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PREFACE. 

In laying before the public the present work on the Theory 
of Collineations, I wish to say a word on the historical de- 

velopment of the subject and the genesis of my own interest 

in it, as well as a word on the point of view I have adopted 

and the methods | have used. 
The concept and term collineation* were introduced into 

geometry by Mobius in his Barycentrische Calcul published at 
Leipzig in 1827. According to his definition of a collineation 
points correspond to points and straight lines to straight lines, 
i. e., collinear points to collinear points, whence the name. 

We owe to Mobius not only the first clear-cut notion of a 
collineation and its name, but also the fundamental theorem 

underlying all his work on this subject, viz., that the cross- 

ratios of four corresponding elements of two collinear figures 
are always equal. He also gives us methods for constructing 
collineations on a line, in a plane, and in space. He shows 

that three points on a line, four points in a plane, five points 
in ordinary space, in general +2 points in a space of nm di- 

mensions, determine a collineation in these spaces, respectively. 

He points out that two conics in a plane are always collinear 

to one another in o* ways; and that a curve of the nth de- 

gree corresponds to a curve of the same degree. But | find no 

hint anywhere in Mobius’s work that there are any self-corre- 

sponding points, lines, or planes in a collineation. 
With the introduction of homogeneous coordinates into 

analytic geometry there came in a generalized form the old 

problems connected with the transformation of coordinate 
axes. Such a transformation is a linear transformation, and 

hence the theory of linear transformations came to be studied 

* Mobius tells us in his Vorrede, p. xii, that the name was suggested to him by 
his friend, Professor Weiske. 

(v) 
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as a subsection of modern analytic geometry. A forward step 

in the theory of collineations was taken by the English school 
of mathematicians who founded the invariant theory of linear 

transformations. This theory took its rise shortly after 1840, 

and the principal names associated with its early development 
are those of Boole, Cayley, Sylvester, Salmon.* 

Since a linear transformation is a projective transformation, 

every theorem concerning linear transformations has its bear- 
ing on the theory of collineations. The workers in projective 
invariant theory who considered the geometric applications 
of their science, looked more to the effect of a linear transfor- 

mation on a geometric figure than to the properties of the 

transformation itself. Thus we look in vain through the 
standard works on invariant theory for a classification of linear 

transformations or a discussion of their characteristic proper- 
ties. It was left to men with a different point of view to call 
the attention of the mathematical world from the effects of a 
collineation back to the properties of the collineation itself. 

In 1844 Hermann Grassmann published his Auwsdehnungs- 
lehre, or Calculus of Extension, and a second presentation of 

the same subject in 1862. The method of the Calculus of Ex- 

tension was not applied directly by Grassmann to the study of 

collineations, but it is capable of application to some phases 
of the subject. For example, by this method the various 
types of ecllineations in ordinary space have been determined. 

Although the contributions of Grassmann’s theory to the 
theory of collineations have been relatively small, they are 
perhaps sufficient to warrant the mention of it among the ana- 

lytic methods of treating the subject of collineations. 

The quaternion calculus invented by Sir William R. Ham- 
ilton, and published by him in his Lectures on Quaternions in 

1844, isan algebra founded on a complex number system of 

four units. One of its valuable applications is to the theory 
of homogeneous strains. A homogeneous strain is by definition 

a collineation, though of a very special kind, viz., one which 

*See note to Salmon’s Algebra, chapter XIII. 
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leaves the plane at infinity invariant. However, the quater- 

nion caleulus has not been extensively applied to the theory 

of collineations in ordinary space, probably because it has not 

been found to be a suitable instrument for the purpose. 
We mention next an analytic method whose most natural 

and obvious geometrical application is to the theory of colline- 

ations. I refer to Cayley’s theory of matrices. This theory 

was set forth in his memoir on this subject in 1858. This 

subject has never become a popular one among mathematicians 

in the sense that it has attracted a large number of independ- 

ent investigators. It did not lead its founder to the general 

theory of collineation groups, although it has contributed 

largely, through the labors of Frobenius and others, to some 

phases of group theory. 
In his Geometrie der Lage, Nuremberg, 1847-60, Von Staudt 

laid the foundations of pure projective geometry in a form in- 
dependent of the assumptions of measurement, mechanics or 

congruence, and without quantitative notions of any sort. He 
distinguishes sharply between Geometrie der Lage and Geom- 

etrie des Masses. Pure projective geometry and the theory of 

collineations may be considered in a certain sense as mutually 
inclusive sciences. My conception of the distinction between 

them is expressed by saying that projective geometry deals 

chiefly with the projective properties of figures, while the 

theory of collineations considers especially the properties of 

the projection itself. 
About the year 1870 there appeared upon the mathematical 

stage a new personality, Sophus Lie, from the land of Abel. 

