie meine Freunde sich dessen aus meinen Nachrichten vom Cassicus phoeniceps von der Insel Puerto-Rico

Einer der größern und durch seine Form auffallenden Käfer dieser Gegend, der durch Grösse, langes Kopfhorn und schöngesformten Thorax sich auszeichnet, ist der *Scarabaeus Age-nor* Ol. — Beachtet man aufmerksam alle Gegenstände, langsam die üppigen Flussgestade bei Valencia in den ersten Regenmonaten durchsehend, so kann man nicht umhin, den jungen Riesensprossen von Armsdicke am Bambusrohr, aus der Wurzel den Spargel ähnlich hervortreibend, einige Augenblicke der Betrachtung zu schenken. Den Entomologen gereat dies nicht, denn, ist er an der rechten Stelle, so bemerkt er große Seitenöffnungen, oft 3 — 4 an einem Schößling, alle nach oben hinauf gerichtet. Er hätt mit seiner Machete hinein, die Oeffnung zu erweitern, und schon bei den ersten bloßen Erschütterungen vor dem Loche kommt eiligst rückwärts ein solcher Hornkäfer, zuweilen ein Pärchen, heraus, die er erst völlig herausfallen läßt, denn will er sie rückwärts herausziehen, sie von hinten fassend,
so halten sich die gehörnten Männchen mit ihrem gegengestämmten langen Horn so fest, dass es unmöglich ist, sie so heranzuholen. Dies scheint also der Zweck des Horns zu sein (?). Die Weibchen waren Anfangs Juni wenigstens seltner, da ich bei circa einem Dutzend ♂ nur etwa drei ♀ fand. — Die durch Zernagen des Marks in demselben hervorgebrachte Gährung lockt andere kleine Insekten herbei, so dass man zugleich in solcher Höhlung schön glänzende schwarze Curculionen (von Gestalt einer sehr kleinen Calandra), Brachelytera, Nitidulae, seltener einige kleine Hylophagi etc. etc., auch Dipteren-Larven und die dazu vermutlich gehörigen Syrphiden, um die Wiege für ihre Brut umherschwärmmend, oft in Menge trifft. — Jener Hornkäfer richtet auch in den halbreifen Maiskolben, in die er sich ebenso hineinfrisst, bedeutenden Schaden an.

1) Wenn wirklich eine Giftschlanige, wahrscheinlich eine Cophias.
als Präservativ vorgenommen werden. Ein anderes ist die Raiz de mato, die Wurzel einer Vejuco (Schlingpflanze), wie man versichert, daher nicht, wie Herr v. Humboldt vermutet, von der baumartigen Cerbera Thevetia. Nach der mir gemachten Beschreibung der Liane scheint diese der Gattung Aristolochia anzugehören und wahrscheinlich die Aristolochia anguicida. Ich muß gestehen, daß ich kein sonderliches Vertrauen in diese vegetabilischen sogenannten Contras (Gegengifte) setze. In San Estevan brachte man mir eine lebende Mapanare. Es kam darauf an, sie so in eine Flasche hineinzupraktizieren, und ein Indier ward dazu beauftragt. Das Thier, das sich an einem um den dünnen Hals geschlungenen Vejuco gefesselt fühlte, war sehr böse. Der Indier bat daher um das Contra; es wurde ihm die getrocknete Wurzel Raiz de Mato gebracht; er kaute davon, spie den Saft in den geöffneten Mund der Schlange, kaute dann noch ein Stück, bestrich die Finger damit und packte mit denselben die Schlange ins Genick, die in demselben Augenblick, eben als wenn kein Contra angewandt wäre, den Rachen zum Beifßen aufriss und die Giftzähne aufklappte, jedoch natürlich die Finger des Indianers nicht erreichen konnte, der sofort, gleichsam als wenn er selbst an der Kraft seines Contras zweifelte, den Kopf der Schlange zerquetschte, wo es denn freilich leicht war, sie in die Flasche hineinzustecken. Dies Alles ist eben nicht geeignet, das Vertrauen zur Raiz de Mato zu stärken. — Psittacus ochrocephalus L., unter den hiesigen Papageien derjenige, den man am Besten und Meisten sprechen lehrt. Er gewöhnt sich, jung aufgezogen, gleich dem Hausflügel; Männchen und Weibchen sitzen gewöhnlich, ohne sich lange von einander zu entfernen, beisammen, doch nisten sie im zahmen Zustande nicht. Es wurde mir versichert, wenn man sich die Mühe gäbe, diesem Papagey nach und nach alle Federn auszurupfen, dies aber zu drei verschiedenen Malen nach der jedesmaligen Erneuerung des Gefieders wiederholte, dasselbe jedesmal heller gefärbt und zuletzt völlig gelb würde. Es scheint mir nicht ganz unwahrscheinlich, und sollte es wirklich gegründet sein, für die Bestimmung der Art von Wichtigkeit.

In den höheren Savanen um Valencia — selten in den tieferen Uanos des Innern — lebt als Stellvertreter unserer Lerchen
und Ammern ein Vogel von der Größe des Staars, unten schön
goldgelb, hier, von seiner Stimme, Chiruli genannt, von den Ök-
nithologen aber bald als Alauda magna, bald als Sturnus
ludovicianus aufgeführt. Letztere Benennung ist von Cuvier
und Voigt adaptiert. Indessen bemerke ich hierbei, daß wenn
der einzige Grund, diesen Vogel den Staaren zuzugesellen, sich
nur in der Bildung des Schnabels finden möchte, letzterer
denselben weit mehr den Cassiceis nähert. Ferner ist in der
ganzen Lebensweise des Chiruli nicht eine Spur von der Lebens-
art der Staare zu finden, dieselbe vielmehr ziemlich der von
Emberiza miliaria gleich. Wie diese auf den Spitzen der ein-
zeln Gebüsche der Wiesenplätze sitzend, zwitschert er dort
eben so eintönig sein Tschirili, fliegt eben so mit hängenden
Beinen und zitternden Schwungen, in der Luft fortzweitschernd,
auf. Auf ähnliche Weise nistet er auf der Erde zwischen den
Grasbüscheln. Das oben zugewölbte, backofenförmige Nest traf
ich mit 3 bereits bebrüteten Eiern, von Färbung wie bei denen
des Grünspeckis, d. h. milchweiß mit braunen Fleckchen und
Punkten. — Mir scheint dieser Vogel so viel Eigentümliches zu
besitzen, daß er, wenn gleich in verschiedenen Stücken
verschiedenen Gattungen nahe kommend, doch keiner be-
kannten Vogelgattung ausschließlich angehört, sondern ein für
sich bestehendes Genus auszumachen scheint, und etwa den von
seiner Stimme und vaterländischen Benennung entlehnten Na-
men: Cirulus (C. pratensis) verdienen möchte.

Eine der wichtigsten Mittheilungen, die ich noch zu machen
habe, ist vielleicht die Nachricht von dem un längst in Vene-
zuela vorgekommenen Gebären zweier weiblichen Maulthiere.
Der erste Fall ist mir von dem Obrist C. i angeführt wor-
den, als demselben vom Eigenthümer jener Maulthierstute selbst
erzählt und unbezweifelt. Im Pao de Barcelona theilte uns spä-
terhin ein ganz schlichter Mann, der sonst wenig sprach, eine
auf seinem Hauto gemachte eigene Erfahrung mit, zugleich mit
dem Bemerken: daß alle ihm Besuchenden seine Maulthierfällen
gesehen. Wäre die Entfernung nicht zu groß gewesen und hätte
es unsere Zeit erlaubt, so würde ich selbst durch den Augen-
schein mich überzeugt haben; dies war aber nicht möglich zu
machen. Das Füllen der Maulthierstute beschreibt der Eigen-
Ihümer ganz der Mutter gleich, obwohl der Vater ein Esel war. Es ist schon einige Zeit alt (ich erinnere mich nicht genau wie alt) und kräftig und gesund, da die Mutter ein tüchtiges Euter und Fülle von Milch hat."

B e r i c h t i g u n g e n

von

Dr. M. J. Schleiden.

Flüchtigkeit bei der Reinschrift und Mangel an Uebung beim Corrigiren haben in meinem Aufsätze über die Entwicklungsgeschichte im laufenden Jahrgang dieses Archivs einige Fehler veranlasst, welche gütigst zu entschuldigen und zu bessern ich die Leser ersuche.

Seite 301 Zeile 12 von oben lies enthalten statt entfalten

» 303 » 6 v. u. l. Spitze st. Spite

» 303 » 5 v. u. l. weiblichen st. wirklichen

» 312 zwischen Zeile 16 u. 17 fehlt der Name Mirbel

» 313 Zeile 8 v. u. in der Anmerkung l. „Männer wegen, die sich öffentlich über diese Arbeit ausgesprochen haben und ohne etc.

» 314 » 13 der Anmerk. l. Breslau st. Berlin

Im ganzen Aufsätze l. Cistinea st. Cystinea.
Über den Unterschied der Schalenbildung der männlichen und weiblichen Anodonten.

Von

Dr. C. Th. von Siebold.

Wagner'schen Keimflecke nicht zu verkennen waren. Anodonta cellensis, sulcata und cygnea sind demnach synonym, und dem letzteren Namen, als der älteren Linné'schen Bezeichnung, gebührt wohl das Recht des Vorzugs.

Einen ähnlichen Geschlechtsunterschied bieten die Schalen der Anodonta anatina dar, da aber dieser nicht so grell hervorsticht, mögen beide Geschlechter vor einer Trennung in zwei besondere Species bisher geschützt geblieben sein, und man hat die verschiedenen Schalenbildungen (was wirklich zu verwundern ist) nur als Varietäten gelten lassen. Wenn Nilsson (historia molluscorum Sueciae p. 115.) bei der Beschreibung der Schale von Anod. anatina sagt: testa admodum variet. ovato-oblonga vel. elliptico-ovata, jam magis jam minus compressa etc., so gehört wiederum die (elliptisch) breit-eiförmige, weniger gewölbte Schale den männlichen Individuen, und die eiförmig-längliche, mehr gewölbte Schale den weiblichen Individuen der EntennuscheI an.

Triift, den neueren Conchylologen überhaupt der Vorwurf, mit Errichtung neuer Species zu leicht umgegangen zu sein, so tritt dieser Fehler bei den Muscheln besonders hervor, statt das man gerade hier nur mit der größten Vorsicht neue Arten hätte einführen sollen, da man wissen konnte, das Alter und Aufenthaltsort der Muscheln so leicht Formabweichungen der Schale bei einer und derselben Art hervorbringen; jetzt, da nun nachgewiesen ist, dass auch die Geschlechtsverschiedenheit auf die Schalenbildung der Muscheln den größten Einfluss ausübt, scheint doppelt nöthig, die bisher angestellten Arten der Bivalven einer sorgfältigen Revision zu unterwerfen. Die Anodonta intermedia, eine Species, gegen welche schon mehrmals Verdacht erhoben wurde, glaube ich wirklich nur für eine noch nicht völlig ausgewachsene männliche Anod. cygnea halten zu müssen. Ich bin übrigens bereit, demjenigen, der es wünscht, männliche und weibliche Schalen der Enten- und Schwanen-Teichmuscheln, für deren richtige Bestimmung des Geschlechts eine jedesmal von mir vorgenommene mikroskopische Untersuchung der Sexualorgane des Thieres bürgen soll, zu übersenden.

Danzig, den 3ten October 1837.
Schreiben des Herrn Professor Meyen an den Herausgeber.

Hochgeehrtester Freund und College!

¹) In der angeführten Stelle S. 24 ist aber von Bacillarien die Rede, und nicht von Herrn Meyen’s kleinen Algen; eben so S. 26,
Seit den verflossenen 10 Jahren habe ich keine Gelegenheit vorübergehen lassen, um jene kleine Geschöpfe zu betrachten, welche die systematischen Botaniker noch immer unter den Algen aufführen, und manche neue Formen sind mir vorgekommen, welche ich ebenfalls nächstens zu publiciren gedenke. Es war meine Absicht bis dahin über diesen Gegenstand zu schweigen, doch die Nachrichten, welche Sie im vierten Hefte (p. 377.) Ihres Archives unter dem Titel: Ehrenberg's neuere Entdeckungen über die Bacillarien haben einrücken lassen, nöthigen mich sofort zu folgender kurzen Erklärung, damit nicht etwa die darin enthaltenen Angaben als unzweifelhafte THAT-sachen in das gelehrte Publikum übergehen.

Sein Sie versichert, daß mich nicht vorgefafsie Meinungen, sondern nur die Liebe zur Sache, der ich mein Leben ebenfalls gewidmet habe, zu dieser Erklärung veranlafst.

Mit grüßter Hochachtung u. s. w.

Wiegmann.
Beiträge zur Pflanzenphysiologie

von

J. Meyen.

(Hierzu Taf. X.)

I.

Über die Entwicklung des Getreidebrandes in der Mays-Pflanze.

Die Beobachtung des ersten Auftretens des Brandes (Ustilago Link) bei unseren Cerealien hat aus verschiedenen Ursachen ihre großen und meistens unüberwindlichen Schwierigkeiten aufzuweisen, leicht ist dasselbe dagegen bei der Mays-Pflanze zu verfolgen, wo jede unheilbare Krankheit oft die sonderbarsten Deformitäten veranlaßt, welche mitunter zu der außerordentlichen Größe eines Kinderkopfes anschwellen. Es ist gegenwärtig eine ausgemachte Sache, daß der Getreidebrand keine ansteckende Krankheit ist, sondern zu den erblichen gehört, welche aber durch eine Stockung der Säfte, herbeigeführt durch übermäßige und der Natur der Pflanze fremdartige Düngung, veranlaßt wird. Es würde eine interessante Arbeit sein, alle die verschiedenen Formen aufzuzählen, unter welchen der Mays-Brand auftritt, und die krankhafte Umwandlung der verschiedenen Theile der Pflanze zu verfolgen, welche davon ergriffen werden; ein Land, wie die piemontesische Ebene, wo der Mays-Bau unsere Cerealien schon fast gänzlich verdrängt hat, würde dazu sehr leicht Gelegenheit bieten. Am auffallendsten erscheint diese Krankheit an den männlichen Blüthen des Mays, welche bald teilweise, bald bis auf die Kelchblätter gänzlich krankhaft zerstört sind und die auffallendsten Formen annehmen, welche durch Auflockerung und
krankhafte Wucherung des Zellgewebes (die Spiralröhren laufen indes ebenfalls hinein) veranlaßt werden.

Im ausgebildeten Zustande sind diese Auswüchse in ihrem Innern mehr oder weniger ganz zerstört und mit der bekannten braun-schwarzen Masse gefüllt, welche Herr Link mit dem Gattungsnamen *Ustilago* belegt hat; untersucht man jedoch diese Auswüchse in ihren früheren Zuständen, so wird man, bei gehöriger Vergrößerung, finden, daß jene Masse im Innern der Zellen ihren Ursprung nimmt, sich daselbst anhäuft und, indem die Zellwände allmählich durch Verjauchung zerstört werden, endlich das Innere jener Auswüchse ausfüllt.

Auf der beiliegenden Tafel habe ich in fig. 1. die Abbildung einer kleinen Masse jenes wuchernden Zellgewebes gegeben, an welchem in jeder einzelnen Zelle die erste Bildung der Brandmasse zu sehen ist. Nämlich an einer, oder an mehreren Stellen der inneren Fläche der Zellenwand zugleich erzeugen sich kleine Schleimablagerungen, aus welchen fadenartige, sich verzweigende Gebilde hervorwachsen, die ungefärbt und fast durchsichtig sind, nur sehr starke Vergrößerungen lassen ein feines körniges Wesen in der zarten Substanz dieser Fäden erkennen. Alsdann bemerkt man, daß sich diese Fäden an einzelnen Stellen abschnüren, worin aber nicht leicht eine Regel zu finden sein möchte, denn bald beginnen die Abschnürungen unten, bald oben, meistens aber scheinen die kleinen Seitenäste zuerst diese Umwandlung einzugehen. Die abgeschnürten Theile dieser kleinen Pseudo-Organismen nehmen eine ellipsoidische, endlich eine vollkommene Kugelform an und färben sich zuerst etwas gelblich; dann wird diese Farbe immer dunkler und, indem sich die Kugelchen allmählich vergrößern, werden sie vollkommen braun gefärbt und trennen sich in den Abschnürungspunkten von ihren Stämmchen. Zuletzt zerfällt das ganze Pflänzchen in jene braun gefärbten, kugelchen Körper, welche den Brand bilden, und diese haben sich durch Erstarrung der weichen Substanz in eine festere Membran, in Bläschen umgewandelt, welche stets ein gekörntes oder punktiertes Ansehen zeigt. Ist diese krankhafte Bildung erst einmal im Zellengewebe eingetreten, so vergrößert sich mit zunehmenden Alter die Zahl und Masse jener kleinen Pseudo-Organismen in den einzelnen Zellen immer
mehr und mehr, und kurz vor der Zerstörung der Zellenwände sieht man große und undurchsichtige Massen in denselben angelagert.

Dieses sind die Erscheinungen, welche die Bildung des Brandes in der Mays-Pflanze begleiten. Die Brandbläschchen entstehen also nicht aus den Zellensaft-Kugelchen, ja nicht einmal der große, kugelrunde, schleimige Kern, welcher in jeder dieser Zellen des Mays-Parenchym's enthalten ist, wird zu jener Kranken Ablagerung verwandt. Eben so gewiss läßt es sich hier nachweisen, daß die Brandbildung nicht in den Intercellularargängen auftritt, sondern nur im Innern der einzelnen Zellen, und daher muß man dieselbe als Produkt der abnormen Richtung des Ernährungs-Prozesses ansehen.

II.

Ueber einige Eigenthümlichkeiten in der Epidermis verschiedener Orchideen.

Beobachtet man zarte horizontale Schlitte aus der Epidermis der oberen Blattfläche von Pleurothallis ruscifolia, so bemerkt man eine große Menge von runden Öffnungen, wie sie in den Darstellungen von fig. 4. und 5. zu sehen sind, und in
den, der Öffnung zunächst liegenden Zellen sind einzelne große Ölträpfchen zu finden, ja bisweilen sind diese Ölträpfchen sehr allgemein in den Epidermis-Zellen der Blätter dieser Pflanze: In fig. 4. zeigen die Zellen a a a a mit den dicken Wänden, welche durch doppelte Linien angedeutet sind, die Epidermis, und die Zellen f f f f liegen unmittelbar unter der Epidermis. b ist die Öffnung, welche man gleichsam in der Tiefe eines Trichters sieht, dessen Rand durch den schattigen Ring c c gebildet wird, der rund herum von den Epidermis-Zellen h, h, h, h, h eingeäfpt wird. In der beistehenden fig. 5. sind die ähnlichen Theile mit gleichen Buchstaben bezeichnet. Verfertigt man Querschnitte aus der oberen Epidermis dieser Blätter, welche unmittelbar durch die Öffnung b laufen, etwas in der Richtung der angedeuteten Linie d e, so bekommt man die nähere Erklärung über die Öffnung b mit ihrem Rande c c. Jene Öffnung ist nämlich, wie es fig. 6. und 7. zeigen, nur der Eingang in die tiefe Grube f, welche oftmals noch bis zu ihrer Spitze von der Cuticula e e der Epidermis-Zellen a a eingefaßt ist; in andern Fällen, wie, bei g, fig. 7., ist die Cuticula in der Tiefe der Grube durchlöchert, und in noch anderen Fällen hat sie daselbst ein siebartiges oder netzförmiges Ausehen erhalten, gleichsam als wäre sie durch zu starke Ausspannung hier und da durchlöchert worden. Meistens ragen diese Grübchen der Epidermis unmittelbar bis auf die Spiralfäser-Zellen, welche die oberen Zellen-Sebich- ten dieser Blätter bilden, doch zuweilen ist unmittelbar darunter eine luftführende Höhle, wie in fig. 4., wo dieselbe durch das Polygon g g g g g g g angedeutet ist, ja öfters findet man mehrere kleinere und ungleich große Zellen mit großen Ölträpf- chen, welche rund um die Spitze des Grübchens gelagert sind. Einige wenige solcher Grübchen finden sich auch auf der unteren Blattfläche der genannten Pflanze.

Es möchte wohl erlaubt sein die Vermuthung auszusprechen, daß diese beschriebenen Grübchen gleichsam als Stellvertreter der Spaltöffnungen anzusehen sind; sie werden niemals geschlossen, weil die beiden Zellen der Hautdrüsen fehlen, welche sonst die Spaltöffnung einschließen, auch bilden sie eine viel größere Öffnung als Letztere, und möchten daher wohl noch einer Nebenfunktion vorstehen. Da die Pflanzen, welche diese Gebilde
aufzuweisen haben, zu den parasitischen Orchideen gehören und ihre Nahrungsflüssigkeit größtenteils aus der Atmosphäre ziehen, so kann der Zweck jener Vorrichtungen nicht fern liegen, ganz besonders deshalb, weil diese Grübchen unmittelbar auf die Spiralfaser-Zellen stossen, deren Struktur ebenfalls eine stärkere Einsaugung der Feuchtigkeit der Luft bezweckt, welche durch die Grübchen unmittelbar an das innere Zellengewebe treten kann.

Auch die wirklichen Hautdrüsen von Pleurothallis rusci-folia haben einige Eigenthümlichkeiten aufzuweisen, auf welche ich bei dieser Gelegenheit aufmerksam machen möchte. In fig. 8. und 9. sind zwei verschiedene Hautdrüsen dieser Pflanze nach Vertikalschnitten dargestellt. a a die eine Zelle, b b die andere Zelle der Hautdrüse, c die Vereinigungsfäche derselben. d, d die mit grüner Substanz gefüllten Höhlen der beiden Hautdrüsen-Zellen, und e, e wie f, f sind örtliche Verdickungen der Zellen-Membranen.
III.

Einige Worte über das Vorkommen von Brutknospen bei den Laubmoosen.

Es scheint mir noch immer zu wenig bekannt zu sein, dass auch bei den Laubmoosen eine Art von Gemmen- oder Brutknospen-Bildung vorkommt, wie es fast bei allen Gruppen der Lebermoose beobachtet ist.

Bei Mnium androgynum Linn. (Aulacomnium androgynum Schwaegr.) tritt die Bildung von Brutknospen sehr häufig auf, und es sind diese Gebilde bei der genannten Pflanze auch schon lange bekannt, aber fast immer für Antheren gehalten worden, obgleich sie mit diesen in keiner Hinsicht Ähnlichkeit zu zeigen haben. Schwaegerlich (Hedwig, species musc. Opus posth. Suppl. tert. vol. 1. p. 4. tab. CCXV. fig. 3., 4. et 5.) beschreibt die Brutknospen dieses Mooses ganz richtig, aber die Abbildung, welche er dazu giebt, ist nicht hinreichend, auch sagt er von ihnen, dass man die Funktion derselben nicht kenne, denn es sei durch Experimente noch nicht ausgemacht, ob es Gemmen wären. In fig. 3. der beiliegenden Tafel habe ich die Spitze eines solchen Brutknospen-tragenden Stieles abgebildet; sie ist mit Hunderten von kleinen ungegliederten Härchen bedeckt, an deren Enden die Brutknospen sitzen, wie es die Abbildung zeigt. Die Knospen selbst bestehen aus 3 bis 5 Zellchen, sind meistens mehr oder weniger elliptisch, zueinander etwas zugespielt und von grüner Farbe, welche durch die in den Zellchen enthaltenen grünen Zellsaft-Kugelchen veranlasst wird. Bei vollkommener Ausbildung werden sie bräunlich und fallen ab, doch die haarförmigen Stielchen, welche ebenfalls bräunlich gefärbt werden, bleiben sitzen.

Das Vorkommen der männlichen Fructifications-Organe dieser Pflanze ist ganz bekannt.
IV.
Ueber auffallende Bewegungen in den verschiedenen Pflanzen-Theilchen.

tigkeit jener Beobachtung, welche Herr Gruithuisen bei der Versammlung der Naturforscher zu München im Jahre 1827 mittheilte, während mir ein neues Mikroskop von Ploessl, schon bei 350maliger Vergrößerung, dieselbe vollkommen bestätigt. Zur leichteren Verständigung über diese interessante Bewegungs-
Erscheinung habe ich in fig. 2. der beiliegenden Tafel die Dar-
stellung eines Closteriums gegeben, welches so eben in der Thei-
lung begriffen ist, die ich bei diesem Exemplare von Anfang an habe verfolgen können. Ich habe das Pflänzchen mit einer ein-
zigen, etwas dicken Haut gezeichnet, welche durch die zwei Linien ihre äußere und innere Fläche zeigt, denn ich habe hier niemals doppelte Häute gesehen, und was die dritte oder innerste Haut betrifft, wovon Herr Morren spricht, muß ich bemer-
ken, daß dieselbe eigentlich ebenfalls gar nicht vorhanden ist, sondern nur als eine gleichsam zufällige und stets unvollkom-
mene Bildung auftritt.

In der angegebenen Abbildung ist abed das ursprüngliche Pflänzchen, welches im Verlaufe von wenigen Tagen die Schei-
dewand bd quer durch seine Mitte bildete, wo bis dahin eine vollkommen offene Communikation zwischen den beiden Hörnern stattfand. Nach vollendeter Bildung dieser Scheidewand
trennten sich die beiden Hörner, und in Zeit von 20 Stunden nahmen dieselben an ihren Enden e und f die abgerundete Ge-
stalt an. Das Innere dieses Individuums war durch eine ziem-
lich gleichmäßige, durch Chlorophyll grün gefärbte Masse ausge-
kleidet, worin eine Menge größere, grüne, mehr oder weni-
giger ellipsoidische Kugeln enthalten waren, kurz ganz mit je-
ner Masse gefüllt, welche das Innere der meisten Conferven er-
füllt. Jene Zusammenballung der grünen Masse in regelmä-
sig gestellte große Kugeln, wie sie bei Closterien zu gewissen
Zeiten so oft vorkommt, fand hier nicht statt. Die Enden der
Hörner sind dagegen mit einer durchsichtigen schleimigen Sulze
gefüllt, welche auch den ganzen Raum zwischen der Oberfläche
der grünen Masse und der inneren Fläche der ganzen Membran
ausfüllt. An diesen Enden findet man in der Schleimmasse die
runden Höhlen g und h, welche eine gewisse Anzahl, 6, 8 bis 10
und oft wohl noch mehr bräunlicher, elliptisch geformter Bläs-
chen enthalten, die beständig eine sehr lebhafe Molekülen-Bewe-
gung zeigen; sie tanzen umher, wie es Herr Gruithuisen
sagt, der diese Erscheinung zuerst beobachtet hat. Die schat-
tigen Kreise, welche man in g und h sieht und welche jene Höh-
len im Innern der Hörner begrenzen, sind keine Öffnungen in der
Hülle, denn sie verschwinden, sobald die Masse im Innern des
Pflänzchens zerfällt oder herausgetreten ist; auch sind diese Höh-
len nicht durch eigene Membranen umschlossen, denn in dem-
jenigen Zustande, worin sich das abgebildete Closterium befand,
sah man an dem Ende c ganz deutlich, daß einige der braunen
Bläschen aus der Hülle herausraten und sich entweder in die
grünliche Masse hineindrängten, oder, an den Seiten entlang,
mehr oder weniger weit, selbst bisweilen über i und k hinaus
sich bewegten, und diese fortschreitende Bewegung war bald
schnell und gleichmäßig, bald langsam und gleichsam stossweise;
auch kehrten die Körperchen mitunter wieder bald zurück und
bewegten sich dann wieder in der früheren Weise, welche ich
mit dem Namen der lebhaften Molekülen-Bewegung bezeichnen
möchte, warüber ich auch sogleich ausführlicher sprechen werde.
Sobald die Theilung des Closteriums, wonach die Abbildung ge-
fertigt wurde, begann, und die Zuspitzung der abgerundeten Ecken
auftrat, zeigten sich auch sogleich an der Stelle f mehrere der-
glei-

So außerordentlich lebhaft die Bewegung dieser bräunlichen Bläschen in den Closterien und in ähnlichen Pflänzchen ist, so möchte diese doch wohl nur deshalb lebhafter als die gewöhnliche Molekülen-Bewegung erscheinen, weil die sich hier bei den Closterien bewegenden Körperchen bedeutend größer sind als jene Moleküle; indessen halte ich dennoch diese Bewegung für bedeutungsvoller, indem, wie es vorher angegeben wurde, die Körperchen aus ihrer tanzenden Bewegung in eine rein vorschreitende übergehen können, und so auch wieder umgekehrt, was mir von besonderer Wichtigkeit zu sein scheint. Es gibt aber doch wohl häufig Fälle, wo man zweifelhaft bleibt, ob die Bewegungen kleiner vegetabilischer Partikelchen mit jener Molekülen-Bewegung zusammentreffen, welche Herr Robert Brown zur Sprache gebracht hat, oder ob man dieselben als eine Wirkung des Lebens, d. h. als eine Lebensäußerung ansehen darf; ja mir scheint es, daß Uebergänge aus der einen Erscheinung in die andere wirklich stattfinden. Einige solche Fälle, wo in den Pflanzen eine der Molekülen-Bewegung sehr ähnliche Bewegung auftritt, will ich hier anführen. Fast alle Botaniker, welche anatomische Untersuchungen über Marchantia polymorpha angestellt, werden beobachtet haben, daß in dem Diachyni dergleichen junger Pflanzen hier und da einzelne Zellen vorkommen, welche nicht wie die übrigen mit grünen Zellensaft-Kügelchen gefüllt sind, sondern große gelbbräunlich gefärbte Ballen enthalten. Eine jede dieser Zellen enthält einen einzelnen Ballen, welcher meistens

Ganz ähnliche Umbildungen des Amylums in lebhaft sich bewegende Moleküle scheinen zu weilen auch im Pollen-Bläschen vorzukommen, doch ist hier diese Umbildung nicht so vollständig zu beobachten wie bei der Marchantia, aber auf diese Weise ist der Zusammenhang der Amylum-Kügelchen mit den sogenannten Saamentierchen der Pflanzen aufzunehmen, und so wird es erklärlich, wie man durch scheinbar sehr genaue Beobachtungen dartun wollte, daß die sich lebhaft bewegenden Körperchen in dem Pollen (welche ich der Analogie wegen Saamentierchen genannt habe, und daß hierbei auch die Natur dieser Gebilde errathen ist, dafür scheinen mir täglich immer wichtiger Thatsachen zu sprechen) nichts weiter als Amylum-Kügelchen, Oeltröpfchen u. s. w. sein sollten. Ja noch ganz neuerlichst gab Herr Schleiden an, daß der größte Theil des Inhaltes der Pollen-Bläschen und der Pollen-Schläuche aus Amy-
lum bestehe, während chemisch mikroskopische Beobachtungen das Gegenteil lehren. Es gehört vielmehr zu den Seltenheiten, wenn man im ausgebildeten Pollen Amylum in großer Menge findet; obgleich es mir sehr wohl bekannt ist, daß zuweilen das ganze Bläschen mit Amylum gefüllt ist. In den Moos-Antheren ist die die Saamenthierehen umhüllende Substanz ein zäher Schleim, doch auch hier habe ich einigemal beobachtet, daß die ganze Hülle des Antherehen-Schlauches mit großen Amylum-Körnern vollständig gefüllt war, während in den anderen Fällen, wo die Saammenthierehen ausgebildet sind, auch nicht eine Spur von Amylum in den Moos-Antheren enthalten ist. Auch bin ich nicht der Meinung, daß sich die Saammenthierehen unmittelbar aus Amylum bilden, sondern in dem einen Falle werden Saammenthierehen u. s. w., und in anderen Fällen wirkliche Amylum-Kügelchen aus jener schleimigen Substanz gebildet, welche die Pollen-Bläschen im frühesten Zustande füllen. Außer den Saammenthierehen, und was sonst noch in verschiedenen Fällen im Pollen enthalten ist, findet man noch unendlich feine Moleküle, welche ebenfalls die Molekülen-Bewegung zeigen, und wenn man diese mit der Bewegung der Saammenthierehen vergleicht, dann sieht man recht den großen Unterschied, welcher zwischen den Bewegungen dieser beiden verschiedenen Körper herrscht. Es ist nicht weiter nöthig anzuführen, wie viele Botaniker sich vergebens bemüht haben zu zeigen, daß es mit der Bewegung der Saammenthierehen (wofür sie jedoch Amylum-Kügelchen und Oeltröpfchen angesehen haben) eine bloße Täuschung wäre, indessen damit dieselben leichter zur Erkenntnis ihrer vorgefaßten Meinung kommen, will ich sie auf gewisse Pflaumen-Gattungen und auf ganze Familien aufmerksam machen, bei denen man die fragliche Erscheinung schon mit Leichtigkeit deutlich erkennt. Unter den Phanerogamen sind es die Oenotheren, welche durchgängig sehr große und ziemlich langgezogene Saammenthierehen haben, deren Bewegung zur heissen Jahreszeit große Ähnlichkeit mit der schleichenenden Bewegung der Bacillarien zeigte, aber unter den Cryptogamen tritt die Erscheinung sehr interessant auf. Die merkwürdige Bewegung dieser Körperchen aus den Chloren-Antheren ist schon von vielen Botanikern beobachtet; die Bewegung der Saammenthierehen von

Die Anzahl dieser Saementhierchen in den einzelnen Moos-Antheren ist außerordentlich groß; sie sind darin in einem zähen Schleime eingehüllt, der durch schnelles Einsaugen von Wasser anschwillt, die Antheren aber zum Öffnen bringt und die ganze Masse allmählig aus der geöffneten Anthere hervortreibt. Sobald sich nun dieser Schleim im Wasser auflöst, werden die Saementhierchen frei, und nun beginnt dieselben eine fortwährende Drehung in der Achse ihrer Scheibe, was ich nächstens durch Abbildungen näher nachweisen werde. Sieht man diese lebhaften Drehungen, welche bald nach einer gemeinschaftlichen, bald nach verschiedenen Richtungen in nebeneinander liegenden Bläschen stattfindet, an einer großen neben und über einander liegenden Menge dieser Saementhierchen, so glaubt man eine tierische Saamenfeuchtigkeit unter dem Mikroskop zu beobachten; dieser Vergleich ist dann um so statthafter, indem man nur mit vorzüglichen Gläsern die Bläschen, welche das wurmförmige, einem tierischen Saementhierchen ähnliche Gebilde umschließen, sehen kann, oft scheint es zu fehlen, und dann glaubt
man zu sehen, daß sich das Saamenthierechen in einer Spirallinie bewegt. Doch hierüber im zweiten Theile meiner Pflanzen-Physiologie ausführlicher.

Doch wir kommen wieder zu den Closterien zurück, deren braune selbstbewegliche Bläschen in ihrer Ausbildung zu jungen Individuen durch Herrn Morren beobachtet wurden; ich selbst habe dieses noch nicht gesehen, aber wohl sind mir ganz junge Closterien vorgekommen, welche jedoch schon grünlich gefärbt waren und in der ganzen Länge ihres Körpers Krümmungen zeigten. Bald bogen sich die geraden krumm, bald wurden die zusammengekrümmten wieder gerade, ja auch Stürmige Krümmungen waren gar nicht selten, und diese Krümmungen sind gleich denen der Oscillatorien zu erachten. So wird es auch erklärlich, daß man zuweilen ungekrümmte Closterien trifft u. s. w.

1) Die Oscillatorien halte ich für wirkliche Pflanzen, wofür mir hauptsächlich ihre leicht zu beobachtende Fortpflanzung spricht, wenn gleich ihre krümmenden Bewegungen, besonders die an den Spitzen, welche sich oft regelmäßig bald rechts, bald links krümmen, auf eine gewisse thierische Willkübr deuten möchten.
Besondere Beachtung verdient noch die Bewegung kleiner Kügelchen in den Closterien, welche eben Herr Gruithuisen mit dem Charakter-Phänomen verglich. Diese Erscheinung besteht in einer regelmäßigen fortsehreibenden Bewegung kleiner ungefärbter Moleküle, welche unmittelbar an der inneren Fläche der Ränder der Hülle zu beobachten ist. Eine Reihe dieser Kügelchen bewegen sich z. B. in Fig. 2. von a über b nach c, und eine andere Reihe von c über d nach a, ganz wie es in der Zeichnung durch die Richtung der Pfeile angedeutet ist. Man sieht gewiß nur selten, daß diese Ströme von einzelnen laufenden Kügelchen in mehr als einer einfachen Reihe bestehen, aber dicht daneben, oder vielmehr dicht darunter bemerkt man eine Strömung ähnlicher Kügelchen gerade nach entgegengesetzter Richtung, was ebenfalls in der Abbildung, so weit ich es habe sehen können, durch Pfeile angegeben ist. Diese Bewegungen sind hier schwer zu beobachten, und niemals habe ich den Verlauf bestimmter Kügelchen durch den ganzen Umfang des Closteriums verfolgen können, daher kann ich auch nicht mit Bestimmtheit sagen, ob nicht etwa bei diesen Pflänzchen die Strömung der einen Seite an den Enden nach der anderen Seite übergeht, so daß alsdann zwei ganz für sich bestehende, aber nach entgegengesetzter Richtung strömende Kreisdrehungen in jedem Individuum vorkämen, denn ich habe nur einmal den Übergang eines solchen Kügelchens aus der Strömung von b e nach der anderen Seite verfolgt, und zwar geschah derselbe an der Stelle t, wo die Richtung des Pfeiles den Verlauf desselben angibt. Mir scheint es wahrscheinlicher, daß auf jedem der beiden Ränder des Closteriums eine besondere für sich bestehende Rotations-Strömung stattfindet, daß nämlich die fortlaufenden Kügelchen an den Enden einer jeden Seite umdrehen und wieder bis zum anderen Ende zurücklaufen. Strömungen von Flüssigkeiten finden hier nicht statt, denn davon kann man sich überzeugen, wenn einzelne der braunen Sporen aus der Höhle g, den Rändern entlang, neben jenen kreisenden Kügelchen sich bewegen; obgleich sie in gerader Richtung fortlaufen, so geschicht diese Bewegung doch zuweilen absatzweise und mit einer geringen Schnelligkeit, auch können sie hier und da anhalten und wieder zu ihrem früheren Aufenthaltsorte um-
kehren, was nicht möglich wäre, wenn sich der Saft bewegte, worin die Körperchen enthalten sind.

Es liegt auch in dieser Annahme, daß sich die Saftkugeln aus eigener Thätigkeit in einem regelmäßigen Laufe fortbewegen, nichts Unwahrscheinliches mehr, denn wir haben vorher kennen gelernt, daß die braunen Sporen der Closterien aus ihrer tauenden Bewegung unmittelbar in eine ganz ähnliche, nach bestimmter Richtung fortlaufende Bewegung übergehen können. Das Curti’sche Phänomen bei den Charen und anderen Pflanzen, wo dasselbe ganz in dem Typus erscheint, wie es bei den Charen stattfindet, wurde bisher auf eine Weise erklärt, welche mir nicht mehr annehmbar erscheint. Ich war früher selbst der Meinung, daß sich bei jener Erscheinung der Saft bewege, und daß die undurchsichtigen Körperchen in demselben mechanisch mitreiben, und diese Erklärung reichte früher hin, um die vorhandenen Erfahrungen zu erklären. Indessen eine solche regelmäßige Rotationsströmung wie bei den Charen, bei Najas, Vallisneria und Hydrocharis ist nur in sehr wenigen Pflanzen zu finden, in den meisten Pflanzen dagegen ist eine Strömung zu beobachten, welche jener in den Haar-Zellen der Tradescantien ähnlich ist, oder sich doch auf einen solchen Typus zurückführen läßt, und diese Bewegungen, welche an den verschiedenen Zellen einer und derselben Pflanze so überaus mannigfältig auftreten, verlangen eine ganz andere Erklärung. In den wärmsten Tagen des vergangenen Sommers und bei meinem kurzen Aufenthalte in Ober-Italien während einer sehr heißen Zeit, habe ich dergleichen Rotations-Strömungen in allen von mir untersuchten vollkommenen Pflanzen, wenigstens auch in einzelnen Theilen derselben aufgefunden, auch bemerkte ich dieselbe schon früher im Pollen, und ich bin jetzt der Meinung, daß alle die alten Ansichten, welche bisher über diesen Gegenstand herrschten, schwinden müssen, und daß sich die Erkenntnis desselben überhaupt noch in der tiefsten Kindheit befindet, wärn meistens die älteren und schlechteren Mikroskope Schuld haben. Es läßt sich sehr bestimmt nachweisen, daß der Zellensaft ruhend ist, und daß sich darin nur dasjenige strömend bewegt, was wir wirklich sich bewegend beobachten; eben diese Strömungen richten sich nicht nach der Richtung der Zellen-

Nachträgliche Bemerkung zu J. Müller's und Henle's Aufsatz über die Gattungen der Plagiostomen.

Da der Name Gymnura (S. 400.) bereits bei den Säugethiereinen vergeben ist, haben die Verf. den Namen ihrer neuen Rochen-Gattung in Urogymnus abgeändert. Mehrere neue Genera, welche von ihnen seit dem Drucke jener Abhandlung entdeckt sind, werden im folgenden Jahrgange mitgetheilt werden.
ARCHIV
Für,
NATURGESCHICHTE.

In Verbindung mit mehreren Gelehrten

Herausgegeben

Von

Dr. AR. FR. AUG. WIEGMANN,
Ausserord. Professor an der Friedrich-Wilhelms-Universität
zu Berlin.

Dritter Jahrgang.
Zweiter Band.

Bericht über die Leistungen im Gebiete der Naturgeschichte während des Jahres 1836.

Berlin, 1837.

In der Nicolai'schen Buchhandlung.
Inhalt des zweiten Bandes.

1. Literatur der systematischen Botanik vom Jahre 1836. 1
2. Jahresbericht über die Resultate der Arbeiten im Gebiete der physiologischen Botanik während des Jahres 1836 von J. Meyen. 16
3. Bericht über die Leistungen im Gebiete der Zoologie während des Jahres 1836 vom Herausgeber. 125
4. Bericht über die Leistungen im Gebiete der Helminthologie von Dr. C. T. v. Siebold. 254
5. Bericht über die Leistungen in der Entomologie während des Jahres 1836 von Dr. Erichson. 281

Berichtigungen.

5. 155 Z. 5 von unten ist demselben Naturforscher I. Martin.
Literatur

der
systematischen Botanik von dem Jahre 1836.

1) Handbücher.

J. Lindley, Introduction to Botany. Sec. Edit. with corrections and

F. V. Raspail, Nouveau Système de Physiologie végétale et de Bot-
anique, fondé sur les méthodes d'observation, qui ont été développées
dans le nouveau système de chimie organique, accompagné d’un Atlas
de 60 planches d’analyses. Paris 1837. 8. 3 Vol.

F. A. Pouchet, Traité élémentaire de botanique appliquée, contenant
la description de toutes les familles végétales et celles des genres cul-
tivés en offrant les plantes remarquables par leur propriétés ou par
leur histoire. Rouen 1835 et 1836. Tom. I, II et III.

G. Moretti, Guida allo studio della fisiologia vegetabile e della bot-
anica. Paria 1836. 8. (Fortsetzung.)

Davy, Nouveau manuel de botanique traité élémentaire et méthodique
de physique végétale, contenant la glossologie, la physiologie, la tax-

W. L. Petermann, Handbuch der Gewächskunde, zum Gebrauche bei
Vorlesungen so wie zum Selbststudium. Leipz. 1836. 8.

M. Roemer, Handbuch der allg. Bot. etc. 3te Abth. München 1836

A. Richter, Anleitung zur Gewächskunde, zunächst für Seminaristen
und Volksschullehrer. Köln 1836.

E. Winkler, Anfangsgründe der Botanik, zum Gebrauche für Schulen
und zum Selbstunterricht. Zweite umgearbeitete und vermehrte Aufl.
Mit 140 Abbildungen. Leipz. 1836. 12.

M(atty), Leitfaden der Botanik, und Einleitung über das Nützige, was
bei Prüfungen in der Naturgeschichte gefordert wird. Leipz. 1836.

With box and 11 col. plates.

V. Krassow und Leyde, Lehrbuch der Naturgeschichte. 2ter Theil.
Lehrbuch der Botanik. Berlin 1836.

N. C. Seringe et Guillard, Essai de formules botaniques représent-
III. Jahrg. 2. Band.
tant les caractères des plantes par des signes analytiques qui rem-
placent les phrases descriptives; suivi d’un vocabulaire organogra-
phique et d’une synonymie des organes. Lyon et Paris 1836. 4.
F. A. H. J. Müller, Tabellarische Uebersicht des Pflanzenreichs, nach
dem natürlichen Pflanzen-Systeme von Jussieu für angehende Me-
diciner und Pharmaceuten bearbeitet. Stuttgart. 4 Folia-Bogen.
— — Tabellarische Uebersicht des Pflanzenreichs, nach dem
Linéischen Sexual-System für angehende Mediciner und Pharmaceuten
bearbeitet. Stuttgart. 1 großes Blatt.
J. N. Friese, Grundrifs der Phytognosie. Innsbruck 1836.
H. Möhl, Untersuchung der Frage: welche Autorität soll den Gattungs-
namen der Pflanzen beigegeben werden. Tübingen 1836.
C. A. Rohsmässler, Über die Notwendigkeit eines Nomenclator ge-
erum animalium et plantarum. Dresden 1836. (Ein Sendschreiben.)
A. Steinheil, de l’individualité considérée dans le regne végétal.
Strassbourg 1836.
F. Unger, Über das Studium der Botanik. Grätz 1836.
* * Address of Earl Stanhope, President of the medico-botanical society.
London 1836.

2) Über Phanerogamen.
J. Lindley, A natural System of Botany, or a Systematic view of
the Organisation Natural Affinities and Geographical Distribution
of the whole Vegetable Kingdom, together with the uses of the most
important species in Medicine, the Arts etc. Sec. Edit. with nume-
rous additions and corrections and a complete list of Genera with
their Synonyma. London 1836. 8.
J. C. Loudon, Encyclopaedia of plants. Comprising the description
specific Character, Culture, History, Application in the Arts, and
every other desirable particular, respecting all the plants indigenous
to, cultivated in, or introduced into Britain. Sec. Edit. correct. con-
taining nearly 1200 closely-printed pages, and 10,000 Engravings
on wood, from Drawings by Sowerby. London 1836. Erscheint auch
in das Deutsche übertragen von D. Dietrich. Jena 1836. (In Lie-
ferungen.)
Stephan Endlicher, Genera plantarum secundum ordines naturales
K. S. Kunth, Enumeratio plantarum lucusque cognitarum secundum
familias naturales dispositarum; characteribus, differentiis et syno-
nymis. Tom. II. Stuttgartiae et Tubingae 1836.
A. P. D. De Candolle, Prodromus systematici naturalis regni vege-
tabilis. Pars V. sistens calycereas et compositarum tribus priores.
Paris 1836. 8.
Ch. G. Nees ab Esenbeck, Systema Laurinarum. Berolini 1836. 8.
44 Bogen.
— Species graminum, iconibus et descriptionibus illustravit. Fasc. XXIX — XXX.
L. Griesselelch, Kleine botanische Schriften. I. Carlisle 1836. 8.
Soyer-Willeriet, Gnaphalium neglectum, nouvelle espèce du groupe des Filaginées, avec des observations sur les autres espèces françaises de ce groupe. Nancy 1836. 8.
W. J. Hooker, Icons plantarum, or figures, with brief Descriptive Characters and Remarks of New or Rare Plants, selected from the Author's Herbarium. Part. I. London 1836. 8.
Leon Dufour, Notice sur le Sonchus scorzoneraformis Lag. (Scorzonera pumila Cav. — Ann. des scienc. nat. 1836. I. p. 49.)
J. C. Schlosser, Diss. inaug. botanica de Papilionaceis in Germania sponte crescentibus. Ticini 1836. 8.
Guthnick in Bern, Bartsia parriflora n. sp. — Flora v. 1836. p. 767.
A. Bertolomii, Commentarius de Mandragoris. Rononiae 1835. 4.
Zenker, Plantae indicae, Fasc. II. 1835.
Gaudichaud, Cissus hydrophora n. sp. — Ann. des scienc. nat. 1836. II. p. 141.
F. Herbich, Select. plantarum varior. Galiciae et Bucowinc. Czer-
norinii 1836.
W. S. Besser, Supplementum ad synopsis Absinthiorum. — Tentu-
men de Albrotanis. Dissertat. de Scriphidis atque de Dracunculis.
Moscou 1836.
E Spach, Hist. naturelle des végétaux phanérogames. T. V. Paris
1836. (Suite à Buffon.)
G. A. W. Arnott, New Species of Indian Balsamineae — Hooker's
Companion etc. I. p. 320 — 325.
— Oliva Thunbg. eine capische Gattung. — Allg. Gartenzeitung
von 1826. p. 25.
— Pentagonaster, eine neue Pflanzengattung der De Candolle-
schen Leptospermeen mit freien Staubgefässen. — Allg. Gartenzeitung
von 1836. p. 113.
Pfeiffer, Ueber die Gattungen Lepismium und Rhipsalis. — Allgem.
Gartenzeitung von 1836. p. 185.
— Beschreibung einiger neuer Cacteen. — Allg. Gartenzeitung
von 1836. p. 257.
Tommasini zu Triest, Mittheilungen über Crocus-Arten. — Flora von
A. Dietrich, Beschreibung der Ipomoea elegans Nob., eine neue Zier-
F. Otto und A. Dietrich, Ueber eine neueGattung aus der Familie
— Die Begonien, welche im Berliner botanischen Garten cultivirt
— Beschreibung und Cultur des Echinocactus phyllacanthus Hort.
— Cereus Mallisoni sp. hybr. — Verhandlungen des Gartenban-
1836. p. 134.
Ch. S. Kunth, Distribution méthodique de la famille des Graminées.
20me à 30me Livr. Paris 1836.
Ed. Poeppig, Nova generas ac species plantarum c. A. St. Eadlicher
Edwards, Botanical Register or ornamental or Flower-Garden
Catalogue méthodique des plantes du jardin botanique de la faculté de
medecine de Strasbourg. 1836. 8.
Curtis and Hooker, Botanical Magazine or Flower-Garden dis-
played. London 1836.
H. Maund, The Botanical Garden or Magazine of Handy Flower
Plants cultivated in Great Britain. London 1836.
Bureau, Sur le Lythrum alternifolium. p. 287.

3) In Bezug auf besondere Floren.
F. Nees ab Esenbeck, Genera plantarum flurae germanicae. Fase. VII — XII. Bonae 1836.
J. F. Curie, Anleitung, die im mittleren und nördlichen Deutschland wachsenden Pflanzen auf eine leichte und sichere Weise durch ihre Untersuchung zu bestimmen. Kitzlitz 1835. 8.
J. W. Meigen, Deutschlands Flora, oder systematiche Beschreibung der in Deutschland wildwachsenden, und im Freien angebaut werden den Pflanzen. I. Essen 1836. 8.

J. E. Aesclepag, Plantae Catyledonae Florae Gothoburgensis, qua, secundum familiarium naturalium ordinem Frisianum, dispositae at- que descriptae. Lundae 1836. 8.

R. Deaken and R. Marnock, Florigraphia britannica or engravings and description of the flowering plants and feras of Britain.

D. Cooper, Flora metropolitanana; or Botanical Rambles within Thirty Miles of London etc. London 1836. 12.

W. Rhind, The northern Flora; or a Description of the Wild Rants belonging to the North and East of Scotland; with an Account of their Places of Growth and properties. Part. I. Edinb. 1836. 8.

R de Visiani, Icones plantarum quarundam Aegypti ac Nubiae. Padua 1836.

Ch. F. Ecklon et C. Zeyher, Enumeratio plantarum Africae australis extratropicae etc. Pars II. Hamburgi 1836.

W. Jack, Description of Malayan plants. — Hooker's Companion etc. I. p. 121 — 157, 253 — 272.

A. Colla, Plantae rariores in regionibus chilensisibus a Berthero nuper detectae. Fasc. IV et V. A. Torino 1835.

Wight and Arnott, Illustrations of Indian Botany. — Hooker's Companion etc. I. p. 20, 38, 81, 117, 161, 218, 226, 304.

C. L. Blume, Rumphia, sive Commentationes Botanicae, imprimit de plantis Indicæ orientalis, tum notis incognitis, tum quae, in libris Rheeditii, Rumphii, Roxburghii, Wallichii, aliorum recensentur.

J. Hooker, Contributions towards a Flora of Van Diemen's Land. — Hooker's Companion etc. I. p. 272 — 277.

W. J. Hooker and W. Arnott, Contributions towards a Flora of South America and the Islands of the Pacific. — Hooker's Compan. etc. I. p. 29 — 38, 102 — 110, 234 — 244.

Hooker, Notice concerning Mr. Drummond's Collections made chiefly in the southern and western plants of the United States. — Compan. etc. I. p. 21 — 26, 39 — 49, 95 — 100, 170.

— Description of some of the rarer or little known plants indigenous to the United States, from the dried specimens in the Herbarium of that Academy. — Ebendas.

A. Zawadzki, Flora der Stadt Lemberg, oder Beschreibung der um Lemberg wildwachsenden Pflanzen, nach ihrer Blüthzeit geordnet. Lemberg 1836.

* * * Floraes moldavicæ species ac genera hucusque excursionibus explorata ac secundum Linnæi systema ordinata. Maji 1836. — Flora von 1836. Beiblätter 2r Bd. p. 53 — 74.

Bertoloni, Flora Italica. Tom. II. Fasc. 3—5.
G. Conolli, Flora Comense disposita secondo il sistema di Linneo, Tom. I. II. Como 1835. in 18.
F. V. Merat, Flore des environs de Paris, suivant la méthode naturelle 4me Edit. 2 Vol.
J. J. Serres, Flore abrégée de Toulouse. 8.
A. Mutel, Flore française, etc. Tom. II. et III. av. atlas in 8. obl.
R. P. Lesson, Flore Rochefortine, ou Description des Plantes qui croissent spontanément ou qui sont naturalisées aux environs de la ville de Rochefort. Rochefort 1836. 8.
Bautier, Tableau analytique de la flore Parisienne d’après la méthode adoptée dans la flore française de MM. de Lamarek et De Candolle. 3me édition. Paris 1836. 18.
J. S. Henslow, A Catalogue of British Plants, arranged according to the Natural System, with the Synonyms of De Candolle, Smith, Lindley and Hooker. See. édit. 12mo. 1836.
— — Enumeration of Species and Varieties of Plants which have been deemed British, but whose indigenousness to Britain is considered to be questionable. London etc. Mag. Jan.—April 1836. p. 88.
J. Lindley, Synopsis of the British Flora arranged according to the natural orders. Sec. Edit. with numerous additions and improvements. 12mo.
J. T. Mackay, Flora Hibernica; comprising the Plants, Ferns, Lichens etc. of Ireland. Arranged according to the natural System. Dublin 1836.
— — Observations on British plants. Compan. etc. I. p. 188—194.

H. C. Watson, *Remarks on the Botany of Britain, as illustrated in Murray's Encyclopaedia of Geography. — Hooker's Companion etc. I. p. 228 — 234.

4) *Uber Cryptogamen.

J. G. Agardh, *Novitiae Florae Sueciae ex Algarum familia, quas in itineribus ad arcos occidentales Sueciae annis 1832 — 35 elogietum cum observationibus diagnosticis et geographic. etc.

J. Balsamo-Crivelli, Aufstellung von zwei neuen Arten Mucedineen,

De Notarisi, Mantissa Museorum ad floram pedemontanam. Turin 1836. 8. 1

G. G. J. Homann, Flora von Pommern u.s.w. 3r u. letzter Band. Cöslin 1836.

Thompson, On the Irish Algae. — Loudon The Mag. etc. 1836 p. 147.

J. V. Krombholz, Naturgetreue Abbildungen und Beschreibungen der giftaren, schädlichen und verdächtigen Schwämme. 4s u. 5s Heft. fol. Prag 1836.

Agardh, Icones Algarum Europaearum. Liev. IV. Lpz. 1836.

Schüber, Lichenum helvetiorum spicilegium. Sect. VI et VII.

J. E. Duby, Notices sur quelques Cryptogames nouvelles des environs de Bakia 8.

5) Für angewendete Botanik.

A. Rallmann, Die Gift-Pflanzen und Gift-Schwämme Deutschlands, nebst Abbildung und Beschreibung eines tollen Hundes u.s.w. Cassel 1837. 8.

J. G. Fischer, Die schädlichen Gift-Pflanzen Deutschlands. Nach der

J. de Fontanelle et Mr. Barthez, Nouveau Dict. de botanique médicale et pharmaceutique contenant la description et les propriétés médicinales des végétaux, des animaux et des minéraux. Par une société de médecins, de pharmaciens et de naturalistes, sous la direction de M. Paris 1836. 2 Vol. 8.

E. A. Duchesne, Répertoire des plantes utiles et des plantes vénéneuses du globe, contenant la synonymie latine et française des plantes etc. Paris 1836. 8.

Delle Chinje, Flora medica, oss. Descriz. delle piante più usate nella farmacoepa nepotetana. Nespel 1836. 2 B.

Kustelezki, Medicinisch-pharmaceutische Flora für Ärzte, u. s. w. 5ler, 6ler und letzter Band. Prag 1836.

Overs een nieuw Lackmoes-mos (Roccetta gracilis) van het Eiland Bona, en deszelfs nuttigheid voor het fabrykwezen. Dorr A. H. van der Boon Mesch. — Tijdschrift ter bevordering van Nijverheid. 1835. 3 No.

C. Nickels, Cultur, Benennung und Beschreibung der Rosen. Ein Hilfsbuch, aus welchem man ersehen kann, wie eine Rose heißt, u. s. w. Presburg 1836. 8. 1s u. 2s Heft.

Arnz et Comp., Sammlung der neuesten und schönsten, aus Frankreich, England, Belgien und Deutschland bezogenen, in unserem Garten

Krause und Schenk, Abbildung und Beschreibung aller bis jetzt bekannten Getreidearten, mit Angabe ihrer Cultur und Nutzen u. s. w. 3tes Heft. Jena 1836.