He brought with him a new and original idea, the notion of a 

continuous group of transformations. Lie broadened and 

deepened the already existing notions of a transformation, and 

developed a complete theory of all continuous groups of trans- 
formations, a thirty years’ task. Among the many transfor- 

mations studied by Lie, the first, the simplest, the most 

centrally situated, and the most far-reaching in its theoretica! 
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and practical bearings, are projective transformations or col- 

lineations. 
Lie’s work on the theory of collineations was both syntheti- 

cal and analytical; synthetical in its earliest conception and 
announcement, analytical in its final form as presented to the 

mathematical world in the books published in his later years. 
Lie throughout kept his eye fixed on the properties of the col- 
lineation itself rather than on the effect of the collineation on 
certain configurations of space But it is evident that his 
chief interest in projective transformations was in their group 
properties, and not in those more fundamental properties 

which form the natural basis for a classification both of col- 

lineations and their groups. 
But after all is said the most important and most interest- 

ing properties of collineations are their group properties ; and 

no discussion of the theory of collineations is full and sym- 

metrical which fails to lay the major stress on the considera- 
tion of the collineation groups. ‘The group of projective trans- 
formations, or collineations, is by far the most important of 

the continuous groups discovered by Lie and developed by him 

in his ‘‘ Theorie der Transformationsgruppen.’’ This group lies 
at the very heart and core of his theory for the reason that all 
finite continuous groups ean, by a suitable transformation of 

variables, be shown to be similar in structure to some projec- 
tive group. Therefore every contribution to our knowledge of 
collineations and their groups reacts upon the wider theory of 

all continuous groups. <A transformation of the elements of 
a space is defined as an operation which interchanges among 

themselves the elements of a space, but leaves the space, con- 

sidered as the aggregate of all its elements, unchanged as ¢ 
whole. The operation may be produced by means of a me- 

chanical device, an analytical formula, a geometrical construc- 

tion, or in any other way. Sometimes there are several 
different methods of producing one and the same transforma- 
tion; but the effect is the same no matter by what method 

produced. A collineation is defined as one that transforms 
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points into points, lines into lines, and planes into planes. 
It is, therefore, a self-dualistic transformation. 

A collineation may be regarded from two distinct points of 
view, viz., the analytic andthe synthetic. From the synthetic 

point of view the phenomena of a collineation appeal directly 
to the eye or to the space intuitions. On the other hand, from 
the analytic point of view the operation is seen through the 
medium of a linear substitution on the requisite number of 
variables. The two methods have long been in use side by 

side and each has its special advantages. Each also has its 
special votaries, and each will continue to have its advocates 
as long as human minds continue to be constructed on differ- 

ent patterns. To methesynthetic method isthe more attractive, 
for the reason that it enables one to get closer to the facts and 

to view them at first hand. In all applications of analysis 
to geometry a formula is only the vehicle which conveys the 
thought, not the thought itself. The inevitable tendency is 
to confuse the vehicle with the thought, to mistake the vessel 
for the contents, and to lay hold on the shadow rather than 
the substance of the thing sought. 
My interest in the collineation as an object of research dates 

from the time when it was my rare good fortune to be a stu- 

dent of Lie at Leipzig in 1887-’88. I followed with special in- 

terest his lectures on Modern Geometry and on Continuous 

Groups. The latter course was afterward published under the 
title Vorlesungen weber Conlinuerliche Gruppen. Almost every 

example used to illustrate the theory of continuous groups was 
a group of projective transformations. Lie’s method of ap- 

proach to the theory of projective groups was through the in- 
finitesimal transformation. I early became dissatisfied with 
the infinitesimal method because there seemed to meso wide a 

gap between the analytic processes and the geometric interpre- 
tation of the results. I was constantly asking myself the 
question, whether it was not possible to develop the theory 
of the projective group directly from the finite form of the 
equations of a linear transformation or from geometric con- 
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struction? Lie’s analytic method started from the finite form 
of a linear transformation, descended into the infinitesimal re- 

gions where the important analytic work was done, then 
reascended into the regions of the finite where the results 

were exhibited. 
H. B. NEWSON. 

NOTE. 

The above incomplete draft of the preface probably in- 

cludes nearly all, except acknowledgments, that the author 

intended to say. Otherwise the manuscript of this volume 

was complete and the proof had been read and corrected 

through to page 272, when his sudden death on the night of 

February 17, 1910, put an end to his labors. Others, have 

read the remainder of the proof. Doubtless, errors have 

crept in which the author would have corrected if he had 

lived to read the proof himself. It is to be regretted that a 

series of unfortunate circumstances hasso long delayed the 

publication of this work. 

Thanks are due to Dr. Paul Wernicke for assistance ren- 

dered the author both with the manuscript and with the 

proof-reading, also for reading a considerable portion of the 

remaining proof. I also wish to express my thanks to Dr. 

U. G. Mitchell for valuable assistance, without which the 

completion of the publication might not have been possible. 

M. W. NEWSON. 
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1. The present chapter is devoted to an exposition of the 
theory of projective transformations in space of one dimension. 