Matthieu Bonfons, Hist. naturelle, agricole et économique du Maine. Paris et Turin 1836. fol. cum tab. XIX.

Collection de jolies petites fleurs choisies parmi les plus gracieuses productions de ce genre, tant en Europe que dans les autres parties du monde; publiée par E. Leconte, d'après les dessins, et gravés sous la direction de P. J. Redouté. 6me Livr. 4.

Letter from N. B Ward, to Dr. Hooker, on the subject of this improved method of transporting living plants. — Hooker's Compan. etc. I. p. 317.

J. Lindley and W. Hutton, The fossil flora of Great Britain; in figures and descriptions of the Vegetable remains found in a fossil state in this country. London 1836.

6) Geschichtliche Botanik.

7) Pflanzen-Sammlungen.

M. Heuffel und Ch. M. Wierzbicki, Banater- und Siebenbürger-Pflanzen. Fasc. VIII — X.

F. Tausch, Dendrotheca Exotico-Bohemica. Fasc. IV. (Auch sind noch vorrätige Exemplare von den bereits geschlossenen Herbarien des Hrn. Tausch zu haben.)

Angelis, Herbarium vicum plantarum styriacarum. Cent. prima.

S. Garavaglio, i Muschi dell' Austria inferiore racolti e pubblicati del. Dec. I — III. Milano.

Schürer, Lichenes helvetici exsiccati. Heft XI u. XII.

Fr. Kützing, Algarum aquae dulcis. Dec. XIII — XIV.

Noé in Fiume, Istrianische Gewächse in Centurien.

H. Ch. Funck, Cryptogamische Gewächse, besonders des Fichtelgebirges. 30s Heft. Leipzig 1836.

Bartling et Hampe, Vegetabilia cellularia in Germania septentrionali, praesertim in Hercynia et in agro Goettingensi lecta. (4 Heft. Fortsetzung erschienen.)

Asa Gray, Specimen illustrative of the Grasses and Cyperaceae of North-America. 1835. 2 Vol.
Gardener's Musci Britannici.
Mary Wgatt, Algae Danmonienses. 3rd Vol. principally coll. in
Devonshire.
M. J. Berkeley, British Fungi, consisting of deind specimens of the
Fasc. I et II.
Herbier de Plantes médicales indigènes avec texte, publié par M. Alph.
Dalmenesche. In fol. de 60 feuilles. — Dies Herbarium besteht aus
120 Pflanzen in 20 Lieferungen. Jedem Bogen ist die beschriebene
Pflanze aufgeklebt.

Nachtrag.

In der uns jüngst zugekommenen:
Kjøbenhavn 1837. 8.
finden sich folgende botanische Aufsätze:
J. W. Hornemann, über die Flora danica S. 105.
Lebensbeschreibung des Dr. Carey, Stifter des bot. Gartens in
Serampore von Voigt, S. 233.
Drejer, Bemerkungen über die Gattung Polygonum. S. 345. —
Notiz über Stellaria graminea. S. 350.
Botanische Notizen von Blytt, Lector in Christiania.

Anm. Eine kurze Inhalts-Anzeige dieser sämtlich in dänischer Spra-
che geschriebenen Abhandlungen soll gelegentlich in diesem Archive mög-
licheitl werden.

Herausgeber.
Bericht
über die
Resultate der Arbeiten im Gebiete der physiologischen Botanik
während des Jahres 1836;
von
J. Meyen.

Manche Gegenstände der Pflanzen-Physiologie, über welche in den früheren Berichten sehr ausführlich gehandelt worden ist, werden auch in dem vorliegenden wieder genauer erörtert werden müssen; es könnte dieses vielleicht überflüssig erscheinen, doch das Ziel, welches Referent durch diese mühsamen Berichte zu erlangen strebt, ist: eine Einheit in den Ansichten und eine
Uebereinstimmung in den Beobachtungen und den Lehren von dem Baue und den Verrichtungen der Pflanzen zu bewirken, damit diese Wissenschaft endlich zu der Würde gelange, daß sie sich der Physiologie der Thiere zur Seite stellen könne.

Bedeutend ist der Verlust, welchen der Kreis der Botaniker im vergangenen Jahre erlitten hat; Schrank, Persoon, Jussieu und Schrader sind nicht mehr in ihrer Mitte; ihre Leistungen sind bekannt und werden lange in der Geschichte unserer Wissenschaft glänzen.

2) Paris 1836. 8. (Ein höchst dürftiges Machwerk. Herausg.)

III. Jahrg. 2. Band.
So erwünscht es den Wissenschaften ist, daß gegenwärtig die meisten gelehrten Gesellschaften mehr oder weniger ausführliche Berichte über die Arbeiten ihrer Mitglieder erscheinen lassen, so ist doch zu bemerken, daß die kurzen Berichte über den Inhalt einzelner Abhandlungen, welche in den Sitzungen der Gesellschaften gelesen wurden, oft mehrmals gedruckt erscheinen, bis endlich, oft sehr lange Zeit nachher, jene Vorträge vollständig herausgegeben werden. Da diese kurzen Berichte aber oftmals sehr unvollständige Darstellungen geben, so hat es Referent zuweilen für nöthig gefunden, erst das Erscheinen der Original-Abhandlung abzuwarten.

Über Symmetrie, Rangordnung und Charakteristik der Natur der Pflanzen.

Eine kleine Schrift des Hrn. Mohl 1) handelt ausführlicher über die Symmetrie der Gewächse. Es wird darin nachgewiesen, daß die meisten Organe der Pflanzen mehr oder weniger deutlich zur symmetrischen Bildung hinneigen. Die concentrische, symmetrische und die diaphorische Bildungsweise wird zuerst unterschieden und speziell bei einer Menge von Pflanzen nachgewiesen. Ganz vorzüglich wird der Bau der niedern Gewächse betrachtet, und Hr M. macht die Bemerkung, daß eine

1) Über die Symmetrie der Pflanzen. (Als Inaugural-Dissertation erschienen.) Tübingen 1836. 8.

Bei den Blüthen kommt es sehr selten vor, daß sie nicht durch einen senkrechten Schnitt in zwei gleiche Hälften getheilt werden, und als allgemeine Regel gilt, daß alle terminirten Blüthen regelmäßig sind, daß dagegen die unregelmäßigen Blüthen den indeterminirten Inflorescenzen zugehört sind, demnach steht die symmetrische Bildung der Blüthen im Zusammenhange mit ihrer Stellung. —

Hr. Fričs ¹) hat die Frage, welche Gewächse als die voll-

1) Entwurf zu einer neuen Beantwortung der Frage: welche Ge-
kommenst anzusehen sein möchten, auf eine sehr scharfsinnige Weise zu lösen gesucht. Er zeigt zuerst, wie die Ansichten früherer Botaniker über diesen Gegenstand unhaltbar wären; vortrefflich widerlegt er Hrn. De Candolle's Ansicht, nach welcher die Ranunculaceen die am höchsten stehenden Pflanzen sein sollten, denn die Vollkommenheit bei den Gewächsen beruht nicht auf der vollkommenen Ausbildung irgend eines Organes, sondern auf der harmonischen Ausbildung sämtlicher Organe zu einem typischen Ganzen. Zu den Kriterien der Vollkommenheit eines Gewächses rechnet Hr. F. folgende:

1) Je mehr Metamorphosegrade eine Pflanze durchgeht, ehe die Frucht ausgebildet wird, desto vollkommener ist sie. 2) Je vollständiger die Metamorphose, desto vollkommener ist das Gewächs. 3) Die vollkommensten Gewächse haben auch die meist regelmäßige und symmetrische Blumenbildung. 4) Diejenigen sind die vollkommensten, welche nicht bloss alle Organe besitzen, sondern diese auch in der vollkommensten Harmonie vereinigt haben. 5) Je mehr Gewicht die Natur auf die Ausbildung des Samens gelegt hat, um so vollkommener ist das Gewächs. 6) Die Gewächse sind die vollkommensten, welche in Struktur, Form, Zahlenverhältnisz und Lebensäußerungen den Typus ihrer Abtheilung am reinsten ausdrücken, und 7) da das Typische das Resultat von den gewöhnlichsten Verhältnissen ist, so folgt daraus, daß die vollkommensten Gruppen auch die zahlreichsten und größten sein müssen.

Nach diesen Grundsätzen, welche wohl allgemein zu billigen sind, stellt Hr. Fries die Compositae als die entwickeltesten Pflanzen dar.

Interessante Beobachtungen haben wir über die Fortpflanzung einiger niederer Algen erhalten, welche die große Frage, ob die Bacillarien und die denselben verwandten Geschöpfe den Pflanzen oder den Thieren anzureihen sind, immer näher zur bestimmten Entscheidung bringen. Zuerst hat Hr. Mohl 1) eine

1) Ueber die Vermehrung der Pflanzen-Zellen durch Theilung. Tübingen 1835. (Erschienen gegen Ende 1836.)
Beobachtung an *Conferva glomerata* bekannt gemacht, nach welcher eine Vermehrung der Glieder dieser Pflanzen durch Theilung erfolgt. Die Äste dieser Pflanze entspringen stets an dem oberen seitlichen Ende eines Gliedes des Confervenfadens, und zwar auf die Weise, daß zwischen der Zelle, von welcher der Ast entspringt, und zwischen dem untersten Gliede des Astes, keine Communication stattfindet, sondern beide Glieder durch eine Scheidewand vollkommen getrennt sind. Indessen die Untersuchungen hervorsprossender Äste zeigen, daß Anfangs jene Scheidewand fehlt, und daß nur eine höckerartig, Protuberanz des Gliedes vorhanden ist, welche in einen cylindrischen Schlauch von der gewöhnlichen Länge der Glieder anwächst. Als dann zeigt sich eine Einschnürung, als eine ringsförmige, in der Mitte durchbrochene Scheidewand, welche sich immer mehr ausbildet, bis sie endlich den Zusammenhang zwischen der Zelle des Astes und des Stammes völlig unterbricht, und nun aus der ästigen Zelle zwei, völlig von einander abgeschlossene Zellen entstanden sind. Die neuentstandene Zelle vergrößert sich wieder und theilt sich abermals u. s. w. In Folge dieser Beobachtung glaubt Hr. Mohl annehmen zu können, daß auch bei denGattungen *Seytonema* und *Oscillatoria* eine ähnliche Vermehrungsart stattfindet, und hierin stimmt Referent fast ganz bei. Bei den Rivularien verhält es sich ganz ebenso, wenn auch hier diese Theilung nicht an der Spitze der Sporangien stattfindet, was aber, wie sogleich gezeigt werden wird, auch bei Conferven vorkommt. Durch verschiedene Erscheinungen ist es Hrn. Mohl wahrscheinlich geworden, daß auch bei den verschiedenen Arten der Gattung *Spirogyra* Link (*Zygnema* Ag.) die einzelnen Zellen das Vermögen besitzen, sich in ihrer Mitte durch eine Scheidewand zu theilen. Diese Vermuthung kann Ref. vollkommen bestätigen, denn Beobachtungen an keimenden Spyrogyren, welche seit Vaucher's 1) Beobachtungen, wie es scheint, von Niemanden wiederholt worden sind, haben es denselben auf das Bestimmteste gezeigt, und zwar ist es in diesem Falle Anfangs immer das letzte Glied, welches noch in der aufgeplatzten Kapsel steckt, sich bedeutend verlängert und durch eine neue Schei-

dewand in zwei Zellen theilt, worauf sich wieder die unterste Zelle verlängert u. s. w. Sehr bald verlängern sich aber auch einzelne dieser neuen Zellen und theilen sich abermals.

Von höchster Wichtigkeit wäre es nun, daß jene, zuerst durch Hrn. Dumortier festgestellte Thatsache, daß sich Zellen durch Bildung von Scheidewänden vermehren können, auch im Zellengewebe der vollkommenen Pflanzen nachgewiesen würde, was denn auch durch Hrn. Mirbel's glänzende Untersuchungen über die Bildung des Pollens bei den Cucurbitaceen mit ziemlicher Gewißheit gesehchen ist. Ref. hat die Entstehung von Scheidewänden in den Zellen, bei der Bildung der Drüsenköpf-

chen mancher Pflanzen zu sehen geglaubt; auch die Entstehung der eigenthümlich geformten Härchen auf der innern Fläche der Schläuche, bei der Gattung Utricularia, scheinen nur durch Einschürung, Auswachung und Theilung zu entstehen. Ja eine solche Bildung von mehr oder weniger vollkommenen Scheidenwänden, zeigt sich selbst in den Diachym-Zellen der Blätter von Pinus sylvestris; sie sind auf Querschnitten als Ausläufer von der innern Seite der Zellenscheide zu sehen, doch eine vollständige Theilung dieser Zellen ist allerdings nicht wahrzunehmen.

Eine Vermehrung der Pflanzen-Zellen durch Theilung ist also schon sehr bestimmt nachgewiesen, daher sind die Kennzeichen, welche Hr. Ehrenberg 1) zwischen Thieren und Pflanzen aufstellt, keineswegs so bestimmt, sondern möchten im Gegenteil zur Beweisführung dessen zu benutzen sein, was Hr. E. bekämpfen will. Eine Vermehrung durch Theilung hält Herr Ehrenberg für einen Charakter, welcher vielen Geschöpfen, die sich bestimmt als Thiere erweisen, zukomme, und den Pflanzen ganz und gar fehle, denn diese würden immer durch Verlängerung und Bildung von Knospen; daher denn die Bacillarien nicht den Pflanzen, sondern ganz bestimmt den Thieren anzureihen wären. Da nun nachgewiesen ist, daß die Theilung der Zellen bei bestimmten Pflanzen ganz auf dieselbe Weise vor sich geht, wie bei Bacillarien, und da man wohl nachweisen kann, daß die Theilung bei der Vermehrung der Infusorien und anderer niederen Thiere bedeutend verschieden von der Theilung der Pflanzen-Zellen ist, so möchte eine solche Theilung durch Scheidenwände gerade ein Zeichen abgeben, um die Pflanzen von den Thieren zu unterscheiden.

Hr. Mohl 2) macht die Bemerkung, daß der von Hrn. E. angegebene Charakter, nämlich die Fähigkeit der Theilung bei den Thieren, der Mangel derselben bei den Pflanzen, das Schicksal so mancher andern, vereinzelt hervorgehobener Unterscheidungsmerkmale thriefe, zwar im Allgemeinen richtig, aber im speziellen, zweifelhaften Falle unzuverlässig zu sein. Wobei

Hr. Mohl auf seine Beobachtung über die Theilung der Con-

cerven-Schlüche hindeutet, worüber im Vorbergehenden berich-
tet wurde. Auch Hr. M. gesteht, daß ihm die Stellung der Bac-

cillarien nach Jahre langen Beobachten ebenso zweifelhaft ge-

blieben sei, daß aber ihre Vermehrung durch Theilung nicht be-

crechtige, dieselben zu den Thieren zu zählen.

Referent führt noch an, daß sich auch die Herren Link ¹), Unger ²) und Morren ³) im vergangenen Jahre dahin ausge-

ersprochen haben, daß jene zweifelhaften Geschöpfe, welche unter
dem Namen der Bacillarien bekannt sind, den Pflanzen anzurei-

chen seien, demnach möchte wohl anßer Hrn. Corda kein Bo-

taniker zu finden sein, welcher sich speziell mit Pflanzenanato-
mie beschäftigt und nicht die Bacillarien für Pflanzen hielte.

Hierzu sind die Widersprüche zu beurtheilen, welche sich
über diesen Gegenstand in den Berichten finden, die Hr. Wieg-
mann und ich über die Leistungen der Zoologie und der phy-
siologischen Botanik von dem Jahre 1835 ⁴) herausgaben; indem
dieselben Geschöpfe, bald als Pflanze, bald als Thiere, und zwar
unter ganz verschiedenen Benennungen, aufgeführt worden sind ⁵).

Hr. Morren hat in der angeführten höchst wichtigen Ab-

handlung über Closterien die Frage, ob dieselbe den Thieren oder
den Pflanzen anzureihen wären, sehr ausführlich behandelt; durch
Anwendung sehr starker Vergrößerungen ist es ihm gelungen,
zuzuzeigen, daß jene, durch Hrn. Ehrenberg an den Spitzen die-
ses Geschöpfes entdeckten rothen, und sehr beweglichen Pünkt-
chen nichts anderes als Bläschen sind, welche sich später zu neuen Individuen umwandeln. Diese beweglichen, gleichsam oscillie-
 renden Pünktchen waren es eben, welche als Bewegungsorgane
angesesehen wurden und die Stellung der Closterien zu den Thie-

ren zu rechtsfertigen schienen, was aber nun, nach Hrn. Mur-

²) S. dessen Bearbeitung der Algen in Endlicher’s Genera plant.

³) Sur les Closteries l. c.

⁴) Es thut mir leid, daß diese Widersprüche auch im diesjährigen

Berichte wiederkehren müssen, indem ich Ehrenberg’s Ansicht von
der thierischen Natur der Bacillarien durch die angeführten Gründe nicht
etkräf tet glaube.

⁵) Herausgeber.
ren’s Entdeckung wegfällt. Außer dem Vorkommen dieser, im Innern der Closterien sich bewegenden Propagula, hat Hr. Morren noch eine Fruchtbildung durch Conjugation, ganz ähnlich der Art der Fruchtbildung bei den Conjugaten beobachtet *), und außerdem findet auch eine Vermehrung der Closterien durch Theilung Statt.

Die Kieselhülle, welche die Closterien wie alle übrigen Bacillarien einhüllt, sieht Hr. Morren als eine Bildung an, welche der sogenannten Cuticula der Pflanzen analog sei, was aber wohl nur in gewisser Beziehung zu bestätigen wäre, denn bei den vollkommenen Pflanzen liegt diese seine Platte von Kiesel in der Substanz der Cuticula, und wird von dieser erst durch die Zerstörung des Organischen geschieden. Außer der Kieselhülle nimmt Hr. M. noch zwei besondere Membranen an, welche die Haut der Closterien bilden und die grüne Masse einschließen, doch er selbst bemerkt hierzu, daß sie eigentlich erst durch die Metamorphose der Pflanze sichtbar werden. Referent hält die innerste Haut für ein Analogon der innern Schlauchhaut, welche sich in den Gliedern der Conferven bildet, wenn dieselben ihre Sporen zur Reife bringen, oder sich auf eine andere Art, wie z. B. durch Auswachsen und Theilung zu vermehren beginnen.

Auch Hr. de Brébisson *) beobachtete die rathselhaften Diatomeen, um die Frage zu entscheiden, ob sie den Pflanzen

oder den Thieren anzureiben wären. Bei der Verbrennung einer großen Menge von *Fragilaria pectinalis* zeigte sich ein animallischem Geruch. Ein solcher Geruch möchte aber ein sehr unbestimmtes Kennzeichen sein, denn es zeigt sich ein ähnlicher bei dem Verkohlen vieler anderen Algen. Nach dem Verbrennen der *Fragilaria pectinalis*, so wie mehrerer anderer Geschöpfe der Art, fand Hr. B. die Kieselhüllen, welche dieselben umgeben, in einem vollkommen erhaltenen Zustande, ganz ähnlich demjenigen, welchen die fossilen von Hrn. C. Fischer im Torfmoore bei Franzensbad entdeckten Diatomeen zeigen, die zu den glänzenden Beobachtungen führten, welche Hr. Ehrenberg über diesen Gegenstand im Verlaufe des vergangenen Jahres bekannt gemacht hat 1). Die Resultate dieser letztern Untersuchungen gehören eigentlich ganz der Geognosie an, nur die eine Bemerkung müssen wir hinzufügen, dafs unter den bis jetzt aufgefundeneu fossilen Infusorien nur jene Gebilde zu verstehen sind, welche die Botaniker, wie früher nachgewiesen wurde, für Pflanzen erklären. Das fossile Vorkommen dieser mikroskopischen Pflänzchen ist durch die harte Kieselhülle bedingt, welche allen zersetzenden Einflüssen widersteht. Hrn. Kützing's Erfindung, dafs die Hülle der Bacillarien aus Kiesel besteht, wo von in unserem ersten Jahresberichte die Rede war, wird hierdurch um so glänzender. Wenn man dergleichen kleine Pflänzchen in ihrem lebenden Zustande beobachtet, so ist es sehr oft der Fall, dafs dazwischen auch einzelne abgestorbene vorkommen, welche dann jene ganz durchsichtige und ungefärbte Kieselhülle zeigen, so dafs also hierdurch erwiesen wird, dafs eine große Masse solcher Kieselhüllen auch durch Faulnifs jener Pflanzen, oder auf nassem Wege hervorgehen kann, und dafs also Gebergmassen, welche mehr oder weniger ganz aus solchen Kieselhüllen bestehen, nicht immer als ausgeglühter Meeresboden anzusehen sein dürften. Hr. Brébiisson möchte die Diatomeen in zwei Abtheilungen bringen, nämlich in die eigentlichen Diatomeen, welche eine Kieselhülle zeigen, und in die Desmidien, welche ohne Kieselhülle sind und sich verkoh-

len lassen. Bei den vollkommeneren Pflanzen, deren Epidermis mit einer Kieselhülle durchdrungen ist, dürfte man wenigstens solche Abtheilungen nicht machen, hier wären sie aber nebenbei wohl brauchbar.

In einer ganz neuen Schrift hat sich Hr. Mohl 1) abermals gegen die tierische Natur der Bacillarien ausgesprochen. Ich gebe zu, bießt es in dieser Schrift, daß die Zweifel, welche man gegen ihre vegetabilische Natur erhob, noch nicht beseitigt sind, allein eben so wenig ist ihre tierische Natur erwiesen und es finden sich offenbare Übergänge von ihnen zu den Pflanzen, u. s. w.

Über Verbindung, Bau und Inhalt der Pflanzen-Zellen.

1) Über die Symmetrie der Pflanzen. Tübingen 1836, im Decemb. (Als eine Inaugural-Dissertation erschienen.)

Abhandlung sucht Hr. Mohl die Gründe zu entkräften, welche Hr. Mirbel gegen seine Ansichten über die Vereinigung der Pflanzen-Zellen ausgesprochen hat, und weist eine sogenannte Intercellularsubstanz nicht nur in den Häuten des Pollens nach, sondern auch bei den verschiedenen Familien der Cryptogamen, wie im Gewebe der höheren Pflanzen, doch in wieweit dieses gelungen ist, das wird noch, zum Theil im Verlaufe dieses Berichtes, durch die Beobachtungen anderer Botaniker erwiesen werden.

Bei den Algen findet Hr. M. jene homogene Substanz zwischen den Zellen, wodurch diese zu einem Ganzen verbunden werden, am deutlichsten. Bei den Nostochioceen, den Rivularien, bei Protococcus, Palmella, Hydrurus, Oscillatoria, Scytonema u. s. w. ist die, mehr oder weniger dicke schleimige oder gallerntartige Substanz als ein Analogon der Intercellularsubstanz bei den höheren Pflanzen anzusehen. Bei den eigentlichen Conferven ist die allgemeine Schleimmasse verschwunden, oder bildet nur einen so dünnen Ueberzug über die Fäden, daß diese glatt und schlüpfrig werden, aber nicht mehr in Massen zusammenhängen, dagegen besitzen sie eine homogene, äußere Röhre. — Von den wahren Conferven sind es wohl die Spirogyren Link’s, welche die stärkste Schleimhülle aufzuweisen haben, und bei diesen, wie bei anderen Conferven kann man beobachten, daß diese Schleimmasse mit zunehmendem Alter der Pflanzen dicker wird, und daß sie bei den ganz jungen Pflanzen noch ganz fehlt; demnach kann auf diese Substanz wohl schwerlich die Ansicht ausgedehnt werden, welche Hr. Mohl über die Bedeutung der Intercellularsubstanz ausgesprochen hat.

Bei den zusammengesetzteren Algen ist jene schleimige Substanz, nach Hrn. Mohl’s Beobachtung nicht nur auf der Oberfläche des ganzen Gewächses, sondern sie ist auch zwischen die einzelnen Zellen eingelagert, was auch schon von Eysenhard und Agardh beobachtet worden ist, und da diese homogene Masse die Zwischenräume der Zellen vollkommen ausfüllt, so fehlen bei diesen Gewächsen die Intercellulargänge vollkommen. In dem Thallus der Flechten bildet die Intercellularsubstanz einen weiger auflösenden Bestandtheil, als bei den Algen. Es sind hier die Zellen der äußeren, im Wasser durchsichtig werdenden

Referent's Ansichten sind über diesen Punkt der Beobachtungen sehr verschieden von denen des Hrn. M. Sind dergleichen Schritte sehr zart und beobachtet man dieselben bei 1000- und 1800maliger Vergrößerung mit achromatischen Gläsern, so kann man durchaus keine solche Linie bemerken, welche die äußere Fläche der Zellenmembran von der Interzellularsubstanz scheidet, sondern man sieht ganz deutlich, daß gleichsam ein allmäßlicher Übergang aus der Substanz der Zellenmembran in diejenige stattfindet, welche man Interzellularsubstanz nennen will. Auch führt Ref. eine Beobachtung an, welche auf das Bestimmteste zeigt, daß jene Interzellularsubstanz des Hrn. M. keine eigene, für sich bestehende Substanz ist, welche gleichsam
zwischen die Zellen ausgegossen wäre, sondern daß sie den Zellennwänden selbst angehört, und von diesen abgesondert wird, wenn eine innigere Verbindung solcher Zellen stattfinden soll. Wenn man nämlich die festen Zellenschichten, welche die Oberfläche der Blattstiele von Beta Cicla (am besten von der rothen Spielart!) bekleiden, auf Querschnitten beobachtet, so wird man finden, daß zwischen den Zellenschichten die sogenannte Intercellularsubstanz in großer Masse vorkommt, doch schon bei schwächeren Vergrößerungen erkennt man, daß einer jeden der umstehenden Zellenmembranen ein entsprechendes Stück jener Zwischenmasse angehört, und daß die Aneinanderlagerung dieser verschiedenen Stücke in diesem Falle ganz deutlich durch Linien zu erkennen ist. Ref. könnte noch einige andere Fälle angeben, wo es sich ganz ähnlich verhält, und demnach hätte man die Ansicht über die Bedeutung der Intercellularsubstanz in den Pflanzen zu ändern. — Auch auf die Epidermis der Pflanzen wendet Hr. M. seine Ansicht von der Intercellularsubstanz an, indem er nämlich die Cuticula mit deren Anhängsel als solche erklärt, worin die Zellen eingesenkt sind.

Da die Intercellularsubstanz, sagt Hr. V., erst nach dem Acte der Verholzung \(^1\) erscheint, so kann sie nicht als ein organischer Leim angesehen werden, welcher erst die Zellen zusammenhielte. Sie ist eben so gut eine secundäre Ablagerung außerhalb des primitiven Schlauches, als die Verholzungslamellen innerhalb desselben ist. Sie kommt nur vor, wo eine nicht unbedeutende Zahl von Verholzungslamellen existirt. Wenn sich Referent der früheren Kunstsprache bedienen darf, so kommt die Intercellularsubstanz überall da vor, wo sich dickwandige Zellen innig vereinigen, mit Zurücklassung weniger oder gar keiner Intercellulargänge.

\(^1\) Unter Verholzung versteht der Verf., abweichend von den übrigen Phytotomen, nichts weiter als die Verdickung der Zellenwände durch Aulagerung neuer Schichten.
man an diesen außerordentlich zarten, nur mit guten Instrumenten bei günstiger Beleuchtung erkennbaren Bildungen sehen kann; so scheint die Substanz jener scheinbaren Fasern vollkommen dieselbe zu sein, wie die, welche ihre Zwischenräume ausfüllt, und es scheint jenes faserige Aussehen nicht sowohl auf die Existenz von wirklichen, getrennten Fasern hinzuweisen, als viel mehr auf geringe Unterschiede in der Dicke der Zellenmembran, vielleicht auf eine abweichende Anlagerung der Moleküle an einzelnen Stellen, vielleicht auf geringe Unterschiede in der Dichtigkeit der Membran, welche eine andere Brechung des Lichtes veranlassen, auf ähnliche Weise wie Fäden im schlecht geschmolzenen Glase sichtbar sind. Auch stellt Hr. Möhl die Meinung auf, dass eine solche faserige Textur der Zellenmembrane sehr allgemein sei, wie ihm einige Beobachtungen zu beweisen schienen.

Hr. Valentin giebt zugleich eine Bildungsgeschichte dieser spiraligen Streifen, welche gewiss schwer in ihrer Bildung zu beobachten sind. „Im Centrum des Bastrohres sieht man eine sehr
sehr feinkörnige Substanz, deren Körnchen größtenteils eine transversale Anordnung haben. Die Körnerchen dieser Substanz lassen zuerst keine bestimmte Anordnung wahrnehmen. Späterhin bilden sie Querlinien, dann spirale Linien, in denen man aber Anfangs noch die einzelnen Körnerchen discret unterscheidet, und welche erst zuletzt in einer ununterbrochenen Continuität verlaufen."

Hr. Link 1) hat die Samen der Casuarinen in Bezug auf die Zellen untersucht, welche unter der Testa liegen und als eine Schicht von abrollbaren Spiralröhren angesehen werden. Unter diesen fand Hr. L. eine andere Schicht oder Membran aus langen parenchymatösen Zellen bestehend, welche an einem Ende geschlossen sind und Fasern enthalten, die so eben anfangen sichtbar zu werden, am anderen Ende aber Spiralfasern, die sich zu wahren Spiralgefäßen entwickeln. Hr. Link hat hiernach die Ansicht aufgestellt, daß die Zellenmembran mit dem Alter in Spiralrasern zerfällt, was auch auf der 3ten Abbildung Tab. III. zu dem genannten Werke dargestellt ist; Ref. hat dagegen in seinem neuen Buche über die Pflanzen-Physiologie die Ansicht zu erweisen gesucht, daß die Zellenmembran aus spiral-förmig verlaufenden Fasern zusammengesetzt werde.

"In einer anderen Abhandlung des Hrn. Valentin 2) ist die Structur der Zellenmembran, in Bezug auf ihre Zusammensetzung aus Schichten und in Hinsicht der Form der Tüpfel näher erörtert worden.

Die Verdickung der Zellenmembran durch Anlagerung neuer Schichten nennt Hr. Valentin den Verholzungprozeß, und nur in früherer Zeit der Ausbildung dieses Verfolgungsprozesses liegt die zuerst abgelagerte Lamelle an der ganzen inneren Oberfläche der primären Schlauchwandung dicht an. Späterhin dagegen am Schlusses der individuellen Entwickelung der porösen Zellen und Gefäße bildet sich, rings um die äußere Grenze des Poruskanals (Tüpfelkanales) zwischen der ersten aufgelegten Verholzungsschicht und der primären Schlauchwand eine circuläre Lücke,

III. Jahrg. 2. Band.

Hr. V. erklärt selbst, daß der Poruskanal nicht nur in verschiedenen Pflanzen, sondern bisweilen auch in verschiedenen Theilen derselben Pflanze ganz verschiedene Form zeigt, aber dennoch hält er es für nöthig, daß man den verschiedenen Theilen desselben verschiedene Benennungen gebe. So nennt er den Raum, welcher die Lückenbildung bezeichnet, und sich in den wahren Poruskanal fortsetzt, den Lückentrichter, doch bei den Coniferen, wo Hr. V. diesen Lückentrichter so außerordentlich groß und deutlich dargestellt hat, ist derselbe nicht vorhanden. Den entgegengesetzten Eitudheil, durch welchen die Endung des Poruskanales in das Lumen der Zelle mündet, nennt Hr. V. den Eingangstrichter, und den, zwischen befindlichen, mehr cylindrischen Theil den Mittelthcil selbst.

Hierauf wird auf verschiedene Formen dieser einzelnen Theile
des Tüpfels bei verschiedenen Pflanzen aufmerksam gemacht, doch hat Ref. diese Formen nie so constant beobachten können, als sie angegeben werden. Jedenfalls ist es höchst dankenswerth, daß Hr. V. auf diesen Punkt so speciell eingegangen ist; es ist dabei allerdings wohl noch Manches zu beobachten, besonders bei den Tüpfeln der Spiralröhren. Auch hat Hr. Valentin bestätigt, daß die Stellung der Tüpfel auf den Wänden der Zellen eine spirale ist, eine Erscheinung, welche offenbar, wie es Ref. an einem anderen Orte gezeigt hat, mit der Bildung der Zellenmembran aus Spiralfasern zusammenhängt, indem die Tüpfel immer zwischen den Windungen der spiralförmig verlaufenden Fasern auftreten. Die Tüpfelkanäle sollen nach Hrn. V. nicht ganz senkrecht auf der äußersten Schicht der Zellenwand (welche primäre Schläuche wandung genannt wird) stehen, sondern etwas schief von Innen nach Außen gegen die Letztere gerichtet.

Hr. F. Schulze 3) hat Beobachtungen über das Amylum der Kartoffel angestellt, und einige der wesentlichsten Punkte aus den Resultaten, welche Hr. Fritzsche bei seinen Untersuchungen über diesen Gegenstand erhielt, bestätigt gefunden. Als solche führe ich auf: Die Zusammensetzung des Amylum-Kügelchen aus concentrischen Schichten, welche um einen gewissen Punkt, Kern genannt, gelagert sind, und die Veränderungen, welche die Amylum-Kügelchen in Folge des Wachstums erleiden, sowohl die Auflösung derselben von Innen aus, als auch die auf der Oberfläche. Hr. Sch. macht darauf aufmerksam, daß wir

2) Ebendas. p. 238.
noch keinen Stoff kennen, welcher künstlich das Amylum von Außen aufzulösen vermag, und ein solcher müsse sich beim Wachsen in den Zeilen der Kartoffel erzeugen.

1) S. unseren Jahresbericht v. 1835. p. 37.
2) Flora v. 1836. p. 24 etc.
4) Element. p. 137.

1) S. den vorjährigen Bericht p. 131.
2) Observations sur les Biforines, organes nouveaux situés entre les vésicules du tissu cellulaire des feuilles dans un certain nombre d'espèces végétales appartenant à la famille des Aroidées. — Ann. d. scienc. nat. 1836. II. p. 4 — 27.
mit grüngefärbten Zellensaft-Kugelchen gefüllten Zellen des Diachym's der Caladium-Blätter, und sie sind darin so gelagert, daß sie nur mit dem mittleren Theile zwischen den Zellen der Wände liegen, welche die Luftkanäle, mit denen diese Blätter gleich unmittelbar unter der Epidermis ganz durchzogen sind, von einander trennen; daher ragen sie mit dem einen Ende in den einen Luftbehälter, und mit dem anderen Ende in den nebenanliegenden Behälter. Die Membran, welche diese Zellen bildet, ist bedeutend dicker, als die der nebenanliegenden grünen Diachym-Zellen, auch zeigt sie eine etwas gelbbräunliche Färbung. Wenn man nun diese Zellen mit ihrem, in Form eines Bündels darin liegenden Krystalle unter Wasser legt, so öffnen sich dieselben meistens an beiden Spitzen, und allmählig treten, mehr oder weniger schnell, die Krystalle zu den Öffnungen hinaus, entweder nur durch die eine Öffnung, meistens aber durch beide. Herr Turpin hat diese Öffnungen der Zellen mit außerordentlicher Regelmäßigkeit abgebildet, so daß man glaubt, irgend eine, ganz eigenthümliche Bildung in diesen Zellen zu sehen; doch habe ich diese regelmäßigen, gleichsam mit breiten Rändern besetzten Öffnungen selbst bei den stärksten Vergrößerungen nicht beobachten können, aber die Abbildung, welche Hr. T. in Fig. 4. Pl. 4. gegeben hat, finde ich in Bezug auf die Structur der Enden dieser Zellen vor ihrem Aufspringen ganz der Natur nachgebildet. Die Ursache des Aufspringens dieser Krystalle-führenden Zellen ist in der Hygroscopicität derjenigen Substanz zu finden, welche in jenen Zellen neben den Krystallen vorkommt; es ist ein gelbliches Gummi, welches Anfangs die ganzen Zellen füllt, später aber, meistens nur um das Bündel von Krystallen gelagert ist, wodurch dasselbe eine gelbe Färbung zeigt. Doch von einem darmartigen Organe, welches die Krystalle enthalten und im Inneren jener Zellen der Länge nach, gleichsam von Öffnung zu Öffnung aufgespannt sein soll, hat Referent nichts beobachten können, wohl aber zeigten sich jene Zellen wie andere, welche dergleichen Bündel von nadelförmigen Krystallen enthalten, nur daß hier, wo diese Zellen in die Luftöhlen hineinragen, dickere und etwas gelblich gefärbte Wände auftreten. Außer der gelblichen, gummiartigen Substanz pflegen noch, mehr oder weniger viel von sehr kleinen Molekülen in

Dagegen haben wir eine umständliche Erörterung über das Vorkommen des kohlensauren Kalkes auf der Oberfläche der Saxifraga-Blätter durch Hrn. Unger 2) erhalten. Es ist nämlich schon seit einer langen Reihe von Jahren bekannt, daß der graue und weisse Anflug, welcher auf der oberen Fläche der Blätter mehrerer Saxifraga-Arten vorkommt, aus kohlensaurem Kalk besteht; in besonders großer Menge findet sich dieser Kalkanflug gerade auf solchen Arten dieser Gattung, deren Blätter an den Rändern kleine napfförmige Vertiefungen besitzen, wie z. B. Saxifraga Aizoon, S. caesia, intacta, oppositifolia u. s. w. Herr Unger erklärt das Auftreten des Kalkes auf den Blättern der Saxifragen für eine Excretion, und zwar sollen die Grübchen, welche mit jenem Excrete gefüllt sind, als solche Excretions-Organe angesehen werden. „Die Epidermis der Blätter, sagt Hr. U., die sonst aus sehr dickwandigen und gestreift-getüpfelten Zellen besteht, wird dort, wo sie die Absonderungsgrube überzieht, zarter, und das darunter liegende Zellgewebe, eine Fortsetzung des Gefäßbündels (?) ist gleichfalls etwas in die Länge gestreckt und aus kleineren, nie mit Chlorophyllbläschen gefüllten Zellen zusammengesetzt. Der kohleusaure Kalk soll

1) S. die Abbildungen hierzu in Meyen's Phytotomie Tab. V.

durch diese Grübchen um so reicher ausgeschieden werden, je reicher der Boden an Kalk ist; indessen man findet die Blätter der genannten Saxifragen ebenfalls sehr stark mit Kalk bedeckt, wenn sie auf einem sehr humusreichen Boden alt geworden sind. Auch kann man sehr häufig beobachten, daß mehr oder weni-ger große Stellen der oberen Blattfläche jener Pflanzen, noch außer dem Grübchen nämlich, mit einer dünnen Kruste von Kalk bedeckt sind, daß also die Kalkablagerung bei diesen Pflanzen nicht nur durch die Grübchen erfolgt. Mr. U. meint zwar: Man würde sich in diesem Falle irren, das Kalkexcrement für ein Produkt der gesamten Oberhaut zu halten, doch Ref. glaubt, daß es dennoch der Fall ist, was auch an unseren Gartenpflan-zen der Art leicht zu beobachten ist. Jenen Absudungsort-genen auf der Oberseite der Blätter sollen ungemein zahlreiche Poren auf der Unterfläche entsprechen, gleichsam als ob der er-höhhte Ausscheidungsprozeß auf der einen Seite einen eben so erhöhten, aber qualitativ verschiedenen, antagonistisch auf der anderen Seite hervorufen wollte.

Es ist in der That diese Kalkablagerung auf den Blättern der Saxifragen, eine ganz eigene Erscheinung, und nur mit wenigen anderen in Zusammenhang zu bringen, ja sie ist nicht einmal mit der Incrustirung der Charen ganz parallel zu stellen, denn bei diesen scheint sich der Kalk aus dem umgebenden Wasser niederzuschlagen, indem die Kohlensäure, welche die Lösung desselben bewirkte, von den Pflanzen eingesaugt wird. Bei den Saxifragen scheint eine bloße Aushauchung der Kalk-haltigen Flüssigkeit stattzufinden und diese ist in jenen Grübchen, wo das Zellengewebe sehr zart ist, um so stärker; die Erscheinung ist zusammenzustellen mit der Kalkablagerung in den Luftöhlen der Lathraeae. Blätter und mit dem Vorkommen der Krystalldrüsen an den Wänden der Luftkanäle in Myriophyllum. Eine Ausscheidung eines Salzes, welches in zu großer Menge im Boden enthalten ist, findet man auch noch bei anderen Pflanzen auf der Oberfläche der Blätter u. s. w. 1)

1) Wer hat auf das Vorkommen des Kalkes auf den Blättern der Saxifragen zuerst aufmerksam gemacht?
Über den Bau und die Funktion der Spiralröhren.

Dass die Spiralröhren in den Pflanzen zur Fortführung des Nahrungssaftes dienen, ist von Hrn. Link 1) wiederum sehr bestimmt ausgesprochen und eine Menge von Thatsachen, welche derselbe schon in den früheren Schriften für diese Ansicht mitgetheilt hat, werden unzweifelhaft erörtert. Denjenigen Botanikern, welche der Ansicht sind, dass die Spiralröhren Luft führen, weil sie beobachtet haben, dass aus derselben auch deutlich Luft hervortrete, antwortet Hr. Link, dass der Darmkanal der Thiere auch nicht immer voll sei, sondern öfters Luft enthalte.

1) Philos. bot. p. 189.

einem vortrefflichen Mikroskop von Amici angestellt; diesem Instrumente darf man jedoch nicht die Fehler zuschreiben, welche sich in jene Arbeit eingeschlichen haben, denn Referent, ebenfalls im Besitze eines solchen Instrumentes, sieht die Gegenstände ganz anders als sie Hr. G. beschrieben und abgebildet hat. Die größte Schuld an den abweichenden Resultaten jener Beobachtungen, möchte jedoch der Methode der Beobachtung zuzuschreiben sein; es scheint nämlich, dass Hr. G. die Objecte stets zwischen Glasplatten geprefst und im gepreßten Zustande beobachtet hat. Nicht genug kann man gegen die Anwendung eines solchen Quetscher’s bei mikroskopischen Beobachtungen warnen.

Hr. Girou beginnt seine Abhandlung mit dem Ausspruche, dass der Saft in den Pflanzen von den Wurzeln zu den Blättern und von diesen wieder zur Wurzel steigt; dass sich derselbe auch von der Achse zur Peripherie und von dieser zur Achse hin bewegt, und dass es eine gasartige Flüssigkeit sei, welche jenen Saft begleitet. Zur Ausführung jener Saftbewegung bedienen sich die Pflanzen der Zellen und der Gefäße, und diese sind Intercellular-Gefässe, die zuführenden Gefässe und die abführenden Gefässe. Die Intercellular-Röhren (Des conduits inter-utriculaires) sind besondere Gefässe, welche die Fortbewegung der Flüssigkeiten und der Gase nach allen Richtungen hin bewirken sollen (selbst eine erklärende Abbildung in Fig. 16. Pl. 7. ist hiezu gegeben!). Zu den zuführenden Gefäßen gehören die einfachen Gefässe (des vaisseaux unis), worunter wahrscheinlich die Faser-Zellen und Bastsöhren verstanden werden, und ferner die Spiralröhren oder Tracheen. Zu den abführenden Gefäßen gehören dagegen die falschen Spiralröhren.

Die Faser, welche die Spiralröhre bildet, soll hohl sein und Saft führen, sie soll ferner um eine zarte Röhre gewunden sein und soll äusserlich noch von einer Memran umschlossen sein, unter welcher die Flüssigkeit ist, während die innere Röhre, um welche die Spiralfaser läuft, nur Luft führen soll.

Dieses sind nun eigentlich die Resultate der Beobachtungen des Hrn. Girou; er gibt aber in dieser Abhandlung, so wie auch in früheren, niemals speziell die Pflanzen an, woran diese oder jene Beobachtung gemacht wurde, und wo sie leicht zu wiederholen wäre. Eben so wenig wird der Beobachtungen
anderer Botaniker gedacht. Gegen das Ende der Abhandlung kommt Hr. Girou (l. c. p. 245.) zu dem Schlusse, daß in den Pflanzen eine bestimmte Circulation bestehe; der Saft steige vermittels der Interzellular-Röhren durch die ganze Pflanze; durch die zuführenden Gefäße werde er von der Wurzel zu den Blättern geführt, wo er eine Verarbeitung erleide und dann in die abführenden Gefäße gehe. Der Saft, welcher in der Spiralfaser dieser Gefäße enthalten ist, könne zur Wurzel steigen und derselben in der Erde zur Excretion dienen; der andere Saft aber, welcher zwischen den zwei Häuten der abführenden Gefäße verläuft, soll durch die Durchbrechungen seitlich in die Interzellularröhren fließen und sich derselben mit dem aufsteigenden Saft vermischen. Leider hat sich daher von keiner dieser Behauptungen überzeugen können!

Etwas spezieller müssen wir in der Angabe, daß die Spiralfaser hohl sei, eingehen, denn obgleich wir, schon vor vielen Jahren zu zeigen suchten, daß diese Frage auf das Bestimmteste entschieden sei, so haben sich doch mehrere der berühmtesten Phytotomen gerade für die Auwesenheit einer Hülle in den Spiralfasern in diesen letzten Jahren ausgesprochen. Namlich nicht nur Hr. Mirbel, sondern auch Hr. Link in seinem neuesten Werke; Letzterer hält sie für hohl, wegen einiger, wie es scheint, angeschwollener Stellen, dann auch wegen des Aussehens, da wo sie ästig wird. Doch will Hr. Link ¹) die Meinung Niemandes aufdringen.

Hr. Mohl ²) hat sich ebenfalls gegen die Auwesenheit einer Hülle in der Spiralfaser ausgesprochen, welche Hr. Mirbel in den Ringröhrchen des Oleanders zuerkannte; er sagt: „Wenn der Schnitt genau durch die Achse des Gefäßes geht, und noch besser, wenn es gelingt, dünnere scheibenförmige Querschnitte der Spiralfaser zu erhalten, so sieht man sehr bestimmt, daß die Spiralfaser aus zwei Schichten besteht, gleichsam aus einer Mittelstrange und einer Scheide. Es findet hierin also ein Unterschied zwischen der Spiralfaser und den Fasern der getüpfelten Zellen statt, allein auch eine Ähnlichkeit, indem es

¹) Elém. philos. bot. p. 159.
²) Pflanzen-Substanz, p. 29.
wahrscheinlich ist, daß der Mittelstrang der zuerst gebildete Theil der Faser, und die Scheide eine spätere Auflagerung auf denselben ist — — ; so viel halte ich jedenfalls für gewifs, daß die Spiralras er nicht hohl ist." Alles was hier von den Fasern der Spiralröhren gesagt ist, das bezieht Ref. auch auf die Spiralfasern, welche sich im Innern gewöhnlicher Parenchym-Zellen zeigen, denn diese Gebilde hält derselbe für identisch. Auch hat Ref. in seiner neuesten Schrift über Pflanzen-Physiologie noch mehrere andere Gründe aufgeführt, welche dafür auf das Bestimmteste sprechen, daß die Spiralras immer solide ist. Auch sie verdickt sich durch Anlagerung neuer Schichten und zuweilen zeigt sie eine scheinbare Gliederung.

Über Beobachtungen, das Circulations-System der Pflanzen betreffend.

Die Lehre von dem eigenthümlichen Circulations-Systeme in den vollkommeneren Pflanzen hat im vergangenen Jahre wiederum bedeutende Anfechtungen erleiden müssen.

Hr. Link 1) sucht durch Beobachtungen zu erweisen, daß die Harzgänge der Coniferen mit den Milchsaftgefäßen der Euphorbiaceen und Asclepiadeen zu einer und derselben Classe von Gebilden zu zählen wären, obgleich sie einander nicht ganz gleich sind. In ganz jungen keimenden Coniferen hat Hr. Link an den Harzgängen eine eigene Membran beobachtet, doch er selbst sagt, daβ sie an den größeren, d. h. älteren Gefäßen dieser Art zu verschwinden scheinen. Referent hat sich von dem Vorhandensein jener eigenen Membran der Harzgänge noch nicht überzeugen können, und auch die Abbildungen nach Querschnitten, welche Hr. Link 2) zu diesen Harzgängen gegeben hat, zeigen keine Spur einer eigenen Haut. Leichter ist die Entstehung dieser Harzgänge in den jungen Schööslingen der Coniferen zu beobachten; hier kann man wenigstens mit Bestimmtheit sagen, daß diese Harzgänge selbst in der Jugend keine eigene Membran besitzen, ja auch die Blätter der Coniferen, am

1) Element. phil. bot. I. p. 196.
schönsten vielleicht die Blätter von *Pinus sylvestris*, zeigen eine Schicht eigenthümlicher Zellen, welche den Harzgang bilden, aber keine eigene einfache Membran. In der aufgeführten Abhandlung (p. 132.) spricht Hr. Link die Meinung aus, daß der harzige Saft, welcher jene Harzgänge in den Coniferen erfüllt, in Bewegung zu sein scheint, denn die Substanz fließt in großer Menge und lange Zeit hindurch heraus, wenn man einen Ast dieser Pflanzen abschneidet. Es wäre gewiß ein großer Gewinn für die Pflanzen-Physiologie, wenn man diese Ansicht näher erweisen könnte, was aber kaum ausführbar sein möchte, da die Pflanzentheile, welche dergleichen Gefäße enthalten, viel zu dick sind, um unmittelbar ohne Zerstückelung beobachtet werden zu können. Eine solche Bewegung des Harzes würde die Behälter den wirklichen Lebenssaft-Gefäßen näher stellen; und Ref. hält es für höchst wahrscheinlich, daß sie von größerer Bedeutung sind, als man bisher derselben einzuräumen wagte, denn die Harzgänge in den Coniferen, so wie die Gummigänge in den Cycadeen bilden ein, vielleicht durch die ganze Pflanze hindurch, zusammenhängendes, ganz für sich abgeschlossenes System, und gerade bei solchen Pflanzen, wo diese Harzgänge vorkommen, da fehlen die Lebenssaft-Gefäße. Auch läßt sich sehr häufig eine große Übereinstimmung zwischen dem Saft der Gummigänge und dem der Lebenssaft-Gefäße verschiedener Pflanzen in chemischer Hinsicht nachweisen.

Von den Milchsaft-Gefäßen der Euphorbiaceen und Asclepiadeen sagt Hr. Link, daß sie am Stamme einzeln stehen, gerade und einfach sind, und nur in den jüngeren Stämmen, wo sie gegen die Blätter auslaufen, ästig erscheinen; auch wurden sie in strauchartigen Euphorbien mit gespreizten Aesten beobachtet, zuweilen entfernen sie sich in ihrem Verlaufe von den Nerven. Hr. Link sagt ferner, daß sie mit einer stumpfen Spitze enden, und auch auch keine Anastomosen zeigen, ja zuweilen scheinen sie Queervände zu haben, aber nur falsche. Diese Beobachtungen stimmen allerdings nicht mit denjenigen, welche Referent im vorjährigen Berichte angeführt hat, um die Einwürfe des Hrn. Treviranus zu widerlegen, hofft jedoch, daß es gelingen wird, mehrere derselben anders zu deuten. Nirgends als in den Blättern der *Hoya carnosa* ist es leichter zu

Dafs sich der Saft in den Milchsaft-Gefässe bewegt, das hat Hr. Link hekanntlich schon früher bestätigt, und auch wieder von Neuem beobachtet, auch bemerkt er ganz vortrefflich, daß diese Bewegung weder durch die Zusammenziehung der Gefässe, noch durch die Bewegung der im Saft enthaltenen Kügelchen bewirkt werde, indem es nämlich die Beobachtung nicht zeigt.

Durch verschiedene Reisende, welche sich längere Zeit hindurch in dem gegenwärtigen Columbien aufhielten, sind Nachrichten eingegangen 2), wonach es sehr wahrscheinlich wird, daß in jenen Gegenden noch mehrere Arten von Bäume vorkommen, welche eine ähnliche Milch liefern, wie der berühmte Kuhbaum, über den uns Hr. Alex. von Humboldt in seinem

1) S. d. Jahresbericht von 1835.
Reisebericht (Capitel XVI u. XXVI. Note) so unvergleichlich interessante Mittheilungen gemacht hat.

Ueber Secretionsorgane der Pflanzen.

Hr. Griesselich nennt die Oel-führenden Drüsen, welche in (nicht auf) der Substanz der Labiaten-Blätter so allgemein

1) **Ueber die sogenannten Drüsen auf den Blättern der Labiaten, und die in denselben vorkommenden riechenden Bestandtheile.** Kleine botanische Schriften I. Theil, Carlsruhe 1836. 8.

2) **Meyen, Ueber die Secretionsorgane der Pflanzen.** Berl. 1837. 4 Mit 9 Tafeln mikroskopischer Abbildungen.
vorkommen: Poren; eine Benennung, welche einmal der Verwechslung der Begriffe wegen nicht besonders zu loben sein möchte, dann aber auch den schon bestehenden nachgesetzt werden muß. Neben Guettard’s Benennung (glandes vésiculaires) ist der Name: innere Drüsen, welcher von mehreren Phytotomen gebraucht worden ist, ganz passend und demnach auch bei zu behalten, denn es ist dieses die einzige Art von zusammenge setzten Drüsen, welche im Innern des Zellengewebes der Pflanzen auftreten. Hr. G. hält diese inneren Drüsen für bloße Behälter eines abgesonderten Stoffes, eine Ansicht, welche jedoch die anatomische Untersuchung dieser Drüsen widerlegt. Was über das Vorkommen der inneren Drüsen bei den Labiaten gesagt wird, möchte so ziemlich schon von Guettard 1) aufgeführt sein, ja derselbe hat darüber wohl noch mehr geschrieben, als in vorliegender Abhandlung zu finden ist, leider ist aber Guettard’s Schrift sehr unbekannt geblieben.

In Gärten gezogene Labiaten sollen nach Hrn. G.’s Beobachtung weniger innere Drüsen haben, als wildgewachsene, in dessen bezicht sich dieses wohl nur auf eine geringere Erzeugung von den abgesonderten Ölen; die Drüsen sind wohl in gleicher Anzahl vorhanden. Schon Guettard bemerkt, daß man bei vielen dieser Pflanzen, welche im frischen Zustande keine Drüsen zeigen, solche an getrockneten Exemplaren beobachten könne.

Außer den inneren Drüsen findet man auch noch äußere, aber einfache Drüschen bei den Labiaten, die ich in jener Göttinger Preisschrift aufgeführt habe.

Über Säfte-Aufnahme, Ausscheidung und Ernährung der Pflanzen.

Über die Ernährung der Pflanzen sind wiederum sehr interessante Versuche angestellt und es ist zu hoffen, daß wir sehr bald auch über diesen Gegenstand zu bestimmten und allgemein anerkannten Ansichten gelangen. Zuerst hat Hr. Unger 2) eine sehr ausführliche Zusammenstellung der Versuche und Ansichten auf.

2) Einfluß des Bodens auf die Vertheilung der Gewächse. Wien 1836. p. 125 etc.
der Botaniker und Chemiker gegeben, welche über die Aufnahme und die Bildung des Nahrungsstoffes der Pflanzen gehandelt haben. Es fragt sich nämlich, ob das Leben der Pflanzen im Stande ist, die organischen Stoffe selbst zu bilden, welche zur Ernährung der Pflanzen dienen, oder ob diese Nahrungsstoffe, wenigstens in ihren Elementen von Außen aufgenommen werden. Hr. Unger (l. c. p. 136.) gelangt endlich zu dem Schlusse, „daß der Vegetations-Proceß an den ihm dargebotenen Stoffen weder neue Elementarstoffe zu erzeugen, noch den bereits vorhandenen anzureihen vermag; dadurch aber geht zugleich indirekt hervor, daß die Pflanze auch ihre unorganischen Stoffe, so wie den Kohlen-, Wasser-, Sauer- und Stickstoff von der Außenwelt aufzunehmen genöthigt ist.“

Hr. Jablonski zieht aus seinen Versuchen den Schluss, daß die Pflänzchen nur so lange fortlitten, als die im Albumen oder den Kotyledonen niedergelegten Nahrungsstoffe die zum Pflanzenleben notwendigen chemischen Prozesse erleiden konnten; sobald aber ihre Verbindungen eine relative chemische Indifferenz erreicht hatten, war auch der Tod unvermeidlich, und Kohlensäure und Wasser zeigten sich nicht geeignet, die neue Bildung von organischen Stoffen zu unterhalten.

An diese Untersuchungen schliesen sich unmittelbar diejenigen, welche man über die Aufnahme verschiedenartiger Stoffe durch die Wurzeln der Pflanze angestellt hat.

Hr. M. G. Towers 1) hat abermals Versuche angestellt, um zu beobachten, ob gefärbte Flüssigkeiten durch die unverletzten Wurzeln der Pflanzen aufgenommen werden; aber weder Infusionen von Campescheholz noch von Brasilienholz gingen in die Pflanze über, und es wurde hiermit die Beobachtung des Herrn Link und anderer deutscher Botaniker bestätigt. Hr. T. wandte die Balsamine-Pflanze zu diesen Versuchen an, und bald darauf hat Hr. Unger 2) dergleichen Versuche mit der Lema minor angestellt, welche er in Cochenille-Tinktur, mit und ohne Beisatz von Alun, und in Campescheholz-Infusion wachsen ließ.

1) Nouv. Sér. I. Mai 1836.
Beobachtungen in Zweifel gestellt, denn Ref. sind viele Versuche der Art mit gleichem Erfolge geglückt.

Hr. Th. And. Knight sucht es in Zweifel zu stellen, daß die Wurzelschwämmchen diejenigen Organe wären, welche den Nahrungssaft aus dem Boden ziehen und ihn zu den übrigen Theilen der Pflanze senden; sie wären zu unvollkommen organisiert. Hr. K. sagt, daß er gezeigt habe, wie der Nahrungssaft in den Bäumen nur durch das junge Holz oder den Splint emporsteigt, und da die Wurzelschwämmchen keine Holzfaser besitzen, so müssen es offenbar andere Kanäle u. s. w. sein, welche den Saft aufnehmen; auch bilde sich das junge Holz schon sehr früh, lange vorher, ehe sich die Stengel und die Äste ausbilden. Er sei überzeugt, daß man irthümlich Fasermasse des Splints in den Wurzelschwämmchen mit einbegriffen habe. (Wahrseheinlich wird hierbei auf die Beobachtungen des Hrn. De Candolle angespielt!) Allerdings fehlt uns noch immer eine genaue Nachweisung über den Zusammenhang der Wurzelschwämmchen mit denjenigen Elementar-Organen, welche den von ihnen aufgenommenen Saft weiter fortführen, da aber die Wurzelschwämmchen, wo sie vorhanden sind, Nahrungssaft aufnehmen, ähnlich den feinsten Wurzelhärchen, das ist gar nicht mehr in Zweifel zu ziehen.

Hr. Unger (l. c. p. 147.) ließ mehrere Pflänzchen von Lemna minor in einer Menge von 4 Unzen Wasser wachsen, worin 3

Gran Bleizucker aufgelöst waren: schon am 3ten Tage wurden sie bleicher, wobei die Entfärbung von der Wurzel ans begann. Von dem 3ten Tage an hiels man diese Pflänzchen in reinem Wasser wachsen, aber die Vergiftung war so vollkommen, daß sie schon am 5ten Tage anfingen abzusterben. Wiederholte Versuche lehrten, daß schon binnen 24 Stunden eine so bedeutende Quantität des Bleisalzes aufgenommen war, daß Schwefelammoniak ausgezeichnete Bräunung zeigte. Es erwies sich hierbei, daß bei der Lemna nicht nur die Wurzelchen, sondern auch die Blätter einsaugen, und zwar die untere Fläche im höheren Grade als die obere Fläche. Diese Erscheinung ist aber wohl, wie Referent glaubt, ganz allgemein, selbst bei den vollkommensten Landpflanzen; im höheren Grade aber bei den unvollkommenen Wasserpflanzen, welche aus bloßem Parenchym bestehen, bei welchen es mehrere Versuche nachgewiesen haben. Ihr. U. glaubt, daß jene aufgenommenen fremdartigen Stoffe mehr die Zellenwände durchdringen, als sich dem Zellensaft mittheilten; dagegen möchten aber meine eigenen Versuche, welche ich bei der Lemna mit Eisensalzen, so wie bei Balsamine- und Mays-Pflanzen mit blausauerem Kali angestellt habe, darthun, daß sich der aufgenommene gelöste Stoff dem Zellensaft mittheilt. Läßt man aber Reagentien auf solche Zellen einwirken, so werden meistens die, dadurch hervorgehenden gefärbten Stoffe auf die Wände der Zellen und auf die Zellensaft-Kügelchen niedergeschlagen.

Diese Versuche über die Einsaugung gelöster fremdartiger Stoffe durch die Zellennembran, stellte Ihr. Unger hauptsächlich an, um zu erfahren, ob eine Ausscheidung der aufgenommenen Stoffe durch die Wurzel wiederum stattfinde. Verschiedene Versuche zeigten sehr bestimmt, daß die Lemna-Pflänzchen weder das aufgenommene Bleisalz noch Schwefelammonium, welches sie eingesaugt hatten, wieder ausschieden, und eben daselbe kann Ref. von dem aufgenommenen Eisenitriot und dem blausauerem Kali anführen. Es wurden Pflänzchen der Lemna trisulca, welche mit dem einen dieser Stoffe geschwägert waren, und Pflänzchen, welche den anderen Stoff aufgenommen hatten, in ein Glas mit reinem Wasser gesetzt; sie wuchsen noch mehrere Tage aber es zeigte sich keine Reaction in dem Wasser.
Bekanntlich wird eine solche Ausscheidung der aufgenommenen fremdartigen Stoffe vermittelst der Wurzel durch die Versuche von Macaire und Daubeney gelehrt, doch bei allen ihren Versuchen bleibt man ungewiss, ob die Wurzeln unverletzt waren; ja man muß sogar das Gegenteil vermuten.

Bei allen diesen Versuchen, besonders wenn man scharfe Stoffe, wie Vitriol, den Pflanzen aufsaugen gibt, leiden dieselben recht sehr; wenn sie in der Erde stehen, pflegen die Wurzeln zuerst abzusterben, und dann entwickeln sich zuweilen am Stengel kleine Luftwurzeln. Diese Erscheinung scheint sehr allgemein zu sein, wenn die Wurzeln leidend sind, oder wenn sich dieselben nicht gehörig entwickeln können; so sah Hr. Jablonski (l. c. p. 211.), einen Stengel einer Kohlpflanze, welche in ausgewaschenen Schwefelblumen sehr kümmerlich wuchs, mehrere solcher Luftwurzeln treiben, und Ref. sah es mehrmals bei Balsaminen, bei dem Mays u. s. w., wenn die Wurzelchen durch Insekten in der Erde zerstört wurden.

widerspricht. Wenn man nämlich an einem heissen Tage ein kräftiges Exemplar einer Calla ethiopica zum Theil unter Wasser stellt, und einige Blattstiele dicht über der Erde abschneidet, so wird man beobachten, daß bei dem Einflusse des Sonnenlichtes, fortwährend eine sehr große Menge Luft aus den durchschnittenen Luftbehältern ausströmmt; aber auch diese Luft scheint reich an Sauerstoff zu sein, denn ein glühender Span glichnte darin um so heller.

Hr. Morren 1), der im botanischen Garten zu Löwen Versuche über die Respiration der Pflanzen anstellte, machte am 18. Mai v. J. während der grossen Sonnenfinsterniß die Beobachtung, daß die Respiration der grünen Pflanzenthcile, nämlich

1) L'Institut de 1836. p. 416
die Aushauchung des Sauerstoffes in dieser Zeit aufhört. Etwas Ähnliches kann man aber auch an recht warmen Sommertagen beobachten, wenn nämlich diese Aushauchung des Sauerstoffgases durch die Einwirkung des Sonnenlichtes recht stark ist, und die Sonne plötzlich durch große Wolkenmassen bedeckt wird; Ref. sah es mehrmals, wie bald dann die Entwicklung der Gasbläschen sich vermindert, und endlich mehr oder weniger ganz aufhört.

Ueber den Bau und das Wachsthum der vollkommenen Pflanzen.

1) Untersuchungen über die Entwicklung des Korkes und der Borke auf der Rinde der baumartigen Dikotyledonen. Tübingen 1836.
ist das Parenchym der zelligen Hülle vergrößert; die Zellen sind
dicker geworden und auf den Wänden findet man Tüpfel. Erst
im 3ten bis 5ten Jahre erhält die Epidermis, welche die Ausdehn-
nung der Rinde wie überhaupt der Masse des jungen Astes nicht
mehr folgen kann, kleine Einrisse, und nun geht in der unter
ihr liegenden Korkschicht eine große Veränderung vor. Diese
Schicht, welche Anfangs so klein war, vergrößert sich durch
Anlage neuer Zellenschichten auf der inneren Seite. Die neuen
Schichten bestehen ganz wie die alten Schichten aus dünnwandigen
ungefärbten Zellen, sind aber mit ihrem Längendurchmesser
horizontal und in der Richtung der Rinden gelegen. Bei dieser
beständigen Vergrößerung der inneren Schichten zerreißen die
äußeren und geben dem Stamme eine unregelmäßige, raue Ober-
fläche. Die hierdurch entstehende Masse ist nun die Korksub-
stanz, welche, wie bekannt, so häufig zu technischen Zwecken
benutzt wird. An jedem Korke erkennt man, daß seine Ver-
größerung schichtenweise stattgefunden, und daß an der Grenze
der Schichten die Zellen etwas kleiner und dickhäutiger wur-
den, wodurch diese Stellen dunkeler erscheinen, ganz so, wie
die äußeren Enden der Jahresringe der Coniferen. Es ist be-
ständig zu beobachten, daß auch die Jahresringe im Holze der
Bäume sehr verschiedene dicke Schichten zeigen, daß sie über-
haupt oftmals unregelmäßig dick abgelagert sind. In dem Korke
ist dieses noch weit mehr der Fall. Bei der Korkkieche fällt
die Rinde alle 8—9 Jahre ab und wird einige Jahre vorher zu
technischen Zwecken abgenommen. Hr. De Candolle glaubt,
es wäre die zellige Hülle, welche sich hier entwickelt.
Mit dieser Entwicklung der Korkmasse in Folge des Alters
gibt die Entwicklung der dritten und vierten Schicht gleichen
Schnitt, doch die zellige Hülle vergrößert sich nur wenig und
ohne Bildung neuer Schichten, während die Gruppen ungefärb-
ter Zellen, welche oft Krystalle enthalten, immer mehr und mehr
an Umfang zunehmen. Die innerste Schicht entwickelt neue
Basthüll, und die zwischen den Fasern liegenden Zellen glei-
chen denen der zelligen Hülle, in welche sie sich, wie schon
Duhamel angab, unmittelbar fortsetzen.

Auch Hr. Dutrochet 1) hat einige Beobachtungen über die

1) Formation du liège. — L'Institut No. 192.
Bildung der Korksubstanz bekannt gemacht; er macht dabei vor-
züglich darauf aufmerksam, daß die Vergrößerung dieser Masse
nach Innen zu stattfindet, ähnlich wie bei dem Horngewebe der
Thiere. Hr. D. findet es ebenfalls sehr nützig, die äußere Hülle
der Rinde genau zu bezeichnen, und folgt hierin den Angaben
des Hrn. Brongniart, indem er die Epidermis in die Cuticula
und in die Zellenhaut theilt. Was Referent hierüber glaubt,
hat er in einer Abhandlung im 2. Hefte dieses Archives ganz neuer-
lich bekannt gemacht.

Ganz ähnlich ist die Entwicklung der Korksubstanz bei
Acer campestre, wo die Ausbildung derselben schon im ersten
Jahre stattfindet, nachdem sogleich die Epidermis an verschiede-
enen Stellen zerreiβt. Die Kork-Entwicklung geht hier sehr
rasch vor sich, doch hört sie früher auf, als bei der Korkeiche,
und in späteren Jahren entwickeln sich dann die beiden ande-
ren Schichten der Rinde, so daß allmählich wieder ein gewisses
Ebenmaβ zwischen den einzelnen Schichten entsteht.

In andern Fällen, wie z. B. bei der *Banksia serrata*, finden
sich ebenfalls vier Rindenschichten, doch hier schwilhlt besonders
die zellige Hülle an, während die Korksubstanz und die Faser-
schicht ganz unentwickelt, wie gewöhnlich, zurückbleibt, und
hier, besonders an der Basis der Bäume, ist die Rinde oft mehr
als doppelt so dick, wie der Holzkörper.

Man sieht schon aus diesen wenigen Beispielen, daß die
Verdickung der Rinde, selbst bei sehr ähnlich gebauten Pflanzen,
aus der vorherrschenden Entwicklung ganz verschiedener Rin-
denschichten bestehen kann.

Allgemein bekannt wegen ihrer eigenthümlichen Structur
und ihrer verschiedenen Farben ist die Rinde der Birke. Die
jungen einjährigen Zweige dieses Bannes haben ebenfalls eine
Epidermis, welche mit feinen Haaren besetzt ist; unter dieser
liegt eine kleine Schicht von tafelförmigen Zellen, welche der
Korkschicht entspricht und unmittelbar die zellige Hülle bedeckt.
Diese Zellenschicht tritt an die Oberfläche, sobald die Epidermis
abfällt (im 2ten und 3ten Jahre); die einzelnen Zellen werden
dann braun, und neue Zellenschichten lagern sich auf der inneren
Fläche dieser Zellenmasse ab. Diese Masse bildet nun die be-
kannte Birkenrinde, welche aus weisβen dünnen Blättchen be-

Untersucht man die Rinde eines alten Birkenstammes, so findet man, daß dieselbe aus einer großen Anzahl brauner Schichten besteht, welche, wie die Blätter eines Buches, übereinander liegen und sehr leicht abzuziehen sind. Sie werden nämlich auf beiden Flächen mit einem weißen Ueberzuge bekleidet, welcher ans sehr dünnwandigen, ungefärbten diametral gelagerten Zellen besteht, die auch weniger zusammengedrückt sind, als die der braunen Schicht, wo die Zellen sehr dickwandig und mit einem braunen Stoff gefüllt sind. Erst im Sten bis 10ten Jahre entwickelt sich bei der Birke abwechselnd, mit einer jeden Schicht des brannen Korkgewebes auch zugleich eine weiße Schicht, welche aus größeren und weicheren Zellen besteht; bis zu dieser Zeit findet nur die Bildung neuer Schichten auf der einen Fläche der Rindenhaut statt. Die weiße und die braune Substanz der Rinde der Birke scheinen eine mehr geschiedener Massen zu sein, als diejenige im Kork, wo die Ränder der einzelnen Schichten sich ebenfalls durch verschiedene Farben auszeichnen. (Man sehe die anatomische Verschiedenheit dieser Schichten in der Abbildung, welche Hr. Link in seinen Icon. anat. bot. Tab. VI. fig. 13. gegeben hat.)

Auffallend ist der Unterschied zwischen der Korksubstanz der Korkiche und den braunweissen Schichten der Birkenrinde, indem diese, lange Zeit hindurch, ohne Risse zu erhalten, am Stamme sitzen bleibt und sich nun nach und nach abblättert, während die Korksubstanz außereist und allmählich abfällt. Die inneren Schichten der Birkenrinde bestehen aus der zelligen Hülle und der Bastschicht, die dazwischen liegenden Parenchymzellen sind sehr dickwandig. (Man sehe hierzu die Abbildungen über die Entwicklung der Birkenrinde, welche Hr. Link in den Icon. anat. etc. Tab. VI. fig. 12, 14 u. 15. gegeben hat.)

In ganz dicker Borke alter Birkenstämme, ist jedoch nicht jene, vorhin angegebene Regelmäßigkeit in der Lage der braunen und der weiszen Schichten zu beobachten, sondern die Verdickungen geschehen bald hier bald dort mehr oder weniger stark;
wodurch die vorher vollkommenen regelmäßigen concentrischen Blätter vielfach gebogen und zerrissen werden.

Es sind vorhin die Fälle angeführt worden, wonach die besondere Entwicklung der Rinde einmal in der Verdickung der Korksubstanz, ein anderes Mal in der Verdickung der zelligen Hülle bestand; es gibt aber auch sehr viele Fälle, wo die starke Entwicklung der Rindenmasse hauptsächlich in der Entwicklung der Bastschicht besteht; als solches Beispiel ist besonders die Buche (Fagus sylvatica) zu nennen. An diesem Baume bleibt die Rinde fast immer glatt; die zellige Hülle bleibt hier immer sehr klein, selbst wenn auch die Rinde bedeutend dick geworden ist.

Auch die Rinde der bekannten Platane (Platanus occidentalis), welche bei uns zu finden ist, muß genauer erörtert werden. Sie zeigt denselben Bau wie die Rinde der Buche, erhält sich jedoch in dieser Art nur bis zum 10ten Jahre. Um diese Zeit bildet sich in der Bastschicht, d. h. nur an einzelnen Stellen eine neue Schicht von tafelförmigen Zellen, welche mit dem des Periderma vollkommen übereinstimmen. Diese neue Schicht von Rindenhaut legt sich so, daß ein Theil von der Rindensubstanz dadurch förmlich abgetrennt wird, welche alsdann auch vertrocknet und nach allmäßlicher Ablösung wirklich abfällt. Diese neuen Bildungen von neuen Schichten der Rindenhaut wiederholen sich, und so erfolgt die beständige Abblätterung, wobei der Baum dennoch eine recht glatte Rinde behält. Die abfallenden großen Rindenschuppen bestehen jedoch aus der zelligen Hülle und einem Theile Bastsubstanz. Bei Prunus, Pyrus, Crataegus, Quercus Robus, Tilia europaea etc. sollen die Rindenschuppen auf ganz gleiche Weise, wie der Platan, entstehen. Mohl unterscheidet mit anderen Botanikern diese dicke innere Rindenschicht von dem Korke, welche sich auf ganz andere Weise bildet, und nennt jene innere Schicht die Borke (Rhytidoma von òuris Runzel).

Die Resultate dieser Untersuchungen sind: daß die Entstehung der Schuppen der Oberfläche der Rinde dikotyledonner Gewächse nicht in einem Vertrocknen der Rindenlagen und einem mechanischen Zerreisfen derselben zu suchen ist, sondern daß sie auf der späteren Entwicklung eigener Zellenschichten beruht,
welche die einzelnen Rindenschuppen ablösen, oder deren Ablösung vorbereiten, oder auch die Schuppen selbst bilden.

Im Allgemeinen kann man zwei Hauptverschiedenheiten in der späteren Entwicklung des Zellengewebes der Rinde annehmen; einmal entwickeln sich die Schichten aufserhalb der zelligen Hülle, und im anderen Falle geschieht das Dickerwerden durch Entwicklung von Zellenlagen unterhalb der zelligen Schicht; im ersteren Falle bildet sich im Allgemeinen Korksubstanz, im zweiten dagegen Borke.

Endlich gibt es auch noch eine Anzahl von Pflanzen, bei denen sich alljährlich eine neue Bastschicht bildet, während die alte Schicht abstirbt und abfällt, z. B. Vitis vinifera, Lonicera Caprifolium etc.

1) Phil. bot. p. 282.

2) Untersuchungen über den Mittelstock am Tamus Elephantipes L. Tübingen 1836.

1) Untersuchungen über die Lenticellen. Tübingen 1836. 4.
so dass also die Lenticelle eigentlich aus zwei Schichten besteht,
namlich aus einer, dem grünen Rindenparenchyme angehörigen,
und aus einer, welche aus dem äußern Rindenparenchyme besteht,
or über mit diesem zusammenließen soll. Hieraus, so wie aus man-
chen anderen Umständen will Hr. M. die Lenticellen-Bildung
mit der Erzeugung des Korkes in Parallele stellen, ja er meint,
veys die Lenticelle eine partielle Korkbildung sei, welche der
Wucherung des inneren Rindenparenchyms ihr Dasein verdankt.

Referent möchte diesen Ansichten nicht beistimmen. Unter-
suchungen dieses Gegenstandes haben ihm gezeigt, dass die Len-
ticellen stets in einer Wucherung der grünen Rindenschicht be-
sten, und das diese Wucherung von dem äusseren Rinden-
parenchyme nur umfasst wird, doch findet sich allerdings auch
eine Auflagerung in dem Parenchyme, welches die äussersten,
meistens immer umgeschlagenen Ränder dieser einhüllenden brau-
nen Rindenschicht bildet. Die Zellen der Lenticellen, welche
gerade in der Mitte liegen und sich vor Allen durch ihre Länge
auszeichnen, pflegen allmälig ihre grüne Färbung zu verlieren
und zuletzt ganz weiss zu erscheinen, indem die grünen Con-
tenta allmälig verschwinden. Diese mittleren Zellen stehen
mit ihrer ausgedehnten Längenachse ganz horizontal, dagegen
behalten diejenigen Zellen der Lenticelle, welche die äussersten
Schichten derselben bilden, meistens nicht nur ihre gewöhnliche
Form, sondern mehr oder weniger auch ihre grüne Färbung.
Wird die ganze Bildung allmälig trocken, so färben sich auch
die Zellenmembranen derselben mehr oder weniger, und wohl
nur in dieser Färbung hat das Gewebe der Lenticellen einige
Aehnlichkeit mit der Korkbildung.

Hr. Mohl berührt in der genannten Abhandlung nochmals
die durch Hrn. De Candolle sehr allgemein verbreitete An-
sicht, als wären die Lenticellen gleichsam für Wurzelknospen zu
halten, eine Meinung, welche sich fast in allen neueren, mehr
populären Schriften über Pflanzen-Physiologie vorfindet, obgleich
dieser Gegenstand schon längst beseitigt sein sollte. Auch Hr.
Unger in seiner interessanten Abhandlung über die Bedeu-
tung der Lenticellen 1) gibt an, dass diese Organe lediglich

Hr. Unger führt verschiedene andere Pflanzengebilde auf, worin er ein Analogon der Lenticellen-Bildung erkennt, um vielleicht auf diesem Wege die wahre Bedeutung der Lenticellen zu enträtseln. Zuerst werden als solche analoge Gebilde, jene merkwürdigen Organe aufgeführt, welche Hr. v. Martius auf dem Stamme der Baumfarrn entdeckt hat, und worüber in unserem Jahresberichte von 1834 ¹) die Rede war, wo selbst ich die Zellen dieser Organe schon für Brutkörner erklären zu können glaubte. Bei den Flechten sollen es die Soredien sein, und bei den Jungernannien die Keimkörner-tragenden Blätter, welche als analoge Gebilde den Lenticellen der höheren Pflanzen zur Seite zu stellen wären. „Am unverhüll-

¹) Archiv I. p. 168,
testen, sagt Hr. Un g e r, zeigt sich die Bedeutung der Lenticelle unbezweifelt in den Brutknospen der Jungermannien, und man könnte somit hiervon die Versuchserfahrungen, die Lenticellen für Versuche zu erklären, die Brutknospenbildung auf der Rinde, der Dikolyledonen fortsetzen zu wollen. Doch Hr. U. glaubt, daß allem diesen noch eine viel tiefere Bedeutung zu Grunde liegt; er beobachtete, daß sich die Lenticellen an jungen Trie- ßen von Prunus Padus und Syringa vulgaris gerade an denjenigen Stellen entwickeln, wo die Spaltöffnungen sparsam vorkommen, und daher sollen die Lenticellen mit dem Atmungsprocesse auf irgend eine Weise im Zusammenhange stehen, ja er möchte dieselben für obliterierte Atmungsorgane ansprechen. Für eine ähnliche Meinung über die Bedeutung der Lenticellen muß sich auch Referent aussprechen; ich halte dieselben aber nicht für obliterierte Atmungsorgane, sondern für Gebilde, durch welche eine offene Communication zwischen der äußeren Luft und den Intercellularargängen der grünen Rindenschicht vermittelt wird. In diesem letzteren Gewebe sind die Intercellularargänge sehr häufig, aber die feste Verbindung der Zellen in den äußeren Rindenschichten gestatten im älteren Zustande der Pflanze keine ununterbrochene Communication.

Auch Hr. Link 1) spricht sich dafür aus, daß die Lenticellen Rindenschicht angehören, daß die darunter liegenden Warzen dagegen aus dem darunter liegenden Holze entstehen; doch sei nicht zu läugnen, daß sie vorzüglich neben jenen Warzen hervorbrechen, wie auch die Sprossen.

2) Effets de la décortication circulaire sur un Hêtre. — L'Institut de 1836. p 314.
Oberfläche des entrindeten Holzes zeigten sich viele unregelmäßige Exsudationen, welche ähnlich der Rinde erschienen. Der oberer Wundrand zeigte am Ende des Sommers eine starke Anschwellung, während die des unteren Wundrandes viel geringer war. Im nächsten Jahre entwickelten sich an diesem Baume die Blätter früher als an den unverletzten; Anfangs war der Baum noch sehr kräftig; doch im Verlaufe des Sommers magerte er ab, die Blätter blieben klein und die Entwicklung der Triebe war sehr gering. Die Exsudation auf der Oberfläche des entrindeten Holzkörpers wurden trockener und im dritten Jahre waren sie ganz verrothnet. Im Anfange des dritten Jahres schlug der Baum abermals früher aus, aber die Blätter blieben klein u. s. w. Im Anfange des vierten Jahres war der Baum todt. Referent hat dieselbe Beobachtung an einem starken Stamme eines Holländerbannes gemacht, welcher ebenfalls im vierten Jahre abstarb, aber auf der gereinigten Oberfläche des Holzkörpers gar keine Exsudation zeigte, welche überhaupt erst dann vorzukommen scheint, wenn man die Entrindung sehr spät, nämlich im Juni vornimmt.

Hr. J. S. Henslow 2) hat ein Paar Fälle beschrieben, wo abgestorbene Holzkörper von Dikotyledonen durch neue Jahresringe allmählich eingeschlossen wurden, ähnlich denjenigen Fällen, welche von Du Petit-Thouars und Lindley beschrieben sind. In dem einen der beschriebenen Fälle, nämlich an dem Stamme einer Pappel, war nur die eine Hälfte der Oberfläche des Stammes, wahrscheinlich durch bloße Entrindung abgestor-

ben, und die Holzschichten der nächsten Jahresringe legten sich allmählich seitlich über die erinderte Stelle, so daß schon im fünften Jahre die Wunde geschlossen war, und der neue Holzring wieder den ganzen Stamm umschloß. Ähnliche Fälle sind übrigens außerordentlich häufig zu finden, besonders bei den Weiden, wo bei dem Beschneiden einzelne Äste losgeschnitten werden, deren Holzkörper dann durch einen Seileast mit den neuen Holzschichten überzogen wird.

Von Hrn. Giron de Buzareingues 1) sind neue Untersuchungen über die Zusammensetzung der jungen Holzschicht publizirt worden, deren Resultaten Ref. nicht ganz bestimmen kann, doch werden wir den Gegenstand erst bei der ausführlichen Mittheilung der Abhandlung etwas näher erörtern.

Die zweite Frage: ob alle Wachstumsformen an einer und derselben Pflanze vorkommen können, beantwortet Hr. C. ganz naturgemäß und zeigt, daß bei allen Pflanzen ein peripherisches und terminales Wachsen stattfindet. Dieses wünschte indessen auch Hr. Mohl, als er die vegetatio terminalis von der vegetatio peripherica verschiedene darstellte, und er nahm diese Begriffe offenbar in einem anderen Sinne, als Hr. Corda dieselben deutet; Hr. Mohl schien nur darin zu fehlen, daß er auch den Cycadeen eine bloße vegetatio terminalis zuschrieb, während sich dieselben ganz wie die Coniferen verhalten.

Die dritte Frage: wie der einjährige Trieb sich zu dem mehrjährigen Stamme verhalte, und die vierte Frage: ob alle ein- und mehrjährigen Pflanzen einer Klasse gleich wachsen, haben ihre Beantwortung im Vorhergehenden gefunden.

Die fünfte Frage: ob alle exogen- oder peripherisch wachsenden Pflanzen die neugebildeten Theile, gleichsam die neue Pflanze, zwischen Bast- und Holzlage der älteren schieben, wird sehr ausführlich behandelt und die Beantwortung ist: „Alle peripherisch wachsenden Pflanzen schieben ihre neuen Theile in eine Spaltung des Bastes und nie zwischen Bast und Holz; die

1) Es findet bei allen holzigen Cacteen Statt. Ref.
Die Bastseite (die innere der Spaltung) erzeugt neuen Bast, während ein Theil des alten Bastes dem Holze als wesentlich auheimfällt, und an seiner Außenflächen ein neues Holz erzeugt. In Bezug auf diesen Ausspruch verweist 'Ref. nur auf die Nachweisung ausge-zeichneter Phytotomen, daß die Structur der Bastzellen und die der Holzzellen sehr verschieden ist, und daß schon dadurch jene Behauptung zusammenfällt, abgesehen sie noch auf verschiedene andere Weise positiv zu widerlegen ist.

Die sechste Frage: ob der junge Stamm oder Theil derselben Art anders, als der alte wachse, und die siebente: ob und wie der terminale Wachsthum Mohl's bestehe und vor sich gehe, sind ebenfalls schon mit den erstem Fragen beantwortet, doch die achte Frage: ob ein consequent durchgeführt und anwendbarer Unterschied des Wachsthumes mono- und dikotyledonischer Gewächse nachzuweisen sei, wird verneinend beantwortet.

Die neunte Frage: wie wachsen Moose, Lebermoose, Algen und Pilze, und kann man obige Fragen theilweise auch auf sie anwenden, wurde theilweise ebenfalls schon früher beantwortet und Hr. C. erinnert nur noch, daß jede neue Zelle sich an der Außenfläche der älteren bilde, was aber, wie gleich im Anfange dieses Berichts von dem Referenten auseinandergesetzt wurde, nicht richtig ist.

Endlich hat Hr. Corda noch 30 Schlusssätze gebildet, welche er den Naturforschern zur Bearbeitung und kritischen Untersuchung übergibt. Referent führt hier nur diejenigen dieser Sätze auf, welche von den, gegenwärtig herrschenden Ansichten abweichen, als:

1) Alles Holz muß in einem Parenchymgewebe gebildet werden, welches Gewebe durch die entstehende Holznasse in zwei, früher gleiche, später entgegengesetzte Theile getrennt wird, deren inneren wir Mark, den äußeren aber Rinde nennen.

3) Der Bast wird immer früher als die Gefäße gebildet.

16) Auch nahm man an und lehrte: das Holz der Zapfenbäume
bestehe in den älteren Jahrringen ganz aus Gefäßen; — jedoch findet sich an jedem, auch dem ältesten Jahrringe eine sehr dünne Bastschicht, und ihrer Dünne wegen wurden sie überschirn.

19) Bast und Holz selbstständig, und diese Vereinigung beider Theile in noch weichem Zustande nennt man Splint.

20) Auch entsteht mit jeder neuen Holzlage eine neue dünne Parenchymsschicht an der Außenfläche des neuen Bastes und der inneren Seite des alten, welche früher saftig ist, und später in Korkgewebe übergeht, und der abgestorbenen Rinde die braune Farbe erteilt, wodurch wir auch in der Rinde Schichten gebildet finden, abwechselnd aus Bast und Kork bestehen, u.s.w.

2) Ricerche sulla struttura del caule nelle piante monocotiledoni Padua 1836. fol. min.
Folgende Probleme sind es, welche Hr. M. zur Auflösung sich vorgesetzt hat:

1) Welches ist die Anordnung der Gefäßfasern, die allen Stammarten der Monokotyledonen gemeinschaftlich ist.

In jeder monokotyledonischen Pflanze lösen sich von der Basis eines jeden Blattes mehr oder weniger zahlreiche Gefäßbündel ab, welche mit mannigfaltig schrägem und verlängertem Lauf sich bis nahe zu irgend einem Punkte der Achse begeben und von da nach der horizontalen Seite auseinander laufend, mit mannigfaltiger Biegung rechts oder links fortfahren hinabzusteigen, indem sie zur Peripherie beständig schräg zurückgehen. Sie enden damit, daß sie einen senkrechten Lauf annehmen, welcher ihnen erlaubt, sich in einen peripherischen Gürtel von verschiedener Festigkeit und Dichtheit zu verdichten, in welchem sich jedoch immer dieselbe Ordnung der Aufeinandersetzung erhält, wogegen die neuesten Bündel auf die anderen aufgesetzt sind.

2) Welche unveränderliche Gesetze jene allgemeine Anordnung beherrschen.

Da jedes Blatt bei seiner Entstehung aus dem Stengel mit eckelförmiiger Basis im Mittelpunkte der Knospe hervortritt, und in seinem Wachstum wie eine Spirallinie zu einem höheren und peripherischen Orte geführt wird, indem es fortfährt, den ganzen Umkreis des Stengels zu umfassen, und indem es in der Folge nur einen immer kleineren Bogen desselben umfasst, so geht daraus notwendig hervor, daß der untere Lauf jedes Gefäßbündels die Stellung darstellt, welche sie hatte, während das Blatt noch in der Knospe verschlossen war, und die obere organisierte sich nach und nach, während der Vorrückung des Blattes selbst, von deren Bedingungen, wie von einem unveränderlichen Gesetze die Modifikationen abhängen, welche bei jedem Gange beobachtet werden.

3) Welchen besonderen Modifikationen der allgemeine und beständige Typus dieser Organisation unterworfen werden kann.

Die Knospe, welche den neuen Individuen den Ursprung gibt, hört auf sich zu entwickeln, wenn sie bis zu einer be-
stimmten Grenze gelangt ist, oder setzt auf unbestimmte Weise ihr fortsehreibendes Abwickeln fort. Die Grenze der ersten wird von der terminalen Stellung der Inflorescenz festgesetzt, welche bei der zweiten eine axillare ist. — Der Blüthentheil des Stengels wird ganz von den oberen Zügen der Gefäßbündeln festgelegt und erfreut sich daher der ihnen einhängenden Bedingungen, welche die der Endogenität sind. Die Centripetal- oder Centrifugalcharaktere der Inflorescenz selbst bringt der Structur des Blumentheiles nur eine leichte Modification, welche noch weniger in dem unteren Theile des Stengels offenbar ist, und sich auf die Epoche der Entwickelung der axillaren Knospe bezieht, woher die Blüthenzweige ihren Ursprung haben. Die Vertheilung und Verschiebung der Blätter wird wie in einer einzigen Spirallinie, oder in zweien bewirkt, welche gleichzeitig in entgegengesetzter Richtung herumlaufen. Die größere oder geringere senkrechte Entfernung, und die größere oder geringere Seiten-Divergenz der Blätter, geschweige denn das Verhältnifs der Basis mit dem Umfange des Stengels, beständig erhalten oder allmählich vermindert, und die beständige Ordnung ihrer Folge um den Stengel sind Beschaffenheiten, welche durch ihre Veränderung jene zwei allgemeine Fälle modifizieren. Je größer die senkrechte Entfernung der Blätter ist, desto geringer ist der senkrechte Verlauf der Gefäßbündel. Wenn das Verhältnifs der Basis des Blattes zur Peripherie des Stengels beibehalten ist, so ist nur die horizontale Schragheit der Fasern einförmig und beständig aller gleichzeitig mit der Verschiebung der Blätter selbst eingedrückt. Wann aber die Insertion auf einen einzigen Bogen beschränkt ist, so wird jene Schragheit, je mehr dieser geschrägt wird, desto größer, indem die Fasern abweichen müssen, die einen rechts, die anderen links, während sie mit den unteren Zügen über die ganze Peripherie vertieft bleiben. Je kürzer indessen die Insertion ist und je kleiner die vertikale Entfernung, desto geringer wird die seitliche Divergenz der Blätter, welche sogar dahin gelangen, Quirle nachzuahmen und auch zu bilden. Wenn im Gegentheile das ursprüngliche Verhältnifs be wahrt wird, so hängt die seitliche Divergenz bloß von der senkrechten Entfernung ab und öfters bleibt hier die zweireihige Anordnung, welche in den Monokotyledonen die natürliche ist. So

4) Welchen Antheil die Zweige an dem Baue und dem Wachstum des Stengels nehmen.

Die Zweige, welche die axilläre Inflorescenz ausmachen, welche zugleich mit den Blättern entstanden und gewachsen sind, haben auch ihre Gefäßbündel in derselben Richtung, und tragen sehr wenig zum Wachstum des gemeinschaftlichen Stengels bei. Die dritten Data, welche die Wissenschaft über die Verzweigungen des Pandanus besitzt, rechtfertigen die Annahme, daß sie denselben Ursprung als jene Efflorescenz besitzt. Wenn indessen, wegen der terminalen Inflorescenz, ein neues System dem ersteren folgt, sei es, daß es hervorgehe aus einem einzigen Zweige, oder aus mehreren Arten um dieselbe horizontale Fläche, so lehnt es sich an das alte an und bildet dort ringsumher eine Schicht, welche sich mit der jährlichen Vegetation in den Stämmen der Dikotyledonen vergleichen läßt.

Unabhängig hiervon können auf den schon gewachsenen Theilen des Stammes Zweige entstehen, in deren Beziehung zwei verschiedene Beschaffenheiten zu bemerken sind. Denn es kann sich ereignen, daß die Vegetation der Hauptachse vollendet oder unterbrochen wird, und die Hervorbringungen dieser Zweige äußerlich dem faserigen Holzkörper des alten Stammes bleiben, oder daß dieser immer wächst und die neuen Productionen sich mit jenen der Zweige verflechten und verbinden. Es tragen also jene verschiedene Arten der Verzweigung zur Vergrößerung des Stammes auf verschiedene Weise bei. Sie ist derselben gänzlich zuzuschreiben, wenn sie der schon vollendeten Vegetation der Hauptachse folgen; sie nehmen einen geringen Antheil daran, wenn sie von der Inflorescenz zum Winkel der noch vorhandenen Blätter emporsteigen.

Analoge Unterschiede müssen in Beziehung auf die Wurzeln festgesetzt werden, denn wenn sie von der Basis des Stammes herabhängen, so sind ihre Gefäßbündel continuirlich, wenn sie dagegen aus den Seitentheilen hervorbrechen, so treiben sie ihre
Bildungen von Gefäßbündeln zwischen den Holzkörpern und der äußeren Rindenschicht.

5) Welche neue Unterscheidungskennzeichen durch diese organischen Beschaffenheiten zwischen den Stengeln der beiden großen Clasen phanerogamer Gefäßpflanzen festgesetzt werden.

In der größeren Zahl der Dikotyledonen erhält sich dagegen die Isolierung der Gefäßbündel, und folglich die Integrität der ursprünglichen Verhältnisse nur bis zu einer gewissen Epoche. Mehr oder weniger schnell, je nach den Gattungen, enden jene Bündel damit, daß sie sich mit den Seiten aneinander legen, und jener Kreis von Gefäßbündeln wird nun eine feste Röhre, welche bloß von strahlenförmigen Plättchen durchkreuzt wird, die von Reihen horizontaler Zellen gebildet werden. Die neuen Bündel, welche fortfahren sich zu organisiren, nachdem jene Röhre geschlossen ist, schwellen dieselbe an, so lange als die Vegetation des Jahres dauert. Wenn man daher die Spitze eines jungen Keimes durchschneidet, so sieht man die Gefäßbündel, welche in die Blätter eindringen, beständig aus der innersten Holzschicht hervorkommen. Diese faserigen Gefäßbildungen wurden von Girou de Buzareingues unterschieden, je nachdem sie den Blättern des junges Keimes angehören, oder den Knospen, welche sich in den Winkeln jener Blätter entwickeln. Er zeigte, daß diese Knospen, trotz ihrer scheinbar inneren Stellung zu jener der Blätter, sich aus dem Gipfel einer markigen mehr hervorspringenden Production erheben, und daß ihre Gefäßfasern, indem sie jenen der Blätter den Durchgang lassen, auf die Außenseite jenes ersten fibrösen Körpers herabsteigen. Jene beiden Gürtel werden daher durch mehrere centrifrische kleine Schichten gebildet; jene des äußeren Ringes sind immer so angeordnet, daß die am meisten peripherischen den niedrigsten Knospen angehören, die innersten dagegen den höchsten. So verhält es sich auch mit dem Centralgürtel bei den jährigen Pflanzen, bei den Sprösslingen der Rizocarpen, und größtenteils auch mit den neuen Sprossen der Bäume; aber bei einigen unter diesen letzteren ist die Ordnung gerade umgekehrt, durch welche die Fasern der oberen Blätter äußerlich über den anderen sind, und die den Mittelpunkte am nächsten von Allen sind jene, welche den untersten Blättern angehören. Die Markböhle nimmt in diesem Falle eine umgekehrte conische Gestalt an, während sie die eines geraden Kegels bei der ersten Beschaffenheit hat. Mohl unterscheidet diese zwei verschiedenen Fälle nicht, ebenso wenig als die beiden Gürtel als getrennte und ausschließliche Produktionen der Blätter und der Knospen. Er

Obgleich man nicht zwei getrennte Gürtel bei den Schüsslingen der Smilax-Arten unterscheiden kann, so ist es hier doch ausgemacht, daß die faserigen Bildungen der Blätter den Mittelpunkt einnehmen, und die der Knospe die Peripherie, wie es Girou de Buzareingues in den Dikotyledonen fand. Aber in diesen trägt der holzige Theil allein dazu bei, jene beiden Systeme zu bilden, während der Basttheil zur Peripherie zurückgetrieben wird; bei Smilax dagegen und bei den anderen Mono-
kotyledonen erhalten sich die Fasern in ihrer vollkommenen Integrität. Es ist daher zu bemerken, daß die am meisten peripherischen sich aus bloßem, prosenchymatischem Gewebe ergeben, wie es auch Michèl abbildete, und wie man es bei den Querschnitten von der Seite, welche derjenigen der Knospe entgegengesetzt ist, sehen kann.

Aus der Zusammenfassung dieser Betrachtungen ergeben sich die folgenden Sätze:

von der Narbe, welche an der äußeren Oberfläche gelassen wird, abhängig und bleibt immerwährend mit derselben in Verbindung, indem sie sich nach und nach quer durch die neuen Productionen verlängert, welche beständig die Dicke des Stammes vermehren.

6) Was man zu den Sachen, welche von Mohl entdeckt wurden, hinsichtlich der Pflanzen-Anatomie hinzufügen müsse.

Mohl erforschte den Lauf der Holzbündel in den verschiedenen Palmenstämmen, indem er ihre Abweichungen in der vertikalen Richtung bestimmte. Er zeigte, dass alle Gefäßbündel, welche einem Wedel angehören, während er das äußerste Ende einnimmt, an der äußeren Oberfläche des Stammes einen langen Kegel bilden, dessen Spitze sich bei der Entwicklung des neuen Blattes öffnet, indem die Gefäßbündel nun zur Peripherie auseinander laufen, von wo sie sich mit den neuesten durchkrenzen, u.s.w. Um die Ursache der Erscheinung zu erforschen, muss man die Blätter in ihren successiven Verrückungen verfolgen, es auf die Verrückungen anwenden, welche sich den Fasern selbst mittheilen, und das beständige Verhältnis der Vertheilung der äußeren Organe zu denen der inneren Gefäßbündel erkennen. Man muss vor Allem die Fälle unterscheiden, in welchen die Blattstiel scheide ihre ursprünglichen Beziehungen zu der Peripherie des Stammes bewahrt, von denen übertriebener Anschwellung dieses Letzteren, wodurch die Basis des Blattstieles auf einen, mehr oder weniger beschränkten Bogen zurückgeführt wird. Ursachen dieser Modifikation, wenn man sie wohl berechnet, erklären alle Verschiedenheiten, welche man in dem Baue der Stämme antreffen kann, u.s.w. Um aber ihre Geschichte zu vollenden, um die Grade der Aehnlichkeit zu bestimmen, welche Mohl bloß anzeigte, muss man in jedem Stengel den Blüthen teil von dem übrigen unterscheiden, welcher sehr häufig auf die geringsten Dimensionen zurückgeführt wird. Bloß vermittelst dieser Unterscheidung kann man die Struktur des Stengels erklären, welchem Mohl robrartig nannte, weil er den Palmen des Geschlechtes Calamus eigen ist, welche mit irgend einer anderen Pflanze jener Familie in Beziehung auf der inneren Struktur nicht verglichen werden könne, außer an ihrem unteren...
ren Theile, welche zur gemeinschaftlichen Achse dient, von welcher aus jene neuen Keime hervorgehen.

Zu den einflußreichsten Erscheinungen des vergangenen Jahres gehört ein Werk des Herrn Link 1), worin derselbe eine große Reihe von phytotomischen Abbildungen zu publiciren be-

1) Icones anatomicae-botanicae ad illustranda elementa philosophiae botanicae. Fasc. 1. cum tabulis lithographiorum VIII Herolini 1837. fol. Lateinisch und deutsch.
ginnt. In der Vorrede zu diesem Werke sagt Hr. L., daß die Anatomie des menschlichen Körpers die großen Fortschritte gemacht habe, seitdem die Gelehrten angefangen haben, dasjenige, was sie sehen, durch geschickte Künstler abbilden zu lassen. Diesem Beispielen wird auch Hr. Link folgen, und somit werden auch allen Denjenigen, welche nicht im Stande sind, eigene mikroskopische Beobachtungen anzustellen, die Mittel an die Hand gegeben, sich und Andere zu belehren, denn Abbildungen sind zum Studium der Pflanzen-Physiologie eben so nöthig, wie zum Studium der thierischen Anatomie. Die große Theilnahme, welche dieses Werk, bei seinem außerordentlichen geringen Preise, gleich nach dem Erscheinen erfahren hat, beweist schon die Zweckmäßigkeit desselben. Aus der großen Anzahl schöner und interessanter Abbildungen, heben wir nur einige hervor, welche alle Aufmerksamkeit der Botaniker auf sich ziehen müssen, als die sehr gelungenen Darstellungen von der Verflechtung der Holzbündel in den Nodien der Monokotyledonen; Tab. II. fig. 6. zeigt das Hineinwachsen und Verflechten der Holzbündel, welche von einem Aste oder einer Knospe von Saccharum officinarum herabsteigen. Die keimenden Pflänzchen verschiedener Monokotyledonen, die Querschnitte aus verschiedenen Anamorphosen des Monokotyledonen-Stammes, die Abbildungen der verdickten Zellenmassen aus der Borke der Birke u. s. w. zeigen zugleich vieles Neue, was bis dahin noch nicht publicirt war.

Auch hat Ref. noch eine Schrift anzuführen, welche er als Beantwortung einer, von der Teyler'schen Societät zu Harlem am 1. Jan. 1834 aufgegebenen Preisfrage eingesendet hat, und am Schluß des vergangenen Jahres zu Harlem, als der 22ste Theil der Verhandelingen uitgegeven door Teyler's Tweede Genootschap (Haarlem 1836 4.) erschienen ist. Obgleich diese Arbeit zur Publikation noch nicht eingerichtet war, so muß Ref. der Teyler'schen Societät dennoch seinen Dank abtragen, indem dieselbe bei dieser Gelegenheit eine große Menge seiner eigenen mikroskopischen, meistens phytotomischen Abbildungen, welche dieser Preisschrift auf 20 Quartoquadern beigegeben waren, herausgegeben hat, was auf anderem Wege schwerlich so gut anzuführen gewesen wäre. Man hat dieser Schrift den Titel: Ueber die neue-
sten Fortschritte der Anatomie und Physiologie der Gewächse, gegeben; sie wurde aber schon 1834 geschrieben, und ein Theil der Tafeln war schon 1833 ausgeführt. Ref. möchte von dieser Schrift die Abbildungen zur Benutzung empfehlen, welche, obgleich sie meistens noch nach einem alten englischen Mikroskope angefertigt sind, dennoch zu den wichtigsten gehören dürften, welche bis jetzt für Pflanzen-Anatomie erschienen sind. Die neuen Thatsachen, welche im Texte dieser Preisschrift enthalten sind, werden ziemlich vollständig in dem Buche zu finden sein, welches vor kurzer Zeit unter dem Titel: Neues System der Pflanzen-Physiologie, hier zu Berlin von dem Ref erschienen ist.

Zur Morphologie.

Ueber den knollenförmigen Stamm von *Tamus Elephantipes* L. haben wir durch Hrn. Mohl 1) eine ergebnisreiche Untersuchung erhalten; leider waren die Exemplare, welche hierzu bestimmt wurden, schon dreijährig. Im ersten Jahre soll diese merkwürdige Pflanze nur ein knolliges Stämmchen von der Größe einer Haselnuss entwickeln, ganz ohne Blätter-tragenden Stengel. Bei der dreijährigen Pflanze hatte das Stämmchen die Größe der Walnuss erreicht, und zeigte bald eine längliche, bald eine abgeplattete Form; das Würzelchen im Mittelpunkte der Basis fehlte, dagegen war es durch einen Kranz von Faserwurzelchen ersetzt, welche am Rande der Grundfläche saßen. Die Entwicklung dieser Würzelchen findet hier wie bei so vielen andern knollenförmigen Monokotyledonen-Stämmchen statt; die alten Würzelchen sterben nämlich ab und werden durch neue ersetzt, welche weiter nach Außen am Rande der Grundfläche hervorbrechen; es entwickeln sich also diese Würzelchen in concentrischen Kreisen, wovon der innerste zugleich der jüngste ist, und zugleich beweist dieser Stamm von *Tamus Elephantipes*, daß die Entstehung von Adventivwurzeln bei den Monokotyledonen nicht nothwendigerweise an die Existenz und Lage der Knoten gebunden ist. Achtjährige Stämmchen von 3 Zoll Durchmesser wurden genau untersucht; auf dem senkrechten

1) Untersuchungen über den Mittelstock von *Tamus Elephantipes* L. (Als Inaugural-Dissertation erschienen.) Tübingen 1836 4

Herr Mohl 1) hat einige interessante Beobachtungen über

1) Beobachtungen über die Umrundelung von Antheren in Carpelle. Tübingen 1836. (Als Inaugural-Dissertation erschienen.)

Ähnliche Übergänge der Äntheren in Carpelle sah Herr M. h. bei Papaver orientale; diese Übergänge waren um so vollständiger, je näher die Staubfäden den Ovarien standen. „Bei den Äntheren von Sempervium, sagt Ihr. M., sahen wir zuerst die hinteren Loculamente verschwinden, während sie zugleich
durch starke Entwicklung des Connectivs auf der hinteren Antherenläche auseinander treten; erst weit später verschwanden die vorderen Loculamente. Etwas Aehnliches, jedoch nicht in gleich hohem Grade ausgesprochen, kam bei *Papaver* vor. Indem nämlich die Placentä sich verdickte und die Antherenloculamente verdrängte, so zog sie sich zugleich gegen die vordere Antherenläche hin, wodurch der Rücken der nach dem Verschwinden der Antherenloculamente grün gewordenen Anthere gewölbt wurde."

Hr. Mohl schließt sich in Folge seiner Untersuchungen der Ansicht Cassini’s an, doch zugleich mehrere wichtige Modifikationen derselben andeutend. Nach Cassini sind die Näthe der Antheren als die Blattränder anzusehen; die Scheidewände zwischen den Loculamenten eines jeden Faches als Überreste des Blattparenchymys und der Pollen als eine Modification des Blattparenchymys. Wohl mit allem Rechte stellt Hr. M. die Ansicht in Zweifel, daß die Näthe der Antheren den Blatträndern entsprechen; bei halb in Antheren umgewandelten Blumenblättern von *Papaver* beobachtete er, daß beide Antherenloculamente auf der oberen Blattfläche entstehen und daß der Rand der Blumenblätter, ohne eine Spur zu hinterlassen, in dem hinteren Antherenloculamente verschwindet.

Hr. B. Presl 1) hat Beobachtungen über eine seltene Monstrosität an den Staubbeuteln einer gemeinen Tulpe bekannt gemacht, woraus er sehr abweichende Ansichten über die Pollen- und Altherenbildung gefolgert hat. Die monströse Tulpe zeigte fast vollständig grüne Perigonialblätter; das Connectivum war breit, flach, grün, über die Staubbeutelfächer beinahe zwei Linien verlängert, und in zwei pauserörmige, zusammengeneigte stumpfe blattartige, nach unten ein halbmal gerollte grünliche Spitzen ausgehend. Die Fächerränder dick wie Papier, beinahe wulstig, und der ganzen Länge nach mit einer hin und her unterbrochenen, oder teilweise doppelten Reihe gestielter keulenförmiger weisser durchscheinender, dicht nebeneinander stehender Bläschen besetzt. Das Ovarium hatte in der einen Längsfurche ein accessorisches, mit einem eigenen Narhenlappen ver-

1) Vermischte botanische Aufsätze. Mit einer Kupferplatte.
sehenes Ovariumfach, welches aber keine Eierchen enthielt. Die weißen Bläschen, welche die Rinde besetzten hielten, erklärt Hr. P. für Pollenbläschen, obwohl dieselben keinen Pollen enthielten. „Das Pollenbläsehen und das Eibläsehen haben eine analoge Organisation, aber eine verschiedene physiologische Bedeutung.“ Dieser Ausspruch ist wohl unhaltbar; zwar hat ihn Hr. Mohl aus seinen Beobachtungen über den Bau des Pollens gezogen, aber jene sind, in Bezug auf diesen Punkt, bei Anwendung besserer Instrumente und stärkerer Vergrößerung als nicht richtig zu erweisen.

Hr. P. widerlegt ferner in der genannten, höchst interessanten Abhandlung die Ansichten des Hrn. Agardh, dass die Staubgefäße das Produkt einer axillären Knospe wären, so wie auch die, dass das Carpellarblatt die Placenta als eine Axillarknospe hervorbringe. Auch die Ansicht des Hrn. Endlicher, dass die Bildung der Placenta aus der verlängerten Axe der Blume entstehe, sucht Hr. P. zu widerlegen, gesteht aber zu, dass die verlängerte Blumenaxe zur Untersuchung der Placenta beitragen könne; jedoch müsste erst erwiesen werden, ob das Carpellarblatt das Mittelsäulchen nicht überzieht, wie es wahrscheinlich ist, folglich das Mittelsäulchen die Placenta selbst nicht ausmachen kann.

Hr. G. A. Eisengrün ¹) hat ein großartiges Werk gelie-

¹) Die Familie der Schmetterlingsblütigen oder Hülseengewächse,
fert, worin die Leguminosen in morphologischer Hinsicht sehr speziell erörtert werden, und zugleich ihre nahe Verwandtschaft mit einigen anderen Familien, die dem Habitus nach so weit entfernt stehen, dargethan wird. Es würde nicht leicht möglich sein, über den reichen Inhalt dieses so fleißig gearbeiteten Werkes auf einen kleinen Raum zu referiren, daher ich auf die Schrift selbst verweisen muß.

Hr. Eudes-Deslongchamps 2) beobachtete eine Misbildung bei Papaver Rhoeas, wo der Kelch in 8 Theile gespalten war, und ferner eine vollkommene Verdoppelung aller Theile einer Blüthe von Agapanthus umbellatus; auch das Pistill war doppelt. — Auch Hr. Wiegmanna sen. beobachtete einige Misbildungen in der Mohnkapsel 3), und Hr. KIinsmann 4) hat einige andere Beobachtungen über Monstrositäten bekannt ge-

1) Ueber die Metamorphose der Carpelle bei der Hundskirsche (Cerasus Padus).

2) L'Institut de 1836. p. 314.

3) S. Flora v. 1836. p. 28.

Die Arbeiten der Herren J. S. Henslow 1), Gardiner 2) und A. Tansch 3) können wir leider nur anführen.

In den schon angesührten botanischen Aufsätzen hat Herr Presl (p. 14.) eine Beobachtung über die theilweise Füllung der Blumen bei der gemeinen Robinie (Robinia pseudacacia) gemacht, und in einem anderen kleinen Aufsatz 8) hat Hr. P. nachgewiesen, daß die Ansicht über die folia ternata, welche Hr. De Candolle aufgestellt hat, daß dieselbe nämlich als folia pinnata unijuga cum impari anzusehen

3) Dissert. de inflorescentia. Pragae 1833.
6) Bemerkungen über den Bau der Blumen der Balsaminen. Prag 1836.
8) Über die Metamorphosen der Blätter bei dem gemeinen Schneckklee.
ganz der Natur entsprechend wäre. Die Indigoferen zeigen dieses besonders deutlich; eine Art derselben zeigt am unteren Theile des Stengels einfache, weiter hinauf gedreite und am oberen Theile desselben gefiederte Blätter mit dem unpaarigen.

Eine andere Beobachtung betrifft die prismatischen Blätter, welche bei der Gattung Mesembryanthemum so häufig vorkommen. Ihr. T. weist hierüber durch Beobachtungen und beigelegte Abbildungen nach, daß diesen Blättern eigentlich die untere Fläche fehlt, daß sie anzusehen wären als solche, die sich durch seitliches Umschlagen der oberen Blattfläche und Verschwinden der Substanz der unteren Blattfläche gebildet hätten. Die Vertheilung und der Lauf der Holzbündel, sowie die Stellung

der Zellen in diesen Blättern sind offenbar beweisend für die scharfsinnige Ansicht des Hrn. T.

Eine sehr schätzenswerte Arbeit haben wir von Herrn Aimé Henry ¹) über den Bau der Laubholzknospen erhalten, welche mit den schönsten instruktivsten Abbildungen von seiner Meisterhand begleitet sind, die alle eigenen Untersuchungen über diesen, noch wenig oder gar nicht bearbeiteten Gegenstand ergeben. Die vorliegenden Untersuchungen sind hauptsächlich auf die Form und Stellung der Knospenschuppen, so wie der darin eingeschlossenen Blätter gerichtet, und es sind hier dieGattungen Betula, Alnus, Ostrya, Carpinus, Corylus, Quercus, Fagus, Platanus und Castanea in dieser Hinsicht bearbeitet.

Irritabilitäts- und Sensibilitäts-Erscheinungen.

Auch die Beobachtungen der Erscheinungen über Irritabilität und Sensibilität der Pflanzen mehren sich von Jahr zu Jahr. Hr. Presl ²) hat Beobachtungen über die Reizbarkeit der Staubfädenröhren bei einigen Arten des Schneckenklee (Medicago) bekannt gemacht, welche veranlassen möchten, daß man diesen Gegenstand bei der ganzen Familie der Leguminosen verfolgt. „Die Reizbarkeit der Staubfädenröhren bei Medicago arborea, sativa und falcata besteht darin, daß, sobald man die Basis des Schiffchens oder der Blume von den Seiten etwas drückt, oder mit einer Nadel u. s. w. in die Öffnung oder an die Basis des Schiffchens sticht, die Genitalien sogleich und mit der größten Schnelligkeit das Schiffchen verlassen und an die vordere Fläche der Fahne sich anlegen. Diese Reizbarkeit zeigt sich vom Morgen bis zu den späten Nachmittagsstunden; beim Sonnenuntergang aber nicht so gut, oder gar nicht mehr, indem dann der Schlaf dieser Pflanze eintritt. Oft war eine starke Erschütterung der Pflanze hinlänglich um diese Bewegung der Staubfäden zu bewirken, und diese Bewegung geschah mit außerordentlicher Schnelligkeit. Kaum sticht man in die Blume, oder drückt sie von den Seiten, so schnell auch die Genitalien heraus.

Hr. P. macht zugleich auf die Reizbarkeit des Griffels bei

²) Vermischte botanische Aufsätze.
der gemeinen Bahne aufmerksam, welche darin besteht, daß sich derselbe aus der Öffnung des schneckenförmig gedrehten Schiffchens in der Länge von 2 Linien schnell herausgeschickt und eben so schnell wieder zurückzieht, oder stößweise aber in geringerer Länge sich hinaus- und wieder hineinzieht.

Eine höchst beachtenswerthe Arbeit über die Bewegung der Blüthen bei *Hedysarum gyrans* und bei anderen Pflanzen haben wir von Hrn. Dr. Dassen 1) zu Hoogwuen in Drenthe erhalten, welche erst im vergangenen Jahre zu uns gekommen ist. Es ist dieses Werk eine Beantwortung der Preisfrage, welche die holländische Gesellschaft der Wissenschaften zu Harlem zum Jahre 1834 über die Bewegungen bei *Hedysarum gyrans* aufgab; sie ist mit grösster Umsicht und grösster Literaturkenntnifs geschrieben, und umfaßt an 130 Seiten. Sehr Vicles von dem Inhalte dieses Werkes ist von solchem Interesse, daß eine baldige Uebersetzung desselben in eine gangbarere Sprache sehr erwünscht sei, wozu vielleicht in den nächsten Heften dieses Archivs etwas Platz übrig bleiben möchte.

Bei der Blüthe von *Mirabilis Jalapa* und *M. longiflora* sind die 5 Nerven, welche die häutige Zellenmasse der Blüthe ausspannen, die einzigen Vermittler der Bewegungen; bei dem Erwachen der Blüthen krümmen sie sich nach Aufsen, bei dem Schließen derselben nach Innen. Jene Nerven zeigten folgende Struktur: An ihrer äussern Seite liegt ein Zellengewebe, dessen

1) Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Harlem. Deel XXII. To Harlem 1835.
Zellen, in Längsreihen gestellt, von Innen nach Außen an Größe abnahmen. Hierin glaubt Hr. D. die Ursache der Krümmung nach Außen gefunden zu haben, indem dieselbe erfolgen muss, wenn diese Zellenmasse turgescirt. Auf der inneren Seite zeigten jene Nerven ein fibröses Gewebe, zusammengesetzt aus äusserst feinen Fibern und in Längsreihen gestellten Kugelchen (!). Hr. D. trennte diese Schichten, welche äußerlich und innerlich den Spiralröhren liegen, legte sie für sich allein in Wasser und beobachtete an ihnen die entsprechenden Krümmungen; die äusserlich gelegene, die Zellenschicht nämlich, krümmte sich nach Außen, die Faserschicht dagegen nach dem Inneren der Blüthe. Wurde die Zellenschicht von der äusseren Fläche der Blüthe einer Knospe abgetrennt und in Wasser gelegt, so krümmte sie sich nach Außen, im Zuckersyrup dagegen krümmte sie sich nach Innen. Andere Beobachtungen zeigten jedoch, daß die Turgescenz der Zellen jener Schicht, welche die Blüthenrippen äußerlich bekleidet, durchaus nicht ausreichend ist, um das Ganze zu erklären, denn es fand sich, daß eine solche Zellenschicht, welche sich nach dem Eintauchen in Wasser nach Außen gekrümmt hatte, nach Verlauf von 6 Stunden ihre Krümmung änderte und sich nach Innen zusammenzog.

Die Blüthen von Mirabilis öffnen sich Abends und schließen sich des Morgens; die Blüthen von Convolvulus purpureus L. öffnen sich um Mitternacht und schließen sich den Abend des folgenden Tages; der Unterschied soll dadurch erklärt werden, daß die Convolvulus-Blume weit langsamer den Sauerstoff aufnimmt. Die Blüthe des Löwenzahns dauert gewöhnlich zwei
und einen halben Tag und in dieser Zeit ist sie des Morgens geschlossen und Abends geöffnet; am dritten Tage schließt sie sich gegen den Mittag. Auch hier glaubt Hr. D. nachgewiesen zu haben, daß das Öffnen der Blume durch Endosmose, und das Schließen derselben durch Oxygenation bewirkt werde, doch bei der Wiederholung der Versuche des Hrn. D. wollte es Referenten nicht immer glücken; auch ist die Struktur der Bandblümchen des Löwenzahns offenbar eine ganz andere, als sie von Hrn. D. angegeben wird; sie ist im höchsten Grade einfach, und Ref. findet darinst nichts, was auf einen Antagonismus deuten könnte.

Hr. D. zieht aus diesen Untersuchungen noch einige allgemeine Schlüsse, welche wir hier noch aufführen: Die Pflanzen-Irritabilität soll die Eigenthümlichkeit eines Fasergewebes sein, welches, sich krümmend gegen Oxygenation reagirt; daher müßte man den Ausdruck: Krümmungsfähigkeit für Irritabilität gebrauen.
chen. Hinzufügend, daß die Krümmungsfähigkeit mit Excitabilität verbunden ist, oder dem Vermögen, die Einflüsse der Reizmittel aufzunehmen, welche die Thätigkeit des krümmungsfähigen Zellengewebes bedingt.

Hr. M. setzt noch hinzu, daß der Zustand, worin sich die Pflanzen befanden, ein ähnlicher als derjenige war, welcher bei diesen Gewächsen, oft mitten am schönsten Tage, durch einen heftigen Sturm veranlaßt wird. Als die Finsterniss vorüber war, hörte auch wieder der Schlaf der Pflanzen auf.

Licht- und Wärme-Erzeugung.

Der Herzog von Buckingham 2) hat am 4. Sept. 1835 an der Oenothera macrocarpa ein brillantes phosphorisches Leuchten beobachtet, welches von den Blättern und Blütten der Pflanze ausging und lange Zeit hindurch anhielt. Es war eine dunkle Nacht mit Sturm und Unwetter begleitet. Dr. Buckland 3)

1) L'Institut de 1836. p. 416.
meint, daß jenes Leuchten, schon wegen der langen Dauer mit keiner elektrischen Erscheinung zu vergleichen sei, sondern daß sehr wahrscheinlich der Pflanze ein Vermögen zukomme, das Licht einzusaugen und unter besonderen Verhältnissen wieder auszustrahlen. Ref. wäre der Ansicht, daß man solche Erscheinungen selbst gesehen und genau betrachtet haben muß, um darüber urtheilen zu können.

Hr. Vallot 1) hat einige kritische Bemerkungen über die Angabe der Alten von dem Leuchten gewisser Pflanzen bekannt gemacht, denen sich wohl Vieses entgegen ließe.

Hr. Eudes-Deslongchamps 2) beobachtete ein phosphorisch Leuchten an Pfirsichen, welche anfingen zu verfaulen.

Über Befruchtung und Fortpflanzung.

Hr. Gärtner in Calw 4) hat seine schönen Untersuchungen über die Bastardzeugung der Pflanzen fortgesetzt, vorzüglich um die wichtige Frage zur Entscheidung zu bringen: ob es überhaupt eine feste Art im Gewächsreiche gehe, oder ob sich der Gewächskörper im Laufe der Zeiten und bei veränderten tellurischen

2) L'Institut de 1836. p. 314.

sehen und meteorologischen Verhältnissen und Umständen in andere Formen und Gestalten, d. i. in andere Arten umwandle. Hr. G. spricht sich für die Selbstständigkeit der Arten aus; zwar erleide dieselbe durch äußere Einflüsse leichte Abänderung in den Formen, doch die Natur des Gewächses d. i. die Art selbst, werde dadurch nicht verändert.

Die Erfolge der Bastardzeugung richten sich nach dem Grade der Verwandtschaft, welcher zwischen der weiblichen Unterlage und den angewendeten befruchtenden Arten stattfindet; daher zeigt jede Art, welche der Bastardzeugung fähig ist, ihre eigene Reihe der sexuellen Affinität. Werden die Arten, welche als weibliche Unterlage gedient hatten, als männliche Potenzen, und die vorher im Pollen angewendete Art als weibliche Unterlage gebraucht, so erhält man aus dieser gewechselten Verbindung Samen, welche ganz dieselben Pflanzenformen liefern, wie die aus der ersten Verbindung! Die Bastarde in der zweiten und den weiteren Generationen geben einen ferneren Beweis für die von selbst erfolgende Rückkehr der Gewächsart zu ihrer originären Form, indem sich die Abkämmlinge häufig zur Gestalt der Mutter zurückwenden oder aber mit der achten oder noch weiteren Generationen mit abnehmender Zeugungskraft endlich ganz ausgehen.

Hr. FritzSChe hat abermals eine kleine, aber Inhaltsreiche Abhandlung über den Pollen bekannt gemacht, worin gezeigt wird, „daß Hr. Mohl noch keineswegs alles geleistet habe,
was sich mit unseren jetzigen Instrumenten erreichen läßt."

Schließlich meint Hr. F. gezeigt zu haben, daß die vielbesprochenen *Granula* theils Oeltröpfchen, theils *Amylum*-Körnchen wären, und so wären denn alle die Arbeiten fruchtlos ausgeführt, welche über die Existenz der vegetabilischen Samenthierchen
erschienen sind. Indessen dieser Gegenstand verhält sich wohl ganz anders, als Hr. F. erwiesen zu haben glaubt; man hätte schon vermuten können, daß man weder Oeltröpfchen noch Amylum-Kügelchen für Samenthierchen angesehen hat, denn Ref. sagte schon vor 10 Jahren, daß die Samenthierchen der Pflanzen durch Jodine braun gefärbt werden. Amylum-Kügelchen, und zwar verhältnismäßig sehr große, kommen dagegen häufig im Pollen der Pflanzen vor, doch ist ihr Auftreten darin nicht ganz regelmässig. Ref. sah Pollen von Pinus sylvestris, der sehr stark, jedes Bläschen wohl mit einigen 20 Amylum-Kügelchen gefüllt war, während in andern Fällen keine Spur davon enthalten ist; diese Amylum-Kügelchen färben sich mit Jodine blau, und sie sind es eben, die Hr. F., für die besprochenen Samenthierchen ansehend, beobachtet hat. Gegenwärtig dürfte man es wohl nicht mehr für eine bloße Ansicht halten, daß die vegetabili-
schen Samenthierchen mit den Sameuthierchen der Thiere zu vergleichen sind, denn es ist dem Referenten geglückt, eine wirk-
lliche Vermehrung durch Dehnung und nachheriger Theilung die-
sen Samenthierchen in dem Pollen der Kaempheria rotunda zu beobachten, wo dieselben sehr groß sind und durch Jodine schön gelbbräunlich gefärbt werden. Auch in mancher anderen Hin-
sicht zeigt der Pollen dieser Pflanze viel Schönes.

Eine ausgezeichnete Abhandlung haben wir von Hrn. Hor-
kel 1) über die Pollenschläuche erhalten; es werden darin zu-
erst die Vorstellungen früherer Botaniker erörtert, welche über
die Befruchtung der Pflanzen geäußert sind, bis Amici die viel-
besprochenen Pollenschläuche entdeckte. Auch von dieser Pe-
riode an, bis auf die neueste Zeit, werden die Beiträge der ver-
schiedenen Botaniker, welche über diesen Gegenstand neue Beob-
achtungen bekannt gemacht haben, fast vollständig aufgeführt.
Hr. H. macht auf die Extreme in der Länge dieser Pollenschläu-
che aufmerksam; bei den Coniferen zeigen sie den kürzesten
Verlauf, während sie Hr. H. bei Colchicum autumnale 12 Zoll
lang fand, auch bestätigt derselbe, daß diese Schläuche nicht

1) Historische Einleitung in die Lehre von den Pollenschläuchen. —
zu Berlin gehaltenen Vorlesung. in 8vo. Abgedr. in den Monatsberichten
durch Ausdehnung der inneren Pollenhaut, sondern durch ein Wachstums-Phänomen zu erklären sind, was Ref. schon seit 1828 gezeigt hat. Zu den Schwierigkeiten, welche die Verfolgung des Verlaufes der Pollenschläuche erschweren, rechnet Hr. H. mit Recht die sogenannten Schleimröhrchen, welche Hr. R. Brown entdeckt hat, doch scheint Hr. H. das Vorkommen dieser Gebilde nicht so allgemein anzunehmen, als dieselben in der Natur wirklich vorkommen. Um dieselben aber ganz sicher zu beobachten, muß man den Stylus vor dem Aufspringen der Antheren untersuchen, und dann erstaunt man über die große Ähnlichkeit, welche zwischen diesen Schleimröhrchen und den wahren Pollenschläuchen in manchen Fällen herrscht. Hr. H. giebt aber auch die Charaktere an, durch welche man die Pollenschläuche von den Schleimröhrchen unterscheiden kann; nach Ref. eigener Anschauung kommen jedoch Fälle vor, besonders im Ovario, wo eine solche Unterscheidung sehr schwer ist.

Noch haben wir eine Abhandlung des Hrn. Savi 1) zu Pisa aufzuführen, welche schon 1835 erschienen, aber erst spät zu uns gekommen ist. Hr. Savi zeigt in dieser Arbeit, daß der Befruchtungs-Akt durch die Bildung und das Herabsteigen der Pollenschläuche zum Eichen, bei Stapelia ganz in derselben Art stattfindet, wie bei der Gattung Asclepias.

Auch machen wir auf eine Schrift von Jos. Pellegrinus 2) aufmerksam, die uns aber noch nicht zu Gesicht gekommen ist.

2) De plantarum amoribus atque nuptiis. Patavii 1836.

Auch die Ausschließung des Lichts führt Hr. K. als eine Bedingung zur Keimung des Samens an, welche aber Hr. De Candolle ebenfalls, und zwar mit allem Rechte, nicht gelten lassen will. Dagegen meint Hr. K., daß man den Satz, daß Feuchtigkeit zur Keimung des Samens unbedingt nöthig sei, ebenso wohl bestreiten könne, als die vorhergehenden Sätze, denn er habe eine Eichel beobachtet, welche auf einem trockenen Getreideboden lag und eine, mehrere Zoll lange Wurzel trieb. Schließlich zeigen wir noch die Abhandlung von Herrn Mallert an.

Referent hat: Beiträge zur Kenntniss der Azallen geliefert, worin eine kurze anatomische Beschreibung derselben gegeben ist, dann die Blattstellung und die Stellung der Früchte erörtert wird, und zuletzt über den Bau und die Deutung der

xosperma, wo nur zwei Indusien angegeben sind, umgeändert werden. Auch in Hinsicht der Struktur der feinen Härchen, welche die Fruchtbehälter am Rande zeigen, haben wir durch die Beobachtungen mit neueren Mikroskopen eine kleine Ver-
besserung anzugeben. Sowohl bei den gegliederten, als bei den ungegliederten Härchen, welche in Fig. 27 und 28. der genann-ten Abhandlung dargestellt sind, findet sich keine äußere noch umschließende feine Schleimmasse, sondern die Härchen werden von einfachen Membranen gebildet, wie in c. Fig. 27 u. a. Fig. 28. Das hutförmige Käppchen, welches die Spitze dirser Härchen zeigt, ist äußerst zart und niedlich gebaut, und der untere Rand desselben ist um Vieles schärfer, als es unsere, mit einem alten Mikroskope gegebene Zeichnung zeigt; es möchte wohl zur An-heftung dieser Sporen-Behälter dienen.

Die Herren Mirbel, Dutranchet und A. de Saint-Hilaire 1) haben einen Bericht über eine Abhandlung des Herrn E. Fabre gegeben, worin derselbe über die Zeugungs-Organe einer neuen Marsilea-Art handelt; es ist dieser Gegenstand in dem Berichte besonders geschichtlich behandelt, aber sehr interesserant.

Hr. Presl 2) hat in seinem neuesten Werke über die Farrn sehr ausführlich über die männlichen Geschlechts-Organe dieser Pflanzen gehandelt und dieselben durch Abbildungen erläutert. Es werden als solche jene kleinen, neben den Stielen der Samenkapseln sitzenden, gestielten Behälter angesehen, welche zwar schon von sehr vielen Botanikern beobachtet und abgebildet sind, meistens aber für abortirte oder verkümmerte Kapseln erklärt wurden. Hr. P. erklärt hier zum ersten Male ganz offen, daß die besagten Gebilde nichts Anders, als Antheren sind und mit einem gekörnten Stoffe erfüllt werden. Ref. stimmt dieser Annahme vollkommen bei und macht nur die Bemerkung, daß die-selbe nicht nur im Kreise der Berliner Botaniker, sondern auch bei Anderen, schon seit vielen Jahren die herrschende ist. Der Inhalt, der Bau und die Stellung dieser kleinen kapselartigen Organe, zeigen wohl ganz deutlich, daß sie von den Samenkapseln verschieden sind, u. s. w. Auch findet sich bei diesem Werke

1) Rapport fait à l'Academ. des scienc. sur un Mém. relatif à la structure et en développement des organes générateurs d'une espèce de Marsilea trouvée par M. Esprit Fabre dans les environs d'Agde. — Ann. des scienc. nat. 1836. II. p. 105 etc.

2) Tentamen Pteridographiae seu genera filicacearum etc. Prague 1836.
des Hrn. Presl eine Tafel mit Abbildungen verschiedener Farn-
Sporen, welche von Hrn. Corda sehr gut ausgeführt sind. Man
kann schon aus diesen Darstellungen erkennen, daß die äußere
Haut der Farn-Sporen bei verschiedenen Farn sehr verschieden
gebaut ist, und daß diese Verschiedenheiten ähnlich denjenigen
sind, welche die äußere Haut der Pollenbläschen so häufig zeigt.

Über Keimung der Farn-Sporen und über die Entwieke-
lung des jungen Farn-Pflänzchen sind durch Hrn. J. Hender-
son 1) sehr genaue Beobachtungen bekannt gemacht, und die
vortrefflichen begleitenden Abbildungen geben eine sehr voll-
ständige Darstellung dieses Gegenstandes, wie sie noch nicht
vorhanden war.

Die Kenntnifs der Moos-Sporen ist in einigen Punkten
durch die Herren Bruch und W. P. Schimper 2) erweitert;
diese genauen Mooskenner haben über diesen Gegenstand eine
Abhandlung in der naturforschenden Gesellschaft zu Strafsburg
vorgetragen, welche wir nächstens vollständig mitgetheilt zu
erhalten hoffen. Außer dem fettten Oele, welches in den Moos-
Sporen, wie in den meisten übrigen Cryptogamen-Sporen vor-
kommt, fand man auch eine Spur von Amyllum und Chlorophyll
im Inneren dieser Sporen.

Die ausgezeichnete Arbeit des Hrn. Agardh jun. über die
Fortpflanzung der Meeres-Algen ist im vergangenen Jahre in den
Akten der Akademie der Wissenschaften zu Stockholm für das
Jahr 1835 vollständig erschienen, und einen Auszug davon hat
der Verfasser im October-Hefte der Annales des sciences naturel-
les von 1836 mitgetheilt. Die Arbeit ist überaus reich an Beob-
achtungen und nicht leicht einer kurzen Darstellung fähig. Es
sind meistens reine Beobachtungen, ohne viele Speculation, und
von der beliebten Metamorphose der Algen ist nicht viel die
Rede; ja Hr. Ag. spricht mit treflichen Gründen gegen jene
Lehren, welche so vielen Beifall fanden, aber mit Uurecht zählt
er auch den Referenten zu den Anhängern derselben. Die Um-
wandlung der Priesleya botryoides in Ulva tereteeis, worüber

1) Observations on the Germination of Ferns. — Jardine’s and Sel-
Ref. und auch Hr. Unger Beobachtungen bekannt gemacht haben, ist in der That zu beobachten, bedeutet aber etwas ganz Anderes, als was die Algen-Kenner unter der Metamorphose der Algen verstanden. Die Bewegung der Algen-Sporen wird sehr ausführlich besprochen, und Hr. Ag. theilt hierin fast ganz die Ansichten mehrerer Deutschen, welche über diesen Gegenstand Beobachtungen angestellt haben. Es ist eine Erscheinung des Lebens der Pflanze, von keiner äußeren Ursache bedingt und auch nicht als Beweis für ein tierisches Leben dieser Keime niederer Pflanzen anzusehen; es sei aber auch nicht mit der Bewegung der Diatomeen zu vergleichen.

Statt der Eintheilung der Algen in gegliederte und ungegliederte, schlägt Hr. Ag. eine andere, mehr natürlichere vor, nämlich in: Zoospermeae und in Fucoideae; zur ersten Abtheilung sollen die Nostochinen, Oscillatorien und Confern, zur Letzten die Ceramiern und Fucoideen gehören; doch diese Abtheilungen möchten wohl weniger Beifall finden, da auch die Sporen der Meeres-Algen zuweilen Bewegungen zeigen.

Herr Fée 2) hat in der naturforschenden Gesellschaft zu Straßburg einen Vortrag über die Erzeugung eines Pilzes gehalten, und im Allgemeinen über die Verwandlung dieser Gebilde durch den Einfluss des Lichtes und die Feuchtigkeit gesprochen.

Ueber die Entwicklung der Botrytis Bassiana, eines Schimmels, welcher zuweilen die Seidenwürmer befallt und eine sehr verheerende Krankheit anrichtet, die unter dem Namen der Inkrustierung (Calcino) bekannt ist, haben wir durch die Unter-

1) L'Institut de 1836. p. 425.
2) L'Institut de 1836. p. 149.

Die mikroskopischen Untersuchungen, welche über die Umwandlung des Fettkörpers in das Keimlager des Pilzes angestellt wurden, scheinen dem Referenten ungenügend, doch ist so etwas auch nicht so leicht zu beobachten. Indessen die Fortpflanzung dieses Pflänzchen durch Samen wird sich wohl eben so verhalten, wie die der kleinen Isarien, welche sich auf dem Körper der Hausfliegen entwickeln und dieselben tödten. An diesen Pilzchen hat Ref. eine Fortpflanzung durch Sporen beobachten können.

Hr. Dr. Ascherson 3) hat die Beobachtung gemacht, dass die Sporen der höheren Pilze frei stehend und nicht in Schlänchen eingeschlossen vorkommen; sie sind gestielt, auf cylindrischen Frucht trägern sitzend, und zwar bei der ganzen Familie

1) *Del mal del segno, calcinaccio o moscardino, malattia che affligge i bachi da seta Lodi 1835.*

Zur Pflanzen-Geographie.

Die Pflanzen-Geographie hat im vergangenen Jahre viele Bearbeiter gefunden und ist in allen ihren einzelnen Abschritten bereichert worden; zuerst die allgemeinen Arbeiten.

Die Wissenschaft, welche den Namen der Pflanzen-Geographie führt, ist noch so neu und von so Wenigen bearbeitet, dafs man im Allgemeinen noch gar nicht einig ist, in welcher Art
die einzelnen Theile derselben zu bearbeiten sind. Einige Gelehrte haben die Pflanzen nur zu sehr, gleichsam als das Produkt des Klima's angesehen; einige sagen, daß die Pflanzen die genauesten Wärmemesser wären, während man doch schon in Erfahrung gebracht hat, daß sich das Vorkommen der Pflanzen zwar nach dem Klima richtet, daß dieses bei anderen aber auch wiederum nicht der Fall ist. Andere theilen die Vegetation der gesammtten Erdoberfläche nach dem Vorherrschen einiger Familien in bestimmte Reiche, welche oft mehr oder weniger weit ausgedehnt und mehr oder weniger genau bezeichnet sind, und die Ermittelung der Zahlen-Verhältnisse, worin die Arten-Zahlen der verschiedenen Familien dieser Reiche stehen, wird alsdann gleichsam als das Ziel der Forschung angesehen. Andere suchen das Verhältnis der Pflanzen zu gewissen Boden-Arten durch die mühesamsten Berechnungen zu erforschen, deren Resultate jedoch für verschiedene Gegenenden durchaus ganz verschieden sind.

Ich selbst habe überall bei der Bearbeitung meines Grundrisses der Pflanzen-Geographie die Mitte zu halten gesucht und bin, wie ich glaube, auf demselben Wege gegangen, welchen uns Ihr. Alexander v. Humboldt, als er die Pflanzen-Geographie schuf, vorgezeichnet hat, aber vor Allem habe ich gesucht zu zeigen, daß die Schilderung des Charakters der Vegetation, d. i. ihre Physiognomie, mit als das Wichtigste der Pflanzen-Geographie zu betrachten ist. Die Statistik der Gewächse hat eine Gesetzmäßigkeit gelehrt, nach welcher wenigstens die hauptsächlichsten großen Familien der Pflanzen über den Erdkreis verbreitet sind, offenbar eine bewunderungswürdige That- sache; um aber in diesem Zweige der Pflanzen-Geographie weiter zu gelangen, muß erst die Vegetation einer größeren Ländermasse genau bekannt sein, bis dahin möchten sich täglich die Zahlenverhältnisse ändern, welche man durch die mühesamsten Berechnungen so äußerst genau zu finden sucht. Wobei man aber noch immer außer Acht gelassen hat, daß bei Erforschung solcher Verhältnisse nicht die Floren der verschiedensten Regionen eines Landes mit einander zusammenzuwerfen sind.

Ein bedeutender Uebelstand war es immer, daß man sich über die Grundsätze, wonach Regionen und Zonen für die Ver-

In einem Anhange zu obigem Buche hat Ref. eine Geschichte der hauptsächlichsten Cultur-Pflanzen gegeben, und dieser Gegenstand ist später auf eine ähnliche Art auch von Herrn Alfonso De Candolle \(^1\) bearbeitet.

Hr. H. C. Watson \(^2\) hat ebenfalls einen Beitrag zur Pflanzen-Geographie im Allgemeinen gegeben.

sich die Cultur des Getreides. An der Nordküste des Huron-
Sees, der mit dem Busen von Venedig unter gleicher Breite liegt,
ist das Land volle 6 Monate im Jahre mit Schnee bedeckt, und
dennoch zeigen die 3 Sommermonate 70° Fahr. Wärme, also
gleich dem Sommer zu Bordeaux.

Cumberland’shouse (54° Br.) liegt in gleicher Breite mit
York in England, aber in der Isotherme von 0° R., welche in
Europa erst am Nord-Cap auftritt; doch ist die Sommerwärme
zu Cumberland’shouse höher als zu Paris. Daher ist es erklär-
lieh, wenn nach Capt. Franklin’s Angabe daselbst Gersten-,
Weizen- und Mays-Felder vorkommen. Auch ist daraus Hrn.
Richardson’s Angabe, daß um die Hudsonsbay die Getreide-
Ernte in 70 Tagen vollendet sei, zu begreifen.

Die eigenthümliche Erscheinung, daß die Isothermen an der
Westküste der Hudsonsbay tiefer gehen, statt, wie auf den Ost-
küsten Europa’s der Fall ist, zu steigen, erklärt Hr. R. durch
die großen Eismassen, welche sich in die Buchten der Polar-
Küste hineinschieben, wo sich das Eis bis tief im Jahre erhält.
Der Boden im Norden von 56° Breite thaut im Sommer nur 3
Fuß tief auf und unter 64° Breite im Bäreussee nur 20 Zoll tief,
und dennoch findet man in einiger Entfernung von der Küste
ausgedehnte Waldregionen, und der Sommer daselbst ruft eine
schöne Flora in das Leben. Die Gränze der Wälder zieht sich
dort um so höher, je weiter von der Hudsonsbay entfernt. An
der Küste ist sie bei 60°, am großen Bäreussee bei 65°. Die
weiße PechtauDe und die Canon-Birke (Betula glandulosa) stei-
gen am höchsten, noch bis 68°.

In Capt. Back’s Reisebericht finden wir auch ein Verzeich-
nis der Pflanzen, welche von Hrn. R. King, dem Wundarzte,
auf jener Expedition gesammelt wurden, und durch Hrn. Hoo-
ker bestimmt sind. Es sind überall die Standorte genau ange-
geben. Am Regensee, wo die Zizania aquatica im sumphigen
Boden in großer Menge wächst, wird sie eingearbeitet und im
Winter aufbewahrt. Daselbst (62° 45’ 35” Breite und 111° 19’
w. Länge) kommt auch eine stachelige Zwerg-Opuntia vor, of-
fenbar der nördlichste Standort der Cactus-Gewächse: Gebüsche
bestehen aus Stachel- und Johannisbeeren und Rosen. Bei 63°
15’ Breite und 108° Länge traf man die ersten Zwergsichten. Die
Kronen waren abgestorben und von Alter waren die Stämme grau geworden. Noch bei Fort Chipewyan werden zuweilen Kartoffeln und Gerste gebaut.

Das gesammte Verzeichniss gibt: 683 Dikotyledonen, 232 Monokotyledonen und 818 Cryptogamen, worunter 23 Farnen, 6 Equiselen und 7 Lycopodien. Es verhalten sich demnach die Cryptogamen zur ganzen Artenzahl = 1:2,11, die Monokotyledonen = 1:7,42 und die Dikotyledonen = 1:2,53. Die Höhen, worin die einzelnen Pflanzen gefunden wurden, sind nicht angegeben, doch hat Hr. U. die ganze Vegetation um Kitzbühel nach ihrer Höhen-Verbreitung in 5 Regionen getheilt. Das Thal

on Kitzbühel liegt 2350 Par. Fuß über dem Meere. Diese Regionen sind: 1) die Region des belaubten Landes, welche von der Thalfläche bis zur Wallnussgrenze (2700 Par. F.) reicht; 2) die obere Bergregion; sie geht bis zur oberen Grenze der Buche (4000 F.). Strauchartig findet sich dieser Baum noch bei 4800 F.; 3) die subalpinische Region, bis zur Grenze der Fichte gehend, d. i. bis 5200 F.; 4) die Region der Alpenträucher, von 5000—7000 F., Pinus pumilio bis 6300 F.; 5) die obere Alpenregion; sie geht über 7000 F. hinaus, ohne die Schneegrenze zu erreichen! — Hr. Unger sagt: „Wenn wir die Eigenthümlichkeiten der Vegetation einerseits, und den geognostischen Charakter beider Hälfte unseres Territoriums anderseits zu Gemüthe führen; wenn wir überdies die Ausnahme von dem allgemeinen Verhalten eben da eintreten sehen, wo auch die Bodenarten dem Wechsel unterworfen sind; so läßt es sich des Urtheiles nicht erwehren, daß die geognostische Unterlage den Grund des verschiedenen Charakters der genannten Floren ausmache.“ Diese Abhängigkeit des Vegetations-Charakters von der geognostischen Unterlage sucht nun Hr. U. zu erweisen. Es ist bekannt, wie verschieden, ja wie ganz widersprechend die Ansichten der verschiedenen Botaniker über diesen Gegenstand sind. Hr. Unger beginnt seine Untersuchungen mit der Darstellung des Ernährungsprocesses der Pflanzen, wovon schon früher, die Rede war. — Auf die Eigenthümlichkeit der Vegetation der Halophyten wird zuerst aufmerksam gemacht, und hier ist auch offensichtlich der Einfluß des Kochsalz-haltigen Bodens auf das Vorkommen der Pflanzen unverkennbar. Nächst den Alkalien scheint, wie Hr. U. sagt, die Kalkerde am meisten auf die Gewächse zu influiren, und es ist eine ziemlich allgemein anerkannte Tatsache, daß das Kalkgebirge eine ganz eigenthümliche Vegetation ernähre und Gewächse erzeuge, welche auf anderem Boden durchaus nicht, oder nur sehr sparsam vorkommen. So zeigen auch Kieselerde, Thonerde und Talkerde mehr oder weniger große Nährerzeugen in dem Charakter ihrer Vegetation. Ueberall werden diejenigen Pflanzen, welche diesem oder jenem Boden besonders eigen zu sein scheinen, aufgeführt, wozu Ref. die Be merkung machen muß, daß die meisten derselben auch, und zwar oft ebenso häufig, auf anderem Boden vorkommen.
Auch über die Entwickelungszeiten der Pflanzen um Kitzbühel findet sich in dem Werke des Hrn. U. eine große Reihe spezieller Beobachtungen.

Von Herrn Oswald Heer 1) ist eine sehr umfangreiche Arbeit unter dem Titel: Die Vegetationsverhältnisse des südöstlichen Theils des Canton Glaruns; ein Versuch, die pflanzengeographischen Erscheinungen der Alpen aus klimatologischen und Bodenverhältnissen abzuleiten, publizirt worden; dieselbe zerfällt in drei Abtheilungen, wovon die beiden ersteren: Äußere Momente, welche auf die Vegetationsverhältnisse im Allgemeinen einwirken, und die Vegetationsverhältnisse des südöstlichen Theiles des Canton Glaruns vorliegen, wozu schliesslich ein Verzeichnifs der phanerogamischen Pflanzen des südöstlichen Theiles dieses Cantons gegeben ist. Diesem Verzeichnisse sind die Lokalitäten, worin die Pflanzen vorkommen, so wie ihr Auftreten unter verschiedenen beigesetzt, und man sieht schon hieraus, welch eine genaue Kenntnifs des durchforschten Gebirgsteiles sich der Verf. angeeignet hat.

Bei der Aufzählung der äusseren Momente, welche auf die Vegetations-Verhältnisse einwirken, werden die Gestalt der Berge und Thäler, die Gebirgsarten, die Temperatur der Atmosphäre und des Bodens, die Winde, wässerigen Niederschläge, Jahreszeiten, Schneegrenze und Gletscher für die genannte Gegend mit einer solchen Ausführlichkeit betrachtet, daß sich gewifs nur wenige Gegenden der Schweiz eine genauere Kenntnifs ihrer physikalischen Verhältnisse aufzuweisen haben. — In dem zweiten Theile wird zuerst die Vegetation der verschiedenen Lokalitäten geschildert, welche zum Theil mit einer eigenthümlichen Pflanzendecke bekleidet sind, und dann die Vegetation der verschiedenen Höhen. Hier hat Hr. H. ebenfalls das Bedürfnifs gefühlt, die verschiedenen Regionen nach anderen Principien festzustellen, als dieses bisher der Fall war; er nimmt 5 Regionen in den Gebirgen des Canton Glarus an, wovon die erste bei 2400 Fuß beginnt, und gibt die vertikale Ausdehnung der Regionen

zn 1500 Fuß an, was sich der vom Ref. vorgeschlagenen Eintheilung der Regionen, die auf ganz anderem Wege abgeleitet wurde, sehr nähert. Sehr richtig heißt es: Wenden wir unsere Blicke auf die Pflanzen, welche diese verschiedenen Regionen begründen, so bemerken wir, daß sie von der montanen bis zur alpinen Region hinauf größtenteils eine zusammenhängende Decke bilden. In dem obersten Theile der alpinen Region fängt diese häufiger an zu zerreißen, u. s. w. Die montane Region zeigt 553 Pflanzen-Arten, die subalpine 359, die alpine 312, die subnivale 216 und die nivale nur noch 12, die höheren Regionen haben aber verhältnißmäßig mannigfaltigere Formen. Die Verhältnisse der Monokotyledonen und Dikotyledonen in den verschiedenen Regionen sind: in den montanen = 100:372, in den subalpinen = 100:392, in den alpinen = 100:457, in den subnivalen = 100:575 und in der nivalen = 1:11. Dann werden die Farben-Verhältnisse und die Gerüche der Pflanzen verschiedener Regionen erörtert; auch die Zahl der Pflanzen-Arten wird angegeben, welche eine jede Region eigenthümlich besitzt, und welche auch anderen Regionen angehören. Am mühesamsten muß die Beobachtung desjenigen Abschnittes gewesen sein, worin die Vegetation der verschiedenen Regionen in Bezug auf verschiedene Lokalität geschildert wird.

Eine kleine Abhandlung des Ref. 1) handelt specieller über die Grenze der Vegetation in der peruanischen Cordillere, im Vergleiche zu der Vegetationsgrenze im Himalaya, als dieses in dessen Grundriß der Pflanzen-Geographie geschehen durfte. Es wird als wahrscheinlich nachgewiesen, daß die Vegetation, besonders die großartige, nicht nur niedriger auf dem Himalaya auftritt, als auf der Cordillere von Süd-Peru, sondern auch, daß es hier einige Lokalitäten gibt, welche auf die ausgezeichnete Weise alle dergleichen Erscheinungen in Himalaya übertrifffen. Schließlich wird die Ähnlichkeit und die Verschiedenheit nachgewiesen, welche die Physiognomie der Vegetation in diesen so entfernt liegenden Höhen aufzuweisen hat.

Von Herrn Link 1) haben wir sehr interessante Beiträge zur Kenntnis der Physiognomik der Vegetation im südlchen Europa erhalten, welche aus der reichsten Autopsie hervorgegangen sind. Hr. Link lehrt die Verbreitung einiger Gewächse des südlchen Europas's, welche für die Physiognomie der Vegetation jener Gegendens so charakteristisch sind, daß sie dieselben gleichsam in drei kleine Zonen theilen. Der Lavendel ist die erste dieser Pflanzen, welche sogleich auftritt, nachdem man die Alpen verlassen hat; er zieht sich nach dem südlchen Frankreich und Spanien, wo er noch in Aragonien häufig ist, doch Portugal berührt er nicht. In Istrien findet sich an seiner Stelle die Salvei (Salvia officinalis), welche in Italien aber nur in den hohen Bergen der Abruzzen wächst. Dem Lavendel folgt gegen Süden die Myrte; sie bedeckt in Portugal ganze Landstriche, geht durch das mittlere und südlche Spanien, durch das südlche Frankreich. Ueberall ist sie im Kirchenstaate, um Neapel, und nimmt ganz Istrien ein, doch weiter gegen Süden wird sie sel tener. Aus dem Myrtenlande kommt man in das Land des Rosmarins, oder noch besser, des Oleanders; fängt bei Merida in Spanien an, fällt die Thäler von Algarvien. In Calabrien und Sicilien ist er in den heißen Thälern zu finden, und in Griechenland findet man lange Wäldchen von Oleander mit einzelnen sich darüber erhebenden Platanen.

Eben so interessante Mittheilungen giebt Hr. L. über die Verbreitung einiger der wichtigsten Coniferen Europas's. Pinus sylvestris geht weder über den Rhein nach Westen, noch über die Alpen gegen Süden; in Frankreich ist er angepflanzt. P. Pinaster Lam., P. maritima Deb. macht den großen Wald bei Leiria in Portugal; dieser Baum erstreckt sich durch ganz Spanien und das südlche Frankreich in der Nähe des Meeres bis nach der Levante hin. P. halepensis gehört der Ebene Italiens an, dagegen nimmt Pinus Lariccio die Gebirge daselbst ein. Gegen Osten tritt die griechische Tanne (P. maritima) auf, die Hr. L. außer Griechenland nirgends wild fand, und ist im alten Attika sehr häufig. In Morea ist der Baum nicht häufig, selten im Süden; die westliche Küste wird von P. halepensis berührt.

Anderweitige, mehr oder weniger reichhaltige Schilderungen über die Vegetation dieser südeuropäischen Gegenden, haben wir durch Abhandlungen der Herren Herberich in Czernowiz 1), Grabowski in Oppeln 2) und J. Gay 3) über Duriae i iter Asturicum botanicum anno 1835 susceptor.

Einige interessante Schilderungen über Griechenlands Vegetation haben wir durch Hrn. F. Seitz 5), Kunstgärtner in Navarin, erhalten. Bei Pyrgos ziehen sich schöne Wälder aus Pinus maritima längs der Küste hin und steigen bis zu einer Höhe von heiläufig 100 F., wo sich dann Pinus Pinea mit ihrer schirmförmigen Krone darunter mischt, an welche höher hinauf Quercus pubescens in gedrängtem Stande sich reiht, bis endlich die immergrünen Eichen die Bergspitzen bekrönen. Um Navarin herum ist Getreide vorherrschend, außerdem wird Baumwolle, Taback und etwas Kartoffeln gebaut. Die Gegend ist arn an Bäumen; an feuchten Stellen sind Platanen, Oelbäume und Oleander zu finden, aber auf den Bergen meistens nur Gestrücker als Myrten, Phillyrenen, Granaten, Cistrosem, Günstergarten und mitunter Erdbeerbäume, Pistazien und Manna-Eschen. Auch hier

2) Bericht über eine Reise nach Istrien und in die süddeutschen Alpen. — Flora von 1836. p. 419.
3) Ann. des scienc. nat. de 1836. II. p. 213 etc.
sind die Bäume während der Sommermonate ihres Schmuckes beraubt, nur die Kappernsträucher beleben dann die Schluchten u. s. w. Bei Nisi Cypressen und Oelbäume, und der Weg von Nisi nach Kalamata führt durch ununterbrochene Gartenanlagen, Orangenbäume mit der Weinrebe überzogen, wechseln mit Feigen und Mandeln, und Jasmin- und Granathecken begrenzen hin und wieder die Gärten, aus denen auch häufig Dattelpalmen hervorragen. Weinberge von Agaven umgeben, Citronen- und Pompelnußbäume (40—50 F. hoch) von tief dunkelgrüner Farbe u. s. w. Die Früchte dieses letzteren Baumes erlangen daselbst die Größe der Cocosnüsse und werden viel gegessen, aber nur die dicke Schale derselben! Aber auch unsere Äpfel, Birnen, Pflaumen, Aprikosen, Pfirsichen u. s. w. werden hier gezogen. Von Gemüsen, deren dort viel gebaut wird, selbst zur Ausfuhr, findet man außer unseren bekannten Kohlarten, noch Artischocken, Eierpflanzen (Solanum Melongena), Liebesäpfel, und besonders beliebt sind-hier die Bamis (Hibiscus esculentus).

Hr. H. C. Watson 1), dessen Arbeiten im Felde der Pflanzengeographie allgemein bekannt sind, hat eine statistische Be- rechnung der Pflanzen-Arten nach ihren Familien, für die verschiedenen Höhen-Regionen Englands gegeben; er hat die Gebirge Englands in 3 Regionen getheilt, was mit den, von mir in der Pflanzengeographie auseinandergesetzten Grundsätzen über diesen Gegenstand ganz übereinstimmend ist. Ref. macht auf diese Arbeit um so lieber aufmerksam, indem er selbst in seinen Grundriss der Pflanzengeographie, unabhängig von Hrn. Watson's

1) Numerical proportions of the natural orders of British plants at different elevations. — Hooker's Companion I. p. 196—197.
Ansichten die Flora Frankreichs auf eine ganz ähnliche Art in Regionen geteilt, und die, in den verschiedenen Regionen vorkommenden Pflanzen in Hinsicht des Verhältnisses der Artenzahl verschiedener Familien berechnet hat; wahrscheinlich geschahen beide Arbeiten gleichzeitig. Auch machen wir noch auf eine andere Arbeit des H. C. Watson 1) aufmerksam.

Hr. A. E. Lindblom 2) hat eine Schrift über Schweden in pflanzengeographischer Hinsicht herausgegeben, und Herr Schouw 3) hat eine kleine Abhandlung über das nördliche Afrika in physiographischer Hinsicht bekannt gemacht.

Sehr spezielle Schilderungen über die kryptogamische Flor des Riesengebirges haben wir durch die Herren Nees v. Esenbeck und v. Flotow 4) erhalten, die um so erwünschter sind, als sich wohl kein anderes Gebirge einer so genauen Untersuchung seiner kryptogamischen Schätze zu erfreuen hat, als eben das schöne, pflanzenreiche Riesengebirge.

1) Comparison between the upper, or terminal lines of trees and shrubs in Britain, and their geographic extension towards the arctic regions. — Hooker’s Companion etc. I. p. 86 — 89.

2) In geographiam plantarum intra Sueciam distributionem adnotata. Lundae 1835.

stammliche *Nipa*-Palme auf den Carolinen faßt die thonhaltigen Ränder der Flüsse und des Meeres ein. Die Aroideen und Bananen geben hier, wie in den Tropen überhaupt, das entsprechende Bild von der Fruchtbarkeit des tropischen Himmels. *Ficus religiosa* kommt auf den Carolinen vor, und die Ränder derselben sind mit Tournefortien und den verschiedenen Arten derGattungen *Scaevola*, *Barringtonia* und *Culophyllum* bekleidet, besonders die sogenannten niederen Carolinen, wo die Vegetation kärglich ist und die Bewohner oftmals Hunger leiden, aber dennoch gehen dieselben von diesen Inseln nicht fort, obgleich auf den daneben liegenden Höhen die Vegetation sehr üppig ist. Sehr wichtig ist die Entdeckung, daß der Brodbaum auf den höheren Carolinen im kultivirten und im unkultivirten Zustande vorkommt (l. c. p. 139.), und sehr viele Varietäten zeigt. Der wilde Brodbaum heift *Oness*, und der kultivirte *Maifa*; der erstere hat Samen in der Frucht; die kultivirten Arten haben keinen Samen, und nach ihrer Größe und ihrer Form, so wie nach der Güte des Geschmackes werden sie unterschieden und verschieden benannt (p. 203.). Zur Bereitung des Cocos-Oels auf den Carolinen raspet man die Cocoskerne; läßt dann die Masse in einem Gefäße 2 Tage lang der Luft frei ausgesetzt stehen und preist dann das Oel mit den Händen von dem Samen ab. Schlechtes Oel erhält man durch starkes Auspressen in den Blättern der *Barringtonia* u. s. w. (p. 215)

In Hrn. Hooker's Companion etc. von 1836 finden wir noch mehrere pflanzengeographische Berichte aus sehr interessanten Gegenden, als die Abhandlungen der Herren R. Wight und Walker, so wie ein sehr wichtiger Bericht über die Vegetation der Insel Timor.

Verschiedene interessante Notizen über die Vegetation der Insel Puertorico hat uns Hr. C. Moritz mitgetheilt.

Die Herren Edwards und Colin haben eine interessante Arbeit bekannt gemacht, worin durch viele Beobachtun-

1) Excursions in the neighbourhood of Quito, and towards the summit of Chimborazo, in 1830. — Hooker's Compan. p. 26—29, 22—60.

2) Physical and geographical observations made in Columbia. — Hooker's Companion etc. I. p. 111 —116.

3) Some account of a Botanical excursion, made in the neighbourhood of Court-Allam, and in the adjacent mountains. — Hooker's Companion etc. I. p. 326 —332.

5) Extract of a letter from M. Spanoghe, the dutch resident at Coupang, relating to the natural history of the island of Timor; with some account of the upastree, discovered there by that gentleman. — l. c. p. 308 —317, 344 —351.

Gerste, Weizen und Roggen, welche im Juli gesäet waren, entwickelten Blätter aber keine Halme, offenbar in Folge der großen Wärme welche im Mittel während dieses Monats 21,9° zeigte. Etwas Ähnliches ist in warmen Gegenden beobachtet. Im Mai 1834 war die mittlere Temperatur zu Paris 18,23°, und Winterweizen, der im Anfange des Monats gesäet war, kam nicht zur vollkommenen Entwicklung. Durch verschiedene dergleichen Versuche kamen die Herren E. und C. zu dem Schlusse, daß unsere Getreide keine Samen bilden, wenn die mittlere Temperatur auf ungefähr 18° steigt, bei einigen Arten kann dieselbe etwas höher steigen, doch höchstens auf 22° C. Die schönen temperirten Gegenden, wo die mittlere Temperatur nicht über 18—19° C. steigt, sind die vorteilhaftesten für den Anbau unserer Cerealien.

Herr Boussingault 1) gab eine sehr interessante Abhand-

lung über die Kultur des Cacaoboomes; es verlangt diese Pflanze eine mittlere Temperatur von 24—27,5° C. Bei niederen Temperaturen blüht die Pflanze wohl, doch bringt sie die Früchte nicht zur Reife. Unter dem Aequator kommt die Cacao-Pflanze ungefähr bis zur Höhe von 900 Meter. Außer der Wärme sind Feuchtigkeit und Schatten zum Gedeihen der Cacao-Pflanzungen durchaus nöthig. Der Same keimt in 10 Tagen, und nach 30 Monaten beginnt der Baum Früchte zu tragen.

Ueber den Mays haben wir ein großes Prachtwerk von Hrn. M. Bonafous 1) zu Turin erhalten, worin eine sehr ausführliche Abhandlung über das Vaterland des Mays enthalten ist. Auch Hr. B., obgleich noch nicht die Ansicht des Hrn. v. Sicbold kennend, daß die Japaner schon im 12. Jahrhundert Mays gebaut hättten (was aber nach Klaproth's Angabe auf einer irrhümlichen Übersetzung einer Japanischen Schrift beruht!), kommt zu dem Resultat, daß der Mays ein Getreide der alten Welt sei, wenn gleich es auch ganz richtig ist, daß der Mays auch in Amerika ursprünglich zu Hause ist. Ref. hat die ganze Abhandlung Hrn. B. sehr genau gelesen, kann sich aber, selbst durch die mitgetheilte chinesische Abbildung einer Maysartigen Pflanze nicht überzeugen, daß es die amerikanische Zea Mays ist, wovon in allen den Schriften die Rede sein soll, welche Hr. B. anführt. Sehr wichtig und offenbar vollkommen beweisend wäre die Angabe, daß man den Mays in dem Sarge einer Mumie in den Gräbern von Theben gefunden habe. Doch wodurch ist diese Angabe zu erweisen?

Herr Goeppert 2) hat in einer kleinen Abhandlung zu

zeigen gesucht, daß der Calamus (*Acorus Calamus* L.) in Schlesien nicht einheimisch, sondern von Podolieu und der Wallachei eingeführt worden sei.

Hr. Robert hat bei Gelegenheit der französischen Expedition nach Island bestätigt, daß das Treibholz auf Island aus noch gegenwärtig lebenden Bäumen gebildet werde, welche von beiden Welttheilen her angeschwemmt werden.

Bericht über die Leistungen im Gebiete der Zoologie während des Jahres 1836

vom

Herausgeber.

Als der Herausgeber vor 3 Jahren das mühsame Geschäft eines Berichtes über die zoologischen Arbeiten übernahm, und zwei seiner hiesigen Freunde zu gleichen Versuchen über besondere Zweige der Naturgeschichte veranlaßte, legte er die Hoffnung, daß die Naturforscher des In- und Auslandes einem an sich so undankbaren Unternehmen auf das Bereitwilligste entgegen kommen würden, ja er träumte sogar von einem innigeren Verkehr, der durch seine Zeitschrift zwischen Deutschland und den Naturforschern des Auslandes vermittelt werden würde. Der Erfolg hat indessen bisher diese sanguinischen Hoffnungen und glücklichen Träume nur schwach verwirklicht. Vielmehr sieht sich Referent nach dreijährigen Bemühungen fast noch auf denselben Punkte, wie beim ersten Beginne seines Unternehmens. Die kaum angeknüpfte genauere Verbindung mit dem trefflichen Bennett, dem Sekretär der zoologischen Gesellschaft in London, ist durch dessen frühen Tod zu einer Zeit zerrissen, wo sie eben erst er-

die zoologische Gesellschaft in London die erfreulichsten Beweise liefert. Dagegen scheinen die Statuten der meisten naturhistorischen Vereine unseres Vaterlandes ihrem eigenen Gedeihen und der größeren Belebung des Interesses für unsere Wissenschaft eher entgegen, als förderlich zu sein. Indem sie die Memberschaft als eine Ehrensache betrachten und nur auf solche Männer übertragen wollen, welche bereits tiefer in die Wissenschaft eingedrungen sind, oder gar sich einen bedeutenden Namen in derselben erworben haben, berauben sie sich selbst der Hülfsmittel, welche ihnen eine größere Anzahl zahlender Mitglieder gewähren würde. Sie vermögen so weder eine ausreichende Bibliothek, noch Sammlungen anzuschaffen, sind außer Stande, ihre Arbeiten dem Drucke zu übergeben, und, was mehr sagen will, sie verüben, indem sie sich mit einem gelehrten Nimbus umgeben, ganz die Gelegenheit, den Sinn für Naturgeschichte im größeren Kreise zu wecken und zu beleben. Um so erfreulicher war es dem Ref., aus dem dritten Jahresberichte des Mannheimer Vereines für Naturkunde (Manheim 1836.) zu sehen, daß dieser gerade das Letztere zu seiner Hauptaufgabe macht und seine Bemühungen bereits von einem günstigen Erfolg gekrönt sieht. Indem er „alle Theilnehmer im Orte und seiner Umgebung, die sich zu thätiger Förderung seiner Zwecke bereit finden,“ als ordentliche Mitglieder auserkent, zählte er im Jahre 1836 bereits 324 beitragende Mitglieder (darunter auch 13 Damen) und 60 auswärtige Ehrenmitglieder. In Folge dieser regen Theilnahme hatte er 2337 Fl. 48 Xr. für seine Zwecke zu verausgaben. Er besitzt seinen botanischen Garten, seine Bibliothek, seine Sammlungen, welches Alles den Vereinsmitgliedern zur freien Benutzung jederzeit zugänglich ist. In den Versammlungen seiner vier Sectionen befriedigt er die Ansprüche derjenigen Mitglieder, welche sich mit Vorliebe einem der Fächer hingehen, und veranstaltet überdies allgemeine Versammlungen, in welchen belebrende populäre Vorträge über gemeinnützige Gegenstände gehalten werden. Möchte sich einem so nützlichen Institute die Theilnahme seiner Mitbürger erhalten und es zugleich in unserem Vaterlande weitere Nachahmung finden! Den Wahn, daß einzig und allein vom Staate aus Kunst und Wissenschaft gefördert werden könne und müsse, hat die Erfahrung der neuen
ren Zeit aufs entschiedenste widerlegt. Welche königliche Me-
nagerie kann sich mit der Menagerie der Londoner zoologischen
Gesellschaft messen? Wer hätte vor 10 Jahren geglaubt, daß
die Kunst in unserem Vaterlande einen so bedeutenden Auf-
schwung nehmen würde, als sie durch das Auftreten der Kunst-
vereine, selbst in den Städten geringeren Umfangs, gewonnen hat?
Deutschlands politische Spaltung in mehrere Staaten ist eben
ganz vorzüglich geeignet, in den zahlreichen Hauptstädten der-
selben, und den Hauptstädten der Provinzen der größern Staaten
mehr oder minder bedeutsame Centralpunkte für Kunst und Wis-
senschaft zu bilden.
Unter den allgemeinen physiologischen Arbeiten, welche das
Interesse der Zoologie in Anspruch nehmen, sind die Untersu-
chungen über die Samenthierchen der Thiere von der grössten
Wichtigkeit. v. Siebold hat in zwei Abhandlungen die Sper-
matozoen der Krustaceen, Insekten, Arachniden, Annulaten, En-
tozen und Mollusken beschrieben (Müller's Archiv p. 13 und
p. 232.). R. Wagner gab über die Spermatozoen der Verte-
braten in diesem Archive (II, I. p. 370 fg.) einige vorläufige Mit-
teilungen. Im Allgemeinen gleichen die Spermatozoen der wir-
bellosen Thiere einem Haare im eigentlichsten Sinne des Wortes.
Weder ein Kopfende, noch ein Leib, noch ein abgesetztes
Schwanzenende ist an ihnen zu unterscheiden, auch kann bei
ihnen von keinem Querdurchmesser die Rede sein. Das eine
Ende des haarförmigen Körpers läuft in eine äußerst feine Spitze
aus, während das andere Ende etwas stärker ist und bei denen
der Gasteropoden mit einer leisen Anschwellung endigt. Bei den
Muschelthieren haben die Spermatozoen von Cyclas nach Wag-
nzer und v. Siebold einen länglichen Leib mit langem faden-
förmigem Schwanzenende, welches sonst im Allgemeinen der Typus
der Spermatozoen bei den Wirbelthieren ist (Wagner l. c.) *).

*) Die ebendaselbst mitgetheilte Beobachtung von Flimmerorganen
an den Spermatozoen der Salamander ist jüngst von v. Siebold (Fror.
Not. II. Nr. 18. p. 281.) als eine optische Täuschung nachgewiesen. Das
äußerst feine und lange Ende schlägt sich nämlich, wo es aufzuhören
scheint, um, und rollt sich spiralförmig bis zum Anfange des dickeren
Körpertheiles um das vordere Schwanzenende auf. Durch die schnelle
Undulation dieses spiralförmig aufgewundenen, kaum wahrnehmbaren
Endtheiles wird der Anschein von Flimmerorganen hervorgebracht.
endes täuschen lassen, die Oehse als einen wahren Körper an-
zusehen. Auch in den Hoden der Insekten, selbst der Apteroiden, fand Verf. nur haarförmige Spermatozoen, nie Volvox-ähnliche Infusorien, wie Succow, oder Cercarien-ähnliche, wie Burmeister angegeben. Spermatozoen derselben Form, aber bei Berührung mit Wasser keine Oehsen bildend, enthielten die Hoden der Skolependern. Dagegen schienen die Spermatozoen der Kreuzspinne der gewöhnlichen Form abzuweichen, und durch Verdickung ihres Endes Czermaks Urva den nahe zu kommen. Der Regenwurm und die Branchiobdella Astaci, die einzigen Annulaten, welche Verf. untersuchte, besitzen haar-
förmige Spermatozoen, von denen die der ersteren das Schauspiel der Gesammtbewegung am schönsten zeigen, sich schlän-
gelad bewegen, aber keine Oehsen bilden. Unter den Entozoen gelang es dem Verf. bisher nicht, bei dem Nematoideen Spermatozoen aufzufinden; ihre Hoden enthielten immer eine sehr feinkörnige Masse, in welcher gewöhnlich mehrere Körper zu klei-
nen runden, zuweilen anscheinend von zarten Häutchen umge-
benen Körperchen zusammenhingen, dagegen konnte er aus den sogenannten Lemniscis oder Cirren (den männlichen Ruthen) der Bandwürmer eine Menge linearer, beweglicher Körper hervor-
drücken, und überzeugte sich von der Anwesenheit haarförmiger Spermatozoen in den Hoden und Samengängen der Echinorhyn-
chen und mehrerer Trematoden. Die sogenannten Samenbläs-
chen der ersteren enthalten sie nicht (p. 233.) und sind daher keine Samenblasen. Am ergiebigsten für die Beobachtung der Spermatozoen war die Klasse der Mollusken, aus welcher der Verf. die Gasteropoden ausführlicher untersuchte und die Sper-
mat zoen sehr übereinstimmend von haarförmiger Gestalt fand; nur bei Patudina vivipara finden sich 2 Arten von Spermato-
zoen, nämlich außer den haarförmigen, deren eines dickeres Ende schraubenförmig gewunden ist, noch größere wurmsähnliche, de-
ren Hinterende spitz zulauf., während aus dem Vorderende meh-
rere selbständig sich bewegende Härchen ausgehen. Die Same-
thieren der Tellina fragilis fand v. S. (p. 248.) ganz so, wie sie R. Wagner aus Cyclas beschrieben. Die Verf. Untersuchun-
gen hierüber sind von doppelter Wichtigkeit, einmal sofern die räthselhaften beweglichen Fäden, welche Needham und Swam-

*) Ein ähnliches Phänomen beobachtete v. Siebold nach mündlicher Mittheilung auch bei pupiparen Dipteren (*Hippobosca, Melopha-
gus orinus*), wo die Eier aus dem Ovarium durch eine blasenförmige Erweiterung (*Receptaculum seminis*) hindurchgehen, bevor sie in den Uterus gelangen. Jenes *Receptaculum* ist bei unbefruchteten Thieren leer, und enthält bei befruchteten eine Menge lebhafter Spermatozoen.
Zeit der Brunst *). Gegen die letztere, daß sich bisher mit Sicherheit keine Organisation an ihnen entdecken ließ, wobei wir uns freilich nicht verhehlen können, daß ein Gleiches aneh von *Vibrio, Spirillum* und andern Formen gilt, die als freilebende Thiere den Infusorien zugezählt werden. Dafs die hellere Stelle, welche Henle und Schwann am Leibe der menschlichen Samenthierchen beobachteten und als Sauggmbe deuten, ein solches Organ sei, wird von R. Wagner, der sie auch an denen des Hundes wahrnahm, in Zweifel gezogen, und ist auch von Henle aufgegeben. Die Beweglichkeit der Spermatozoen ist das einzige, was für ihre tierische Natur zu sprechen sebeint, doch ist die scheinbar willkürliche Bewegung der Algensporen nicht aufser Acht zu lassen, auch erscheint die wellenförmig schlangelnde oder oscillirende Bewegung der Spermatozoen bei den Evertebreiten von einer wahren, willkürlichen Ortsbewegung wesentlich verschieden. Wie sich als allgemeine und wesentliche Eigenschaft deszeugungsfähigen männlichen Samens die Anwesenheit der Spermatozoen herausstellt, so erwiesen die fortgesetzten mikroskopischen Untersuchungen der weiblichen Zengungsgene sammlicher Thierklassen eine völlige Uebereinstimmung in den wesentlichen Theilen des primitiven Eies. Immer enthalten sie ein Keimblaschen und der inneren Wand des Bläschen ansitzend, den Keimfleck, letzterer bald einfach, bald mehrfach. Rud. Wagner, welcher den Keimfleck entdeckte, hat in seinem *Prodomus historiae generationis Lips. 1836. auf 2 Foliotafeln die primitiven Eier aller Thierklassen dargestellt **).

Ueber die Temperatur der Thiere hat uns das vergangene Jahr einige interessante Beobachtungen gebracht, die sich an die

*) Wichtig sind in dieser Hinsicht auch die neuesten Erfahrungen von Donné (Instit. 1837. Nr. 211.). Nach ihm leben die menschlichen Samenthierchen sehr gut fort im Blute, im normalen Schleime der Scheide und Gebärmutter, sterben aber schnell im Speichel, im Urin, in zu saurem Schleime der Scheide, und zu alkalischen Schleimen der Gebärmutter. Einer solchen Veränderung in den Sekreten der weiblichen Genitalien, glaubt Donné die Unfruchtbarkeit der Frauen zureihen zu müssen.

im vorigen Jahresberichte nicht erwähnten wichtigen Versuche Berthold's (Neue Versuche über die Temperatur der kaltblütigen Thiere. Göttingen 1835. 8.) anschließen. Indem Ref. die Ueberzeugung hegt, daß sich diese kleine Schrift in den Händen der meisten Naturforscher befindet, erwähnt er nur, daß unter den kaltblütigen Thierklassen allein die beschuppten Amphibien $\frac{1}{4}-1^\circ$ Wärme mehr als das umgebende Medium zeigten, während die übrigen kaltblütigen Thiere (Mollusken, Annulaten, Krustaceen) nur gleiche Temperatur mit dem umgebenden Medium wahrnehmen ließen, die nackten Amphibien (Frösche) und die nackten Mollusken in der Luft wegen des Verdunstungsprocesses sogar eine geringere. Wenn die ein kaltblütiges Thier umgebende äußere Temperatur allmählich erhöht wird, so zeigt eine längere oder kürzere Zeit hindurch das Thier eine geringere Temperatur, und umgekehrt ist die Temperatur der Thiere nach einer kürzeren oder längeren Zeit höher, wenn die äußere Temperatur allmählich verringert wird. Die Ausgleichung erfordert nicht selten eine Zeit von mehreren Stunden. In der Nichtachtung dieses Umstandes liegt nach dem Verf. der Hauptgrund der bisherigen abweichenden Angaben über die Temperatur der kaltblütigen Thiere. — Die Insekten sind die einzigen, welche nach den Vögeln und Säugethieren am meisten das Vermögen, eine selbstständige Wärme zu erzeugen, besitzen; sie macht sich aber nur im Zusammenleben mehrerer für das Thermometer wahrnehmbar. Dieser Satz würde durch später mitgetheilte Beobachtungen vom Prof. Schulze (in der Versammlung der Naturforscher zu Bonn 1835. Isis 1836. Heft 9 u. 10. p. 769.) eine Einschränkung erleiden. Derselbe zeigte nämlich dort eine seiner Angabe von Greiner in Berlin gefertigtes Thermometer vor, mit dem die Wärme der Insekten gemessen werden kann. Nach seiner Beobachtung erzeugen besonders Schmetterlinge durch Bewegung einen hohen Grad Wärme, bei 10° Temperatur der Luft 28—29° R., haben aber nicht die Fähigkeit, diese Wärme im ruhenden Zustande festzuhalten, sondern kühlten sich bald auf 1—2° über die Lufttemperatur ab. Hiermit übereinstimmten würden die Beobachtungen von Mussell über das Winterleben der Stockbienen, welche nach diesem nicht erstarren, wenn bei hohrer Kälte die Temperatur im Stocke auf —° sinkt, aber dann

Für die geographische Verbreitung der Thierwelt erhielten wir in Reisewerken, Faunen und kleineren Abhandlungen manchen wertvollen Beitrag.

D’Orbigny’s Reisewerk hatte raschen Fortgang. Von Jacqueumont’s *Voyage aux Indes orientales* sind mir nur zwei, 1836 erschienene Lieferungen (11 u. 12) zu Gesicht gekommen. Das Werk enthält in den 12 erschienenen Lieferungen noch keinen zoologischen Text, nur einzelne Abbildungen, unter denen nur zwei Arten der Gattung *Ophiocephalus* neu sind.

Barker Webb und Berthelot's Histoire naturelle des isles Canaries, ist bis jetzt noch nicht zum zoologischen Theile fortgeschritten. Nur zwei Vögel, Fringilla tetydea n. sp. ♂ und ♀ in Livr. 4, und Fringilla canaria in Livr. 6. wurden abgebildet.

Von Goldfuss' naturlistorischem Atlas erschien die 19te Lieferung.

Vertebra.

Wir beginnen diesmal mit der Abtheilung der Wirbthiere, deren Feld die meisten und wichtigsten Arbeiten aufzuweisen hat.

Als Beiträge allgemeinen Inhalts sind hier zunächst die Faunen und Bemerkungen über die Thierwelt einzelner Erdgegenden zu erwähnen.
Von des Prinzen von Musignano trefflicher Iconografia della Fauna italica ist mir aus dem Jahre 1836. nur eine Lieferung, die 15te, zu Gesichte gekommen. Sie enthält sehr gelungen Abbildungen von: Cervus Dama, Porphyrio antiquorum, Emys caspica, Lacerta ocellata und agilis, Coluber Riccioli (meridionalis Daud.) und australiacus (Claevis Merr., der sich aber beiläufig gesagt, in ganz Europa von Rumelien bis ins nördliche Norwegen findet), und mehrere Fische; der beschreibende Text fehlt.

Von Nilsson's trefflichen Abbildungen zur scandinavischen Fauna kam das 17te Heft heraus. Es enthält eine Monographie der scandinavischen Fledermäuse, die Abbildungen von Vespertilio proterus und discolor, und Ornithologisches, was unten an seinem Orte näher angeführt ist.

Von Pallas Icones ad Zoographiam rosso-asiaticum ward der 3te Fasc. ausgegeben.

Er enthält die Abbildungen von Strix barbata Pall., Aquila pelagica Pall., Coreus dauricus Pall., Anser pictus Pall., Rana cachinnans, Acipenser Huso L., A. Sturio Pall., A. Helops Pall.

*) Beruht wohl nur auf der früheren Verwechslung des D. Azarae Team mit dem virginischen.

1. Mammalia.

Schreber's Säugethiere, wurde von A. Wagner in gleicher Weise fortgesetzt. Der Text strebt nach möglichst vollständiger Angabe alles dessen, was wir von jeder einzelnen Thierart wissen. Der Verf. hat diese Aufgabe, bei Benutzung eines höchst reichhaltigen literarischen Apparates, mit großem Fleiß gelöst, und gibt überall glänzende Beweise einer großen Bele senheit und Sachkenntnis. Die Abbildungen lassen zum Theil noch Manches zu wünschen übrig, während mehrere Originalzeichnungen der früheren Hefte von A. Fleischmann als vollkommen gelungen gelten können. Es erschienen das 82—84ste Heft. Vom Texte wurde der erste Band des 5ten Theiles vollendet, und auch die baldige Vollendung des zweiten Bandes, mit dem die Naturgeschichte der Wiederkäuer abschließt, steht nächstens bevor. Die gegebenen Originalzeichnungen sind folgende:

Heft 82. Simia trivirgata. — Herpestes penicillatus. — Antilope rupicapra.

Von II. T. L. Reichenbach's Regnum animale wurde der erste, die Raubthiere enthaltende Theil des ersten Bandes voll-
In 633 Figuren sind auf 78 Tafeln die unterschiedenen Arten und Varietäten so weit es bei so bedeutender Verkleinerung möglich war, meist kenntlich genug im Stahlstich dargestellt. Zum großen Theil sind Copien aus größeren Kupferwerken gegeben, aber auch viele Originalzeichnungen. Der Text enthält mit Bezug auf die Nummer der Figuren eine lateinische Diagnose und die nöthigen Citate. Besonders dankenswerth ist es, dass der Verf. überall angiebt, woher die copirten Abbildungen entnommen sind. Dadurch wird das Buch auch für diejenigen Naturschiffer, denen die benutzen Originalwerke zu Gbote stehen, ein bequemes Handbuch, obwohl es zunächst für das Bedürfnis derer bestimmt ist, welchen jene kostbaren Hülfsmittel nicht zugänglich sind. Am Ende jeder Klasse soll eine systematische Aufzählung der Genera mit Abbildungen, welche deren Charaktere erläutern, gegeben werden, was die Brauchbarkeit dieses verdienstlichen Unternehmens noch um Vieles erhöhen wird.

Für die geographische Verbreitung der Säugthiere im Nord-Osten Afrikas enthält die 7te Lieferung von Rüppell's „Wilderthieren zur Fauna Abyssiniens gehörig“ viele höchst wichtige Beiträge, sowohl neue Arten, als Bemerkungen über das Vorkommen bereits bekannter, namentlich aller vom Verf. in Nord-Afrika beobachteter Wiederkäuer und vieler Raubthiere. Näheres unten bei beiden Ordnungen.

10
Das Naturell unserer Haustiere hat Herr Allamand jun. sehr anziehend und treffend geschildert. (Mém. de la Soc. des Sc. nat. de Neuchâtel. Tom. I. p. 77 fg.)

A. Quadrumania.

2) Im Archiv für Anatomie u. Phys. 1836. p. XLVI.
Schädel des jungen Orang beibehält, die schief, regelmäßig ovale Gestalt der Augenböhlen und deren große Annäherung unter sich, die Kleinheit, Schmalheit und sehr entfernte Lage (position très remontée) der Nasenknochen," die bei unserm Gypsabgusse, wie J. Müller bemerkt, einfach erscheinen; „dabei aber durch die Verstärkung der Superciliar-, Sagittal- und Occipitalleisten und in der Verlängerung der Kiunladen dem Pongo ähnlich wird."

Der 3te Gypsabgufs (Nr. 7328.) ist der von d'Alton und Audebert abgebildete, mithin der des wahren von Wurmb beschriebenen Pongo. Dieser zeigt unter allen dreien im Profil die meiste Pavianählichkeit; unterseheidet sich überdies, wie J. Müller bemerkt, dadurch, dafs in der Vorderansicht die beiden Unterkieferäste am Winkel stark nach außen hervortreten.

der Naturgesch. 1837. p. 830.) gethan, der ihn fälschlich mit
dem schwarzen Pavian (Cyroccphalus niger) zu einer besonderen
Gattung zusammenstellt. Herr v. Blainville muß Wurmb’s
Beschreibung nicht gelesen haben, wenn er (l. c.) angiebt, daß
bei dessen Pongo die Wangenlappen fehlten; bekanntlich führt
dies Wurmb andrücklich an. Wir wissen aber auch, daß die
Wangenlappen in dieser Art nur Eigen tümlichkeit der Männ-
chen sind. Da mithin Herr v. Blainville diese Art in seiner
ersten meint, so fiele seine 4te Art, der Pongo, mit dieser zu-
sammen. Was es mit der Größe der riesenmäßigen sumatren-
sischen Art für eine Bewandnifs habe, und ob nicht Schädel und
Skelet, welche jüngst dem Pariser Museum zukamen, dieser an-
gehören, wie es Owen von dem Crof’schen Schädel annimmt,
müß die Folgezeit lehren. Für 3 Arten spricht sich auch Geo-
froy St. Hillaire aus. (Compt. rend. Tom. II. p. 92.) Er
meint, daß jede der 3 großen Suuda-Inseln ihren Orang habe.
Auf Borneo finde sich Wurmb’s Affe, dessen Skelet Aude-
bert darstelle; das Skelet des Abel’schen Orang von Sumatra
habe Owen abgebildet (was indessen nicht vom Skelet, son-
dern nur von dem tab. 53. dargestellten Schädel des Hrn. Crofs
gilt). Die 3te Art, der Wallich’sche Schädel, gehöre vielleicht
Java und den nahen Inseln an, wogegen v. Blainville glaubt,
daß sie vom indischen Continent stamme. Wie sie nun zu die-
sen Arten, namentlich zur letzten, der später von Owen be-
schriebene Schädel verhalte, nach welchem dieser eine neue,
ebenfalls auf Borneo lebende Art, Simia morio, aufstellt (Pro-
Mag. 10. p. 296 fg.) ist, da uns eine genauere Beschreibung des
Wallich’schen Schädels fehlt, nicht b e stimmt zu ermitteln.
Durch seine Größe und Gestalt erregt der Schädel des Simia
morio, wie der Wallich’sche, zuerst die Vermuthung, daß er
ein mittlerer Alterszustand zwischen dem jungen Simia satyrus
und dem Pongo sei, was aber die nähere Prüfung des Gebisses
und Schädels widerlegt. Die bleibenden Backenzähne des S.
morio, sowohl die zweihöckrigen, als die eigentlichen Backen-
zähne, sind kleiner als die des Pongo, die Eekzähne viel klei-
nier, während die oberen Vorderzähne fast, die unteren völlig
die Größe, wie beim Pongo haben. Der Cerebraltheil des Kopfes

Das Skelet des dreistreifigen Nachtaffen (Nyctipithecus trivirgatus) hat Joh. Gistl in einer kleinen Bruchüre 2) beschrie-

2) Beschreibung des Skeletes des dreistreifigen Nachtaffen (Nyctipithecus trivirgatus), einer zur Ordnung der Aëffer ge-

1) Das Hinterhaupt springt stark über das große Loch hervor, und läuft, allmälig sich verengend, in ein stumpfes kolbiges Ende aus; 2) die Augenbühlcn sind so ungemein erweitert, daß zwischen ihren äusseren Rändern der grösste Queerdurchmesser des Kopfes liegt; 3) unter den eigentlichen Affen besitzt er die meisten Lendenwirbel (8); 4) die Schwanzwirbel sind lang, schmächtig und, zumal in der Mitte, sehr verdünnt, und ermangeln der flügelartigen Ränder der Queerfortsätze; 5) alle Knochen der Gliedmäfsen sind lang gestreckt und fein ausgeprägt.

In derselben Schrift sind auch die Schädel von Lagothrix, Pithecia, Callithrix und Chrysothrix (Callithrix sciurea) vergleichend beschrieben und abgebildet, so wie überhaupt die
Skeletbildung der amerikanischen Affen mit großer Sorgfalt behandelt ist.

B. Chiroptera.

Zuweilen ergriff sie das Insect gleich mit dem Maule, meist aber umgarnte sie es gleichsam mit ihren Flügeln.

Es ist dieselbe Art, welche er früher Pt. epomophorus benannt hatte. In dieser Abhandlung schlägt er den Namen Epomophorus für die Gruppe vor, welche die in Rede stehende Fledermäuse mit Pt. gambianus und macrocephalus Og. bildet. (S. dies. Arch. Jahrg. II. 2. p. 279.) Die Arten stimmen auch im Gebisse überein, indem sie $3-3$ $5-5$ Backenzähne haben.

C. Carnivora.

a. Insectivora.

Ueber den Sorex alpinus Schinz, zuerst aufgestellt in Fröbel und Heer „Mittheilungen aus dem Gebiete der theoreti-
sehen Erdkunde" hat Duvernoy in der naturforschenden Ge-
sellschaft zu Strasburg einige Bemerkungen mitgetheilt. (Inst.
1836. Nr. 147. p. 71.)

Nach der Beschreibung von Schinz ist der Pelz einfarbig eisen-
grau, weich und lang; die Schwimmelhaare fehlen, die Ohren sind im
Pelze versteckt, die weissen Schneidezähne haben eine orangefarbige
Spitze. Körperlänge 5", wovon der Schwanz 2" 3". — Die Exem-
plare wurden in den am höchsten gelegenen Weiden im Urrserenthal
gefunden. Lauth fand ein Exemplar am Oberalp-See, welches Du-
vernoy untersuchte. Es gehört die Art nach ihm zu seiner Gruppe
Hydrosorex. Die unteren Schneidezähne haben 3 stumpfe Zähchen
hinter ihrer Spitze, die oberen sind zweizählig. Kleine Lücken-
zähne finden sich 5 und nehmen von dem 1sten zum 5ten an Größe ab,
alle haben rothe Spitzen; diese rothe Färbung findet sich auch an der in-
neren Seite der oberen Backenzähne und an der äusseren Seite der un-
teren. In dem von Duvernoy untersuchten Exemplare ist das Ver-
hältnis des Schwanzes zum Körper größer, als es von Schinz ange-
geben wurde.

den S. suaveolens Pall. beschrieben und die Vermuthung aus-
gesprochen, dass er mit S. etruscus Sav. identisch sein möchte.
Herr Nathusius, dessen Monographie der Spitzmäuse in einem
der nächsten Stücke dieser Zeitschrift erscheinen wird, schreibt
nir hierüber Folgendes:

„Die Vergleichung des Sorex suaveolens Pall. mit etruscus
Sav. wird um so interessanter, als das Vaterland der letzten sich
also westlich weiter ausdehnt, indem ich denselben in diesen Ta-
gen aus Algier er halten habe. Der Rüssel ist allerdings im Vergleich
mit einigen andern Arten nur kurz, keineswegs aber im Vergleich mit
dem ächten S. araneus Daub. n. Bechst., auffällend kurz dagegen
im Vergleich mit der gewöhnlich araneus benannten Art, welche S.
vulgaris Linnaei = tetragnathus Herm. ist; noch auffallender
ist die Kürze des Rüssels im Vergleich mit S. pygmaeus Laxm. Pall.
Was Rathke vom Ohr sagt, passt allerdings auf den etruscus, aber
dieselbe Bildung haben alle Arten der Gattung, nur liegt bei dieser Art
das ungefähre grobe Ohr sehr frei. Die für suaveolens angege-
benen Dimensionen passen jedoch nicht auf etruscus, deren Schwanz
zwar auch 1" lang ist, dessen Körper aber von der Nasenspitze zum
Aftter nicht mehr als 1" 8 bis 9"" müss. Dies scheint bei einem so
kleinen Thiere eine bedeutende Differenz zu sein. Die andern Größen-
angaben passen so ziemlich, nur ist die Ohrmuschel bei etruscus nicht
1", sondern über 2" breit. Es scheint demnach doch, dass etruscus
mit suaveolens zusammenfällt. Pallas selbst neunt diesen „pyg-
maeo vix major", da jener jener doch kleiner und besonders schmä-

tiger und zierlicher ist. Was ist aber die „papilla subcaudalis didyma, odorifera, utramque aperturam continens“? (Pall. Zoogr. 1. 134.) Etwas Ähnliches zeigt weder etruscus, noch eine andere genauer bekannte Art der Gattung.

Über die Anatome wie des Wuyuchuchol (Myogale moschata) hat Brandt in dieser Zeitschrift vergleichende Mittheilungen gemacht. (2r Jahrg. Bd. 1. p. 178 fg.)

E. longissime auritus, rostro, gula, pectorisque media parte nec non antipedum apicibus albidis; auriculis, mento et stria ante auricularum basin albis; aculeis basi nigricantibus, medio sordide albis; gastraeo, cauda, aculeorum apicibus pedibusque nigris.

b. Carnivora.

derselben Art beträchtlich in Größe variieren, dürfte für die spezielle Zoologie von Wichtigkeit sein, indem man daraus leicht auf spezifische Verschiedenheit schließen könnte.

Martin glaubt 2 Arten Cercoleptes, über deren Vaterland ihm aber genauere Auskunft fehlt, unterscheiden zu müssen, von denen er die eine C. megalotus, die andere C. brachyotus nennt. (Proc. Z. S. IV. p. 83.)

C. megalotus. C. laetæ rufus, striga saturatiore, per tatum longitudinem capitis, dorsi medii, caudaeque supra excurrente, lateribus pallidioribus, abdomine gulaque rufis, striga castanea abdominali; auriculis longis, angustis, rotundatis subpendulis, externe pilis pallide flavis indutis, cauda gracili; vellere denso, brevi, rigido. Long. auric. 1" 3'°, latit. 7'°.

C. brachyotus. C. vellere denso, molli, longiusculo, griseo flavescenti, at brunneo undato, hoc colore in capite, summoque dorso saturari; abdomine et gula stramineis, auriculis latis, mediocribus, erectis, pilis rarioribus fuscis externe indutis. Long. auric. 1", latit. 1".

Der Verf. beschreibt das Gebiss, wie wir es bereits aus Lichtenstein's Beschreibung (Jahrg. II. 2. p. 282.) kennen. Von den 5 Backenzähnen des Unterkiefers sind die 3 ersten fal-

C. melanura. C. saturate rufa, nigro punctulata, ad latera pal-lidior; gula sordide flavescenti-brunnea; artubus interne abdomenique sordide flavescenti-rufis; cauda apicum versus late nigra, ad apicum flo-"cusa. Long. corp. c. cap. 12", caudae pilis inclusis 11, caput. 2" 1 1/4".

Das Exemplar hat noch nicht sein vollständiges Gebiß; unterschie- det sich überdies von dem *C. Steedmanni* durch verhältnismäßig kürzere Krallen und durch einen nackten Streif längs der Untersseite des Tarsus bis zum Hacken, während dieser bei jenem ganz behaart ist, durch einen rötlichen, kürzeren und glänzenderen Pelz, minder buschi- gen Schwanz, dunkle Färbung der Kehle, schwarze Schwanzspitze. (Auch würde der Schwanz im Verhältnis länger sein.) Vielleicht Bosman's Kockeboe?
res Gesicht, durch die zusammengedrückte Gestalt der falschen Backenzähne und die Kleinheit und trianguläre Gestalt des Fleisch-
zahnes unterscheiden.

Einen neuen Herpestes der indischen Inseln, H. brachyurus, erwähnt Gray, ohne ihn näher zu beschreiben, ebenda-
selbst. Er soll dem schwarzen capscben Herpestes (also wohl dem H. paludinosus Cuv.) nahe stehen, sich aber durch Färbung
und Kürze des Schwanzes unterscheiden.

Sehr interessante Formen derselben Gattung machte Rüpp-
pell in seinen Wirbeltieren zur Fauna Abyssiniens in Beschrei-
bungen und Abbildungen bekannt. Er beobachtete auf seinen
Reisen 6 Arten, den H. Pharaonis, sehr häufig in Unterägypten
(dort Nims), den H. leucurus Ehrb., in Nubien, dort Abu
turan (bei manchen Individuen ist der Schwanz nicht weifs,
sondern schwarz), und 4 bei weitem kleinere Arten, die sämmt-
lich im Süden des 16ten Breitengrades leben. Verf. vermutet,
dass einige derselben mit den jüngst von Smith (im South. Afr.
quarterl. Journ. und African Zoology. Cape Town 1834.) auf-
gestellten Arten identisch sind und dann bis zur Südspitze Afri-
ka’s herabreihe würden. Die neuen Arten und ihre Schädel
sind abgebildet.

1. H. sanguineus Rüpp. t. 8. f. 1. H. madagascariensis Sm.?
H. capitis colore cinereo negro punctato, corpore ex isabellino rufo,
pilis annulis et apicibus umbrinis; gula, pectore et ventre albicante, pe-
dibus isabellinis; cauda corporis longitudinem paululum exceedente, equa-
liter villosa, colore isabellino et negro variegato, parte apicali rubiginosa;
plantis nulis. — Körperlänge bis zur Schwanzwurzel 11" 6", des
Schwanzes mit seinem Haarbüsche 12" 6". In Kordofan; dort Abu
Wusie.

2. H. gravilis Rüpp. t. 8. f. 2.
H. toto corpore colore cinereo flavicante, pilis annulis et apicibus
umbra-fuscis, parte postica caudae nigra, collo et ventre rufescente;
cauda elongata villosa longitudinem corporis quinta parte exceedente;
planta seminuda. — Körperlänge 11" 7", Schwanz 1" 1". Bei Mas-
sana ziemlich häufig; dort Sakie.

H. colore dorsi et caudae umbrino nigricante, pilis capitis, ventris
et pedum annulis rufescenzatus variegatis; cauda aequaliter villosa corporis longitudine decima parte minore, postice nigra; parte unda plantarum angusta. — Körperlänge 1' 1" 6", Schwanz mit der Quaste 11" 6". In den abyssin. Provinzen Dembea und Simen; heißt Mutigigella.

4. *H. zebra* Rüpp. t. 9. f. 2. *H. taenianotus* Sm.?

Von demselben Naturforscher ist a. a. O. eine neue Art der Gattung *Viverra*, *V. abyssinica*, beschrieben und tab. II. abgebildet.

V. corpore et pedibus colore isabellino, linea mediana dorsi et 3 striis biarcanatis nigricantibus ad latera dorsi utrineque, parte externa scelidum et lateribus colli nonnullis maculis nigricantibus variegatis; cauda villosa, annulis 18 nigris et isabellinis alternantibus; gula, labiiis et regione infraorbiitali albidis, parte basali mastacis nigricante, ventre cine-rascente. Crista ossea in medio cranii aut juba dorsali nulla. — Körper 1' 5", Schwanz 1' 3" 8". Die Vertiefung der Zibethdrüsen hat die Gestalt eines umgekehrten Y. Sie scheint kleiner zu bleiben, als *V. genetta*; am Schädel des beschriebenen Individuums waren die Näthe beinahe oblitterirt, es fehlte aber jede Spur der Knochenleiste längs der Pfeilnath, die bei jener so entwickelt ist.

V. melanura R. V. ciuerea subitus fronteque pallidior, striis dorsalisbus, maculis sparsis caudaque nigris. Long. 1' 8", canae 13½''.

Der Schädel ist oberhalb verflacht, der Kopf verlängert, der Längs durchmesser ist viel größer als der Queerdurchmesser, die Ohren stehen hoch, wie beim Schakal, und sind viel länger; der Hals ist lang und dünn; der Hintertheil des Körpers höher als der Vordertheil; die Beine sind höher und der Körper schlanker als beim Fuchs; der Pelz ist rostrotth {faure} an seinen oberen und äußersten Theilen; Kehle, Lippen und die Schwanzspitze sind rein weifs. (Nach Institut. Nr. 208. befinden sich am oberen Drittheile des Schwanzes im Halbkreise stehende schwarze Haare.) Er verbreitet keinen übeln Geruch, lebt in zahlreichen Truppen von mehr als 50 Individuen, die gemeinschaftlich Gazellen, Hammel, Kälber u. s. w. jagen. In der Ebene sollen sie sich stärker fühlen als die Schakal, diesen aber im Gebirge weichen.

Den Fuchs des Himalaya hat Ogilby, unter dem Namen C. Himalaicus, beschrieben. (Proc. Z. S. p. 103.)

Von Reichenbach (Regn. anim. I. p. 11. f. 92.) wird ein bengalischer Schakal unter dem Namen C. mierurus unterschrieben:

C. latescens doro lateribusque cinereis, capite colloque infra, aur-
culis pedibusque albis, cauda vix talos tangente. Long. 2' 1", caudae 7". — Allem Anscheine nach ist dies nur der wahre Schakal der Le-
vante (C. aureus).

Ebendaselbst p. 10. f. 72—73. ist die Diagnose und Ab-
bildung eines nordamerikanischen Fuchses gegeben, der dem C. Lagopus nahe steht, nach der Abbildung aber viel Eigenthüm-
liches zeigt.

C. microtus Reichenb. C. cinereus lateribus lutescens subtns al-
bus, auriculis rostrum nigricans vix dimidium aequantibus. Longit. 1' 7½", caudae 10". Hundisbay in America boreali. — Eine ausführliche
Beschreibung wäre wünschenswerth.

Derselbe Naturforscher hat eben dort p. 44. zwei von Ha-
ilton Smith und Jardine abgebildete Katzen als besondere
Arten unterschieden. Die von ersterem als F. macrura dar-
gestellte Katze nennt er F. venusta; ob sie aber mehr als Va-
rietät der Neuwied'schen Art ist, kann wol aus der bloßen
Abbildung nicht entschieden werden. Die andere, von Jardine
(Felinae. Natur. Libr. Mamm. II. t. 20.) als F. bengalen-
sis abgebildet, nennt Herr Reichenbach angulifera. Sie
scheint mir Varietät der F. nepalensis Horsf. zu sein. Eöd-
lch stellt er eine javanische Katze als F. leucogramma auf
(ibid. p. 45.). Das Vaterland und die Maße passen auf Tem-
mink's F. minuta, zu welchen dieser nach eigener Ansicht
der Originalexemplare F. iavanensis Horsf. und sumatraea zieht,
obwohl deren Maße zu den seinigen nicht stimmen.

Martin hat (Proc. Z. S. p. 107.) die von Jardine für
F. Diardi dargestellte Katze als eine verschiedene Art nach-
gewiesen und sie F. marmorata genannt. Die angegebenen Maße
zeigen sich allerdings von der bei Cuvier's Felis Diardi ver-
schieden, während die Färbung ähnlich und das Vaterland Java
und Sumatra ist.

F. Diardi Cuv. F. marmorata Mart.

Kopf 6" 5½,
Schwanz 2 F. 4 " 1 F. 3½",
Körper 2½ F. 1 F. 11".
Höhe an der Schulter . 18" 10½".

Nach Robert (Ann. de Sc. nat. V. p. 227.) findet sich
die gefleckte Hyäne auch am Senegal.
D. Marsupialia.

ger als die seitlichen, die unteren breiter und etwas getrennt. Backenzähne 5 jederseits, darunter 2 falsche, oben wie unten. Der erste falsche Backenzahn ist klein, berührt den Eckzahn, oben und unten; der zweite ist halb so breit, beide dreieckig mit 2 Wurzeln. Die eigentlichen Backenzähne wie bei Didel-
phys. Der erste im Oberkiefer ist länger als breit, mit 4 scharf-
en Höckern mit einem niedrigen rückwärts vortretenden Ab-
satz; der 2te von ähnlicher Form, aber größer und breiter; der 3te ist klein, gleicht den Höckerzähnen der Raubthiere. Die
eigentlichen Backenzähne des Unterkiefers unterscheiden sich
nicht wesentlich in Größe, sind schmäler als die oberen, ihre
Höcker stehen in einfacher Längsreihe, ein einzelner großer
Höcker in der Mitte, ein kleiner an jeder Seite. Der Yapock
hat sehr große Backentaschen, die sich weit hinten in den
Mund erstrecken, mit sehr sichtlicher Öffnung. Der Verf. be-
merkt noch, daß der Schwanz schuppig gerinnt, mit horstigen
Haaren sparsam, besonders unterhalb, besetzt sei, was gegen die
gewöhnliche Ansicht, ihn für einen Greifschwanz zu halten,
spreche. Ein eigentlicher Greifschwanz findet sich indessen auch
bei Didelphys nicht, und wir wissen durch Reugger, daß er
hier freilich immer eine halbe Windung nach unten macht, aber
beim Klettern selbst ihnen nur geringe Hülle leistet. Da Chiro-
nectes vermöge seiner Fußbildung ausschließlich Wasserthier ist,
läßt es sich vermuten, daß der Schwanz bei ihm noch weni-
ger Wickelschwanz ist.

Unter dem Namen Myrmecobius wurde von Water-
house ein neues Genus der carnivoren Beutelthiere aufgestellt.
zuerst von Dale etwa 90 Meilen südöstlich von der Mündung

Dentes incisores \(\frac{8}{6} \), caunii \(0-0 \), pseudomolares \(\frac{5-5}{4-4} \), molares \(\frac{3-3}{4-4} \). Pedes antici 5-dactyli, digitis tribus intermedii longioribus; postici 4-dactyli, digitis duobus intermedii internum superantibus; externo brevissimo; unguiibus acutis subfalcularibus. Scelides antipedibus longiores. Caput elongatum; binario producto; auriculis mediiocribus acutis. Corpus gracile. Cauda mediocris.

P. griseus, capite, nucha et dorso castaneo lavatis; buccis, lateribus colli, scapulis, lateribus, femoribus extus caudaque ad basin pallide castaneis; mento, gula, pectore, abdomen, extremitates intus anticeque, antibrachiis postice, pedibusque supera albidas; antibrachiis externae pallide griseis, femoribus extus posticeque saturate plumbeis; cauda pilis longis albescentibus ad partem basalem induta, dein pilis nigris tecta, parte apicali alba, pilis longis supera ornata; vellere longo mollis. Cauda pilis rudibus vestita; pilis pedum brevissimis; labio superiore buccisque mystacibus longis sparsiis; auriculis longis, ovatis, intus nodis, extus pilis brevissimis brunneis, ad marginem albescentibus iudutis; pilis ad

1) Ein später erhaltenes Exemplar hatte jederseits oben und unten einen Backenzahn mehr; ib. p. 131.
basin plumbeis, apicibus albis aut castaneis, illis in abdomine omnino albis; marsupio ventrali magnu mammiss 9, quorum una centralis reliquis circumdata. Long. capitis 5" 3"", corporis 13", caudae 10", auriculae 3" 10", lat. auriculae 1" 9". — Sie finden sich jenseit der Berge des Swan-river im Districte York, sollen grosse Maggots und Baumwurzeln (?) fressen und in den Mais- und Kartoffelpflanzungen bedeutenden Schaden durch ihr Graben anrichten.

Von Owen ist ebendaselbst (S. 49.) die Anatomie des Wombat gegeben. In einzelnen Punkten weicht der Verf. in
der Schilderung der Verdauungsgänge von Cuvier ab. Das Colon zeigte sich mehr als doppelt so weit als das Ileum. Auch spricht er von einem zweiten Caecum. Das erste und der wurmförmige Anhang stimmen mit Cuvier's Beschreibung. Das zweite soll ein pyramidaler 3" langer Sack sein, dünne Wände als der übrige Dickdarm haben, mit diesem frei kommunizieren und unter dem Pfortnerende des Magens gelegen sein.

E. G l i r e s.

Die Ordnung der Nagethiere ist theils durch neue Gattungen vermehrt, theils sind ältere Genera genauer erörtert worden.

Die Diagnosen beider Arten sind folgendermassen gestellt:

1. Sc. albipes; pilis rigidis vestitus, auriculis sordide albidis, dorso
ex albo, nigro et ferrugineo mixto, gastraco saturate ferrugineo, pedibus niveis. — Körper 10", Schwanz 10".

2. Sc. sociatis; minor, pilis mollibus vestitus, anriculis fulvis, dorso ex albo, cinereo et flavescente mixto, gastraco pallide flavo, pedibus albidis — Körper 8½" (bei unserem Exemplare 10½")

Von seinem Cricetus nigricans hat Brandt in dem Bull. de l'Acad. de St. Pétersbourg folgende diagnostische Beschreibung gegeben:

Rostrum et auriculæ sobpallide ferruginea vix nigricante irrorata. Dorsum e pallide ferrugineo nigricans. Colli latera, nec non area pone humeros e pallidissime ferrugineo-albida, pallide ferrugineo marginata. Abdomen et nigricante et albido mixtum. Palpebrae, area flexuosa in quovis colli latera ad humerum duxa, gula etpectusatra. Antipedes et podaria albida. Caoda 4 lineate longitudinc pilis dorsalisibus brevior et ab iis inclusa. Long. corporis 5½".

die einheimische schwarze Ratte (*M. rattus*) so vollständig vertilgt, daß dem Verf. bisher nur ein Exemplar von dieser zu Gesicht gekommen ist. — Einem achtbaren Pächter soll Nachts um 11 Uhr bei Mondschein eine ganze Schaar Wanderratten begegnet sein, die von einem Fußsteige in die Landstraße einbog, bei seinem Erscheinen ein allgemeines Geschrei erhob und aus- einander sprengte.

Der *A. subterraneus* wird folgendermaßen beschrieben:

Unter dem Namen *Plagiodonta* hat F. Cuvier eine neue Nagethergattung aufgestellt (*Ann. des Sc. nat. Tom. VI. p. 347.*), die der Gattung *Capromys* sehr nahe steht und mit dieser in dieselbe Familie gehört. Sie hat, wie *Capromys*, jederseits in beiden Kiefern 4 Backenzähne ohne wahre Wurzeln; diese zeichnen sich aber durch eine sehr schiefe Richtung der Schmelzfalten aus, deren die Außenseite der oberen Backezähne nur eine zeigt, während bei *Capromys* an dieser 2 Schmelzfalten vorhanden sind. Die Backenzähne des Oberkiefers nehmen nach hinten zu allmälig an Grösse ab; auf ihrer Kausfläche sind 2 sehr schräge Falten, die äussere von vorn nach hinten, die innere von hinten nach vorn gerichtet. Die des Unterkiefers sind bis auf den hintersten ziemlich von gleicher Grösse, ihre Falten min-

Von großem Interesse, sowohl in geographischer Hinsicht,
wie als Übergangslücke, ist eine von Rüppell in Abyssinien entdeckte Form der Maulwurfsmaus, welche sich eng an die südafrikanische Blefsmolle (*Georychus III.*) anschließt und deren Stelle im östlichen Afrika zu vertreten scheint. Die Gestalt des Schädels, die Form der Backenzähne, Fuss- und Nagelbildung, so wie der seidenweiche Pelz, sind ganz wie bei jenen, nur findet sich hier ein kleines äußeres Ohr und der Schwanz ist etwas länger. Das Verhältnis der kurzen Krallen der Vorderfüße zu den längeren der Hinterfüße ist dasselbe, wie bei jenen; auch stimmt, was Verf. von der Skelettbildung seines Thieres sagt, mit der des Blefsmolls überein, höchstens scheint der starke Fortsatz an der äußeren Seite des Unterkiefer-Gelenk- höckers dem neuen Thiere eigenthümlich, denn der *Processus coronoides* ist auch bei jenem vorhanden und sichelförmig gekrümmt. Die Zahl der Backenzähne würde eine andere sein, indem Verf. bei seinem Thiere deren $\frac{3}{3}$ jederseits angiebt, die Normalzahl bei *Georychus III.* (*Bathyergus* F. Cuv.) aber $\frac{4}{4}$ ist. Indessen, wie ich schon früher (Jahrg. I. 2. p. 337.) bemerkt, tritt der hinterste Backenzahn bei *Georychus* spät durch, und man findet häufig nur $\frac{3-3}{3-3}$. Man kann daher dem Verf. nur beistimmen, wenn er das Thier einstweilen bei *Bathyergus* (oder richtiger *Georychus III.*, siehe Jahrg. I. l. c.) läßt.

B. splendens. Corporis colore ex rofo cinnamomeo splendore rutilo lucidissimo in vivo, post mortem evanescente; naso, gula, pectore, ventre, cauda et extremitate pedum murino nigrante, auriculis externis breviscellis, dentibus incisoribus perlongis, antorsum colore melleo, cauda cylindrica, spicis aut rufescents aut albicans; plantarum ungulibus mediocribus albicans. Pullus toto corpore colore umbrino nigrante.

— Körperlänge 9" 5″, Schwanz 2" 5″. — Nähere Nachrichten über Lebensweise und Aufenthalt haben wir in einer der folgenden Lieferungen zu erwarten.

Die Identität der ersteren von Bennett schon 1832 aufgestellten Gattung mit Meyen’s *Dendroleus* habe ich bereits

173

mys, Loncheres, Plagiodonta zu gehören, und es möchte Octodon in diesen ein Übergangsglied zu den Sciurinis, Poephagomys F. Cuv. (Psammoryctes Poepp.) ein Übergangsglied zu den Wühlmäusen sein, sich zunächst an Ctenomys anschließend. Die Charakteristik beider Genera ist nach Bennett folgende:

Octodon. Dentes primores $\frac{2}{2}$, acutati, antice laeves, molares utrinsecus $\frac{4}{4}$ complicati, subaequales; superiores subtransversi facie antica lata, postica (ob incisuram externam profundam) duplo angustiorae, interna in medio unipliicata, plicis a primo ad postremum sensim minoveribus; inferiores obliqui, singula plica externa internaque suboppositis coronidem in areas duas oblique transversales, figuram 8 vel clepsydram quodammodo simulantes, subdispartibus, plica externa in postremo vex conspicua. Artus subaequales, omnes pentadactyli, digitis liberis; unguibus falcularibus, aculis; ungue pollicari lamnari. Cauda mediocris, subannulata, pilosa, ad apicem floccosa. (Amer. australis incola, terrestres vel arborei, subsalientes.)

O. Cummingii. O. supra fusco-flavescenti grisens nigrescente intermixtus, infra et ad pedes pallidior, cauda supra et ad apicem floccose nigra. (Denbrobius Degus Meyen.) Hab. in Chili.

Ctenomys Blainv. Dentes primores $\frac{2}{2}$ acutati, antice laeves, molares utrinque utrinsecus $\frac{4}{4}$, postremo subobsoletu, ceteris similibus, simpliciosenlis, veluti et lamina simplici subarcnata constantibus, in maxilla superiore externe et postice, in inferiore interne et antice late exsculpta. Artus subaequales, omnes pentadactyli, digitis liberis, unguibus falcularibus, unguliformibus, subelongatis. Cauda breviuscula, subannulata, pilosa. (Amer. australis incola, fodienties.)

Eine dritte von Verf. nicht gekannte Art bildet Lichtenstein's Ctenomys torquatus. (Licht. Darstell. neuer oder wenig bekannter Säugeth. tab. 31. 1.)

Van der Hoeven (Tijdschr. voor natuurl. Gesch. III. p. 112.) bemerkte gegen Brandt, daß der von diesem angegebene Unterschied zwischen den Backenzähnen der Stachel- schweine der alten und neuen Welt nicht Stich halte; indem an den Backenzähnen jener die Wurzeln sich nur erst später bilden. v. d. H. fand am ersten Backenzahne des Oberkiefers
von *H. cristata* 4, an dem des Unterkiefers 3 deutlich entwickelte, kegelförmige, spitze, 7—8 Millim. lange Wurzeln, die folgenden Backenzähne zeigten nur Höcker, welche an der Spitze offen waren (Rudimente der Wurzeln).

In derselben Zeitschrift (Bd. III. St. I. p. 59.) findet sich ein Auszug aus einem Schreiben des Hrn. Meyen, in welchem gesagt wird, meine Angabe (Arch. I. 2. p. 213.), daß die Zähne seiner Gattung *Galea* in Gestalt mit denen von *Kerodon* (*Cavia rupestris* Neuville.) übereinkamen, beruhe auf einem Irrthume. In jener Stelle ist aber nur ausgesprochen, daß jeuer Schädel einem der *Cavia rupestris* nahestehenden cavienartigen Thiere angebühre, und für die Richtigkeit dieser Ansicht zeugt die Beschaffenheit des Schädels.

1) Verf. hat dort die Etymologie von *Castor* fälschlich angegeben, indem er *Castor* von *castrare* ableitet; gerade umgekehrt wird *castrare* von *κατανομή, castor*, abgeleitet, da im Alterthume die Meinung herrschte, daß sich der Biber entmanne, um den Nachstellungen der Jäger zu entgehen (Aelian *H. A. VI. 39.*).
Als im vorigen Jahresberichte ausgelassen ist der Titel einer Schrift über das *Megatherium* nachzuholen, welche mir nur aus den Anzeigen französischer Blätter bekannt geworden:

Am einfachen Fruchthäuter der *Myrmecophaga didactyla* fand v. Bär einen doppelten Muttermund. (Müller's Archiv p. 384.)

G. Pachydermata.

Unter den Pachydermen der Jetztwelt war der Elephant Gegenstand gelehrter Forschungen.

Everset, welcher darzuthun sucht, daß das Vorkommen von fossilen Elephantenresten in der kälteren Zone eben keinen Beweis für eine vorzeitige tropische Temperatur liefere, indem der fossile sibirische Elephant durch einen Haarpelz gegen Kälte geschützt gewesen, und Heber an der Nordost-Grenze von Delhi unter 29 und 30° Breite einen behaarten Elefanten gesehen, führt an, daß der wilde Elephant nordwärts von Delhi auf das Gebirge gehe, auf welchem Nahun 4000 F. über dem Meere in 31° n. Br. liege, dessen mittlere Temperatur etwa auf 14°,3 R. angenommen werden könne, daß Nahun aber ein excessives Klima mit sehr heißem Sommer von 21°,9 und einen strengen Winter von 5°,9 R. mittlerer Temperatur besitze. Auch könne die derzeitige isolartige Zerstückelung von Europa schon allein hinreichend gewesen sein, das Klima milder zu machen. (Biblioth. univ. 1836. II. 153—59.) — Für das Vorkommen des afrikanischen Elefanten in bedeutender Meereshöhe hat A. v. Humboldt eine Beobachtung Rüppell's mitgetheilt, nach welchem die wilden Elefanten und Affen in Abyssinien über Plateaux von 1,500 Meter (1,300 Toisen) hinwander, also sich unter dem 15ten Breitengrade in einer solchen Höhe Temperatur-
turverhältnissen aussetzen, wie sie im flachen Lande unter viel höheren Breitengraden bestehen. Herr v. Humboldt sieht darin einen Beweis, dass Thierarten, die sonst die Tropenzone kaum überschreiten, in gewissen Fällen in weit außer derselben gelege

cene Länder gelangen können, und beacht hierauf das Vorkom

Tatem jun. macht (Loudon's Mag. IX. p. 459.) darauf auf-
merksam, dass die Bewegungsweise des Elephants in den Ab-
bildungen stets unrichtig dargestellt werde, indem derselbe nur Paßgänger sei, wobei er sich auf den Gang des Elephants des

zoologischen Gartens und auf Bischof Heber beruft (s. Schre-

ber's Säugeth. v. Wagner 6. p. 259.).

Herr v. d. Hoeven hat die Unterschiede angegeben, aus denen man bei einem Elephantenzahne erscheinen kann, in welcher Kinnlade und auf welcher Seite er gesessen (Tijdschr. v. natür.
gesch. III. 1. p. 53.). Die Oberfläche der oberen Backenzähne

ist einigermaassen convex, die der unteren eher ausgehölt. Fer-

ner sind die Platten der oberen Backenzähne schief nach voro, die der unteren schief nach hinten geneigt; die der Oberkinn-
lade sind endlich an der Außenseite etwas convex, die des Un-
terkiefers dagegen an der Innenseite convex und etwas concav

an der Außenseite. Cuvier's Worte: "elles sont convexes à
leur face interne et un peu concave à l'externe", gelten mithin

nur von den Backenzähnen des Unterkiefers.

Ueber den Rhinoceros unicornis s. Jaquemont's Mitthei-
lungen im Auszuge in v. Froriep's Nat. 47. p. 40.

Eine der wichtigsten Entdeckungen im Felde der Paläon-
tologie ist die Auffindung des Kopfes vom Dinotherium gigan-
tea, dessen Gewinnung und Beschreibung wir den Herren v.

Klippstein und Kaup verdanken. (Beschreibungen und Ab-
bildungen von dem in Rheinhessen aufgefundenen colossalen

Schädel des Dinotherii gigantei mit geognostischen Mittheilun-
gen über die knochenführenden Bildungen des mittelrheinischen

Tertiärbeckens. Darmstadt 1836. 4. mit Atlas in Fol.) Hatte

schon Kaup's Entdeckung, dass die gewaltigen Stofszähne des

Unterkiefers bei diesem Thiere abwärts gerichtet waren, bedeu-
tendes Aufsehen erregt, so muss die Auffindung des Schädels,
dem jener Unterkiefer zugehörte, um so wichtiger werden, als

III. Jahrg. 2. Band. 12
zähne, hier freilich dem Unterkiefer angehörig, würden die Analogie vermehren, und für die Rüsselbildung möchte der Seelephant (Phoca leonina L. Macrorhina F. Cuv.) einen Vergleichungspunkt darbieten. Eine genauere Bekanntschaft mit den Extremitäten des seltsamen Thieres wird über die Zulässigkeit einer solchen Hypothese entscheiden, zu welcher auch Blainville sich hinzuneigen scheint (Instit. 1837. Nr. 202.).

II. Ruminantia.

Das Leicester Schaf, — das schwarzköpfige Schaf der Hochlande, — das persische Schaf, — der schottische weisse Urstier, von dem jetzt etwa 60 Stück in Hamilton gehet werden, über deren Naturgeschichte einige interessante Mittheilungen gegeben sind, — die kurzhörnige britische Rindsräge und die Kyloeräe der schottischen Hochlande.

Besonders reichhaltig an Erfahrungen über die geographische Verbreitung der Wiederkäuer im nordöstlichen Theile von Afrika ist E. Rüppell's 7te Lieferung der neuen Wirbelthiere zur Fauna von Abyssinien (p. 24 fg.). Verf. gibt hier eine Uebersicht aller auf seinen Reisen beobachteten Wiederkäuer:

1) Camelus Dromedarius, verwildert in den Steppen von Kordofan, in Abyssinien nur in den flachen Thälern längs der Meeresküste.
4) A. Duma Pall. in zahlreichen Heerden in den Steppen von Nabien, Senmaar und Kor-
dorfan und durch ganz Afrika unterm 20° Br. bis an den atlantischen Ocean. Die am Senegal vorkommende Räjge (A. Nanguer Benn.) und die marokkanische (A. Mhorr. Benn.) sei nicht specifisch verschieden.

5) A. Soemmeringi Rüpp., nur in den buschigen Theilen der abyssinischen Küste, — in kleinen Familien, wandert zuweilen in grossen Heerden. 6) A. montana Rüpp., paarweise in grasreichen Trüsten in Sennaar, auf den Hochebenen von Woggera, in der Umgebung von Gondar und in den Thälern der Kulla; nur das ♂ hat Hörner; 2 inginal

nalgruben bei ♀ und ♂; beim ♀ 4 Saugwarzen; beim jungen ♂ finden sich im vorderen Winkel des Oberkiefers kleine Eckzähne, wie bei Moschus, die aber später ausfallen. 6) A. Madogua Bruce; liebt mehr die bergigen Gegenden, als vorige. 7) A. Oreotragus Forst., paarweise in den felsigen Berggegenden Abyssiniens (beisst Sassa, bei Massaua Goat). 8) A. Hemprichii Ehr. (A. Sattiana Licht. Kretzsch.), paarweise im niederem Gebüschr

joum, von Lichtenstein mit A. leucoryx Pall. verwechselt. A Tao Ham. Sm. 15) A. Beisa Rüpp., s. d. Arch. I. 1. p. 286. 16) Ca-

pra arabica Mus. Vind., C. nubica F. Cuv., C. sinaicica Ehrb. (Sehr passend wählt A. Wagner in Schreber’s Säugth, den specifischen Namen Beden (Aegoceros beden). Familienweise in felsigen Gebirgsgegenden von Mittelägypten, im peträischen Arabien und in Hed-

als Hausthier südlich von Aegypten nicht vor. In Abyssinien und Kor-
dosan sind Buckeloxen Hausthiere. Der großhörnige Ochse in den
südlichen Provinzen Abyssiniens ist von dem großhörnigen Rindvieh
Italiens nicht verschieden. — *Capra laela* Ham. Smith, die nach die-
sem in Abyssinien vorkommen soll, konnte Verf. dort nicht anfinden.

Die sogenannten Thränen- oder Infraorbitalgruben
der Wiederkäuer sind Gegenstand der Untersuchungen von
Fr. Not. 47. p. 292.*) und E. T. Bennett (*Proc. Z. S. IV.
p. 34.*) gewesen.

Der erste macht darauf aufmerksam, daß nur bei einigen
Wiederkäuern eine durch Hautfalten gebildete Rinne vom Auge
diesen Säcken führe, und glaubt, daß in diesem Falle ein Übergang der Thränenfeuchtigkeit in dieselbe unvermeidlich sei.
Im Uebrigen vergleicht er diese Organe den Hautdrüsen anderer
Säugethiere, durch welche eine eigenthümliche riechende Materie
abgesondert wird. — Hinsichtlich der Angaben von White
und Ham. Smith, dafs, wenn ein Hirsch trinke, Luft aus den
Infraorbitalsäcken hervorgetrieben werde, und sich an der vor-
gehaltenen Hand und einem brennenden Lichte merkbar mache,
bemerkt er, dafs, da diese Höhlen gegen die Nase vollkom-
men geschlossen sind, die austretende Luft nicht aus ihnen, son-
dern durch den Thränenkanal komme, der so weit sei, dafs er
das Ende eines Rabenfedernkiefes zulasse. Brachte er in der
Nase eine Röhre in seine Ausmündung, so konnte er ohne Schwie-
rigkeit einen Luft- oder Wasserstrom hindurch treiben. — Er
vermutet, dafs die Infraorbitalsäcke bei allen (?) Wiederkäuern,
wench auch im rudimentären Zustande, vorkommen, und zu dem
allgemeinen Typus gehören. Bei einem *Cervus canadensis* fand
er in einem der Infraorbitalsäcke ein erhärtetes Secret, gleich
dem von Daubenton beschriebenen Hirschbezoar. Eine che-
mische Analyse desselben ist von Geoghegan gegeben, doch
gibt sie über die Natur des Seerets keine erhebliche Aufklärung.

Bennett wurde besonders durch Beobachtung der indischen
Antilopen (*A. cervicapra*) auf diese Organe aufmerksam gemacht
d und vermutet, dafs sie mit der Sexualität in Beziehung stehen,

Not. I. p. 52.*
weil sie beim alten ♂ am meisten entwickelt sind und ihre Entwicklung mit der Intensität der Färbung und der Größe des Gehörnes Schritt hält. (Eine Beziehung zur Sexualität scheint hier indessen nur insofern statt zu haben, als überhaupt beim männlichen Geschlecht die Thätigkeit des Hautsystems in Production seiner Gebilde und Secrete grüßer ist, als im weiblichen.) Bei einem alten Antilopen-Männchen, bei welchem die Körperfarbe fast schwarz und das Gehörn völlig entwickelt ist, zeigen sich die Infrarorbitalsäcke so vortretend, daß sie der Physiognomie des Thieres ein eigenes Ansehen geben; sie erscheinen nie als ein einfacher Schlitz, sondern ihre dicken Ränder klaffen so weit, daß sie immer theilweis herausgekehrt sind und ist das Thier aufgeregt, so findet eine völlige Ausstülzung des Sackes statt, wobei es die nackte Auskleidung des Sackes gegen ihm dargebotene Gegenstände zu reiben sucht, die bald mit dem urinösen Geruche des dunkelgrauen seciruminösen Secretes behäftet sind. Bei dem zweiten jüngeren, wenngleich mannbaren Exemplare, erreicht die Ausstülzung des Sackes nicht einen so hohen Grad, und die minder verdickten Ränder erlauben im ruhigen Ztände ein vollkommenes Schließen. Beim ganz jungen ♂, dessen Färbung hellbraun wie beim ♀ ist, und dessen Hörner an der Basis den Anfang der Ringelung zeigen, sind die Ränder der Säcke klein, vollkommen geschlossen und werden, wenn es aufgeregt ist, nur eben bewegt. Bei einem entmannten völlig erwachsenen ♂ verhalten sie sich ganz ebenso, aber die Lefzen zeigen durchaus keine Bewegung, da das Thier theilnahmslos ist. Wahrscheinlich würde dies Individuum im Alter des jungen ♂ entmannt, denn es hat, obwohl es das alte ♂ in Größe übertrifft, die Färbung des Jugendalters behalten, und sein Gehörn hat weder die Stärke, noch die Ringelung und die spiralförmige Drehung wie beim erwachsenen ♂. Herr Owen, welcher es für möglich hielt, daß das Secret dieser Drüsensäcke, an Gegenständen abgerieben, dazu dienen könnte, die verschiedenen Individuen derselben Art zu einander zu leiten, hat eine tabellarische Zusammenstellung der Antilopen nach ihren Suborbitals-, Maxillar- und Inguinalsäcken entworfen, um darin deren Beziehung in ihrem geselligen Leben nachzuweisen; er gesteht aber selbst, daß sich keine solche Beziehung daraus
Die Tabelle ist in den angeführten Zeitschriften abgedruckt, aber ohne Belang.

Brandt hat eine neue Hautdrüse beim Moschusthiere aufgefunden. (Bull. de l'Acad. de St. Pétersb. I. p. 174.)

Auf ein sehr problematisches Thier, welches sich unter den Schätzen der zoologischen Gesellschaft fand und von Richardson mit Antilope fucifera aus Nordamerika eingesandt wurde, hat Ogilby aufmerksam gemacht (Proc. Z. S. p. 119.). Es ist hellrothbraun, hat etwa die Grösse eines Dammhirsches, ist männlichen Geschlechts und, obwohl alt, da die Zähne stark abgenutzt sind, hat es doch keine Hörner, sondern statt ihrer zwei kleine kahle, flache Platten (scales); die Nasenspitze ist behaart, wie bei Capra; aber beträchtlich große Thränengruben, Inguinalporen und 2 Zitzen sind vorhanden; es ist also auch keine Ziege, eben so wenig ein Hirsch, der sein Geweih abgeworfen, da die hervortretenden Stirnzapfen (Rosenstöcke) fehlen. Es müsste demnach, wenn es nicht eine der A. cervicapra ähnliche Antilope mit abortivem Horn ist, eine eigene Gattung bilden, für welche Ogilby den Namen Ixalus vorschlägt. Fürs erste müsste aber der I. probatun Og. ein sehr zweifelhaftes Thier bleiben.

welcher sich ein Streif zum Vordertheile des Kinnes erstreckt; kein Moschusbeutel; Afterhufen; nach dem Alter kaum Verschiedenheit in der Färbung. Hierher 4 Arten, deren Synonymie sehr verwickelt ist.

1) **Moschus Javanicus.** M. ferrugineus nigro variegatus; collo saturate brunnneo griseo nebulato; menti margine, strigis pectoralibus 3 postice latioiribus, pectore, abdomen, femoribus interne, caudaque subitus albis; pedibus, capitis lateribus, prynmaque nitide fulvis; occipite nigrescente. Long. corp. capitisque 24", metatarsi 4½".

2) **M. Kanchil.** M. fulvus, nigrescenti variegatus; nucha striga lata nigra longitudinali; gula, colli corporisque lateribus pallide flavescentibus, pilis nigro apiculatis, antipedibus nitide fulvis; menti marginibus, strigis tribus pectoralis, pectore, abdomen, femoribus postice (antece?) caudaque subitus albis; pectore abdominèque striga longitudinali, in illo saturatiore, in hoc pallidiore. Long. capitis corporisque 20", metatarsi 3½".

3) **M. fulviventer.** M. fulvus, nigrescente variegatus, mucha striga longitudinali lata nigra; gula, colli lateribus, antipedibusque rufescenti-fulvis; lateribus subitusque flavescenti-fulvis; menti marginibus, strigis 3 pectoralibus, striga lata utrinque in pectore abdominèque, femoribus interne anticoque, caudaque subitus albis.

Le jeune Cheurotain Buff. Hist. nat. XII. p. 342. t. 42. 43. — Hab. in insulis Malaiis et in peninsula Indiae orientalis?

4) **M. Stanleyanus.** M. rufescenti-fulvis, pilis nigro apiculatis, subitus minus nitidus; collo pectoroque nitide fulvis; menti marginibus, strigis 3 pectoralibus, pectore femoribus interne anticoque, caudaque subitus albis; syncephite, pedibusque a genubus inde saturatoribus; rhinario, striga utrinque oculos ambiente, auriculisque catus et ad marginis nigris.

Var. menti marginibus minus albis; strigis pectoralibus interruptis minus conspicuis; gulaque paulo saturatiore. Hab.?

Der *Pelandoe*, abgebildet in Marsden's Sumatra, und der *M. pygmaeus* in Griffith (M. Griffithii Fisch.) ist nicht zu deuten.
Moschus pygmaeus L. ist irgend eine Antilope, *M. americanus*, *delicatululus* und *leviranus* sind Hirschbeläber.

ginianus, C. mexicanus, welchen Verf. als dessen Varietät aus-sieht. 3) Ein sehr deutlicher Haarbüschel an der Innenseite des Hackens, keiner an der Außenseite des Metatarsus; so bei C. rufus. (Auch bei Cervus simplicicornis Ill.) — Beim Reun-thiere sind innere Büschel vorhandeu, keine äußere, der ganze Hinterrand des Metatarsus ist mit einem einlürmigen sehr dicken Haarüberzuge bedeckt. Das Elen scheint eine 4te Gruppe zu bilden, nämlich sehr deutliche Büschel an der Innenseite des Hacken und andere an der Außenseite des Metatarsus, etwa \(\frac{1}{3} \) von dessen Länge vom Hacken ab, wie bei der ersten Gruppe, zu besitzen. (An unserem Exemplare ist dieser äußere Büschel nicht wahrzunehmen. Rennthier und Elen gehören mithin zur 3ten Gruppe. Eben so auch C. gymnotis m. (aufgestellt in Bür- de's Abbild. merkw. Säugeth. II. p. 88. Isis 1833, der übrigens dem C. virginianus sehr nahe steht; ferner finde ich es so bei Cer-

vus campestris Ill., bei C. paludosus Desm., bei welchem innew am Hackengeelenke nur ein sehr kleiner Pinsel steifer Haare sich findet. Es ergiebt sich hieraus, dass die unähulichsten Hirsch-

arten in Hinsicht der Haarbüschel übereinstimmen, mithin die-

ser Charakter zur Aufstellung natürlicher Gruppen nicht tangt, aber für die Charakteristik der Arten von Wichtigkeit ist.)

wald zwischen Labiau und Tilsit eingeschränkt. Im 18ten Jahr-
hundert tritt eine größere Abnahme unter ihnen ein. Von 1729 bis 1742 wurden 42 Auer eingefangen oder getödtet. Der letzte wilde Auer Preußens wurde 1755 von Wilddieben erlegt. Den letzten der im ehemaligen Hetzgarten zu Königsberg gebegten Auer liess Friedrich II. bei seinem Regierungsausritte erschie-

vielleicht mit *A. Maxwellii* Ham. Sm. identisch. — Derselbe berichtet die Angaben von Desmarest, F. Cuvier und Smith dahin, daß *A. sumatrensis* Ogilby wohl Thräncuergruben, aber keinen Drüsenträuf am Oberkiele habe, und daß das ♀ vier Zitzen und Hörner besitze, wie *A. Thar* (s. d. Archiv I. 2. p. 327.).

In der 7ten Lieferung seiner „Wirbelthiere zur Fauna von Abyssinien gab Herr Rüppell die Beschreibung seiner *Capra Wallie* und Beschreibung und Abbildungen der *A. redunca* und *Madoqua*.

C. Wallie, von A. Wagner in Schreber's Säugethieren 2 rig auf *Capra Beden* (C. *nubiana* Cuv.) bezogen, unterscheidet sich von allen Arten durch ihr stark convexes Gesichtspöfl und einen länglich—

A. Madoqua Bruce. Der capschen *A. mergens* Blainv. sehr ähnlich; desselbe Thier, nach dessen Kopfe Blainville seine *A. solitary* aufstellte, die wegen mangelhafter Beschreibung von Lichtenstein und Kreuschmar falschlich auf eine andere kleine Antilope Abyssiniens (*A. Hemprichii* Ehrh.) bezogen wurde.

Für die fossilen Reste vorweltlicher Wiederkäuer war das

der mittlere Theil beider Nasenbeine sein, der auch bei *Came-
lopardalis* durch eine weit hinausreichende Incisur von dem mit
dem Ober- und Zwischenkiefer verbundenen Seitentheile abge-
setzt und schwach abwärts gekrümmt ist. Da die Närthe obliti-
terirt waren, so haben die Verf. wahrscheinlich den Seitentheil
als zum Oberkiefer gehörig angesprochen; überdies ist auch der
Schädel hier verstümmelt. Jedenfalls ist es gewagt, hieraus auf
das Vorhandensein eines Rüssels zu schließen. Vielmehr scheint
sich das *Sivatherium* in Hinsicht der Nasenbeine zur Giraffe zu
verhalten, wie das Elen zu den übrigen Hirschen, und man darf
wohl nur auf eine sehr entwickelte Muskel schließen, wozu die
Größe des *Foramen infraorbitale* ebenfalls passen würde. Die
ezellige Bildung zwischen den beiden Platten der Schädelknochen
findet sich auch bei der Giraffe. Auch ein Fragment eines Un-
terkiefers, wahrscheinlich dem *Sivatherium* angehörig, wurde auf-
gefunden, welches in seinen Dimensionen sich doppelt so groß,
as beim Büffel auswies.

J. *Pinnipedia*.

Ein Robbe, *Phoca vitulina*, den man vom nördlichen Schott-
land nach Holyhead brachte, nahm, nach Eyton's Mittheilung
(im *Magaz. of Zool. and Bot.* I. p. 103.), auf 14tägiger Fahr
keine andere Nahrung als Milch zu sich. Später, in einen Was-
serkübel gesetzt, fing er Fische mit großer Leichtigkeit, ver-
schlang sie aber nicht sogleich, sondern bis und zerkautete sie
eine Zeit lang und spielte mit ihnen. Im Wasser zeigte er
keine Furcht, aber aufser dem Wasser eilte er bei plötzlichem
Geräusche gleich in dasselbe zurück. Er schlief unter Tags, war
gegen Abend sehr munter, fraß nie Fische, die er nicht selbst
getödtet, auch nicht, wenn er am Lande war.

Dr. Riley fand im Magen eines Seehundes, den Prof.
Nilsson für seine *P. anellata* erkannte, zwischen 30 — 40
Kieselsteine (*ib.* I. 3. p. 302.).

Nach Ball's Mittheilung in der *Royal Irish Acad. Dec.
von *Halichoerus*, welche Prof. Nilsson für seinen *H. gri-
seus* erkannte, Ball aber für verschieden hielt, die gemeinste
an den irischen Küsten. Auch Ph. barbata scheint nach Ball dort vorzukommen.

K. C et a c e a.

Über die gesammte Ordnung erschien ein reichhaltiges, mit Kritik und Sachkenntnifs verfasstes Werk von F. Cuvier. zu der bei Roret erscheinenden Suite à Buffon gehörig:

a. Herbivora.

Dr. Riley zeigte in der Brit. Assoc. den Schädel eines Manatus americannus vor, um zu beweisen, daß dieser nicht 32 Backenzähne, wie G. Cuvier angiebt, sondern 36 habe, oder doch so viel Alveolen zeige. Die vorderen Backenzähne seien immer bereits ausgefallen, wenn die hinteren hervorgebrochen. Auch F. Cuvier erwähnt (l. c.) dieses Umstandes und weist auf die Uebereinstimmung mit mehreren Pachydermen hin.

b. Carnivora.

v. Bär begründet seine frühere Behauptung (Isis 1826.), daß die wahren Cetaceen nicht das durch den Mund eingengemeue Wasser durch den Nasenkanal ausspritzen, durch das Zeugnis von Lütke, Postels, Kittlitz, Reinicke, Klebnikoff, deren keiner sol Wasser ausspritzte sah, und beruft sich auf die übereinstimmende Bezeichnung in den Sprachen der auf Wallfischfang ausgehenden Nationen (blasen — blow — souf-fler), die da zeigen, daß man das angebliche Wasserauswerfen für das genommen hat, was es ist, für ein Ausathmen. (Bullet. de l'Acad. de St. Petersb. p. 37.)

Von

Nachtrag.

2. *Aves.*

Beiträge zur geographischen Verbreitung der Vögel erhielten wir in einzelnen Aufsätzen.

Robert Jameson, Militärrat in Corfu, gab ein Verzeichnis von den Vögeln der Insel Cerigo und überhaupt der ionischen Inseln (James. Edinb. new phil. Journ. XXII. p. 65.). Standvögel hat Cerigo wenige, aber viele Zugvögel finden sich zu einem kürzeren oder längeren Aufenthalte im Frühlinge und Herbst ein. Im Winter zeigen sich: Turdus merula, musicus,

Falco aesalon, tinnunculus salten, F. tinnunculoides sehr häufig im Frühlinge, F. nisus, Buteo, pygargus, rufus, Strix brachyotus, striuda (atuco), Bubo, noctua (nudipes Nilfs.) sehr gemein in der Levante; Lanius minor, rufus, collurio im April; Turdus merula, solitarius; T. viscivorus, pilaris, musicus, iliacus während des Winters; Cinculus aquaticus (?), Oriolus galbula im April; Saxicola rubicola und rubetra im Winter; S. aurita, oenanthe im April; Sylvia suecica; S. tithys, gemein an kahlen Felsen, wo sie überwintert; S. tuscinea, zuerst am 5. April gehört; S. phragmitis, melanocephala im Winter; S. rufa, brevirostris Strickl. im Winter; Accentor modularis im Winter; R. ignicapillus, Trogodytes parvulus gemein; Motacilla alba und boarula; Anthus pratensis, aquaticus; Hirundo rustica; Alauda cristata, arborea; Alauda arvensis, calandra erschienen bei dem strengen Winter, erstere in ungeheuern Scharen vom Norden kommend; Parus major, coeruleus, lugubris Natter.; Emberiza miliaria; E. cia auf felsigen Hügeln; E. cirius in der Nähe von Strömen; E. ptilustris Sav.,
gleicht in Sitten genau dem Rohrsperling, der Schnabel weniger ausge-trieben, als bei dalmatischen Exemplaren; *E. caesia* Kretschm., häufig in Griechenland und den ionischen Inseln; *E. hortulana*, *E. cinerea* Strickl., im April; *Fringilla domesticus*, in der Levante der gemeinsame Haussperling; von *F. hispaniolensis* nur ein Exemplar im April; *F. cannabina*, *carduelis*, gemein; *F. coelebs*, sehr gemein; *F. montifringilla* und serinus, im Winter; *F. chloris*, gemein; *Sturnus vulgaris*, *Corvus corax*, *cornix*, monedula, pica, gemein; *Garrulus melanocephalus* Bon. (*Corvus ilticus* Ehrb.), gemein bei Smyrna, Ruf und Sitten wie beim europäischen Heber; *Sitta syriaca* Ehrb., an den freien Hügeln bei Smyrna, klettert an Felsmassen, nie an Bäumen; *S. europaea*, bewohnt die Höhlen alter Olivenbäume, kleiner als die britische, sonst nicht ver-schieden; *Upupa epops*; *Alcedo ispida*, gemein; *A. rubis*, häufig in den Salzwasser-Morästen westlich von Smyrna, scheint nie stromaufwärts zu gehen, sondern sich nur an der Küste zu halten, schwiebt oft einige Minuten in etwa 10 F. Höhe über dem Wasser und schiefst dann senkrecht auf ihre Beute; *Picus major*, *Cuculus canorus*; *Phasianus colchicus*, gemein bei Constantinopel, an beiden Seiten des Bosphorus; *Perdix francolinus*, in den Brüchen von Hermus und Cayster; *P. saxatilis*, häufig auf den Hügeln um Smyrna; *Coturnix dactylinsonus* überwintert; *Columba palumbus*, oenas, turtur; *C. cambayensis*, auf den türkischen Kirchhöfen zu Smyrna und Constantinopel in dichtem Cypressen-Gehölz, vielleicht ursprünglich eingeführt; *Otis tarda*, *tetrax*, *Oedicnemus epepitanus*; *Vanellus crassirostris*, erschien in ungeheueren Scharen bei Anfang der Kälte; *Grus cinerea*; *Ardea egretta*, auf den Seewasser-Brü-chen; *A. stellaris*; *Ciconia alba*; *Numenius arquata*; *Scolopax rusticola*, bei der strengen Kälte so häufig, daß mehrere in kleinen Gärten mitten in der Stadt geschossen wurden; *Sc. Gallinago*, *Gallinula*; *Tringa variabilis*; *Tringa Temminckii* und *Totanus Glottis*, im Winter; *T. calidris*, gemein in den Brüchen; *T. ochropus*, an der Küste; *Recurre-rastra Acocetta*, selten; *Rallus aquaticus*; *Crex pratensis*, porzana, *Gallinula chloropus*, *Fulica atra*, im Winter; *Podiceps cristatus*; *Puffinus Anglorum*, Schwärme von ihm ziehen beständig den Bosphorus auf und ab; *Larus ridibundus*, argentinatus; *Pelecanus Onocrotalus*, über-wintert; *Halius Carbo*, pygmaeus. Wie der letztere erscheinen im Winter: *Cygnus olor*, *Anas clangula*, *ferina*, *fuligula*, *clypeata*, *ta- dorna*, *acuta*, *Boschas*, *Penelope*, *rutila*, *crecca*, *Mergus albellsus*.

Von großem Interesse für die Verbreitung der Vögel im nordöstlichen Afrika ist die 5te Lieferung von Rüppell's „Wirbelthieren zur Fauna Abyssiniens“, insofern sie zeigt, wie dort neben eigenthümlichen Arten manche südafrikanische Formen vorkommen. Das Nähere s. bei den Abtheilungen.

Nachträge zu seiner im vorigen Berichte erwähnten Uebersicht der Vögel des nordöstlichen Alleghany-Gebirges gab Taylor Loud. Mag. IX. p. 72.

Fr. Stein hat in der Isis mehrere Beispiele von großer Eierzahl mitgetheilt, zu deren Legen man Vögel durch Wegnahme der vorhandenen Eier bringt. Von Junx torquilla erhielt er aus einem Neste 17 Eier auf diese Weise, von Picus major 20; von einem Sperlinge, der, als seltene Anomalie, fünf ganz rein weisse Eier gelegt hatte, erhielt er allmähl 25 Stück. (Isis. VII.)

G. Ord (Loud. Mag. IX. p. 60.) erzählt einige Beispiele, daß brütende Vögel längere Zeit, fast den ganzen Tag und länger, von ihren Eiern ohne Nachtheil derselben entfernt waren. Eine Bruthenne war einen ganzen Tag und eine Nacht abwesend, und doch kamen die Eier aus.

Ungeachtet ihres reichhaltigen Inhalts können die anatomischen Arbeiten von Duvernoy über den Bau der Zunge (Mém.

Jacquemin über die Pneumaticität der Kopfknochen, Compt. rend. hebdt. II. p. 311.

Derselbe über die Luftsäcke, ib. p. 93.

Größe, dessen Schrittweite auf 1 F. 10" angenommen wird. Sehr rätselhaft ist bei O. ingens und diversus ein hinterer büschelärmiger Anhang, als ob sich hier an der Einfädelungsstelle der Hinterzehe ein Büschel steifer Borsten abgedrückt hätte. Unter dem O. tetractylus scheinen Spuren verschiedener Genera begriffen zu sein. Die abgebildeten scheinen mir einem storchähnlichen Vogel angehört zu haben. Die als O. pal- matus abgebildeten Spuren sind so paradox, daß man sie kaum für die eines Vogels ansehen möchte; alle 4 Zehen sind nach vorn gewandt, wie unter den Wasservögeln bei Aplenodytes, die 4te Zehe sehr kurz, die Sohle breit; die sehr dünne Zehen stehen gleichsam paarig, die beiden inneren und die beiden äußeren am nächsten zusammen.

Eyton’s History of the rarer British Birds. 8.

W. Swainson: Natural History and Classification of Birds (zu Lardner’s Cabinet Cyclopædia).

A. Raptatòres.

nützlichen Eulen, ist nur der Uhu als schädlich zu verfolgen, und unter allen Raubvögeln durch Vertilgung der Waldhühner und Hasen der schädlichste.

Die durch mehrere Hefte fortlaufende Abhandlung ist überdies reich an interessanten Beobachtungen und verdient die Aufmerksamkeit der Ornithologen. Insbesondere, was Verf. vom Schreiadler mittheilt, den er 14 Jahre lang im Freien zu beobachten Gelegenheit hatte. Sein Flug ist hoch und majestatisch, er fliegt oft lange und sehr hoch in weiten Kreisen, wobei seine langen, bis fast zur Spitze gleich breit erscheinenden Flügel mit dem kurzen zugerundeten Schwanz von jeder Seite einen recht en Winkel bilden. Er baut sein großes Nest auf starken Ästen von Eichen und andern Waldbäumen, immer nicht sehr weit vom Rande des Waldes. Seine 2—3 Eier sind von der Größe zwischen einem Hühner- und Gänssei. Für Preußens Fauna hebe ich noch Folgendes heraus:

Ein Seeadler (F. albicilla), den man 16 Jahr lang in Gefangenschaft gehalten, legte ein ganz weisses Ei, welches nicht ganz so groß als ein Gänssei war. (Proc. Z. S. IV. p. 49.)

B. Inse sso res.

äußerst häufig bei Gerdauen im Walde Damerau und mitunter in Gärten in Baumlöchern (ib. p. 178.)

Von einiger Wichtigkeit ist die Entdeckung einer Pipra in Indien am Himalaya (s. E. Burton, Proc. Z. S. IV. p. 113.)
P. squalida. Capite et cervice supra brunneis, interscapulio, dorso alis et cauda viridescenti-brunneis; hac ad regionem subapicalem brunnea saturationi sed apice externo albo graciliter simbiata; alarum caudaeque pagonii externi olivaceo leviter tinctis, corpore infra ubique albido. - Mandibula sup. fusca, inferior albida apice fusca. Pedes nigri. Long. 3½". Alae caudam aequantes.

alpinus K.), der von Hemprich und Ehrenberg aus Bischerra eingesandt wurde.

Außerdem enthält die Lieferung Beschreibungen und Abbildungen von:

Scytalopus Gould. (Proc. Z. S. p. 89.)

Rostrum capite brevissim, compressum, obtusum, leviter recurvum. Nares basales, membrana tectae. Alae concavae, breves, rotundatae, remige prima abbreviata, 3, 4, 5 et 6 aequalibus. Cauda brevis, rotundata (pennis externis brevissimis) laxa. Tarsi elongati, robusti, antorsum scutellati, posterius fascis angustis cincti, squanis serpentum abdominalibus hauibus dissimilibus; halluce elongato, robusto; ungue elongato; digitorum anteriorum medio elongato, gracili.

2. Sc. albogularis. S. capite coerulo-nigro; corpore superiore ferrugineo-brunneo, linea transversali nigra; cauda pallide rufo-brunnea; gula, pectore, abdomenque medio albis; lateribus et crissol pallide ferrugineis, linea transversali nigra; mandibula superiore nigro brunnea; pedibus bruneis. Long. 3 1/", rostri 1/", alae 13", caudae 12", tarsi 2". Brasilia.

Actinodura Gould. (Proc. Z. S. IV. p. 17.)

A. Egertoni. A. cristata; supra nitide rufo-brunnea olivaceo-tincta, subitus pallide rufo-brunnea, crista, occipite genisique brunnescenti-cinereis; remigibus ad basim rufis, pogoniiis nigro flavoque fasciatis, se-
cundariis nigro brunneoque fasciatis; rectricibus sordide rufo-brunneis, lineis saturioribus transversim notatis albique apiculatis. Long. tot. $8\frac{1}{2}''$, alae $3\frac{3}{4}''$, caudae $4\frac{1}{2}''$, tarsi $1\frac{1}{2}''$, rostri 1. Rostrum pedesque brunnei. Nepalia.

Rostrum capite paullo brevius, robustum, subcompressum; mandibula arcuata, ad apicem emarginata. Nares basales, ovales, patulae. Ala breves, remigibus 2 et 3 longissimis, 1 et 4 aequalibus. Cauda brevis lata, quadrata vel subbilucra. Tarsi robusti, digitis magnis; ungibus magnis curvatis, hallucis praecipue valido.

Plumae pilei lanceolatae. Ptilosis notaei imprimis in capite et cervice nitore levi insignis.

Rostrum caput longitudine aequans, ad apicem emarginatum, rectiusculum, compressiusculum. Nares basales, plumis brevibus atplurimum tectae. Ala mediaeiores, rotundatae; remige 1 brevissima, 4, 5 subaequalibus longioribus. Cauda elongata, gradata. Tarsi digitique longiusculi, tenues.

Maribus color supra atplurimum niger, subitos brunneus vel albus. Typns: *Turdus macrourus_ Lath.

P. flavirostris. P. arenacco-brunneus, subitos pallidior, capite nuchaque rufo-brunneis: auribus partim aterrimis; facie guttureque albis nigro variis; pectore nigro. Long. tot. 8", alae 3\frac{3}{4}", caudae 4\frac{1}{2}"., tarsi 1\frac{1}{2}", hallucis $\frac{7}{8}''$. Rostrum splendide aurantiaco-flavum; pedes coerulescentes. Hab. Nepalia.

Rostrum validum, arcuatum, capite brevius, auribus basalis rotundatis, fere apertis, mandibula superiore apice leviter dentata, marginibus sulcatis; margine mandib. inferioris in sulcum superioris recepto; alae medioecres, remige prima brevissima; tarsi validi, antorsae sectellati, pollice cum digito interno coniuncto, boc eiusque ungue validis et medio digito ungueque brevioribus; ungues incurvi, acuti; cauda medioecris, penitus aequalis. —
Australische Vögel; Typus: *Ptilonorhynchus nutalia* Jard. und eine neue Art, *C. maculata*.

Der Schnabel sehr lang, sichelförmig gekrümmt, klingenförmig zusammengedrückt, mit fast parallelen Seitenflächen. Die Nasenlöcher seitlich an der Basis, oval, fast an die vorderen Stirnfedern gränzend. Flügel stumpf, bis zur Mitte der Schwanzfedern reichend, die erste Schwinge sehr kurz, die 4te und 5te die längsten. Pedes ambulatorii. Tarsen kurz, aber sehr kräftig. Zehen lang, besonders Mittel- und Hinterzeh, stark, mit langen, sehr gekrümmten Nägeln. Jede Zehe, besonders die hintere, unterhalb mit einer Art Sohle, die ihre Basis beträchtlich verbreitert. Schwanz gerade (carrée), aus 12 Federn. Der Verf. weiset nach, daß die Gattung zur Familie der Epipoden gehört,
unterläßt es aber, anzugeben, ob auch hier wie bei Upupa und Epi-
machus s. str. die Kiefer solide sind. Die Art F. palliata Geoffr.
stammt aus Madagaskar, wo sie nach Goudot im Ufer der Gewässer
Wasserinsecten und animalische Stoffe im Schlamm suchen soll. Sie
ist etwas größer als der Wiedehopf, auf Rücken, Flügeln und Schwanz
dunkel metallicgrün mit Reflex, übrigens weiß.

Eben daselbst II. gibt de la Fresnaye eine kurze Mo-
igraphie der Gattung Orthotomus mit Abbildung des O. se-
pinus Horsf. (t. 51.) und O. Bennettii Sykes (t. 52.), und weist
nach, daß Lesson in dem Traité d’Orn. jenen, in der Cent.
Zool. diesen als Edela ruficeps beschrieben habe. Das in dies.
Archiv I. 2. p. 305. erwähnte Nest des letzteren wird t. 53.
abgebildet und zugleich auf die Verwandtschaft dieser Vögel mit
unsern Schilfsängern hingewiesen.

Nene Arten:
Austr. Birds. I.)
der S. trochilus nahe, unterscheidet sich durch schwarze Beine und
einen kürzeren Schnabel (von ½” Länge). Ganze Länge 4½”, Schwanz
2½”, Tarsus ¾”.
S. Komadori Temm. pl. col. 96. t. 570. Korea. und S. Aka-
hige Temm. ib. t. 571. Japan.
Tr. leucogaster. id. ib. p. 89. Mexiko.
Petroica phoenicea Gould. ib. p. 105. Neu Holland. (Musci-
capa.)
Vanga cinerea (Vandiemensland), V. nigrogularis Gould.
Neu-Süd-Wales und Ocypterus superciliatus Gould. Neu-Süd-
Turdus cinnamomeiventris. ♂ und ♀ aus Südafrika. de la
Fresnaye in Guér. Mag. Zool. t. 55 u. 56.
Straße.
Eupetes Aiais Temm. pl. col. 97. t. 573. u. E. coerulescens
Temm. ib. t. 574. Neu-Guinea.
Amadina modesta, castanotis, cineta, ruficauda Gould. Neu-
Cracticus hypoleucus Gould. ib. p. 106. dem Cr. tibicen ver-
as Coronica fuliginosa mit Coronica strepera (Barita strepera Temm.)
abgebildet.
Barita gymnocephala Temm. pl. col. l. 97. t. 572. Borneo.
Coreus Beerheii Vig. Abgebildet Guér. Mag. Zool. II. t. 72.
Kitta buccoides Temm. pl. col. 97. t. 575, Neu-Guinea.
Ember. personata Temm. pl. col. tier. 98. t. 580. Japan. —
E. elegans Temm. ib. t. 583. f. 1. und E. variabilis Temm.
t. 583. f. 2. Béide ebendaheer.
Passerina guttata La Fresn. Chili. = Emberiza guttata Meye
t. 70.
Fringilla diuca Mol. Chili. ib.
Alauda (Certhialauda) albofasciata La Fresn. ib. t. 58.
— rufopalliata La Fresn. ib. t. 59., nebst Angabe zweier
dünnschlitligen Lereben Sudamerika's, A. nigrofasciata und tenui-
rostris d'Orb. et Lair.
Alcedo vintsioides Eyd. u. Gerv. Der A. cristata nahe stehend,

C. S e a n s o r e s.
W. H. White erzählt in Loud. Mag. IX. p. 347., daß
ein 1836 verstorbenen Papagei sich 82 Jahre im Besitze dersel-
ben Familie befunden, und daß noch jetzt einer in London lebe,
der gegen 100 Jahre Eigenthum einer Familie sei. aber bereits
einen hohen Grad von Schwäche zeige.
W. Swainson's Abhandlung über die Naturgeschichte und
natürlichen Verwandtschaften der Cuculiden, Järd. Mag. of
Zool. and Botan. I. 3. p. 213. ist keines Auszugs fähig..
Neue Arten:

Vigors unterschied 2 neue Papageien: Psitt. augustus (Südamerika) und P. Guldinigii (St. Vincent), Proc. Z. S. p. 80.

Temminck in d. Pl. col. livr. 96. 3 Arten: P. iris, t. 567. (Timor), P. cutcles, ib. t. 568. (Timor), P. scintillatus, t. 569. (Neu-Guinea);

Derselbe unterschied Proc. Z. S. p. 80. eine neue Tamatias, T. bicincta,

Einen neuen Bartvogel aus der Gruppe Micropogon Temm. stellt La Fresnaye in Guér. Mag. Zool. 1836. II. t. 60. auf (M. sulphuratus, Südafrika) und gibt zugleich eine Übersicht der bis jetzt bekannten Arten.

D. Gallinae.

Über die Gangas’s (Pterocles) und besonders über den Ganga-Cata der Provence hat Herr Verdout der französischen Akademie eine Monographie mit lithographischen Abbildungen eingesandt (Monographie des Gangas spécialement du Ganga-Cata de Provence), Compt. rend. hebd. II. p. 393.

Vigors stellte eine neue Gattung der Hühnervögel auf, welche er als Zwischenglied zwischen Crypturus und Otis betrachtet, und Tinamotis nennt. Die einzige Art, T. Pentlandii, wurde von Pentland in bedeutender Höhe auf den Anden gefunden. (Proc. Z. S. IV. p. 79.)

Rostrum forte, subrectum, Otidis rostro persimile, culmine plano. Alae mediocres, rotundatae; remigibus 1 et 7 fere aequalibus, brevissimis, 3 et 4 longissimis. Pedes tridactyli, tarsiis sublongis fortibus; acro-tarsiis rotundatis squamis inferioribus grandibus; digitis longitudine mediocribus, medio eetris subaequalibus longiorae, omnibus membranae utrinque marginatis; acro-podoïis suctellatis, squamis maximis; ungibus grandibus, planis, expansis. Cauda brevis, subrotundata.

T. Pentlandii corpore cinereo-brunneo sordideque fulvo fasciato.

Ueber die gemeine Wachtel, welche im Frühlinge und Herb-

Neue Arten:

- *O. nigro-brunneus,* dorso punctis rufo-bruneis adsperso, lateribus ocellis alboflavidis notatis, femoribus nigris.

E. Cursores.

F. Graalae.

Von Naumann’s Naturgeschichte der Vögel Deutschlands erschien der Ste Band. Er behandelt mit bekannter Gründlichkeit die Genera: Actitis. Totanus, Hypsibates Nitzsch (Himan-

Den Skeletbau der Psophia hat A. Wagner ebendasselbst beschrieben.

wenig nackten Beinen, im wenig zusammengedrückten Tarsus mit netzförmiger Bedeckung, in den breiten, seitlich gerandeten, wenig gelieften Zehen, in der Lebens- und Nahrungsweise (Muschellilien) findet Herr Bl. die meiste Uebereinstimmung mit Haemotopus, welche Ausicht gewifs die richtige ist.

Erste hat auffallend lange Flügel, die Oberseite besonders auf den Flügeln ist fein gelleckt, gebändert und gestrichelt mit weifs, gelb und braun; der Bauch weifs, an den Seiten braun gebändert. Letztere hat eine dunkle Färbung, kurze Flügel, Bauch und die ganze Unterseite dicht mit brauen Bänder auf weifsem Grunde, 16, 18 oder selten 20 Schwanzfedern.

Ebenderselbe stellt eine neue Art der Gattung *Cursor* auf (ib. p. 81.), *C. rufus*, von den Inseln des indischen Oceans.

Nycticorax limophilax Temm., *Pl. col. t. 98. t. 581.* (Java) und *N. Goisagi* Temm., *ib. t. 582.* (Japan).

Nach Bachmann, Sillim. Journ. XXX. p. 91. not, sind *Tringa Audubonii* und *Tr. Douglassi* Richards, Swains. nur *Tr. himantopus* Bon. in verschiedenen Kleidern.

G. Natator*es.

Jugendbekannten einst ein Nest derselben mit 8 Eiern tief im Walde auf einem hohen Berge, hoch oben in einer hohen Fichte, gut eine Viertelmeile vom Wasser entfernt, gefunden habe.

Neue Arten:

Masc. capite toto colloque nigris, pectore dorso lateribusque nitide castaneis; remigibus tectricibusque caudae nigrescentibus, oropgygio nigrigante brunneo inornate; abdomine crissosque brunneo cinctisque brunnneo transversim obscure striatis, rostro pedibusque plumbeis.

Fem. differt toto corpore nigrigante, lineis obscuris guttisque castaneis notato; partibus inferioribus pallidoribus.

Long. tot. 15", rostri 2", alae 6", caudae 3", tarsi 1½".

Temminck eine Urie aus Corea und Japan, *U. Wumizu-sume, Pl. col. l. 98. t. 579.*

3. A m p h i b i a.

Tages zur Feststellung der verwandten Arten bedürfen. Auch die Abbildungen lassen noch Manches im Dunkeln. Ueberall ist der geographischen Verbreitung und Lebensweise der Arten ein eigener Abschnitt gewidmet, der manche wichtige Notizen gibt. Das Nähere bei den Ordnungen.

Rathke hat in seinen Beiträgen zur Fauna der Krym p. 8 fg. über einige dortige Amphibien Nachrichten gegeben.

Sie betreffen Bufo variabilis, dessen Ρ, wenn es lockt, die Kehle zu einem fast kugelförmigen Sacke aufbläht, mit einem Tone, wie wenn man Luft durch eine Röhre in Wasser bläst; Testudo oerbicularis Pall. = Emys europaea, Lacerta viridis, Lacerta taurica Pall., eine der unter Λac. muralis gehörigen Formen und, wie mir scheint, identisch mit Podarcis Merremii Fitz des Wiener Museums; Lacerta grammica Licht.; zu welcher aber nicht die citirte Abbildung (Lac. scutellata Aud.) der Descript. de l'Egypte gehört; Pseudopus Pallasi Cuv. (Lacerta apoda Pall.), Coluber Hydrus Pall. (die nach 2 Exemplaren angegebene Zahl der hinteren Augenschilder, 4, habe ich für die Art charakteristisch gefunden), Col. trabalis Pall.

A. Cheloni i.

Drei neue Emyden aus dem Westen Nordamerika’s, Emys hieroglyphica, megacephala u. Troostii, wurden von Holbrook in s. Americ. Erp. beschrieben und abgebildet.
B. Sauri.

1) So änderten sie Trionyx in Gymnopus, und Emyda Gray (Trionyx granosus Schw.) in Cryptopus, weil letztere ihre Füße

Doch
Doch sehen wir lieber auf den Inhalt des 3ten im Jahre 1836 erschienenen Bandes, die genauere Analyse des 4ten dem künftigen Berichte versparend.

trackenen Exemplare in meiner *Herpt mexicana* beschrieben habe. Der
zackige Saum der Hinterbeine findet sich an diesem ziemlich entwik-
kel., während die Verf. in der Beschreibung sagen, daß 3—4 stark-
zusammengedrückte Schuppen dessen Stelle vertreten, und den Mangel
des zackigen Saumes in der Diagnose gar als Charakter aufstellen. — Bei
den Chamäleonten vermissen wir den *Ch. crista* tus Stutchb., dessen
Diagnose bereits 1834 in englischen Journalen mitgeteilt war. In den
Trans. of the Lin. Soc. XVII. 3. p. 361. ist nun auch die Abbildung
und nähere Beschreibung dieser Art erschienen. Sie ist unter den Cha-
ämäleonten, was die Basilisken unter den Baumagnanen sind. Der Rück-
kenkamm ist durch 16, der Kamm auf der Schwanzwurzel durch 8 ver-
längerte Dornfortsätze gestützt. Er wurde im westlichen Afrika am
Gabenflusse gefunden. Stutchbury stellt seine Diagnose folgender-
maßen:

C. *superciliari* occipitalique carina elevata et crenulata, caudae ante-
riori parte dorsique apophysibus elongatis cristam dorsalem consti-
tuentibus; squamis fere rotundis subaequalibus-

Ch. niger L., welchen ich im Jahresb. 1835 II. p. 292. irrig auf
C. planiceps bezog, wird richtiger von den Verf. zu *C. pardalis* Cuv.
gestellt.

Die Familie der Geckonen hat durch die Verf. manche Aufklärung
und Bereicherung erhalten. Ersteres insofern, als sie durch Benutzung
der von Cuvier beschriebenen Exemplare einige von diesem veran-
lafste Irrthümer berichtigen konnten; so sagen sie über den von Cuv-
ier im *Regne animal* abgebildeten *G. inunguis*, daß er mit *G. ocel-
latus* identisch und der Daumen zu kurz dargestellt sei. Diese fehler-
hafte Abbildung hatte mich verleitet, meinen *Pachydactylus Bergii* für
different zu halten, weshalb dessen Name in *P. ocellatus* abzunämen
ist. Mit *Platydactylus* läßt sich diese von mir unterschiedene Gattung
nicht wohl vereinigen. Denn die Haftorgane der Geckonen müssen, so-
fern sie verschieden sind; die Bestimmung der Genera beeingen, wäh-
rend andere accessorische Verschiedenheiten, z. B. die Hautverbindung
zwischen den Zehen, Säumung des Schwanzes u. dgl., da sie sich in-
nerhalb der nach jenen aufgestellten Genera wiederholen, nicht wohl
als generische Unterschiede gelten können. Die Verf. sind dieser von
ausgesprochenen Ansicht beigetreten und haben demnach *Ptychozoön
Kuhl. mit *Platydactylus, Crossurus Wagl. mit Hemidactylus, Pristius Rüpp. und Phyllurus Cuv. mit Gymnodactylus, Rhacoessa Wagl. mit Ptygodaetlyus vereinigt. Wagler’s Be-
icht gekannt, hatte mich verleitet, bei ihr ähnliche Haftorgane wie bei
Thecodactylus vorauszusetzen. Uebrigens halten die Haftorgane dieser
Geckonen zwischen denen von *Thecodactylus und Ptygodaetlyus* fast die
tor flavescens Gray, identisch, und der letztere Name beizubehalten. Abgebildet sind drei neue Genera der Crassitunges: Leiolepis (L. guttata), Holotropis (H. Herminieri, Leiocephalus carinatus Gray.), Tiaris (T. dilopha).

Andrew Smith hat in Jard. Mag. of Zool. etc. 1836. Nr. 2. p. 141. eine Saurergattung: Pleurotuchus (soll heissen: Pleuroptychus) als neu aufgestellt; es ist aber meine Gattung Gerrhasaurus (Cicigna Gray.). Von 3 unterschiedenen Arten ist nur Pl. typicus Sm. neu, und könnte G. Smithii benannt werden; sein Pl. Desjardini ist wahrscheinlich G. acel

Hr. Cocteau hat eine Monographie der Scincoiden 1) begonnen, von welcher die erste Lieferung erschien. Dies gründliche und höchst willkommene Werk ist auf 20—25 (!) Lieferungen berechnet, von denen 12—15 die Beschreibung der Arten, 8—10 die Geschichte und Anatomie enthalten sollen. Die Beschreibungen sind sehr vollständig, die Abbildungen zuverlässig und vollkommen gelungen. Leider aber haben wir, nach dem bereits bekannt gemachten Prospectus zu urteilen, wiederum vielc unnötige Namenänderungen zu befürchten. Die erschie-

nene erste Lieferung handelt nur von den Scincoides ophiophthal-
mes (also meinen Gymnophthalmi), Ablepharus Fitz., vom
Verf. ohne Grund in Ablepharis abgeändert, und Gymno-
phthalmus Merr. Bei ersteren nimmt er meine Unterabtheilung,
Cryptoblepharus, an, und beschreibt eine neue Art, A. (Cr.)
Peronii. Ich kann hier nur vorläufig bemerken, daß sie mit
meinem A. poecilopleurus nicht identisch scheint. Einige
Bemerkungen über diese Gattung muß ich mir inzwischen vor-
behalten.

Burton stellte eine neue Art von Euprepes unter dem Na-
Phil. Mag. Dec. Suppl. p. 514.)

In Holbrook's Americ. Herp. finden wir von Eidechsen
Ameiva sexlineata, Anolis carolinensis und Scincus lateralis Harl
beschrieben und abgebildet. Wie sich die erstgenannte zu mei-
er Am. Deppii verhalte, geht aus der Beschreibung nicht hervor,
doch unterscheiden sie die kurzen Krallen der Vorderfüße.

Tschudi hat (Isis. 1836.) gezeigt, daß sich Lacerta ocel-
lata in mehreren Punkten von Lacerta agilis und viridis unter-
seheidet und will aus ihr eine eigene UnterGattung, Timon,
bilden. Fitzinger hat sie ebenfalls im Wiener Museum als
eigenes Genus unterschieden; allein ich sehe nicht wohl ein,
 daß damit viel gewonnen wird. Uebrigens hat sie nicht die
Stellung der Banehschilder, wie die von mir in der Herp. mexic.
unter β verzeichneten Arten; denn obwohl sie mit scharzen Sei-
ten zusammentoßen, bilden sie doch wahre Längsbinder.

Cocteau stellte eine neue Gattung Acantholis auf (In-
den übrigen Anolis-Arten durch eingestreute pyramidal-tiid-
rische Rücken-Schuppen auszeichnet. Allerdings eine Ach-
nlichkeit mehr zwischen Anolis und den Geckonen, aber zur ge-
erischen Trennung kann dergleichen keine Veranlassung geben.
Was soll aus der Herpetologie werden, wenn man nach so un-
wesentlichen Merkmalen ins Unendliche trent? Aus gleichem
Grunde würde man fast aus jeder Gattung der Geckonen zwei
bilden müssen. Dumeril und Bibron haben die Art A. Loy-
siana im 4ten Bande richtig zu Anolis gestellt.

Über den Mechanismus der Chamäleon-Zunge haben Du-
meril und Bibron Erp. génér. III. p. 176. ihre Ausicht mit-
getheilt, die Duvernoy Ann. des Sc. nat. V. p. 224. kritisch
beleuchtet hat.

Bischof hat die Struktur des Krokodilherzen beschrieben.
(Müller's Archiv. 1836. p. 1.)

Eudes-Deslongchamp beschrieb die Knochenreste eines
gigantischen Sauers, muthmaßlich von 25 — 30 F. Länge, den
man bei Caen gefunden. (Inst. p. 311.) Verf. bildet daraus die
Gattung Poecilopleuron, welche Einiges mit den Krokodilen,
deres mit den Eidechsen gemein hat. Der Name deutet auf
die Verschiedenheit der Rippen, von denen die einen cylin-
drisch, andere fast dreiseilig, andere flachgedrückt sind, so wie
auf den sehr complicirtten Bauchrippenapparat.

Zwei Amphibibänen aus der Gegend von Algier wurden von
Gervais beschrieben (Ann. des Sc. nat. VI. p. 311.) Die eine
ist Blanus cinereus Wagl., hat Afterporen, die andere eine
neue Art, A. elegans Gervais. Letztere zeigt genau die Kopf-
beschäftigung wie die Amphibibänen der neuen Welt, aber einen
spitzen Schwanz und keine Afterporen. Da dies auf Kaup's
Trögonophis Wiegmanni paßt, der nach diesem aus der Umge-
gend von Algier stammen und danibrettartig schwarz gefleckt
sein soll (Thierreich 3. p. 55.), so ist wohl kaum zu zweifeln,
dafs es dieselbe Art sei 1).

C. O p h i d i i.

Die Osteologie der Gattung Python und Boa bearbeitete
d'Alton (E. d'Alton de Pythonis ac Boarum ossibus commen-

1) In einer später, 1837, in Guér. Mag. publicirten Beschreibung
mit Abbild. giebt dies Verf. zu und nannte die Art Amph. Wiegmanni,
will aber bei ihr dieselben Zähne, wie bei den Amphibibänen gefunden
haben. Indessen geht aus den Verf. Worten hervor, dafs er nicht wußte,
warum es sich hier handelt. Es kommt nämlich nicht sowol auf die
Form, als auf die Insertion der Zähne an, ob sie der Innenseite der
Kiefer anliegt sind, wie bei den amerikanischen Amphibibänen, oder
dem oberen Rande der Kiefer eingewachsen sind, wie es nach Kaup

Die Angabe Woodruff’s vom Lebendiggebären einer Wasserschlanze (*Tropidonotus?*) in Sillim. Journ. XXIX. p. 304. ist, als von einem Laien herrührend, mindestens sehr verdächtig. Seiner Beschreibung nach war das Organ, in welchem er die Jungen (über 80) fand, die Lunge, und die vermeintlichen Jungen waren *Strongylid*.

Mehrere nordamerikanische Schlangen finden wir in Holbrook’s *Herpet.* beschrieben und abgebildet; nämlich:

Drei zu *Coluber s. str.* gehörige Arten: *C. flagelliformis* Catesb., *C. alleghanensis* Holbr., *C. quadrivittatus* Holbr. (*Chicken-snake Bartr.*).

Ferner Col. erythrogamnus Daud. (*Helicops Wagl.*) und Col. abucurus Holbr. (mit *C. Thalida Daud.* zu *Hydrops Wagl.* gehörig.) Beide sind nach des Verl. ausdrücklicher Bemerkung Landschlangen.

G. Ord nimmt die *Blacksnake* (*Col. constrictor*) als die bei *Trogonophis* der Fall ist, deren Zähne nach Kaup’s Abbild. (t. e.) im höchsten Grade stumpf sind.
(durch Mäusefangen) nützlichste aller nordamerikanischen Schlangen gegen Taylor in Schutz. (Loud. Mag. IX. p. 417.) Obwohl er Hunderte von Exemplaren im Naturzustande beobachtete, sah er sie nie einen Menschen angreifen; auch widerspricht er den Fabeln von Bezauberung und dem Ansaugen der Kühe.

D. _Batrachii._

a. Caudata.

Tr. capite depresso, lato, corpore undique verrucoso, caudae longitudinalitn aquante; pedibus congernernam; colore supra brunneo saturatiore maculato, infra exalbidio vel saepius ferrugineo fuscoque variegato.

Die Rippen sind weniger lang, als bei der von Michabelles als _Pleurodeles_ beschriebenen Art, aber länger, als bei den gewöhnlichen Tritonen.

Sonst sind ebendort beschrieben und abgebildet:

Engystoma carolinense Holbr., ein Systoma, von mir seit längerer Zeit im hiesigen Museum S. nigricans benannt, welcher Name dem Holbrook'schen vorzuziehen sein möchte, da wir dieselbe Art aus Carolina und Louisiana (New Orleans) empfsingen. Ich bemerke hiebei, dass *Systoma* eine Paukenhöhle besitzt, über welche die Körperhaut hingehnt (daher sagt der Verf. richtig tympanum concealed); da der Gattung, wie Verf. ebenfalls richtig bemerkt, die Zähne im Oberkiefer und Vomer fehlen, schliesst sie sich an *Bufo*, mit dem sie eine Familie bildet.

Die von Verf. beschriebenen Frösche: *B. halicina* Kuhn. (der

W. T. Bree erzählt in *Loud. Mag. IX. p. 316.* einen Fall, wo eine Kröte in einem soliden Sandsteine eingeschlossen gefunden wurde.

Er sah die Kröte noch lebend; der Fels selbst war solide, bis auf die Höhle, in welcher die Kröte gefunden wurde. Auf andere Beispiele wird vom Verf. verwiesen und erzählt, daß man vor 60 Jahren bei Aufführung einer Mauer zu Bam Borough einen Stein ausgebüßelt und eine Kröte mit Mörtel eingemauert habe; nach 38 Jahren wäre die Mauer abgebogen, und die Kröte soll noch alle Spur von Leben gezeigt haben.

γ. B. apoda.

Stutchbury beschrieb eine *Coecilia (C. squalostoma)* vom Flusse Galoon in Westafrika. (*Trans. Lin. Soc. XVII. 3. p. 362.*)

4. Pisces.

Das sehöne Bilderwerk über die scandinavischen Fische von Fries, Eckström und Wright (*Scandinaviens Fiskar. Stockholm 1836. 4.*) lieferte im ersten Hefte Abbildungen und Beschreibungen von:

Rathke's Beiträge zur Fauna der Krym handeln über viele Fische und sind insofern wichtig, als sie über mehrere von Pallas aufgestellte Arten näheren Aufschluss geben. Auch werden einige neue Arten aufgestellt.

Herr Kröyer gab in derselben Zeitschrift p. 32 fg. eine umständliche Beschreibung des isländischen Blennius lumpenus (Blennius lampetraeformis Walb.).

Vomerzähne und der Abwesenheit der Schleimöffnungen auf der Seitenlinie nicht gedenkt.

Der 1836 erschienene 3te Band von Richardson's Fauna boreali-americana, welcher die hochnordischen Fische beschreibt, befindet sich leider noch nicht in der Berliner Bibliothek und konnte noch nicht benutzt werden.

Ueberaus reichhaltig für die Fischfauna des rothen Meeres ist die 6te Lieferung von Rüppell's Wirbelthieren zur Fauna Abyssiniens.

Beiträge zur Anatomie der Fische erhielten wir von Rathke

Auf Rusoni’s in derselben Zeitschrift p. 278. mitgetheilte Beobachtungen der Metamorphosen des Fischeies vor der Bildung des Embryo’s kann nur verwiesen werden.

A. Cartilaginei.

Ueber die Electricität der Zitterrochen wurden zahlreiche Versuche angestellt von St. Linari, Matteucci und Colladon.

Entladungen in jener Richtung besonders heftig; verwundet man aber das Gehirn schonungslos, so erneuern sich freilich die Entladungen sehr stark, aber ohne dieselbe Beständigkeit der Richtung zu zeigen. Es folgt freilich hieraus, daß die Richtung des elektrischen Stromes vom Einflusse des Gehirnes abhängt, aber es geht noch nicht daraus hervor, wie es Herrn Matteucci scheint, daß die Electricität nicht im elektrischen Organe hervorgebracht, sondern nur wie in einer Leydener Flasche kondensirt werde, und dafs, wenn sich bei andern Thieren keine Spuren der Electricität zeigen, dies nur dem Mangel kondensirender Organe zuzuschreiben sei. (Vergl. die neuesten Versuche von Matteucci im 1sten Bande des folgenden Jahrganges.)

Von Fitzinger und Heckel ist im 1sten Bande der so reichhaltigen Annalen des Wiener Museums eine ausgezeichnete Monographie der Gattung Acipenser erschienen. Es ist unmöglich, hier die zahlreichen Aufschlüsse und Berichtigungen namenthaft zu machen, mit welchen sie die Wissenschaft bereichert. Im Ganzen werden 17 Arten aufgeführt, von denen 11 der alten, 6 der neuen Welt angehören; von mehreren Arten wird der ganze Fisch und der Kopf von der Ober- und Unterseite abgebildet. Die Verf. unterscheiden 6 Unterabtheilungen:

A. Rückenschilder nur nach vorn zu abgedacht, hinten am höchsten, in einen Haken endigend und bis zum Haken hinauf offen.
a. Die Haut mit kleinen kammförmigen Knochenschuppchen bedeckt; die Bartfäden gefräst.

B. Rückenschilder nach beiden Seiten abgedacht, in der Mitte am höchsten, in einen Haken endigend.

B. *Malacopterygiis*.

R. Parnell hat ausführliche Beschreibungen der *Clupea alba* Yarr., *Cl. sprattus* und *Cl. Harengus* mit Abbildungen gegeben und ihre Unterschiede auseinandergesetzt. (*Jard. Mag. of Zool. and Bot.* I. p. 50.)

Verf. erklärt sich für eine doppelte Laichzeit des Herings, die eine im Anfang März, die andere gegen Ende Octobers. Ebenso stimmt er nicht für entfernte Wanderungen, sondern glaubt, daß sie sich gegen die
die Laichzeit den Küsten nähern und nach derselben in die hohe See zurückgehen. An der Westseite von Schottland fängt man den Haring mit der Angel, indem man eine weisse (Möwen-) Feder am Haken befestigt.

Leuciscus rodens A. — L. majalis A. — L. prasinus A.

Hieran reihet sich Heckel's Beschreibung einiger europäischen Cyprinus- Arten. (Annalen des Wiener Museums, Bd. I. p. 221.

Beobachtungen über die ersten Jugendzustände und Wanderungen der jungen Aale haben Chr. Drewsen und Kröyer

C. Acanthopterygii.

Corpus elliptico-oblongum, compressum; squamis aspermis sat magnis. Caput parvum, decline, unchaque squamosum epunctatum. Rostrum brevissimum, obtusum, nudum, maxilla inferiore squamosa, cirrque geminis longis symphysi subitus affixis. Ossa intermaxillaria, umbia palati dentaria, linguaque dentibus minutis ercherrinis scabra. Operculum inerme, rotundatum, squamosum. Praeoperculum squamosum limba inferiore anguloque nudum striato, margin erosa-denticulato. In-
teroperculum undum minutissime dentiulatum. Pinna dorsalis (soli-
taria) analisque nodae, antice elevatae spinis delhibilus inconspicuals, bre-
vibus, pauci; basi in sulco sita, squanisque marginalibus sulci elevatis
intricue celata. Pinnae ventrales septem radiatae, radio primo sim-
Verf. bildet aus dieser Gattung, seinem Leiurus und Brama,
eine Familie (Bramidae). Indes wenn auch beide letztern zusammen-
gehören, scheint doch Polymixia richtiger den Percoiden zu verbinden
und zunächst dem Genus Mullus verwandt, wie deon auch die Bewoh-
nrer von Madera den Fisch „Salmoneta du alto,” d. i. den Mullus des
hohen Meeres nennen.

N a c h t r a g.
Im vorigen Jahresberichte sind Nilsson's Observationes ich-
thyologicae, Particula I., Lundae 1835. 8. unerwähnt geblieben
und auch jetzt mir nur aus einer Anzeige in Kröyer's Naturh.
Tidskr. Heft 4. p. 384. bekannt. Sie enthalten unter andern
die Bemerkung, dass Salmo Silus Ascan. zur Gattung Argentina
gehört. Scopelus borealis kommt auch im nördlichen Cattegat
vor, und eine Vergleichen mit dem von Yarrell aufgeführten
Sc. Humboldtii ist dennoch wünschenswerth. Die Identität von
Pleuronectes nigromanus Nilfs. und Pl. saxicola wird vom Verf.
anerkannt.

A r t i c u l a t a.
Eine Aufzählung der irischen Crustaceen, Arachniden und
Myriapoden gab Templeton in Loud. Mag. IX. p. 9. — Be-
sonders reichhaltig für diese Abtheilungen des Thierreichs, vor-
züglich für Crustaceen und Annulaten, sind Rathke's Beitr.
zur Fauna der Krym.

5. C r u s t a c e a.
Von anatomischen Arbeiten über diese Klasse erwähnen wir:
Valentin, über die Organisation des Hautskelets der Crustae-
cen in seinem Repert. I. p. 122. Duvernny, über die Leber

a. *Decapoda.*

Scutum cephalicum longius quam latius, antice arcuratum, postice truncatum, longitudinaliter valde convexum; fronte latior, declivis, sed parum arcuata; margines laterales antiores non nihil recurvati, dentibus validis praediti. Regio branchialis expressor apparat minus vero regio hepatica; pedunculi ocellorum crassi, breves; margo orbitalis inferior a fronte disjuncta, orbitaqueigitur a fossula antennarum minime seclusa; margi orbitalis superior inferiori prominenter. Articulus antennarum extern. basilaris liber mobilisque; articulus secundus canto oculi interno exceptus ad frontem non prominet; tigellus terminalis longior, articulis 3 prioribus plus duplo. Articulus caudalis tertius quartusque maris duobus prioribus latiores. Par pedum tertium quartumque prae eeteris longiora, inter se fere aequalia sunt. Die Art *G. tridens* ist abgebildet. Ich sah sie auch im Christiania-Fjord.

Rathke beschreibt mehrere Brachyuren in seinen Beiträ-

b. Stomatopoda.

Myris flexuosa ist nach Kröyer im Kattegat und Sund häufig; er hält sie identisch mit M. spinulosa Leach. (Nat.
e. *Hedriophthalma* Leach.

Rathke hat (Beitr. zur *Fauna* der Kryni p. S1 fig.) einige neue Gattungen und Arten von Amphipoditen und Isopoden aufgestellt.

Die erste schließt sich an *Phronima*, unterscheidet sich durch pflrienenförmige Antennen, platt Häuptluder der 3 letzten Fußpaare, sehr langes, mit langer Krall versehenes Tarsalglied des 5ten Fußpaars, welches wie bei *Phronima* Greiffüße sind, einfache, blattförmige Anhänge der letzten Hinterleibsegmente. (*P. macropa G. Chili.*) *Hieraconyx* steht bei *Themisto* Guér., aber außer dem 3ten und 4ten Fußpaare sind auch die des 5ten Paares Fangfüße, sehr lang, mit brei-
tem, am Vorderrande gezähneltem drittletztem Gliede, an den drei letz- ten Hinterleibsegmenten einfache, blattförmige Anhänge. (H. abbreviatus Malminen.) Pronoe, ähnlich der Typhis, aber die oberen Antennen platt, dreigliedrig; die beiden vorderen Fußpaare nicht Scheer- renfänge; das Hüftglied der 3 letzten Fußpaare breit, platt, das letzte nur aus dem Hüftgliede und einem kleinen Höcker, als Rudimente der übrigen Fußglieder bestehend. Anhänge der 3 letzten Hinterleibseg- mente wie bei Typhis. (Pr. capito Chilii.) Außerdem Abbildung und Beschreibung eines neuen Oxycephalus piscatorius und einer Phronima atlantica mit 2 Seiten- und einem facettierten Stirn- auge (?).

Derselbe beschrieb eben dort eine neue Gattung der Isopo- den Deto (1836. t. 14.). Zunächst der Gattung Tylos verwandt und im Sinne Brandt's mit dieser eine eigene Familie bildend.

d. Entomostraca.

Eine zweite nordamerikanische Art der Gattung Argulus (A. catastomi) wurde von J. D. Dana und E. C. Herrick

Einen *Chondracanthus Lophii* beschreibt G. Johnston Lond. Mag. IX. p. 81.

Besondere Aufmerksamkeit der Naturforscher unserer Küsten verdient ein von Thompson am Hinterleibe des *Carcinus (Cancer) Maenas* entdeckter Schmarotzer *Sacculina*. (*Entom. Magaz. XV. p. 452.*)

Wie ein zweiflappiger Ledersack hängt er mittelst eines halsförmigen Vorsprunges zwischen den häufigen Interstitien des Krabbeschwanzes. Aus der untern Öffnung will der Verf. eine körnige Substanz hervorgedrückt haben, die sich unter dem Mikroskope als Larven, ähnlich denen der *Lernaeocera* auswies. Hier würden also die Eier im Körper der Matter auskommen, was einer weiteren Bestätigung bedürfte.

Eben so problematisch bleibt mir noch Leuckart's *Myzostoma*, welches derselbe bereits 1830, Heft 5. aufgestellt und neuerdings (Fror Notiz. 50. No. 9.) folgendermassen charakterisirt hat.

Orithya, Rüssel sitzend (rostrum sessile), ein Paar scheerenspinneriger Mandibeln; keine Palpen; dünne, einklauige Beine, an denen das erste Tarsenglied klein ist; eiertragende Füße 5gliedrig, mit klauenartigem Endglied.

Pallene, Rüssel auf einem halbflaschenförmigen Vorsprunge, mit scheerenförmigen Mandibeln; keine Palpen; lange einklauige Beine, mit Hölfsklauen (dreiklauig); das erste Tarsenglied klein; eiertragende Füße, 10gliedrig, die (3) Endglieder sägeförmig eingeschnitten. (Der Gattung Nymphon zunächst verwandt, hauptsächlich durch den fehlenden Taster verschieden.) P. brevirostris J., zwischen Corallinen. (Pyca spinares Fbr.)

6. Arachnidae.

1) Meta Schuchii (Griechenland), — Micryphantes camelinus, o, q. — M. punctulatus, — Opilio tridens und rufipes (sämmtlich aus Süddeutschland).

2) ‚Ereus etenizoides und luridus, — Palpimanus haematinus, — Lycosa praegrandis und hellenica (sämmtlich aus Griechenland), — L. silvicalterix, — Dictyna variabilis (südl. Deutschland), — Opilio lateratum (Deutschland).

3) Andruetonus peloponnesis, — Mygale adusta und hirtipes (Brasilien), — Cteniza graia (Griechenland), — Orycte ferraginea (Brasilien), — Singa hamata (Aranea tubulosa Wele.), — S. melanacephala (Triest), — Micryphantes enculatus, fuscipalpus, tibialis, — Opilio terricola, cryptarum (sämmtlich aus Italien).

4) Skorpio: Vaejaris mexicanus und Telegonus versicolor (Brasilien), — 7 amerik. Acrosonien, — Theridium simile, pallidum, vitatum, — Micryphantes rufipalpus, flavomaculatus, pantherinus (sämmtl. bei Regensburg).

5) Buthus megacephalus und cyaneus (Java), — 3 brasil. Acrosonien, — Linyphia phrygia, — Micryphantes ruficostatus, erythrocephalus, tessellatus (sämmtl. bei Regensburg).

Nach brieflichen Mittheilungen von Rathke ist der von ihm in den Beiträgen zur *Fauna* der Krym aufgeführte Skorpion identisch mit Koch's *Sc. tauricus*.

Mandibulæ chelatae. Palpi unguiculati, spinosi. Pedes inaequales, postici longissimi, a praecedentibus haud remoti. Das enorme Paar der Hinterbeine dreimal so lang als das vorletzte; Augen aufseu am Grunde zweier bornähnlicher Vorrägung des Scheitels.

Sie findet sich allgemein bei allen Krätzigen vor Anfang der Handlung, vorzugsweise unter der Epidermis der Hände, seltener an den Füßen, an den Achseln und am Scrotum; nie bei andern Hautkranken; durch Einreibung von Schweifelkalisalbe werden alle Milben vernichtet,

A. *Annulata.*

daß das hinterste sammt seinen fadenförmigen Anhängen zuerst, die anderen später neu gebildet werden.

Körper scolopeDdrenähnlich; Kopf klein; 4 paarige Augen; 4 kurze Fühler auf der Stirn; Rüssel kurz, kieferlos, mit einer Doppelschleife Waren umgeben; 4 Paar ungleiche cirri tentaculares; Fußstummel je eins, an der Spitze zweiteilig; Rückencirren lang, gegliedert, Bauchcirren kurz; am Schwanzende 2 Fäden.

Gay berichtete (*Compt. rend. hebld. II.* p. 322.), daß alle chilenischen *Hirudineen* (mit Ausnahme zweier kleiner *Branchiobdellae*, deren eine er in der Lungenhöhle der *Auricula Dom-
begi, die andere an den Kiemen der Krebse fand), nicht im Wasser vorkommen, sondern auf Pflanzen und Sträuchern fern von Pfützen und Sumpfen umherkriechen.

Duvernoy (Instit. No. 181. p. 351.) bemerkte, daß bei einigen Exemplaren unseres sogenannten Pferdeegels (Aulaco-

stoma Moq. Tand.) die Kiefer entwickelt und wie bei Haemopis gebildet sind, während sie andern fehlen, indem sie verloren zu gehen scheinen, und dann nur ein glattes, durch eine Längsfurche getheiltes Tuberkel sich findet, und daß sie bei jungen rudimentär seien. Auch ich habe Verschiedenheit in der Ent-

B. Anartha.

Die Beschreibung des auch von Ehrenberg erkannten Nervensystem's dürfte unter den zahlreichen Beobachtungen Erwähnung verdienen. Verf. verfolgte bei P. torda zwei sehr dünne Fäden von den Au-
gen abwärts, sab sie gegen den Darm in zwei einander genäherten Ganglien anschwellen, dann in gleicher Richtung herablaufend 2 neue Ganglien bilden, und von dort zu beiden Seiten des Darmes gegen die Mundöffnung diese ohne gangliennartige Auswölbung umgehen. Unterhalb des Munde gelegene Theile der Ganglienkette konnte er nicht ent-

Das Thier hat, bald nachdem es das Ei verlassen, eine stielrunde Gestalt, später ist es platt, breit, vorn verschmälerlt, hinten zugespitzt; später viereckig (Planaria tetragona Müll.), daher verschiedene Be-

nennungen sich auf dies Thier zu beziehen scheinen. (Deroostoma gros-
sum, rostratum, megalops, fusiforme Dug.) Vom Saugnapfe geht ein unverästelter Darm auf- und abwärts in der Mittellinie des Körpers. Ein After ließ sich bei der schärfsten Beobachtung nicht wahrnehmen. Da- gegen jederseits zwei neben dem Darme verlaufende gleichweite Gefäße, die vom Saugnapfe entspringen und vom Verf. für Speicheldrüsen gedeutet werden. 6 zweireihig neben dem Darme gelegene traubenförmig gehäufte Bläsengruppen scheinen drüsige Absorptionsorgane. Außerdem den Muskeln des Saugnapfes wurden im Vorder- und Hinterende des Körpers deutliche Muskelstreifen erkannt; aber kein Gefäße- und Nervensystem gefunden. Sehr entwickelt sind die Geschlechtsorgane; 2 jederseits nahe dem Rande gelegene Hoden, Saamenblasen, Penis, 2 zwischen Hoden und Darm gelegene Eierstöcke. Im Frühling und im An- fange des Sommers finden sich bis dreißig farblose Eier, die lebende Junge enthalten. Im Sommer und Herbst findet man größere Eier mit brauner Schale, welche die Eierkapseln der übrigen Planarien analog zu sein und mehr als ein Junges zu enthalten scheinen.

Manche wertvolle Mittheilungen über diese Thiergruppe finden sich in Ehrenberg's „Akalephen des rothen Meeres,“ p. 56., 52. u. 64. fg., wo Verf. seine Ansichten über die Systematik des Thierreiches ausführlich entwickelt hat. Verf. trennt nämlich seine Strudelwürmer jetzt in zwei Klassen, behält für die Rhabdocoela den Namen Turbellaria bei, und nennt die Dendrocoela: Complanata, Plattwürmer.

C. Entozoa.

(Bearbeitet von Dr. v. Siebold.)

2. Nematoidca.

Filarienartige Schmarotzer wurden von Beaumont in der Leibeshöhle von Blaps mortisaga (l'Institut. no. 139. p. 3.) und von Hammerschmidt in den Raupen der Liparis Chrysorrhoea (Amtlicher Bericht über die Versammlung der Naturforscher zu Jena 1836. p. 139.) aufgefunden. Die Filaria aus Blaps lebte bereits zwei Monate in reinem Wasser fort (Fro- riep's Notizen no. 1024. p. 183.); Leblond bemerkt hierzu,

*) Mit französischer Leichtsichtigkeit werden hier in der Einleitung die drei Namen Otto Friedrich Müller als drei besondere Autoren aufgeführt, Bremser wird Bresmer und Goeze gar Goëth genannt; sollten dies wirklich nur Druckfehler sein?

Ref. hat einen Schmarotzer, der früher für ein *Distomum* gehalten wurde, aber nichts anderes ist, als ein in der Begattung begriffenes *Strongylus*-Pärchen, als eine besondere Gattung unter dem Namen *Syngamus tracheal* beschrieben (dieses Archiv 1836. p. 105.); Nathusius machte jedoch auf diesen Irr- thum aufmerksam, welchen Referent auch einsah und alsbald be- richtigte (dieses Archiv 1837. p. 52. v. p. 66.).

Bei *Strongylus armatus* will Lebland bemerkt haben, daß in der Nähe des Ursprungs der weibliche Zengungsapparat, wo er sich an die *Vulva* anschließt, durch gegliederte knorpel- liche Röhren überzogen ist, und daß diese Röhren überhaupt je nach
Duvernay wiederholt die Meinung, als besäße Echinorhynchus gigas an seinem vordersten Ende eine Mundöffnung, welche mit den beiden sogenannten Lemniscen in Verbindung stehen soll (l'Institut. no. 174. p. 298.). Burow giebt in einer akademischen Gelegenheitsschrift (Echinorhynchhi strumosi anatomie, Dissertatio zootomica, Regiomont. 1836.) ciee ziemlich vollständige Beschreibung des Echinorhynchus strumosus, von der folgenderes herauszuheben wäre.

Verf. nennt die muskulöse Höhle, in welche sich der Rüssel des Thieres zurückzieht, Intestinum, mit welchem Rechte, ist nicht abzusehen. Derselbe ist ferner geneigt, zwei Muskeln, welche am unteren Ende jenes Rüsselbehälters entspringen und sich an die innere Fläche der allgemeinen Leibeshöhle festsetzen, für Kanäle zu halten, welche an den letztgenannten beiden Insertionsstellen zwei After bilden sollen. Ich muß dieser Annahme auf das bestimmteste widersprechen, indem ich weder an Echinorhynchus strumosus, noch an irgend einem anderen Kratzer eine Mault- oder After-Oeffnung habe entdecken können. Die beiden unter der Epidermis liegenden und das hier befindliche körnige Parenchym durchfurchenden Längskanäle, welche durch Querkanäle häufig mit einan anastomosiren, beschreibt Burow als Systema vasorum; daß die beiden sogenannten Lemniscen mit diesem Gefäßsystem in Verbindung stehen, was bei allen Echinorhynchus-Arten der Fall ist, wird nicht erwähnt. Einen zarten Faden, welchen Burow auf der unteren Seite des Leibes bei drei Individuen vom Kopfende nach der Geschlechtsöffnung bin sich hat erstrecken sehen, und welcher von 4—5 Knietschen unterbrochen wurde, glaubt derselbe für ein Nervensystem halten zu müssen. Den männlichen Thieren dieses Echinorhynchus schreibt Burow mit Unrecht vier Paar Hoden zu, indem er die unteren drei Paar blasenartigen, langgestielten Anhänge des Geschlechtsapparats ebenfalls zu den Hoden zählt; Ref. hat nachgewiesen, daß diese Körper bei Echinorhynchus acus, angusticollis und protens nie Spermatozoen enthalten (Müller's Archiv 1836. p. 233.), was er jetzt auch von Echinorhynchus strumosus und vielen anderen Kratzern bestätigen kann. Wenn Burow den unteren Rand der männlichen Schwanzblase ausgefranst angiebt, so ist dies dahin zu berichtigen, daß der untere Rand ein Margo integer ist, und daß das Parenchym des Wurms sich fimbrienartig in die durchsichtige Blase hinein erstreckt, wie dies auch in der gespaltenen Schwanzblase der männlichen Strongylius-Arten der Fall ist, in welchen das Parenchym fast immer fingerartige Fortsätze bildet, während der Rand nur wenig oder gar nicht ausgeschnitten ist. Von den Spermatozoen wird nichts erwähnt, ich fand sie im Echinorh.

c. *Trematoda.*

Diese Ordnung ist durch Diesing sehr bereichert worden. Es liegen mir drei Arbeiten dieses fleißigen Wiener Helminthologen vor, von denen die eine eine Monographie der Gattung *Tristoma* betrifft, die andere unter dem Titel: helmin-

In der zweiten Abhandlung erwirkt sich Diesing das Verdienst, die bisher wenig gekannte Axine Bellones einer genaueren Untersuchung zu unterwerfen. Da der Name Axina schon anderweitig vergeben ist, so wird dafür der Gattungsname Heterocanthurus gewählt und dieser Gattung im Systeme ihre Stelle in der Nähe von Tristoma angewiesen, mit folgendem Character: Corpus compressum, elongatum, antice attenuatum apice emarginatum, ore granuloso. Bothria duo antica in utroque corpus latere. Limbus candalis hamulis dimorphis stipatus. — Es
werden zwei Arten beschrieben: 1) Het. pedatus Dies. (Axine Bello-
nes Abildgaard), auf den Kiemen von Esox Bellole lebend: Corpore
lanceolato flexuoso, postice pedato, pede antice attenuato, retro calca-
rato obtusato; bothriis orbicularibus parallelis, longitudinaliter fissis.
2) Het. sagittatus Dies., mit der vorigen Art gleichen Wohnort thei-
lend: Corpore lanceolato, postice sagittato; bothriis orbicularibus paral-
lelis, longitudinaliter fissis. Der Saum des füßformigen Schwanzendes
derer Schmarotzer ist von beiden Seiten, wie auch an den Rändern,
mit Haken von zweierlei Form besetzt. Die Form und Stellung der
Sauggruben, wie auch die Anordnung am vorderen Ende, endlich der
Bau und die Vertheilung der Starbäcke und Häckchen am Saum des
Schwanzendes, stimmen in beiden Species vollkommen miteinander über-
ein. Der innere Bau dieser kleinen Thiere ist nur fragmentarisch be-
schrieben. Ich kann mich von der spezifischen Verschiedenheit beider
Arten nicht recht überzeugen, da die verschiedene Gestalt der Hinter-
leibsenden, auf welche die Anstellung der zwei Arten gegründet ist,
vielleicht nur von der verschiedenen Zusammenziehung der Thiere in
Weingest herrührt.

In der dritten der Gattung Amphistoma gewidmeten Abhandlung
trennt Diesing die Arten Amphist. subelavatum und anguiculatum
von den übrigen Amphistomen als besondere Gattung Diplodiscus. Es
werden außer den vier bekannten Arten Amph. conicus, subrique-trum,
truncatum und unciforme noch acht neue Arten beschrieben und ab-
gebildet: 1) A. giganteum aus dem Blinddarme des Dictyotes albirostris
llilig. und Dicoyles torquatus Cuv. 2) A. Hirudo, aus dem Blinddarme
der Palamedea carnata L. Gn. 3) A. cylindricum, aus dem Darm-
kanale des Cataphractus Murica Natt. 4) A. Ferrum equinum, aus
dem Darmkanale des Cataphractus Murica Natt. und Cataphr. Corone
Natt. 5) A. megacotyle, aus dem Darme des Silurus Palmito Natt.
6) A. laminum, aus dem Blinddarme des Cerceus dichotomus und höch-
st sonderbarer Weise ebenfalls aus dem Blinddarme von Anas melanotus
Lath., Anas Speciitii Viviil. und Himantopus Wilsonii Tem. 7) A.
oxycephalum, aus dem Darme von Salmo auratus, Pacu, Pacupeba
Natt. und Silurus megacephalus Natt. 8) A. attenuatum, aus dem
Darmkanale des Salmo Pacu Natt. Alle diese Amphistomen sind von
Naturen in Südamerika aufgefunden worden. Diesing beschreibt
neben dem Verdaungssysteme auch das Gefäßsystem der Amphisto-
men und bestreitet die Anwesenheit eines Excretionsorganes bei den
Trematoden überhaupt. Derselbe glaubt, dass die Entleerung aus dem
vermeintlichen Excretionsorganen nicht willkürlich geschehe, sondern nur
in Folge einer durch Anschiebung unter Wasser oder durch Druck
hervorgerufenen Zerreißung der Epidermis; er nimmt die am Rücken
oder Schwanzende der Trematoden befindliche bald warzenförmige, bald
poröse Stelle mit jenen den Leib der Pentastomen umgebenden
Erhöhungen für gleichbedeutend, die von Nordmann und ihm für

Distoma echinatum, cirrigerum, laureatum, variegatum, Poly-
stoma ocellatum und zwei Monostoma-Arten aus dem Darme
der Chelonia esculenta, mit geringen Abweichungen ähnlich or-
organisiert sind.

In dem Gefässsystem des Diplozoon paradoxum hat Ref. die Anwesenheit von Flimmerorganen erkannt (dieses Archiv 1836. p. 105.), ebenso sah derselbe in zwei sehr kleinen Höhl-
en zu beiden Seiten des Halses bei Distom. globiporum und no-
dulosum Flimmerbewegungen (Müllers Arch. 1836. p. 238.).
Ich habe ferner in dem Gefässysteme des Aspidogaster conchi-
cola dasselbe Phänomen beobachtet, und es stellen hier die Flim-
merorgane sehr deutliche Längs-Lappen dar, deren langen freien
Ränder man wellenförmig schwingen sieht, wodurch man leicht
in Versuchung gerath, zu glauben, es schängelten sich faden-
förmige Würmer in den Gefäßen.

d. Cestoidea.

Ueber Tetrarhynchus attenuatus theilte Müller (dessen Ar-
chiv 1836. p. CVI.) folgendes mit. In dem 1 1/2 Zoll langen Hin-
tertheile dieses Wurms konnte derselbe keine eigentlichen Or-
gane finden, dagegen enthielt der Kopfscheit 4 feste bohnenför-
mige platte Körper, von denen vier dünne Fäden ausgehen,
welche sich an dickere, von den 4 Rüsseln herkommende Röh-
ren befestigen. Müller meint, dass diese Organe wahrscheinlich
den Verdauungs-Apparat bilden; in der Mitte zwischen den Aus-
gangsstellen der 4 Rüssel liegt eine kleine platte Anschwellung,
von welcher Fäden zu den Rüsseln und den Röhren gehen, wahr-
scheinlich Nervensystem nach Müller.

Leblond fand im Peritonaeum der Muracena conger einen
kleinen, von einer durchsichtigen elastischen Hülle gebildeten
290.), in welchem ein Entozoon eingeschlossen war. Dieser
Binnenwurm bestand aus einem größeren abgerundeten Körper
und einem langen dünnen Anhange, der an seinem Ursprunge
aus dem Körper eine Einschnürung besaß; der Körper hatte an
der Seite einen Saugnapf und am Ende des Anhangs eine Ver-
tiefung gleich einer Öffnung. Der Wurm zeigte nur leise Be-
wegungen, und wurde von Leblond Amphistoma ropaloides
genannt. Nach Zerreißung desselben kam ein *Tetrarhynchus*
zum Vorschein, dessen Körper mit einem gerunzelten trichter-
förmigen Anhang endet, weshalb Leblond dem Thiere den Na-
men *T. opistocotyle* beilegte. Dasselbe lebte nur kurze Zeit im
Wasser. Ich habe vor einiger Zeit an dem *Peritonaeum* eines
Esox Bellone 4 ganz ähnliche Bälge gefunden, welche einen Körper
enthielten, der mit dem oben erwähnten *Amphistoma ropuloides*
vollkommen übereinstimmte, ich konnte aber an ihm nichts bemerken, woraus eine Ähnlichkeit mit einem *Amphi-
stromum, Holostomum* oder irgend einer anderen Trematoden-Art
zu entnehmen gewesen wäre. Der Inhalt der von mir untersuchten Körper bestand in einer blasig-körnigen weißen Masse,
welche leicht auseinander floß; ich vermuthe eher, dafs dieser Binnenwurm ein Keimschlauch ist, in welchem sich Tetrarhyn-
chen ausbilden, und dafs meine Keimschläuche nur den noch
nicht ausgebildeten Keimstoff derselben enthielten.

Leblond beschreibt ferner (*Ann. d. sc. nat. a. a. O.*) die
Struktur der vier Rüssel des *Bothriocephalus corollatus*. Es ste-
hen die vier Rüssel durch eben so viele Fäden mit vier cylindrischen Körpern in Verbindung, durch welchen Apparat das Ein- und Anziehen der Rüssel bewirkt werden soll; nach der Beschreibung und Abbildung dieses Apparats erkennt man hier
die Organisation wieder, welche Müller von dem Kopfende des *Tetrarh. attenuatus* angegeben hat. Unter dem Namen *Pro-
dicoelia ditrema* beschreibt Leblond (ebendas. p. 299.) einen
bandwurmförmigen Schmarotzer aus dem Darmkanale der *Boa
seylana* L., und weist nach, dafs Blainville’s *Bothridium Py-
thonis* (also auch Retziu’s *Bothriocephalus Pythonis*, *Isis*
1831. p. 1347.) und Duvernoy’s *Bothridium Pythonis* (*l’Instit.
1835. p. 298.*) mit diesem Wurme identisch ist. Die Beschrei-
bung selbst gibt nur bereits bekanntes, von der inneren Orga
nisation wird nichts erwähnt.

In *Taenia inflata* hat Ref. die Eier mit ansehenden langen seitlichen Fortsätzen besetzt gesehen, auch hat derselbe
in dieser *Taenia*, so wie in einer noch unbeschriebenen Art aus
Cyprinus *apus*, welche *Taenia depressa* genannt wurde, haarför-
mige Sperratozoen erkannt (Müller’s Archiv 1836. p. 51.).
Ich habe seitdem auch in *Taenia pectinata* und *Bothriocephala*

e. Cystica.

Der Cysticercus tenuicollis wurde zu verschiedenen Grössen in Kapseln des Peritoneums eines kranken Cervus Axis gefunden und von Houston beschrieben (Pror. Not. no. 1035. p. 7.; l'Instit. no. 142. p. 29.)

8. Mollusca.

Von Werken allgemeinen Inhalts erschienen:

Ueber einzelne Faunen handeln folgende Werke und Abhandlungen:

a. Cephalopoda.

Bei Cranchia adhärirt der Mantel oberhalb dem Hintertheile des Kopfes, was Owen als einen wesentlichen Charakter der Gattung ansieht, und deshalb zweifelt, ob Cr. cardiop. und Bonelliana wirklich hierher gehören. Die Gestalt der Flossen allein gebe keinen generischen Charakter. Die Eingeweideorgane bei Cranchia ist sehr klein und fällt nur den Vordertheil des schlaffen Mantel sackes, die Klappe im Trichter fehlt, ebenso die Artikulationsknorpel, durch welche sich bei den Dekapoden der Mantelrand der Basis des Trichters fest anschliesst.

Einige Beobachtungen an lebenden Cephalopoden teilte Lichtenstein in diesem Arch. II. I. p. 120. mit.

b. G a s t e r o p o d a.

a. Gymnibranchia.

Cantraine stellte l. c. einige neue Arten auf:

Doris elegans, putcherrima, tricolor, ramosa; Tritonina decaphylla; Carolinia rubra.

In einem langen Berichte schilderte G. Bennett die Lebenserscheinungen des Glauces hexapterygiius (Proc. Z. S. IV. p. 113.)

Das Wichtigste ist die durch direkte Beobachtung begründete Angabe, dass sie die Randfalten und sonstigen weichen Theile der Porphitae, mit denen sie meist zusammen vorkommen, mittels ihrer Kiefern
zuweilen bis auf die Knorpelscheibe abnagen. Das Uebirige betrifft die Bewegungen, die Farbenpracht und überhaupt das Außere des Thieres, und ist im Wesentlichen bekannt. Die hinter der ersten Flosse gelegene Öffnung, die einzige, deren Verf. gedenkt, neunt er Afteröffnung, glaubt aber, daß sie auch Geschlechtsöffnung sei, indem er einmal Eier, und bei einem andern Exemplar eine hellbraune Flüssigkeit aus derselben hervortreten sah. Bekanntlich aber ist diese Öffnung von Cuvier, Rang n. A. als Geschlechtsöffnung erkannt, und eine etwas weiter hinten liegende für die Afteröffnung erklärt. Ferner gibt Verf. jene Öffnung linkerseits an, während sie nach Cuvier, Rang n. A. rechts liegt. Der Widerspruch fällt weg, wenn man berücksichtigt, daß die Thiere beim Schwimmen die Bauchseite aufwärts kehren. Sonach möchte die strömende Bewegung, welche der Verf. in doppelter Richtung an der Rückenseite nahe unter der Oberfläche beobachtete, sich auf dieselbe Erscheinung beziehen, welche man am Füße der Schnecken wahrnimmt.

\[\text{\textit{Pomatobranchia} (Tectibranches Cuv.)} \]

Mehrere neue Arten wurden aufgestellt:

\textbf{Aphysia depressa} und \textbf{A. Dumortieri} von Cantraine.

\[\text{\textit{Pulmonata}.} \]

Das Thier wie bei Helix, das Gebälke scheinbürnig, wie Planorbis, mit scheinbürniger, am Seitenrande etwas niedergedrückter Mündung. Die Art \textit{Dr. nautiliformis}, braun, haarig. 3 Millim. lang, 4½ Millim. breit, findet sich in der Provinz Como.

Vanbeneden hat ein hornartiges, wurmähriges Styllet aus den Geschlechtetheilen der \textit{Parmacella} beschrieben und abgebildet. (\textit{Bullet. de l'Acad. de Brux.} III. p. 92.)

Derselbe hat \textit{ib.} p. 418. die Geschlechtetheile von Helix.

Eine Abhandlung von Krynicki:

Neue Arten wurden aufgestellt:

5. Ctenobranchia.

Ueber die Gattung Truncatella erschien eine ausführliche Abhandlung von Cantraine. (Bullet. de l'Acad. de Bruxelles p. 87.)

Ueber die Gattung Lucuna siehe Philippi (dieses Arch. II. 1. p. 230.).

Neue Arten:

Paludina unicariata, Eutima intermedia, Trochus semigranularis foss. und Tr. Hornii, Turbo carinatus, peltoritanus, Turritella patamoides, Scalaria subdecussata Cantraine l. c. Conus Adansoni Broderip in Proc. Z. S. p. 44. Cypraea castanea Anderson (Inst. p. 193.). Testa ovato-ventri-
casa, castaneo-fusca, fasciis 2 latis obscuris saturioribus, marginibus incrassatis, albis, fuso punctatis, aperture extremitatibus intus roseo-rubris. Long. 1½", Lat. ¾". Neu-Seeland.

Ovula virginea Cantr. l. c. (an O. adriatica Sow.?).

Voluta Beckii, concinna Broderip in Proc. Z. S. p. 43. Marginella Cleryi Petit in Guér. Mag. 6, 5. t. 73. Mitra olivoidea Cantraine l. c. (Mittelmeer, adriat. Meer).

Cerithium Kieneri, sardoum, petoritanum Cantraine l. c. Purpura Gravesii Broderip in Proc. Z. S. p. 44. Murex bicolor, Broachii, Fusus moniliger, F. costulatus und F. semicostatus, Pleurotoma costulatum, Strombus pusillus, Sigaretus Audouini Cantraine l. c.

c. Aspidobranchia.

Parmophorus patelloideus Cantraine l. c. (bei Sardinien).

c. Hypobranchia.

Vermetus spiratus Phil. (dies. Arch. II. 1. p. 224.).

c. Pteropoda.

Reiche Beiträge für diese Abtheilung enthält d’Orbigny’s Reise. Eine neue Gattung Hyalea, H. vaginellina (Messina) beschrieb Cantraine l. c.

d. Acephala.

Cantraine erwähnt l. c. unter den Namen Cycladina ein neues Cyclas ähnliches Genus.

Eine

Neue Arten.

Von Cantraine l. c.: Pecten subelavatus (foss.), *P. pullus* (lebend und foss.), *P. solea* (foss.), *Arca modioloides* (foss.), *Linopsis Reinwardtii*, *Mylitus crispus*, *Modiolus barbatellus*, *M. subpictus*, *M. agglutinans*, Astarte affinis, crispata.

Pentacrinem im mehr vorgeschrittenen Alter gewinnen durch Bildung der ersten Fiedern nahe dem Ende der Strahlen das Ansehen, als ob diese an der Spitze gabelig werden wollten. Sie haben dann eine schwefelgelbe Farbe. Ganz junge Comatulen, welche Verf. land, hatten ebenfalls eine schwefelgelbe Farbe, und gegen das Ende der Arme 3—4 Paar Fiedern, näher der Basis kleine vereinzelte, eben hervor wachsende; statt der 5 Rückencirren des Pentacrinus Enden sich 9. Beis etwas älteren waren die Fiedern vollzählig; die Arme nur oberhalb schwefelgelb, unten rot, wie bei den älteren Comatulae. Im Mai und Juni ist bei den ausgewachsenen Comatulen die membranöse Innenseite der Fiedern zu einem Eierbehälter erweitert. Im Juli treten die Eier aus einer rund Strömung daher, bleiben aber kugelförmig zusammen gehalten an den Fiedern haften; dass sie sich zu einem Pentacrinus entwickeln, ist nicht direkt beobachtet. Dafür spricht jedoch, dass die Pentacrinem zu einer Zeit vorkommen, wo die Eier der Comatulen verstreut werden, und im September fehlen, wo man junge Comatulen trifft. Verf. schweigt von einem erheblichen Unterschiede; der Pentacrinus hat nämlich wie sein fossiler Verwandter ein fünffeiliges Becken am Ursprung der Cirri, die Comatula nur eine convexe Scheibe. Wie reitet sich das?
10. *Aculephae.*

Eine interessante Zugabe bilden die bildlich dargestellten Abänderungen im Zahlenverhältnisse der *Medusa aurita.*

Wie von Bär fand Verf., daß mit der Zahl der Ovarien auch die Zahl der Fangarme und Darmradien variiirt. Individuen, welche einen scheinbar einfachen, aber aus 3 oder 4 verschmolzenen Eierstock be- saßen, zeigten so viele Fangarme n. s. w., als Öffnungen für die Eier- höhlen da waren. Bei 4 Eierstöcken sind als Regel 4 Fangarme an einem viereckigen Munde, 8 Randkörperehen, 8 Afteröffnungen und 16 Hauptradien des Darmes. Bei drei Fangarmen ist der Mund dreieckig, es finden sich 3 Eierstöcke mit 3 Öffnungen, 6 Randkörperehen, 6 Afteröffnungen und 12 Hauptradien des Darmes. Bei 8 Fangarmen ist der Mund achteckig, es finden sich 8 Eierstöcke mit 8 Öffnungen, 16 Randkörperehen, 16 Afteröffnungen und 32 Darmradien n. s. w. Die Abweichungen von der regelmäßigen Vierzahl sind indessen gering, unter 100 Ex. zeigen etwa 10 dergleichen Anomalien.

v. Siebold hat bei der *Medusa aurita* Duplicität des Geschlechts entdeckt, und über die erste Entwicklung der Eier näheren Aufschluß gegeben. (FrOr. Not. 50. 3.)

18.

Eine Aufzählung der irischen Akalephen gab Templeton in Loud. Mag. 9. p. 301. Medusa aurita und Oceania Blumenbachii fand Rathke im schwarzen Meere (Fauna der Krym); eine mit der ersteren wahrscheinlich identische Qualle Ehrenberg im rothen Meere.

Die Wimperreihen sind jede mitten durch eine Längsleiste in zwei Hälften geteilt. Die Tentakeln treten näher dem Hinterende hervor. Ein Individuum ertrug den Verlust eines bedeutenden Theiles seiner Körpermasse, ohne dadurch an seiner Lebendigkeit zu verlieren. Auch an ganz kleinen Fragmenten dauert das Schwingen der Cilien fort, an einigen noch nach 33 Stunden, was um so merkwürdiger ist, da anderseits, wie schon Eschscholtz angiebt, die beiden einzelnen Wimperreihen, ja die beiden Hälften derselben Reihe eine nicht gleichzeitige Bewegung zeigen, so daß einzelne ganz in Ruhe sind, oder langsamer schwingen, wenn die andern schnellere Bewegung zeigen; was nicht auf die Categorie der Wimperbewegung paßt. Nie waren die Wimpern länger als eine oder zwei Sekunden in Ruhe. Verf. traf zu den verschiedensten Jahreszeiten bei allen Individuen keine Eier, auch beobachtete er nie ein Leuchten. Die Thiere stiegen bald, wie ein Ballon, im Glase langsam auf und nieder; bald wälzten sie sich, ohne zu steigen oder zu fallen, um ihre Quer- oder Längsaxe u. s. w.

Eine Abbildung der Beroë pileus gibt Ehrenberg (Aka-
lephcn etc. tab. VIII. p. 8 — 10.). Ebendaselbst sind auch aus der Abtheilung der Scheibenquallen Oceania pileata und Melicertum campanulatum abgebildet.

Die Eintheilung in Phaneroorpace und Cryptocarpace ist mit Recht aufgegeben, und dafür die Ordnung in Monostomae (Oceaniden, Aequoriden und Medusiden), Potystomae (Geryoniden, Rhizostumen) und Astomae (Bereniciden) getheilt. Letztere bleiben immer problematisch; und ob Berenice globosa Faber (Histiodactyla Br.) in diese Gruppe gehört, bezweifle ich. Sollte sie nicht in der Nähe von Mammaria stehen und der eingezogene Rüssel übersehen sein?

Suriray hat (Guer. Mag. de Zool. VI. Livr. 2. X. t. 1 et 2.) seine Beobachtungen über die Nactiluca miliaris (scintillans) als die Ursache des Meeresleuchtens mitgetheilt.

11. Polyop.

1) (Prodrom. descript. animalium ab Henr. Mertensio — observat. 1835.)

Dafs die Jungen und die gewimperten rothen Körper (Eier oder Keime) im Innern einer Actinia equina in die hohlen Tentakeln treten, hatte der Verf. bereits früher angegeben. Hier ist nun auch die weitere Entwicklung jener gewimperten, sich bewegenden Keime, die nicht hohl, sondern von bedeutender spezifischer Schwere, bald abgeplattet rund, bald länglich sind, geschildert. Einige, fast kugelförmig, scheinen aus zwei oder drei ungleichen Kugeln zu bestehen (Dotterfurchung?). Nach acht Tagen ward ihre Gestalt verändert, von abgestutzt, hinten convex, wie die abgeschmättete Spitze eines Zuckerhutes, ihre Bewegung liefs nach, die Wimpern verschwanden, und die Köperehen hießten sich fest; am elften Tage zeigten sich bei einem die Rudimente der Tentakeln, bei einem waren am 19ten bereits 9 Tentakeln sichtbar; bei andern entwickelten sie sich später. — Was Verf. unter seinen Aleyonien versteht, ist nicht ganz klar; nach der Wimperbewegung an den Fühlern des eben entwickelten Jungen beobachtete Verf. keine eigentliche Aleyonien, sondern Bryozoen. Was Verf. an seiner Hydra tuba beobachtete, scheint die Entwicklungsgeschichte einer Medusenbrut, ähnlich der, welche Sars bei seiner Strobita schilderte. Es hieß sich nämlich zuweilen an die Mundscheibe der Hydra im Februar und März ein umgekehrte kugelförmiger Fortsatz an, der herabhängend, die Tentakeln ganz unsichtbar macht, sich bis auf 2 — 3 Linien ausdehnt, und in 20 — 30 übereinander liegende Schichten spaltet, die, nachdem ihre Rand in 5 — 12 am Ende gegabelte Strahlen ausgewachsen, sich einzeln los trennen und als Medusenartige Thiere umherschwimmen, ähnlich denen, welche Sars als Strobita octoradiata abbildete. Das kugelförmige Thierchen, welches aus den Biasen (weiblichen Zellen) der Sertularia hervorschlüpfte, läßt keine Dentung zu. Sehr unverständich ist auch, was der Verf von Tubularia angiebt.

Dugès hat die bekannte Cribrina palliata Ehrb. (Actinia
carniopontis Otto) als neue Art A. parasita beschrieben und
ihre Verhältnisse zur Conchylie und den sie bewohnenden Krebs

Aus den purpurnen Lächen treten purpurfarbige Fäden hervor,
dieselben, welche man in den Fächern der Körperhöhle aufgerollt
antrifft. Verf. fand in den Fächern durchsichtige Körperchen (Eier?),
nicht in den warmerförmigen Fäden. A. zonata Rathke (Krym p. 40.)
will vom Verf. selbst (in litt.) für eine Varietät der A. mesembryanthemum gehalten, der sie mindestens sehr nahe steht.

Xenia Desjardini ana, welche ich nach der Beschrei-
bung für X. umbellata hielt (Jahrg. II. 2. p. 196.), ist nun in
den Trans. Z. S. II. 1. 5. abgebildet und beschrieben. Es
ist keine Xenia, sondern eine Anthelia Sav. oder vielleicht
eine Rhizoxenia Ehr.

Ehrenberg hat die Armpolypen (Hydra) einer genauer-
en Untersuchung unterworfen. (Mittheil. aus den Verhandl.
der Ges. naturf. Freunde zu Berlin, p. 27.)

Die Arme sind hohl, stehen, wie es auch Trembley schon sah,
mit der Leibeshöhle in Communication, zeigen im Innern eine Chylus-
bewegung, keine Blutbewegung (wofür sie Gruithuizen genommen). Verf. legt ihnen daher die Funktion der Blinddärme bei. Von beson-
derem Interesse ist die Organisation der kleinen, schon von Trembley
u. A. gesehenen Fäden, die aus den Warzen der Arme hervortreten.
Am Ende vieler, nicht aller dieser Fäden erkennt man einen äußerst
durchsichtigen keulen- oder birnförmigen Kristallkörper, welcher mit
seinem dünnen Ende am Faden hängt, und an der Insertionsstelle dreier
starke Widerhaken hat, deren sich der Polyp zum Ersinnen seiner Bente
bedient und diese damit zum Arme anzieht. Die Fäden werden helige-
big ganz in die Wärzchen zurückgezogen, wo man sie dann spiralformig
zusammengeknüpft erkennen kann. Die großen Blasen der Arm-
oberfläche schienen nur Fangfäden ohne Angelhaken zu besitzen.

Derselbe hat ebendaselbst p. 4. eine neue Syncoryne, S.
multicornis aus der Nordsee aufgestellt.

Derselbe bestätigte an zu Berlin gehaltenen Sertularien die
bereits von Cavolini gemachte Beobachtung, daß periodisch
die einzelnen Polypen absterben, abfallen und die Stämmchen,
welche im Innern der Röhre einen Theil des abgestorbenen Thie-
res behalten, neue Knospen treiben. (Bericht über die Verhldg. der Akad. der Wissenschaft., p. 33.) Reproduktion der abgefallenen
Polypen nach Verlauf von 2 Tagen beobachtete auch Har-
vey an einer Tubularia, die er T. gracilis nennt. Dafs
den eben gebildeten Polypen noch die kleinen rothen Papillen (die sogen. Ovarien, weiblichen Knospen) fehlten, kann nicht auffallen. (Proc. Z. S. IV. p. 54.)

12. Infusoria.

Bericht
über die Leistungen in der Entomologie während des Jahres 1836
von
Dr. Erichson.

Bei dem großen Umfange der Entomologie, und bei der großen Menge der diesem weiten Gebiete angehörenden Schriften und Abhandlungen, welche letztere in den verschiedensten Gesellschafts- und Zeitschriften zerstreut und zum Theil versteckt sind, ist längst das Bedürfnis gefühlt worden, in einem besonderen Werke die ganze entomologische Litteratur zweckmäßig und übersichtlich geordnet beisammen zu finden. Das vorige Jahr hat uns zwei Bücher, die diesen Zweck erfüllen sollen, gebracht. Das eine:

Bibliographie entomologique, comprenant par ordre alphabétique des noms des auteurs; Io l'indication des ouvrages entomologiques publiés en France et à l'étran-ger, depuis les temps les plus reculés jusques et y compris

III. Jahrg. 2. Band. 19
l'année 1834; 2o. des monographies et mémoires contenus dans les recueils, journaux et collections académiques, françaises et étrangères, accompagnée de notices sur les ouvrages périodiques, les dictionnaires et les mémoires des sociétés savantes; suivie d'une table méthodique et chronologique des matières; par M. A. Percheron, Paris, 1836, 2 vol., ist, wie aus dem Titel hervorgeht, nach den Namen der Autoren alphabetisch geordnet, wodurch in einer Hinsicht das Aufsuchen sehr erleichtert wird. Das andere:

Von systematischen Arbeiten, die sich über die ganze Entomologie verbreiten, wäre in diesem Jahresberichte nur die Genera des Insectes, ou exposition de tous les caractères propres à chacun des genres de cette classe d'animaux, par M. M. E. Guérin et A. Percheron, Livr. 4., 5. zu nennen. Es ist des Anfanges dieses Werkes, welches mit der fünften Lieferung aufgehört zu haben scheint, im vorigen Jahresberichte erwähnt worden. Das vierte Heft enthält:

Cassida nitidula Perch. aus Südamerika (nichts als Cass. Jamaicensis und St. Crucis F.), Heilipus loricatus Perch. aus Brasilien; Trógosita metallica Perch. aus Mexico, der Tr. virescens

Schlunde gelegenen Nervenknoten, die ihre kurzen Aestchen an
denselben abgeben. (Ref. fand das hintere dieser beiden Gang-
glien immer in sehr genauer Verbindung mit dem freien Ende
der Arterie.) Bei Käfern, Schmetterlingen, Neuropteren und Hy-
menopteren ist das unpaare Nervensystem vorzugsweise entwic-
kelt, so auch bei den Hemipteren, wo aber die Eingeweidenerven
überhaupt noch sehr zurücktreten; unter den Orthopteren
dagegen findet sich das paare System überwiegend ausgebildet,
bei Gryllotalpa und Gryllus (vielleicht allgemein bei den Spring-
genden), wo lange ihm angehörende Nervenfäden den Nahrungs-
canal begleiten, und am Ende ein oder zwei Ganglien bilden.

Bei Blatta und Phasma aber findet zwischen beiden Systemen
dasselbe Verhältnis und dieselbe Form wie bei den übrigen In-
secten statt, und ist von Br. bei ihnen auch sowohl der Stirn-
Knoten des unpaaren, als das ganze paare System nachgewiesen.

Neu ist auch die Darstellung eines langen, dünnen, einfachen,
rückläufigen Zweiges, der bei Blatta von den Magen-Gan-
glien des unpaaren Eingeweidenerven an die Speichelgefäße sich
begibt. (Schriften der Acad. der Wiss. zu St. Petersburg und
Annual. des Scienc. nat.)

In Bezug auf die Geographie der Insecten sind die Notizen zu nennen, welche Moritz über die Fauna der Insel Puerto-
Rico in diesem Archiv mitgetheilt hat. Herr M. verweilte vier
Monate auf dieser Insel, und untersuchte dieselbe in allen ihren
verschiedenen Localitäten, wobei auf die Entomologie seine be-
sondere Aufmerksamkeit gerichtet war. Ausführlichen Schilder-
rungen seiner Beobachtungen, mit genauer Bestimmung der die-
selben betreffenden Gattungen und Arten, die an Ort und Stelle
natürlich nicht möglich war, dürfen wir von dem gegenwärtig
zurückgekehrten Reisenden entgegensetzen.

Einige Bemerkungen über Insekten der Jonischen Inseln

* Von Interesse für die Oeconomie im Allgemeinen sind be-
sonders die gebrachten Untersuchungen des Baron Walkenaer
über die schädlichen Insecten des Weinstocks bei den Alten,
welche er in den Annal. d. l. Soc. Ent. de France mit-
getheilt hat, und deren speciellen Theil der gegenwärtige Jahr-
gaug enthält. Folgendes sind die Arten, die bei den Alten er-

Von Schmidtbergers Beiträge zur Obstbaumzucht und zur Naturgeschichte der den Obstbäumen schädlichen Insecten, Linz, ist 1836 das Schlufsheft ausgegeben worden.

Coleoptera.

Eine ziemlich vollständige Uebersicht über den Inhalt und Umfang dieser von den Entomologen mit besonderem Interesse behandelten Ordnung gibt der Catalogue des Coléoptères de la collection de M. le comte Dejean, von welchem im verflossenen Jahre die letzte Lieferung erschien, und von dem
durch einen besonderen Unglücksfall schon eine neue Ausgabe nöthig geworden ist, in die der Verf. die ihm indes zugekommenen Bereicherungen nachgetragen hat. Beschränkt sich gleich dieses Verzeichnifs auf die Sammlung des Grafen, so ist dieselbe doch so reich und vollständig, dass es kaum eine wesentliche Lücke finden lässt, und mit einer nicht gewöhnlichen Sorgfalt bestimmt, dass es überall willkommen sein muss, dem Liebhaber als eine Anleitung seine Sammlungen zu ordnen, und auch dem wissenschaftlichen Entomologen ist es mindestens zur Unterstützung des Namensgedächtnisses unentbehrlich. Die Anordnung des Ganzen ist die Latreille'sche, es ist aber eine große Menge neuer Gattungen eingeführt, nur scheint es nicht, dass einer großen Zahl derselben mehr zum Grade läge, als der erste Eindruck, den ein etwas abweichender Habitus macht. So ist, um wenigstens ein Beispiel anzuführen, Ref. nicht im Stande, einen Unterschied unter Adimonia und Galleruca aufzufinden, während die unter die ersteren gestellten Gall. nigrolineata, Absinthii und rufa, so wie Gall. sublineata und Pensylvanica von den übrigen Arten, zwischen denen sie stehen, und deren Habitus vollkommen der ihre ist, sehr auffallend durch einfache Klauen abweichen. Gehören bei der großen Anzahl der neu vorgeschlagenen Gattungen (welche indes, so lange sie nicht durch Character begründet sind, auch der Wissenschaft noch nicht angehören dürfen, soll die Entomologie nicht zur bloßen Tradition ausarten), die für dieselben gewählten oder aufgenommenen Namen nicht alle zu denen, an deren Gebrauch man sich nicht erst zu gewöhnen hätte, so kommen auch einzelne vor, mit denen man sich schwerlich je wird befremden können, z. B. Eva, Bathsheba, Acis (da wir schon Akis haben), Australica, Guyanica u. a. Dafs die Arthennennungen des Verf. oft denen, unter welchen dieselben Arten von Anderen beschrieben sind, untergeordnet werden, macht einen unangenehmen Eindruck.

Die im verflussenenen Jahre erschienehen Lieferungen der Hi-stoire naturelle et iconographie des insectes Coléoptères, par M. M. le comte de Castelneau et Gory enthalten Fortsetzungen der Monographie der Bupresten.

Von der Iconographie et histoire naturelle des Co-léoptères de l'Europe, par M. le comte Dejean et M.
A. Boisduval ist die 11te Lieferung des vierten Bandes ausgegeben, welche den Schluss der Caraben enthält. Bis hierher ist das Werk nur ein Auszug aus den *Spécies général des Coléoptères* des Grafen Dejean. Die treffliche Fortsetzung dieses Werkes durch Aubé ist erst 1837 publicirt worden.

Erfreulich ist das gegenwärtig raschere Fortschreiten der Insecten Deutschlands von Jacob Sturm, und wenn auch die neueren Bändchen an Umfang den älteren merklich nachstehen, bietet doch die immer wachsende Kritik des Inhalts wohl hinreichenden Ersatz für die geringere Bogenzahl.

Von einigen neuen Türkischen Käfern hat Ménétries im *Bull scientif. de l'Acad. de St. Petersbourg*, I. No. 19. vorläufig die Diagnosen mitgetheilt, die gegenwärtig wohl um so weniger näher zu erörtern sind, als der thätige Verf. sich vorbehalten hat, mit den ausführlicheren Beschreibungen einige Berichtigungen seiner früheren Bestimmungen folgen zu lassen.

Im ersten Bande der Annalen des Wiener Museums der Naturgeschichte beschreibt Kollar 18 Käferarten der Kaiserl. Sammlung.

Unter diesen ist eine mit *Cyekhus* nahe verwandte, durch Grösse, Eleganz der Gestalt und Seltenheit sehr ausgezeichnete Form der Cara-
Einige neue exotische Käferarten aus der Sammlung des
Sir Patrick Walker finden sich in Jardine’s Magazine of
Zoology and Botany p. 251—57. von Westwood beschrie-
ben und auf der Tafel 7. abgebildet.

n. 1. Eine neue Gattung Distipsidera aus der Familie der Ci-
cindela. Die Lefze ähnlich wie bei Therates, ebenso kein Zahn in
der Anordnung des Kinnes, aber die sogenannten innern Maxillartaster
sind vollkommen entwickelt, das zweite Glied der Lippentaster ist auf-
getrieben, wie bei Dromica und Euprosopus, und das vorletzte Fuß-
glied ist einfach. Die Körperform erinnert sehr an Iresia, ebenso ist
die Sculptur der Flügeldecken vollkommen wie bei der letzten genannten
Gattung. Die Färbung und Zeichnung der Flügeldecken erinnert an
Cicindela. Die einzige Art, D. undulata, ähnlich ist schwärzlich-kupfer-
farben, mit einem langen weißen Mondfleck an der Schulter, einer abge-
kürzten zackigen Linie in der Mitte, und einem einfachen Fleck an der
Spitze der Flügeldecken. Die Lefze ist gelb, an den Seiten schwarz.
Körperlänge 7½ Lin. Vaterland vermutlich Neuvolland. — n. 2. Bu-
prestis decipiens, eine ausgesuchte Art von ruther Farbe, und
der lucesartigen Form der Bupr. russpennis Kirby, Boisl., aber viel grö-
ßer, aus Neuvolland. — n. 3. Cladatoma ovalis aus Brasilien, 6 Lin.
lang, braun mit gelbgemalten Flügeldecken. Diese neue Gattung gehört
zur Familie der Cebionen, und zwar ist sie aufs Nächste mit Ptita-
dactyla Dej. (nicht Itlig.) verwandt, hat aber einfache Klauen. In den
Mundtheilen zeichnen sich die in lange schmale häutige Lappen zerschli-
essenen Maxillaraden und Zunge aus. — n. 4. Hyboma carinata aus
Südamerika, 7 Lin. lang, mattschwarz, mit in der Mitte sehr erhabenem
zweikleimigem Halsschild und hückrigen Flügeldecken. — n. 5. Geotru-
pes leithroides, 9½ Lin. lang, von der breit-halbkugeligen Gestalt des
G. latus Sturm, ebenso schwarz und glatt, aber mit einer Aushöhlung
auf dem Halsschild, und mit einem kurzen aufrechten Horn auf dem
Kopf. Als Vaterland ist Südamerika angegeben: wenn es nicht die
Westküste Südamerika’s wäre, möchte man doch eher in Africa die
heimath des Thieres vermuten.

Ebenso beschreibt Saunders in den Transact. of the En-
tomol. Soc. of Lond. p. 149. folgende Käferarten aus Montevi-
deo (Südbrasilien):

Languria latipes, Pterotarsus bimaculatus (von La-
parte schon früher unter demselben Namen in Silbermann’s Revue
Entomol. III. 16. p. 174. beschrieben), Callirhipis Hoodii, Lystrongyechus pulchellus, Prostenus laticornis (zwischen Lystrongyechus und Prostenus existirt nicht der geringste Unterschied), und Platypus (Tesserocerus) insignis. Letzterer zeichnet sich in dem einen Geschlechte durch einen bogenförmigen, nach innen gerichteten Fortsatz am Ende des ersten Fühlergliedes sehr aus, und weicht von Platypus, den er sonst im Habitus vollkommen gleicht, in den Mundtheilen, namentlich durch deutlich viergliedrige Maxillartaster und durch das Vorhandensein zweier Maxillarladen so wesentlich ab, daß man die Untergattung Tesserocerus, die vom S. für dies merkwürdige Thier gebildet worden, wohl zu einer eigentlichen Gattung erheben könnte.

Aus der Familie der Carabinen beschreibt Solier (Annal. de la Soc. Ent. de France V. p. 589) einige Gattungen, die, da Brullé, seine Abhandlung schon im Mspl. benutzend, ihn mit der Bekanntmachung zuvorgekommen, zwar nicht mehr ganz, aber bei der genauerer Darstellung der Charactere noch immer zu beachten sind.

schwer zu begreifen, wie Sol. bei den so deutlich ausgeschnittenen Vorderschilden den Käfer an *Nebria* anreihen konnte.

Sehr ausgezeichnet scheint eine neue Gattung, die in die Nähe von *Catascopus* und *Heluo* gehören möchte, zu sein, welcher Newman in *Entomol. Magaz.* vol. III. p. 499. unter dem Namen *Aenigma* gedenkt. Die Leiste ist verlängert, am Ende gerundet, und bedeckt die Mandibeln; diese sind lang, spitz und einzähnig; das Kinn ist tief ausgebuchtet; die Ligula einfach, gerundet; die Endglieder der Taster sind abgestutzt; das Halschild ist herzförmig; die Flügeldacken sind etwas abgestutzt, am Hinterrande mit einer durchsichtigen Haut eingefäst; die Beine kurz; die Füße einfach. Die einzige Art *A. Iris*, 1 Zoll lang, behaart, violet, mit schwarzen Fühlern, Beinen und Munde, punktiertem Kopfe und Halschilde, 8 Streifen auf jeder Flügeldacke, und zwei Punktreihen in jedem Zwischenraum, ist in Neu-Holland zu Hause.

Ueber die Gattungen *Brachinus* und *Ditomus* wird Solar durch die Anfechtungen Brullé's gegen die von ihm früher als eigene Gattungen getrennten Formen der obengenannten Gattungen veranlaßt, in den *Annal. d. l. Soc. Ent. de Fr. V.* p. 691. einige Bemerkungen zu machen, aus denen hervorgeht, daß er jetzt selbst, nachdem er mehrere Arten untersucht, die früher aufgestellten Unterschiede nicht mehr so sicher findet, und wenigstens Brullé nicht Unrecht giebt, wenn er die zuerst genannten Gattungen, so wie er es gethan, bestehen läßt.

Die Dänischen Amaren hat Schiödte in Kröger's Naturhistorisk Tidskrift monographisch bearbeitet, und im Ganzen 28 Arten aufgeführt, nämlich:

1) aulica, 2) coneceiuscula (diese Art ist dem Salzboden eigen-
thümlich, kommt in Deutschland am Mannsfelder Salzsee vor, ist aber vom Ref. auch am Pommerschen Seeufer gefunden, wahrscheinlich wird sie in Dänemark auch nur am Strande zu finden sein), 3) fulva, 4) ingenua, 5) lata (consularis — denn Carab. latus F. ist einerlei mit A. apicaria), 6) patricia, 7) nobilis, 8) apricaria, 9) coneceius-
bris, 10) melano\(\ldots\)lic\(\ldots\)a, 11) bifrons, 12) maritima, 13) trivialis, 14) gra-
naria, 15) lucida, Car. lucidus Duft., 16) familiaris, 17) lenticularis, 18) communis, 19) formosa, 20) lunicollis, 20) limbata, 22) vulgaris, 23) trivialis, 24) plebeia, 25) cylindrica, 26) obsoleta, 27) similata, 28) acuminata. Von den angeblich neuen Arten soll coneceiusbris zur Abteilung Bradytus, melano\(\ldots\)lic\(\ldots\)a und maritima zu Celia, lenticularis, formosa, lunicollis, limbata und cylindricollis zu den Amaren im enge-
ren Sinne gehören. Da dem Ref. die dänisch abgefassten Beschrei-
bungen nicht hinreichend verständlich sind, muß er sich auch bei diesen oft fein unterschiedenen Arten alles Urtheils über dieselben enthalten, kann es indessen doch nicht unterlassen zu bezweifeln, daß n. 7. A. nobilis, die auf den österreichischen Gebirgen einheimisch, schwerlich in Dänemark vorkommen möchte, richtig bestimmt sei. Die in einer Anmerkung zu A. vulgaris beschriebene A. septentriionalis aus Lapp-
land ist A. erratica Sturm, Carab. erraticus Duft., An. punctulata Dej.

Von Beschreibungen einzelner Arten sind zu bemerken:

1) Graphipterus trivittatus Gory (Annal. de la Soc. Ent. V.
p. 209. pl. 5. A.) vom Cap, dem G. trilineatus sehr ähnlich, haupt-
sächlich aber durch den einfachen schwarzten Nathstreif unterschieden. 2) Anthia costata Gory, ebendas., gleichfalls vom Cap, scheint mit der A. limbata Dej. identisch zu sein. 3) Carabus basiliki\(\ldots\)e Chevr. (Gaérin Magaz. d. Zool. Cl. pl. 169.) von Puerto Rico, eine sehne Art, dem C. splendens F. zu vergleichen, ähnlich und eben so schön gefärbt, die Flügeldecken haben aber einige schwärzliche Längslinien, und der ganze Körper ist weniger schlank. Fabricius gibt bei seinem C. splendens Jamaica als Vaterland an. Chevrolat wirft also die Frage auf, ob der bekannte Käfer von den Pyrenäen auch wirk-
lích der Fabrieksche C. splendens und dieser nicht vielmehr eine wirklich auf den Antillen einheimische Art sei. Da Fabricius seinen C. splendens aus der Bosc'schen Sammlung beschrieben hat, hätten wir aus Paris eher die Lösung dieser Frage als die Frage selbst erwar-
ten sollen.

In Bezug auf die Entdeckung Audouin's, daß Aëpus fulve-
scens von einer Luftblase umgeben unter dem Meereswasser lebe,

Aus der Familie der *Dytiscen* beschreibt Babington in den *Transact. of the Ent. Soc. of Lond. I. p. 175.* fünf Arten der Gattung *Haliplus*, die bisher mit *H. ferrugineus* verwechselt wurden, die gegenwärtig aber auch fast sämtlich wohl unterschieden sind:

Über das Leuchten der Lampyren bemerkt Carrara, dass bei *Lampyris Italica* das Licht lebhafter, blauer und ungleicher sei, als bei *L. noctiluca* und *splendidula*. Er hält das Leuchten für Phosphoreszenz und hat bei *L. Italica* einen zelligen Luftgang vom Munde bis zum Hinterleibsende sich erstreckend aufgefunden. Der Zutritt der auf diesem Wege dem Leuchtkörper willkürlich zugeführten Luft soll eine mehr oder minder lebhafte Verbrennung des Phosphor veranlassen (!). *Lamp. noctiluca* und *splendidula* haben den luftführenden Apparat nicht, daher das schwächere Licht bei ihnen. (*L'Institut p. 424.*)

Einen Beitrag zur Naturgeschichte der Gattung *Cantharis* (*Telephorus*) gibt Blanchard in Guérin's *Mag. de Zool. Cl. IX.* p. 165., wo er die Larven von *C. fusca* und *livida* abgebildet.

Die Larve von *C. livida* unterscheidet sich von der der *C. fusca*, die wohl überall hinreichend bekannt ist, durch nichts als durch eine mehr braune Farbe. Auch des bekannten Hervorkommens der Larve der *C. fusca* auf dem Schnee erwähnt B., gegen seine Erklärung dieser Erscheinung aber, dass nämlich die Larven unter der dichten Schneedecke Gefahr liefen zu ersticken, möchte sich wohl noch mehreres einwenden lassen.

Aus der Familie der Ptinen hat Robineau Desvoidy in den Bruchstücken verschiedener Bienennester einen *Ptinus* gefunden, den er für neu hält, und *tricarinatus* nennt. Er soll sich dadurch von allen anderen Arten seiner Gattung unterscheiden, dass er ungeschlüpft ist. Die sehr dürftige Beschreibung (*L'Institut p. 335.*) enthält nichts, was nicht auf den so sehr verbreiteten *Pt. latro* paßte, dessen Weibehen mit den Weibchen fast aller andern *Ptinus*-Arten in dem Punkte übereinstimmt, den R. D. als besondere Eigenthümlichkeit seiner neuen Art hervorhebt. — Über *Ptinus fur* berichtet Audouin,
daß er in den Mehlmagazinen zu Versailles in großer Menge vorgekommen sei. (L'Institut p. 426.)

Über die Familie der Dermesten theilte Audouin die interessante Entdeckung Brullé's mit, daß Anthrenus und alle ihm verwandte Gattungen mit Einschluß von Allagenus und Megatoma ein einziges, aber sehr deutliches Nebenauge mit auf der Stirn haben, — der einzige Fall von einem einzigen Nebenauge. (Isis.)

Einige neue der Gruppe der Cetonien angehörende Arten beschreibt Lue. Buquet in den Annu. d. l. Soc. Ent. V. p. 201. pl. 5. B., und zwar:

Goliathus Grallii, von der Form des G. micans, aber bedentend kleiner, grün, mit gelbem Außenrande der Flügeldecken, und einem schlanken ankerförmigen Fortsatz auf dem Kopfschilde, wahrscheinlich von der Westseite Africa's; Goli. Rhinophylus Wied., das Weib, ungleich seltener als das Männchen, mit einfachem Kopfschilde; Macronota Luxerei, der M. (Ceton.) regia F. in der Gestalt ähnlich, von Java, Gnathocera guttata (Ceton. guttata Ol.), mit einem auf-
aufrechten gewundenen Hora an jeder Ecke des Kopfschildes und einem dritten auf der Mitte der Stirn, *Gnathocera Petelii* (Dicheros decorus der Gray'schen Monogr.) von Java und *Macroma bilineata* vom Senegal.

Im fünften Bande der *Annales de la Soc. Ent. de France* fährt Solier fort, die erste Abtheilung der Heteromeren gruppenweise durchzunehmen. In den früheren Jahrgängen waren die *Erodites*, die *Tentyrites* und die *Macropodites* bearbeitet worden. Die vorliegenden vier Hefte enthalten die vier Gruppen *Pimelites*, *Nyctelites*, *Asidites* und *Akisites*.

Die Nyctelites zerfallen in 8Gattungen, die nach den Angaben des Verf. sich auf folgende Weise unterscheiden: Entomoderes ist die einzige Gattung, bei der das Halsschild einen Einschnitt am Hinterwinkel hat, und wo die Zunge an der Spitze b ornig und beständig vor tretend ist. Bei den übrigen allen ist die ganz häutige Zunge in der Regel unter das Kinn zurückgezogen. Nyctelia zeichnet sich durch Vorder schienen, die an der Spitze in einen langen Zahn auslaufen, wie

Die Asidites zerfallen in zwei Abteilungen, nachdem das Kinn die Mundöffnung von unten ganz bedeckt, oder an den Seiten desselben ein breiter Spalt frei bleibt. Unter den zur ersten gehörigen Gattungen läßt bei Asida und Pelecyphorus das Kinn an den Seiten im Grunde noch einen schmalen Spalt offen, und das vorletzte Fühlerglied ist nicht ausgerandet, indes sich Pelecyphorus von Asida durch breitere und mehr unregelmäßig dreieckiges Endglied der Maxillartaster und durch sehr kurze mittlere Glieder der Flügelrippen unterscheidet. Bei Microscatia schließt das Kinn die Mundöffnung nicht nur auf Vollkommenen, sondern übertritt sogar mit seinen Rändern dieselbe, und das vorletzte Fühlerglied ist deutlich ausgerandet. Machla zeichnet sich auf der Unterseite des Halsschildes durch eine weite Rinne neben dem Seitenrande, zur Aufnahme der Fühler, aus, und Stenosides weicht durch seinen an den Seiten nicht winklingen, weniger tief in das Halsschild eingesenkten Kopf und mehr vorragende Augen ab. In der zweiten Abteilung ist bei Stenomorpha das Kinn an der Basis nur mäßig eingezogen, und das Endglied der Lippentaster aufgetrieben, eiformig; bei Cardigenius und Scotiatus ist das Kinn an der Basis stark verengt, das letzte Glied der Lippentaster fast cylindrisch, bei erstem die Vorderschienen dreieckig, bei letzterem schmal, nach der Spitze nicht erweitert, das erste Glied der hinteren Füße bei erstem stark zusammengedrückt. Heteroscelis endlich zeichnet sich durch seine in der Mitte scharf gezahnten Vorderschienen aus, und erinnert durch sein tief eingeschnittenes Kopfschild, so wie durch sein ganzes Außere schon sehr an die Pedinen. — Die schwierige Gattung Asida enthält beim Verl. 42 Arten, die er nach der Sculptur der Flügeldecken zweckmäßig einteilt. Die Arten mit unregelmäßigen unterbrochenenrippenförmigen Ranzeln auf denselben zerfallen wieder in solche, wo die Hinterecken des Halsschildes wenig, und solche, wo sie sehr merklich hervortreten. Zu den ersten rechnet der Verf. die im südlichen Europa häufige Art, die er für Opatrum griseum F. hält, die aber richtiger der Platynotus morbillosus F. ist, und also A. morbillosus hätte genannt werden sollen. In wiefern die von Sol. beschriebenen A. vi-

Die vierte der im gegenwärtigen Jahrgange von Solier abhandelten Gruppen sind die Akisites. Gattungen mit kugeligem Halschilder sind Cacicus und Elenophorus. Die letztere (bekanntlich Akis collaris F.) hat ein mondähnliches Kinn, während bei Cacicus derselbe Theil fast so lang als breit, nach vorn nicht verengt, an der Spitze leicht ausgebuchtet ist. Cacicus enthält ebenfalls nur eine Art, welche von Lucardaire in Tucuman entdeckt, und nach der Abbildung in Guérin's Iconographie du Regne animal in der Form dem Elenophorus collaris ähnlich ist. Ein gerandetes Halschild mit scharfen Ecken haben Morica mit kurzen, dicken, Akis mit langen, schlanken Vorder-

In der Familie der Rüsselkäfer ist das weitlängige und umfassende Werk Schüpberr's: *Genera et Species Curculionidum* wieder um einen Band vorgeschritten, welcher, die Langrüssler beginnend, bis zum Ende der Abtheilung der Baridier reicht, und im Ganzen 114 Genera abhandelt. In einem Anhang beschreibt der Verf. die beiden, noch den Orthoceren angehörenden, zwischen *Brentlus* und *Clyas* einzureichenden Gattungen *Antliarhinus* und *Platymerus*, von denen beiden ihm außer dem schon in vielen älteren Werken vorkommenden *A. Zamiæ* durch die Reisenden Ecklon und Zeiger mehrere Arten zugekommen waren, die sämtlich am Cap in Zamiæ leben.

Ref. hat in einem Aufsatze dieses Archivs den Versuch gemacht, die Gattungen der Borkenkäfer fester zu begründen. Die hauptsächlichsten Unterschiede liefern die Mundtheile, die Fühler und zum Theil auch die Beine. Die gesammten Büstrichen zerfallen nach der Gestalt und Einführung des Kopfes
in drei Gruppen. Die erste derselben entspricht den Hylesinenu
Latreille's und characterisirt sich durch einen freien, in einen
curzen Rüssel verlängerten Kopf, zu dessen Aufnahme sich vor
der Einlenkung der Vorderbeine eine mehr oder weniger be-
trächtliche Vertiefung befindet. — Die zweite Gruppe, die ei-
gentlichen Bostriechen, sind durch einen in das kapuzenförmige
Halschild zurückgezogenen Kopf characterisirt. — In der letz-
ten Gruppe ist die einzige Gattung Platypus aufgeführt, durch
den freien, weder zurückgezogenen, noch gesenkten Kopf von
den übrigen abweichend. Die Maxillartaster sind blattartig zu-
sammengedrückt, anscheinend zweigliedrig, doch scheint das
zweite Glied noch ein drittes einzuschließen. Die Characteri-
stik der Genera s. im 1sten Bande des 2ten Jahrg. p. 45 fg.

In Frankreich hat sich Scolytus (Ecoeptogaster) py-
gmacus Gyll. im Forste von Vincennes so nachtheilig gezeigt,
daß 50.000 Stämme 25 — 30jähriger Eichen gefällt werden muß-
ten. Der weibliche Käfer bahrt sich in einem Risse unter die
Rinde des Stammes, frisst unter derselben einen Quergang, und
legt seine Eier zu beiden Seiten desselben ab, so daß die Gänge
der Brut nach oben und nach unten gehend so nahe an einan-
der liegen, daß die Zwischenwände nur sehr dünn bleiben,
ohne daß jedoch je eine derselben durchbrochen würde. (Feis-
hamel in den Annal. d. l. Soc. Ent. V. p. XI., Andouin
ebendas. p. XV. und l'Institut. p. 157.)

Asmuss in Dorpat theilt in den Ann. de la Soc. Ent. V.
p. 625. eine interessante Beobachtung mit, wonach Apane
elongata und substriata Gyll. wohl als Männchen und Weib-
chen zusammengehören möchten. Er fing nämlich diese selte-
nen Thierchen gleichzeitig an Mehrzahl im Fluge, und ist ge-
neigt, A. substriata für das Weibchen, A. elongata für das Män-
cchen zu halten. (Auf die große Verschiedenheit der Geschlech-
ter bei den größten Arten dieser Gattung hat Klug in dem
naturhistorischen Atlas zu Erman's Reise aufmerksam gemacht,
und A. muricata und monacha, so wie A. francisca und car-
melita als die beiden Geschlechter zweier Arten betrachtet.

Eine bemerkenswerthe Abweichung in den Stigmen der
Bockkäfer ist von F. J. Pictet beobachtet worden. Sie be-
trifft die Stigmen des Meso- und Methothorax, und besteht darin,
daß, während sonst das Stigma durch eine angespannte Haut geschlossen ist, oder einen häutigen Sack bildet, welche von 5 bis 20 Tracheen durchbohrt werden, oder die Trachea sich einfach und ungetheilt im Stigma endigt, bei mehreren Arten der genannten Familie, namentlich Hnamaticerus heros, cerdo, Cerambyx moschatus und Trachyderes succinctus, die Stigmen der erwähnten Thoraxabschnitte hornige, elastische Kapseln bilden, in welche sich eine große Menge von Tracheenästen münden, deren Anzahl P. auf 150 schätzt; die meisten von sehr gerin- gem Durchmesser münden in die vordere Hälfte, in die hintere nur einige wenige, diese aber von beträchtlichem Umfange. Bei Prionus scabricornis findet sich diese eigenthümliche Einrichtung des Stigma nicht, eben so nicht bei der Larve des Ham heros. Auch die Hinterleibssligmen sind bei den obengenannten Arten vollkommen von der gewöhnlichen Bildung. (Mem. d. l. Soc. de Physiq. et d'hist. nat. de Genève, tom. VIII. p. 393 — 98.)

weichender Exemplare die folgenden 6 Arten: 4) Cayennensis, 5) transversalis, 6) intermedius, 7) rubipes, 8) subfasciatus, 9) interruptus als geringere oder stärkere Abänderungen rechnen möchte, unter denen die T. subfasciatus zu den merkwürdigsten gehören würde, wo näm-
lich die gelbe Binde der Flügeldecken ganz verschwunden und nur noch die schwärzliche Binde zu bemerken ist, welche sonst die gelbe einzuschließen pflegt, 10) thoracicus, 11) Germari, 12) striatus (von Thunberg unter dem Namen Ceramb. 8-lineatus in den Act. Petrop. beschrieben), 13) proximus, 14) striatus, 15) lineolatus, die drei letz-
ten wieder nur Abänderungen einer Art, nämlich des Fabricischen striatus, wie auch 16) taeniatus, 17) scapularis, 18) dimidiatus, 19) con-
formis, 20) notatus mit geringerer oder stärkerer Ausbreitung des Schwarz auf den Flügeldecken als Abänderungen, zwischen der alle möglichen Zwischenstufen vorkommen, zum Fabricischen dimidiatus gehören, 21) bicolor. So weit der Inhalt der hier zu berücksichtigenden Lie-
ferungen.

Eine ausgezeichnet schöne neue Lamia, L. Norrisii von Sierra Leone beschreibt Westwood in den Transact. of the Entom. Soc. of Lond. l. p. 148. pl. 15. f. A. Sie gehört zur Gruppe der L. regalis (Sternatomis Percheron), ist 1\(\frac{1}{2}\) Zoll lang, schwarz, die Flügeldecken am Rande hinter der Mitte breit gelb, der Rücken des Hinterleibes und die Unterseite der beiden ersten Ringe desselben ebenfalls gelb, die Beine und die Unter-
seite der Fühler mit grünlichem Filze überzogen.

Ein neuer Cryptocephalus, Cr. Loreyi Dej., in Pie-
mont vom Dr. Lorey entdeckt, noch größer als Cr. imperialis, schwarz, das 2te bis 4te Fühlerglied gelb, die Flügeldecken roth, die Nath und drei außen erweiterter und abgekürzte Binden auf denselben schwarz, findet sich von Solier in den Annal. d. l. Soc. Ent. V. p. 687. pl. 20. f. A. beschrieben und abgebildet.

Leon DuFour macht darauf aufmerksam, daß die Larve der Colaspis barbara im Süden Europas dem Feldbau sehr nachtheilig sei, und daß sie namentlich die Felder von Medi-
cago sativa bis auf die Stiele zu verheeren im Stande sei. Sie ist wie die übrigen Chrysomelen-Larven gestaltet, 6füüs, 3 Lin. lang und etwa 1 Lin. dick, schwarz und glatt. Die Landleute im Königreich Valencia nennen sie Cuc, und wissen sie nicht anders zu vertilgen, als durch Einsammeln mittelst eines hamen-
artigen Instruments. Der Käfer findet sich auch auf derselben Pflanze, aber an Zahl zur Larve nur im Verhältnifs wie 1 zu 20.

Es finden sich dort 23 Arten, nämlich 1 Claviger (soueolatus), 3 Euplectus (ambiguus, signatus, sulcicollis), 1 Trinimum (bre- ricorne), 1 Typhus (niger), 11 Bythinus (puncticollis, clavicollis, glabricollis (Q von bulbifer), Cherrolati (Q von puncticollis), bulbifer, securiger, Burrelli, luniger, Curtisi, Sternbergi und regularis), 5 Bryaxis (Juncorum, xanthoptera, fossulata, sauginea, longicornis: Q der vorigen; daß diese in dieser Hinsicht vom Verf. mit B. fossulata verglichen wird, ist wohl nur ein Verschen), 1 Pselaphus (Heisi).

Victor von M. beschreibt in Guérin’s Mag. d. Zool. Cl. IX. pl. 171. neben der Bryaxis sauginea und longicornis eine dritte, diesen verwandte Art, die, wie es scheint, überall häufig mit den beiden anderen genannten vorkommt, unter dem
ihm von Ref., der sie früher auch für eigene Art hielt, mitgetheilten Namen, B. laminata (nicht laminatum).

Später hat Ref. sie als Abänderung des Männchen von B. sanguinea angesehen (Käfer der Mark Brandenb. I. p. 268.), indem der blech-artige Fortsatz auf der Brust, auf welchem der Name hindeutet, der einzige Unterschied von der anderen Form des Männchen mit einfacher Brust (B. longicornis Leach.) ist.

Endlich ist noch eine kleine Abhandlung (Ueber eine Familie, Sippe und Gattung aus der Ordnung der Käfer) zu erwähnen, in welcher Gisstl einen sehr merkwürdigen Käfer beschreibt, der vom Prinzen Max von Neuwied in Brasilien aufgefunden ist.

O r t h o p t e r a.

Eine Decade neuer Orthopteren beschreibt in den Annalen des Wiener Museums p. 207. der Graf Marschall.

Eine Monographie der von Serville gegründeten, der Familie der Acrydien (Gryllus F.) angehörenden Gattung Omexecha von Blanchard findet sich in den Annal. de la Soc. ent. de France V. p. 603.

Der Verf. theilt die Gattung in zwei Familien, nämlich Arten mit längeren zusammengedrückten Fühlern bei ungefleckter Unterseite, und solche mit kürzeren runden Fühlern und mit punktförmigen schwarzen Flecken auf der Unterseite, eine Einteilung, die um so natürlicher zu sein scheint, als die Arten der ersten Familie ausschließlich in Südamerika, die der zweiten in Nordosten Africa’s, in Ostindien und Neuholand zu Hause sind. Die erste Familie enthält 5 Arten aus Brasilien und Buenos Ayres, unter ihnen den Typus der Gattung, O. virescens Serville, die zweite 7 Arten, davon 1 aus Aegypten, 1 von Senaar, 3 von Bombay, 1 von Malabar und 1 aus Neuholand. Außerdem finden sich noch drei Arten in Savigny’s Expedit. d’Egypt. abgebildet, von denen indes nichts als die uncolorirte Abbildung vorhanden ist.

Neuroptera.

Er will dieselben mit Rücksicht auf die Organisation der ausgebildeten Insekten sowohl als die Verwandlung in folgende sechs natürliche Familien getheilt wissen;

1) Subuticornes, so wie Latreille sie feststellte (Ephemera, Libellula, Aeschna, Agrion).
2) Planipennes, die Hemerobien und Myrmeleonen, mit dachförmigen, gegitterten Flügeln, deutlichen Nerven und zahlreichen Quernerven, nicht gefalteten, den Oberflügeln gleichenden Unterflügeln, vollkommener Verwandlung. (Mit 6 Tastern und keulförmigen Fühlern: Myrmeleon, Ascalaphus; mit 4 Tastern und fadenförmigen Fühlern: Hemerobius, Osmylus, Nymphia, Corydalis, Chauliodes, Sialis, Raphidia, Mantispa?)
3) Panorpatae, mit schnabelförmigem Munde, horizontalen Flügeln, den Oberflügeln gleichenden, nicht gefalteten Unterflügeln, wenig zahlreichen Quernerven, mit unbekannter (mathmatisch vollkommener) Verwandlung. (Nemoptera (nur scheinbar hierher gehörend), Bittacus, Panorpa, Boreus).
4) Termitiini, mit höchstens 4 Fußgliedern, mit wenigen Quernerven in den Flügeln, einem den Orthopteren ähnlichen Bau des Mundes und unvollkommener Verwandlung (Termes, Psocus).
5) Perlidae, mit kleinen Mandibeln, horizontalen Flügeln, gefalteten Unterflügeln, einem den Orthopteren ähnlichen Bau des Mundes und unvollständiger Verwandlung (Perl, Nemoura).
6) Phryganeidae, ohne Mandibeln, mit dachförmigen Flügeln und vollkommener Verwandlung.
Der Verf. ist ferner der Ansicht, daß die drei Familien mit unvollkommener Verwandlung vorausstehen müßten, so daß Termes den Uebergang zu den Orthopteren macht, und die Libellen sich an die Hemerobien, namentlich an die Myrmeleonen anschließen, so daß die 6 Familien dieser Ordnung auf einander folgen: Termilini, Perlidae, Subulicornes, Planipennes, Panorpatae, Phryganidae.

Bei Sialis findet der Verf. in den Verwandlungsstufen eine große Analogie mit Raphidia, nur daß die Larve von Sialis im Wasser lebt, daher auch der den Respirationsorganen angehörende fadenförmige Anhang zu jeder Seite jedes Hinterleibsegmentes. Die Verwandlung zum vollkommenen Insekt geschieht auf dem Trocknen, in der Erde. Die bei Genf vorkommenden Sialis scheinen dem Verf. zwei Arten anzu gehören:

1) S. lutarius. Schwarz, Kapf und Halsschild hellgelb gespitzt, Flügel matt hellbraun mit schwarzen Nerven. Larve deutlich gelb gespitzt.

2) S. fuliginosus n. sp. Schwarz, Kapf und Halsschild dunkelgelb gespitzt, Flügel dunkelbraun, fast schwarz, mit schwarzen Nerven, Larve wenig gelb gespitzt.

Außerdem unterscheiden sie sich beständig durch eine helle Zeichnung auf der Unterseite des Kopfes, die beim erstieren ein Paar Striche, bei letzterem mehr ein längliches Herz bildet. Die letztere Art erscheint mindestens einen halben Monat später.

aus der Semblis viridis F., die durch die Bildung der Flügel charakterisiert wird.

Ueber dieGattung Emibia und ein Paar verwandter Formen hat J. O. Westwood eine sehr unterrichtende Abhandlung ge- liefert. (Transact. of the Linn. Soc. XVII. p. 369. t. 11.)

Embia ist den Termiten zunächst verwandt, stimmt mit diesen in der Bildung der Flügel und besonders auch im Bau des Mundes überein, unterscheidet sich aber durch eine gestrecktere Form, breitgedrückte Beine und stark erweitertes erstes Glied der Vorderfüße. Latreille gründete die Gattung auf eine Art, die in der Description d'Egypte abgebildet ist, wozu aber keine Beschreibung erschienen, und die Westwood auch nur nach dieser Abbildung bekannt ist. Es werden von ihm also auch nur die genau genommenen Zeichnungen Savigny's benutzt, um die Gattung Embia zu charakterisiren, und von den beiden verwandten Formen Oligotoma und Olynthka zu unterscheiden. Bei den beiden ersten sind die Maxillartaster 5., bei Olynthka 4gliedrig, bei Oligotoma sind die Fühler 11gliedrig, bei Embia nach Savigny's Zeichnung 15gliedrig (es scheint aber dieser Fühler nicht vollständig gewesen zu sein, denn zu einem unverletzten Fühler zählt Ref. deutlich 17 Glieder, und bemerkt am letzten Gliede auch die kleine Hervorragung an der Spitze, die W. bei Oligotoma bervorhebt). Außer der Zahl der Fühlerglieder, und dem Mangel der Quernerven zwischen dem 3ten und 4ten Längsnerv der Flügel bei Oligotoma findet sich zwischen beiden Gattungen kein wesentlicher Unterschied. Beide haben nur eine Art aufzuweisen.

Den Blutverlauf in den Flügeln von Hemerobius beobach-

Hymenoptera.

Die Terminologie der Nerven und Zellen des Vorderflügels der Hymenoptera hat Shuckard festzustellen versucht. (Transact. of the Entomol. Soc. of Lond. I. p. 208.)

zum Grunde gelegt, auf welche das aller übrigen Hymenopteren sich zurückführen lässt.

Es sind 55 Arten, darunter als neu beschrieben: 3 Ichneumon, 1 Phygadeuon, 1 Trachysphyurus (neue Untergattung von Cryptus, von Phygadeuon durch längere Beine und bedornte Schienen und Füße unterschieden), 1 Cryptus, 1 Pimpla, 1 Campoplex, 2 Megachile, 1 Coelioxys, 1 Ancylodexes, 1 Bombus, 1 Halictus, 1 Andrena, 1 Colletes, 4 Polistes, 3 Odynerus, 1 Discocclus, 3 Pompilus, 1 Chirodurus (neue Gattung zwischen Pompilus und Planiceps, Beine wie bei letzteren, Flügel und Mittelflügel wie bei ersteren), 1 Scolia, 1 Myrmecodes, 1 Myrmodes (keine rechte Myrmodes, sondern ein Männchen der vorigen Gattung), 1 Atta, 1 Myrmica, 1 Formica. Bemerkenswert ist das Vorkommen des Ophion lutes L. bei Port Famine an der Magellan-Strasse.

Ueber die Schwedischen Tenthreden hat G. Dahlbom eine umfassende Arbeit unter dem Titel: *Prodromus Hymenopterologiae Scandinaviae* begonnen.

Die bisjetzt erschienene erste Lieferung enthält außer einer ausführlichen, hauptsächlich geschichtlichen Einleitung in das Studium der Tenthreden die Gattungen Cimbex mit 5 Untergattungen und 8 Arten, Athalia mit 4 Arten, Hylotoma mit 10 Arten, Cyphoma (Schirozzerus Lstr.) mit 2 Arten, Lophyrus mit 9 Arten, Monocetenus (Lophyr. Juniperi Kl.) mit 1 Art, Cladius mit 3 Arten, unter denen eine, auch in Deutschland einheimische, Cl. luteiventris, neu.

Er fand die Weibchen derselben in Neuholland auf den Blättern einer Eucalyptus-Art im April. Sie legen ihre blafsgelben, länglichen, 2 Lin. langen und ½ Lin. dicken Eier in zwei Reihen in einen Einschnitt längst der Mittelrippe des Blattes. Die Larven erscheinen in wenigen Tagen, sind dunkelgrün mit glänzend schwarzen Köpfen, und fressen gesellschaftlich (anscheinend Nachts). Das Mutterinsekt verlässt seine Brut nicht, und sitzt schützend sowohl über den Eiern als über den jungen Larven so fest, dass es nur mit der äußersten Gewalt entfernt werden kann. Die so beobachtete Art ist 8 Lin. lang, ochergelb, eine Seitenlinie des Kopfes und Mittelleibes, die Spitze der Schienen

Als Fortsetzung seiner Arbeit über die parasitischen Hymenopteren gibt Haliday im Ent. Mag. N. 16. p. 38. eine Auseinandersetzung der Nees'schen Gattung Rogas, die er als eine Gruppe betrachtet, welcher auch noch Spothius und Hormius angehören, und die er in folgende Untergattungen theilt:

Teleas bildet hier eine Gruppe, die in 8 Gattungen zerfällt. 1) Baeus, kein Schildehen (auch keine Flügel); 1 Art: B. pumilio Haliday. — Bei den Ubrigen ist das Schildehen deutlich vorhanden. Bei den nächsten 5 haben die Flügel einen Costalnerven. 2) Gryon Haliday, Cubitalnerv in der Mitte des Flügels, Hinterleib ansitzend, mit gleich großen Segmenten; 4 Arten. 3) Telenomus Haliday, Flügel wie beim Gryon, Hinterleib ebenfalls ansitzend, das zweite Segment breiter als die übrigen; 26 Arten, bei zweiern die Fühler 10-, bei den übrigen beim G 12-, beim Weibchen 14-gliedrig. 4) Thoron Haliday, Flügel wie bei den vorigen, Hinterleib gestielt; 1 Art: Teleas metallicus Hal. bei Curtis, Teleas fornicatus Nees das G, T. solidus Nees das Q. 5) Xenonurus Walk., der Cubitalnerv nahe der Flügelspitze, die Fühler beim G wie bei den G von Psilus; 1 neue Art. 6) Teleas Ltr., Flügel wie bei der vorigen Gattung, Fühler beim G einfach; 30 Arten. (Die unter dem Namen T. varicornis Ltr. beschriebene Art fand Re. in Fabricius Sammlung als Pemphredon varicornis.) Einen Subcostalnerven im Flügel haben die beiden letz-
ten Gattungen: Scelio mit kurzen und Sparasion mit langen Maxillartastern; von jeder ist nur die eine bekannte Art aufgeführt.

Folgende Arten werden vom Verf. als Englische aufgeführt: Cleptes: semiaurata und nitidula; Chrysis: 1) ignita in 6 Varietäten, 2) Ruddii, von C. ignita durch einen feiner punktierten Hinterleib unterscheiden, 2) fulgida, 4) Stoudera, 5) anaxis (nicht anaxis Spin., sondern splendidula Rossi, rutilus Enc.: bei anaxis Spin. ist das 3te Hinterleibsssegment nur hinter den eingestochenen Punkten am Hinterrande schwarz), 6) bidentata, 7) succincta, 8) eyanea, 9) coerulipes, 10) Lenchii (von König unter dem Namen Chr. nitidula in German's Reise nach Dalmatien beschrieben), 11) Austriaca (vielleicht die Fabricische, aber nicht die von Pelletier, sondern dessen Chr. flammea und Chr. refugiais Spin.), 12) neglecta (eine neue Art, von der Färbung der vorigen, durch offene Randzelle ausgezeichnet, auch in Schweden und bei Berlin einheimisch); Euchroeus: quadratus (eigentlich von König benannt, und von ihm an Leach mitgetheilt, so daß das auf Leach's Auctorität aufgenommene Exemplar wohl ein Berliner ist, und die Art der Englischen Fauna nicht angehören möchte); Hedychrum: 1) regium (Abänderung des folgenden), 2) lucidulum, 3) coerulescens (im hiesigen Museum H. coerculum, dem coerulescens Lepell. ist ein Elampus), 4) ardens, 5) fervidum (Chrysis fervida F. ist ein kleiner Elampus, die hier beschriebene Art ist von Megerle H. rutilus benannt), 6) roseum, 7) auratum, 8) bidentatum (hier sind wohl mehrere Arten mit einander vermengt); Elampus Panzeri. (Zu Elampus gehören den Mundtheilen nach auch die drei letzten Arten von Hedychrum. Bei Elampus nämlich sind die Mundtheile sehr ähnlich wie bei Chrysis, die Ligula kurz, viel kürzer als die Lippentaster,
die Maxillarläden kurz und rundlich. Bei Hedychrum ist die Ligula sehr lang ausgezogen, und wie die ebenfalls gestreckten Maxillarläden lineiformig, reichlich so lang als die Taster.

Ueber die Lebensweise mancher Hymenopteren, besonders aus der Abtheilung der Fossores, hat J. O. Westwood verschiedene interessante Züge mitgetheilt, namentlich widerlegt er durch mehrere Beobachtungen die Annahme Lepelletier's de St. Fargeau, daß diejenigen Grabwespen, deren Vorderfüße nicht mit Dornen besetzt sind, nicht selbst graben könnten, und deshalb Parasiten anderer sein müßten. W. sah einen Pompilus petiolatus eine Spinnenins Nest tragen, und belauschte eine diesem verwandte Pompilus-Art und einen Miscophus bicolor, beide ohne Dornen in den Vorderfüßen, bei ihrer Arbeit, als sie Gruben im Sande machten. (Annal. d. l. Soc. Ent. de France V. p. 297.) Ammophila hirsuta beobachtete derselbe, wie sie für jede gefangene Raupe, und also für jedes zu legende Ei ein Nest grub. (Wir haben sehr vollständige Beobachtungen über die Naturgeschichte der Ammophila sabulosa, die für ihre Nachkommenschaft eben so sorgt. Frisch erklärt uns auch eben so einfach als wahrscheinlich, weshalb diese Wespen nur Spinnen oder Raupen von Nachtschmetterlingen für ihre Brut entragen.) Bemerkenswerth ist indes die Beobachtung W.'s, daß die Ammophilen ihre Beute mit den Vorderbeinen schleppen, während nach Shuckard's Angabe Oxybelus dieselbe zwischen den Hinterbeinen trägt. Bei Cerceris laeta überzeugte sich W., daß sie ihre Beute (einen Rüsselkäfer der Gattung Strophosoma) mit den Vorderbeinen festhält, und die Hinterbeine frei hat. Sapyga punctata sah er in die Gänge von Osmia coerulescens einschlüpfen, und giebt also der Meinung Raum, daß sie Schmarotzer dieser Bienen-Art sei. Auch Foenus iuculator sah er den Nestern der Osmia bicornis nachstellen, und ist deshalb geneigt anzunehmen, daß seine Larven wie die von Kuckucksbienen lebten (was bei der Annährung der Foenus an Ichneumon wohl weniger anzunehmen ist, als daß sie nach Art der letzteren sich verhalten.) Von Tryparylon figulus bestätigt W. die Linneische Angabe über seine Oeconomy, wie er die von anderen Insekten in Holz gemachten Gänge mit Sand auskleide, und sein Nest darin einrichte und für jedes Ei eine Spinne ein-
trage, so das also Lepelletier's Annahme, Linné's *Sphe克斯 figulus* sei *Pomphilus petiolatus*, völlig ohne Grund sei. Auch bemerkt W., das die von Lepelletier aus *Crabro tibialis* gebildete Gattung *Corynopus* auf einer falschen Beobachtung von 12 Fühlergliedern beim Männchen beruhe, das deutlich 13 vorhanden seien, dass sie also mit *Physoscelus* Lepell. (*Crab. ru-fiventris* Panz.) zusammenfälle, und dass beide in England unter dem Gattungsnamen *Rhopalum* Kirby schon früher zusammengestellt gewesen wären. (Transact. of the Ent. Soc. of Lond. I. p. 198.) *Sapyga punctata* beobachtete Robin eau Desvoidy in den Nestern zweier *Osmien*, deren unten Erwähnung geschehen wird, und eine andere Art, die *S. Chelostomae* genannt werden soll, fand er in den Nestern von *Chelostoma*. Da also *Sapyga* als Parasit nachgewiesen ist, will Herr R. D. sie aus der Familie der *Fossores* entfernt wissen (!) (I'Institut.).

Newport theilt eine Beobachtung über die gewöhnliche Wespe (*Vespa vulgaris*) mit, die eine frühere Mittheilung Dr. Darwin's weiter bestätigt, dass dieselbe die Insekten, die ihre Beute geworden, zu Bodeu zieht, ihnen Kopf, Beine und Flügel abreißt und mit dem Rumpf davonfliegt. N. sah aber so häufig dasselbe Maneuvre ohne Abweichung ausgeführt, dass er Darwin darin nicht beipflichten kann, wenn derselbe eine Art Ueberlegung bei den Wespen darin erkennen will. Es war an einer Stelle, die dicht mit blühenden Disteln besetzt war, im September, in der Mittagswärme, wo N. die Angriffe der Wespen auf die dort saugenden Schmetterlinge, vor allen auf Weißlinge und unter diesen vorzüglich auf *P. Rapae* zu beobachten Gelegenheit hatte. Ehe die Wespe mit einem übertalnen und auf die oben angegebene Art verstümmelten Schmetterlinge zu ihrem Neste flog, setzte sie sich auf einen nahen Baum und zerkaute erst den Leib. Auch Dipteren, z. B. *Eristalis*, griff sie an und verfuhr mit ihnen ebenso wie mit den Schmetterlingen, ohne sie jedoch zur Erde zu reißen. (Transact. of the Ent. Soc. of Lond. I. p. 228.)

Aus der Gattung *Odynerus* beschreibt Wesmael in den Bull. de l'Acad. royal. des scienc. et belles lettr. de Bruxelles tom. III. p. 44. zwei Arten, die er früher mit *O. parietum* verwechselt hatte.
(Seine O. parietum ist Vespa parietina Lin.) Die eine Art, O. oviventris, unterscheidet sich von dieser, daß der Stiel des Hinterleibes nicht durch einen scharfen erhabenen Rand begrenzt wird, und daß die erste Binde des Hinterleibes einfach ist, die zweite, O. trifasciatus, durch schlankere Gestalt des Hinterleibes und durch das Verhältnis des ersten Ringes, dessen hintere Portion nur 1½ so breit als lang ist. (Letzterer, der von Vespa trifasciata F. wohl unterschie- den ist, ist in unserer Sammlung O. civicus benannt.)

Robineau Desvoidy beobachtete, daß zwei Osmia-Arten in den leeren Schneckenhäusern von Helix adspersa und nemoralis bauen, nämlich O. bicolor Latr., und eine, welche er für neuen hält, und für die er den Namen helicicola bestimmt hat. Eutolphe kamen als Feinde der Larven vor. (l'Institut.)

Die unmittelbare Beobachtung bestätigte dies Resultat. Im An- fange Juli, als die Königin mitten im Legen der Drohnenecier begriffen, und der Stock mit Honig, Eiern und Brut in allen Altersstufen wohl versehen war, entfernte B. die Königin. Die Ordnung des Stockes wurde dadurch nicht gestört. Es ergab sich, daß die Arbeitsbienen ihre Verwandlung in 3 Wochen,

Rhipiptera.

Die von Pickering aufgefundene weibliche Andrena beherbergte drei Individuo des Stylops, eins vollkommen entwickelt, ein zweites im Larvenzustande war von P. selber entfernt worden: die Andrena mit dem dritten Exemplar, gleichfalls einer Larve, theilte P. zur näheren anatomischen Untersuchung an Westwood mit, die diesem eben so unterrichteten als feinen Beobachter folgende wertvolle Resultate gab. Der Körper der Stylops-Larve steckt im Innern des Hinterleibes der Biene, und nur der flachgedrückte hornige Kopf tritt vor, und
liegt zwischen zwei Hinterleibsringen. Zwischen dem Kopf und Körper der *Stylops*-Larve wird durch eine Einschnürung eine Art Hals gebildet, und an dieser Stelle befestigt ein seines Faden die Schmarotzerlarve mit dem Hinterleibe der Biene. Zur Verwandlung streift die Nymph die Larvenhaut nicht ab, daher außer Jurine Niemand die eigentliche Puppe beobachtet hat. Die Eingeweide des Hinterleibes fand W. bei der untersuchten Biene, die drei *Stylops* genährt hatte, bedeutend geringer als bei anderen Individuen, und die Eierstöcke vollkommen atrophisch. (Wobei aber in Betracht zu nehmen ist, daß die Biene ganz frisch entwickelt war, und daß namentlich die Eierstücke in diesem Zustande noch sehr zurücktreten, weshalb Ref. darauf aufmerksam machen möchte, daß man aus dieser Beobachtung den Schluss noch nicht ziehen darf, daß Behaftetsein mit Rhipipteren bei den Hymenopteren zur Folge hätte.)

Hinsichtlich der Ernährung der *Stylops*-Larve theilt Westwood nach diesen Beobachtungen die Ansicht Kirby's, daß sie durch Hauteinsaugung stattfinde. (Wäre der hornige vorragende Theil wirklich der Kopf, könnte es nicht anders sein, aber das ist noch nicht festgestellt.) Die systematische Stellung der Rhipipteren betreffend, weist Westwood den Versuch Newman's, sie bei den Dipteren unterzubringen, als in jeder Hinsicht unstatthaft und verfehlt nach, und glaubt eher einige Annäherung an die Lepidoptera, namentlich im Bau des Mundes zu bemerken. (*Transact. of the Ent. Soc. of Lond.* I. p. 169.)

L e p i d o p t e r a.

Als Fortsetzungen früher angefangener Schriften über diese Familie im Allgemeinen sind zu erwähnen:
In Deutschland:

In Frankreich:

Supplement à l'hist. nat. des Lépidoptères ou Papillons de France par M. Duponchel, tom. 2., livr. 4 – 6., tom. 3., livr. 1 – 3.

Wichtige Nachrichten über die Schmetterlinge Andalusiens gaben A. Graslin und Dr. Rambur, der letztere bereits durch seine Untersuchungen über die Korsische Schmetterlings-Fauna auf das Vortreffhafteste bekannt. (Annal. de la Soc. Ent. de France V. trin. 4.)

Graslin folgte dem Dr. Rambur 1835 nach dem Süden Spaniens, betrat dasselbe in Hálaga, wo er in der letzten Hälfte des April Thais Rumina, Pieris Glauce, Belemia, Doplidice, Eupheme beobachtete; die letzte war jedoch so wild und flüchtig, daß er keines einzigen Exemplares habhaft werden konnte; ferner Polyom. Ballus, Boeticus, Satyr. Pasiphaë und Ino, Euclidia monogramma und Erastria Ostrina. Dann wurde in Gemeinschaft mit R. das Thal von Granada untersucht, welches aber, sorgfältig angebaut, und bei dem üblichen Abbrennen der Stoppeln und Ueberschwemmen der Felder gleich nach der Ernte, arm an Insekten sich ergab, daher die Excursionen hauptsächlich nach den einschließenden Höhenzügen, besonders nach der höchsten Kette derselben, der Sierra Nevada, gerichtet wurden. Unter den auf diesem Alpen-gleichen Gebirge vorgekommenen Schmetterlingen sind besonders bemerkenswerth Satyrus Hippolite und Orgyia dubia welche, wie die oben erwähnte Pieris Eupheme, bisher als im südl. Rußland einheimisch bekannt waren. Sie kommen auf ¾ der Höhe der Sierra Nevada vor, die Raupe der Orgyia auf einem stacheligen Ginster, die der Hippolite auf niedrigen Phaenosen unter dichtem krüppelhaftem Gesträuch; letztere liegt vom October bis zum Juni unter dem Schnee, und im August fliegt der Schmetterling unter den herrschenden heftigen Stürmen. In derselben Höhe fanden sich Argus Dorylas, Corydon, und zwei neue, dem Arta-

Bei den Männchen mehrerer Colias-Arten hat Boisduval am Vorderrande der Hinterflügel eine Art Tasche entdeckt, die sich bei verschiedenen Arten verschieden verhält: sehr deutlich ist sie z. B. bei Edusa, klein und linsenförmig bei Myrmidone, bei Hyale und Chrysostheme fehlt sie. (Annal. de la Soc. Ent. de France V. p. X.)

Eine neue Art dieser Gattung beschreibt Lefebvre ebend. p. 383. pl. 9. Sie ist der Edusa ähnlich, die Oberseite ist aber mehr grünlich angeflogen, die Unterseite hat nur einen einzigen kleinen weißen Fleck in einem länglichen rothen Wisch auf der Mitte der Unterflügel; der Saum der Flügel ist so rot wie bei Palaeno. Sie ist auf Island einheimisch (auch in Labrador).

Auf derselben Tafel findet sich noch ein Schmetterling abgebildet, den Pierret unter dem Namen Anthocharis Douxi vom Eupheno unterscheidet. P. hatte ein Dutzend Exemplare dieses Nordafrikanischen Schmetterlings vor sich, die in folgenden Merkmalen übereinstimmten. 1) Die schwarze Binde innerhalb des rothen Fleckes auf den Vorderflügeln beim Männchen ist nicht so gerade wie bei Eupheno, und am Innenwinkel nicht unterbrochen. 2) Der Grund der Unterseite der Hinterflügel ist rein gelb, die Flecke darauf rostgelb und nicht zusammenhängend. 3) Der Halskragen ist röthlich.

Einige Nachtschmetterlinge aus hochnordischen Gegenden sind von Lefebvre (Annal. de la Soc. Ent. de France V. p. 389. pl. 10.) beschrieben und abgebildet, nämlich 5 Eulen, 1 Spanner und 1 Zäusler aus den Gattungen Hadena, Anarta, Larentia und Eudoreu: H. Sommeri aus Grönland, H. erulis

Beobachtungen über die Verwandlung der *Tinea Harri-sella* (chenille du hamac) theilte P. Huber in den *Mem. de la Soc. de physiq. et d'hist. nat. de Genève*, t. VII. p. 121. pl. 1. 2. mit. Die Raupe lebt im August und September als Miniraupe, vorzüglich in Kirschen-, seltener in Apfel- oder Birnbaumblättern, kommt zur Verwandlung aus ihrem Gange heraus und sucht sich ein Blatt auf, welches schon eine Krüm-mung hat, spins mehrere Ordnungen von Querfäden, um diese zu sichern, und an der Stelle, wo sie ihren Kokon anbringen will, überwebt sie zunächst den Grund, spannt zwei starke parralele Querfäden darüber, und befestigt dann ihren frei schwe-benden Kokon (daher er mit einer Hängematte verglichen wird) zwischen denselben so, daß er mit einem schrägen Faden an jedem Ende an jedem der beiden oberen starken Querfäden auf- gehängt, und durch vier auf gleiche Weise nach dem Grunde hingeführte Fäden in seiner Lage festgehalten wird.

D i p t e r a.

Mit einer Aufzählung und Beschreibung der britischen Di-pteren hat Duncan in *Jardine's Magaz. of Zool. and Botan.* den Anfang gemacht. Im zweiten Hefte des Jahrganges 1836 ist die Familie *Stratyomydae* abgehandelt, aus der folgende Arten in England vorkommen.

Str-
Stratyomya Chamaeleon, potamida, furcata, riparia, strigata; Odontomyia argentata, ornata, felina, hydrobiota, hydroeleon, viridula, trigina; Citellaria ephippium; Oxycera pulchella, trilinate, muscara, formosa, terminata, analis; Nemotelus uliginosus, pantherinus, nigrinus, brevirostris; Sargus cuprarius, infuscatus, nitidus, flaripes, Beaumuri; Chloromyia (Sargus sp. Meig.) formosa, polita, flaricornis; Pachygastr eater, Leachii Curt. (mit Ausnahme der letzten alle anderen unter obigen Namen von Meigen beschrieben.)

Das vierte Liefer enthält den Anfang der Familie Tabanidae, von der aus der Gattung Tabanus folgende, sämtlich unter den angeführten Namen bei Meigen in England einheimisch sind:

Hemiptera

Von dem Hahn'schen Werke über diese Ordnung: die Wanzenartigen Insekten, erschien vom dritten Bande das zweite, und von Heinrich Schäffer herausgegeben, das dritte, vierte und fünfte Heft.

In Lesson's *Illustrations de Zoologie* finden sich einige
Hemipteren abgebildet, namentlich in der 18ten Lieferung auf der 53sten Tafel *Ploiaaria vagabunda* Lutr. aus dem südlichen Frankreich, die von dem nordeuropäischen *Cimex vagabundus* Lin. sehr verschieden ist, und im 19ten Hefte auf der 55—57sten Tafel eine Anzahl Brasilischer Cicaden aus der Familie der Membraciden, größtenteils bekannte Arten unter neuen Namen, wie Laporte in den Annalen der Französischen Entomologischen Gesellschaft V. p. VII. nachzuweisen versucht hat, dessen Bemerkungen aber noch einige Berichtigungen zulassen.

I. A. *Tubulifera*: Weibchen ohne Legeröhre.
 1) *Phlaeothrips*.

II. *Terebrantia*: Weibchen mit vierklappiger Legeröhre.
 B. *Stenelytra*: Legeröhre abwärts gekrümmt.
 2) *Heliothrips* (Körper genetzt), 3) *Sericothrips* (Hinterleib behaart), 4) *Thrips* (Körper ganz glatt).

C. *Coleoptrata*: Legeröhre aufwärts gebogen.
 5) *Melanthrips* (Fühler 9gliedrig), 6) *Acrothrips* (4 letzte Glieder nicht gesondert.) (Die Benennungen der Gattungen sind gegen Linn. Phil. Bot. § 225.)

Thrips, 22 Arten, darunter *Thr. vulgatissima* (*physapus* De Geer) und *physopus* Lin.; *Belothrips*, 1 Art, *acuminata*. Die Gattung *Melanlkrips* enthält nur 1 Art, *obesa*; *Aeolothrips* spaltet sich wieder in die Untergattungen *Coleothrips*, mit breitem Halsschilde und vollständigen Flügeln, wohin *Thr. fasciata* L. und *vittata* gehören, und *Aeolothrips*, mit eingeschrumpftem Halsschilde und undeutlichen Flügelansätzen: *A. albicincta*.

In einem Nachtrage (ebend. IV. p. 145.) beschreibt H. noch zwei neue Arten von *Phlaeothrips*: P. *Ulmi* und *Pini*.

Insekten in Bernstein.

Nachträglich ist noch außer den im Jahre 1836 erschie

nen Fortsetzungen von

Germar, Fauna Insect. Europae (fasc. XVIII.)

und

Pzozer, Deutschlands Insekt., fortgesetzt von Heinrich Schäffer (III. 137 — 139.),

vorsätzlich eines größeren Werkes:

Histoire naturelle des Insectes, par Audouin et Brullé.

von dem Während des Druckes dieses Jahresberichts die drei 1836 erschienenen Lieferungen eingegangen sind, zu gedenken. Von dem allgemeinen Theile, dessen Bearbeitung Audouin übernommen, ist noch immer nichts erschienen, von den zuletz herausgekommenen Lieferungen enthält die eine die Fortsetzung der Coleoptères, die anderen beiden die Orthoptères und Hémiptères Hétéroptères:

Im Ganzen scheint der Verf. mehr als in den früheren, namentlich den ersten Lieferungen, sich darauf zu beschränken, in der Familie die Hauptformen, die bekanntesten und hauptsächlichsten Gattungen hervorzuheben, und darin, wie er diesen die übrigen, zum Theil wohl begründeten, unterordnet oder ganz mit ihnen vereinigt, oft zu weit zu gehen. Die Gründe dieses Verfahrens sind nie dargelegt, und überhaupt sind die Charaktere der Gattungen und selbst der Familien nur durch einzelne Merkmale sehr leicht ange deutet. Die in jeder Familie gegebene tabellarische Übersicht über die Unterschiede der Gattungen sind sehr
übersichtlich, aber oft nicht ganz richtig (z. B. sollen bei Dasytes die Klauen ohne häutigen Anhang sein, welches bei einer Reihe von Arten nicht zutrifft, so werden bei Dorcatoma die Fühler als 9-gliedrig angegeben u. s. w.). Etwas genauiere Untersuchungen und tieferes Eindringen in die zu behandelnde Materie mußten aber auch ganz von der Hand gewiesen werden, wenn das Unternehmen so rasch, als es geschehen, vorschreiten sollte.

2) Blätter, ebenfalls die einzigeGatt. Blatta, aber mit den Untergatt. Blatta (mit den Abtheil. Blaberus, Blatta, Panestia, Kakerlac Serv.), Pseudomops Serv. (dieser gegen alle Etymologie zusammengesetzte Name wäre wohl zu ändern gewesen), Polyphaga Brull. (Blatta Aegyptica L. von Br. wegen des schrag abgeschnittenen Endgliedes der Taster abgesondert, sonst auch in mehrerer Hinsicht sehr ausgezeichnet; die von unserm Verf. als Larven angesprochenen Ind. sind Weibchen); Corydia Serv. und Phoraspis Serv.

Uebergang zu machen scheinen. Die sämtlichen Heteropteren bilden 11 Familien.

4) Leptopden, Gatt. Acanthia, Leptopus.

9) Lygaeen, Untergatt. Astemma, — Acinocoris Hahn, — Ly-

Verzeichnifs

der
im Jahresberichte erwähnten Natarforscher.

A.
Agardh 89.
Agardh jun. 101.
Agassiz 214. 273.
d’Alton 230.
Ascherson 107.
Asmus 304.
Audouin 247. 302. 304.
B.
Babinaton 293.
Bachmann 198.
Back 110. 136.
v. Bär 175. 192. 193.
Baird 247.
Ball 190.
Bassi 107.
Bell 244.
Bennett, Debcl 192.
Bennett, E. T. 152. 171. 181.
Beonet, G. 269.
Berendt 333.
Berthelot 138.
Berthold 135.
Bevan 321.
Bibron 221. 224.
Bhinville 147.
Blanchard 293. 294.
Blyth 195.
Boie 316.
Bodichon 160.
Boisduval 287. 327.
Bonnfons 124.
Bonaparte, Ch. 139. 223.
Boudier 316.
Bouillet 268.
Boussingault 123.
Bowerbank 314.
Brandt 154. 167. 183. 277. 283.
Brebisson 25.
Bree 234.
Broderip 271. 272. 273.
Bruck 105.
Brullé 291. 295. 334.
Buckingham 95.
Buckland 95.
Bujack 247.
Burton 207. 229.
Buzezignes, Girou de 43. 69.
C.
Cantraine 248. 268. 269. 270. 271. 272.
Carrara 294.
Castelneau 286.
Cautley 189.
Chantereau 268.
Chevalot 295.
Children 136.
Cliff 175.
Cocteau 228. 229.
Collo 122.
Colladon 238.
Cordu 69. 254.
Couch 244.
Coulon 166.
Creuzberg 37.
Crivelli 107.
Curling 256.
Cuvier 169. 170. 191.
D.
Dahlbom 315.
Dalyell 278.
Dana 247. 250.
Dassen 92.
Decandolle jun. 110.
Deshayes 267.
Deslongchamp 191.
Diesing 260.
Drewsen 241. 316.
Dufour, Leon 306.
Dugès 249. 278.
Dujardin 280.
Duméril 221. 224.
Dumoustier 280.
Duncan 328.
Dupouechel 324.
Dupouy 305.
Duraud 189.
Dutrochet 56. 59. 68. 92.
Duvernoy 153. 191. 201. 223. 230. 233. 244. 253. 258.
E.
Eckström 234.
Edward 122.
Ehrenberg 23. 117. 252. 254. 275. 276. 279. 280.
Eiselt 282.
Eisengrün 87.
Erichson 303. 308.
Parnell 240.
Patterson 276.
Payen 247.
Pellegrinns 101.
Peltier 280.
Petit 271, 272, 273.
Percheron 282, 296.
Petrenz 257.
Philippi 118, 244.
Piclet 104, 310, 311.
Pickering 322.
Porro 270.
Presl 86, 89, 91, 104.

R.
Rambur 321, 325.
Rathke 137, 143, 153.
222, 235, 237, 244.
245, 246, 247, 257.
270, 279.
Ravin 192.
Reichenbach 143, 159.
161, 162.
Reid 164.
Reipnald 236, 237.
Richardson 106, 136.
139, 237.
Riley 190.
Ritter 122, 161, 175.
Robb 270.
Rubert 191, 269.
Robineau-Desvoidy 294.
321.
Röper 84.
Rolsmaësler 267.
Roulin 207.
Rousseau 231.
Rüppell 143, 157, 158.
160, 171, 179, 188.
208, 237.
Busconi 238.

S.
Savi 101.
Saunders 289.
Schimper 105.
Schötc 292.
Schomburg 151.
Schouw 120.
Schulze 135.
Schulze, Fr. E. 253.
Sinkard 314, 318.
Seitz 117.
Selby 139, 194, 242.
Selys-Longchamp 168.
Serras, Marcel de 189.
Serville 309.
Shaw 241.
v. Siebold 129, 255, 256.
263, 264, 265, 274.
275.
Smith, Aodr. 225, 231.
Soler 290, 297, 306.
Sowerby 151.
Spence 293.
Stein 201.
Strickland 196, 212.
Stutchbury 226, 234.
Sturm, J. 287.
Swainson 203.

T.
Tatem 177.
Taylor 198, 206.
Teale 280.
Temminck 221.
Templeton 143, 252, 273.
276, 277, 278, 330.
Thompson 245, 248, 274.
Towers 52.
Trevirans 93.
Troschel 269.

Tschudi 229.
Turpin 38.

U.
Unger 27, 40, 65, 112.

V.
Valenciennes 234.
Valentin 17, 30, 31, 136.
231, 232, 243.
Vallot 96.
Vanbeneden 270, 274.

W.
Wagner, A. 142, 150.
166.
Wagner, R. 129, 247.
257.
Walkemaer 284.
Walker 122, 317, 328.
Warren 257.
Waterhouse 163, 321.
Watson 119.
Wchb, Barker 138.
Wesmael 302, 303, 312.
316, 327.
313, 319, 322, 323.
Welpy 250.
Wickström 17.
Wiegmans sen. 37.
Williamson 105, 206.
Wood 203.
Wright 234.

Y.
Yarrell 234.

Z.
Zeddel 138.
Zenker 138.

Gedruckt bei A. W. Schade.