The theory applies equally well to all three one-dimensional 
primary forms of projective geometry, viz., a range of points 
on a line, a pencil of lines through a point, and a pencil of 
planes through a line. The principal facts of one-dimensional 
projective transformations are set forth and on these are built 
a comprehensive theory of their continuous groups. The 
theory in one-dimension is sufficiently complete to serve as a 
foundation and model on which to build a consistent theory 
of collineations in two, three and higher dimensions. 

In $1 we shall define analytically a projective transforma- 
tion in one dimension. In $$1 to 5 are developed the conse- 
quences of this analytic definition, and in $6 is considered the 
special case when the variables and coefficients in the equation 
are all real quantities. A geometrical theory of one-dimen- 
sional projective transformations is developed in $$7 to 9, and 
the two theories, analytic and geometric, are shown to be in 
perfect harmony. Each method will be seen to have its spe- 
cial points of advantage. The chapter closes with a classified 
list of exercises illustrating both methods. 

(1) 



2 ONE-DIMENSIONAL PROJECTIVE TRANSFORMATIONS. 

$1. General Properties of One-Dimensional 
Projective Transformations. 

2. Analytic Definition. A projective transformation in one 
dimension is defined analytically by the equation 

Ne eas (1) 
or, in homogeneous coordinates by the pair of equations 

px, = ax by, f 
py, = cx dy. ) 

In these equations the coefficients, a, b, c, d, are constants, and 

the variables are x, x, and «, y, x, y, Both constants and 
variables are to be regarded as complex numbers, unless oth- 
erwise expressly stated. 

The determinant ¢ a is called the determinant of the 

transformation T ; it is assumed, for the present at least, 
that this determinant does not vanish. 
A projective transformation of the points on a line should 

be looked upon as an operation which, when applied to a finite 
set of points or to the range of all points on the line, has the 
effect of rearranging and redistributing the points of the set 
or range so as to form a new set ora new range. ‘The sets or 
ranges of points which are related to one another by a project- 
ive transformation are said to be projective. 

3. A Transformation and its Inverse. The transformation 
T expressed by equation (1) transforms the point x into «,, 
where x is any point on the line. Equation (1) may be solved 

for x, giving us i <a. = (2) 

The transformation expressed by this equation is called the 
inverse of 7 and is symbolized by 7-7. YT‘ transforms a 
point x, into v. The two transformations T and T™ are so 
related to each other that if T transforms a point P into P,, 
T~‘ transforms P, back to P. 
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4. Invariant Points. When the points of a line are shifted 
into new positions by a projective transformation T, does it 
ever happen that one or more of the points are unaltered in 
position? To answer this question, we reason as follows: The 
coordinate of a point «, which remains at rest or unaltered in 
position, 7. e., which is transformed into itself, must satisfy 

EEE 
cx +d * 

Clearing of fraction, we see that the coordinates of all such 

points satisfy the quadratic equation 
ca’ + (d—a)« —b=0; (3) 

whence we conclude that a projective transformation 7 

leaves unaltered two points on the line, and their coordi- 

nates are given by the roots of equation (3). These two 
points are generally distinct, but for special values of a, 
b, c, d, they may coincide. They are called the invariant 

points of the transformation. Two transformations will 

not generally have the same invariant points; but, as we 
shall learn, an unlimited number of transformations may 
have one or both invariant points in common. 

There is one particular transformation that leaves every 
point of the line invariant. . If b=c=0 and d=a in 
equation (1), we get x,=«a. This shows that x always 
equals x, or that every point on the line is transformed 
into itself. This transformation is called the identical pro- 
jective transformation. 

THEOREM 1. A projective transformation of the points on a line 
leaves invariant either two distinct points, two coincident points, or 

all points on the line. 

the equation 

5. Characteristic Equation of T. Let T be given in the 
homogeneous form as follows: 

px, = an by, ; 

Oh CoCr °) 

We indicate another way of finding the invariant points of 

T. Set «,=«x and y,=y in the above equations and trans- 

pose; thus we get 
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(a—p)x+ by =0, 4 

cL (ad =) y= 0: ©) 

If these equations are simultaneous, their resultant vanishes; 
thus 

a ‘a | = 

Developing the determinant we get the quadratic equation, 

p. —(G-@)io 1 (a0) —0e)i— 0) (5) 

which is called the characteristic equation of 7; its roots 
may be equal or unequal. 

In the first case, suppose that equation (5) has two distinct 
roots, p, and ,. If one of these roots as p, be substituted for 
p in (4), these become simultaneous and may be solved for 
the ratio «:y. The value of this ratio x:y gives the coordi- 
nates of the invariant point corresponding to p, If p, the 
other root of the characteristic equation, be substituted for p 
in (4), these again become simultaneous and their common 
solution gives the coordinates of the invariant point corre- 
sponding to p.. 

In the second case, suppose the characteristic equation (5) 
has a pair of equal roots. Then there is only one value of p 
which, when substituted in equation (4), makes them simul- 
taneous. It follows in this case that T has only one invariant 
point, or as we may say, two coincident invariant points. 

6. Pseudo-transformations.—If the determinant of T van- 
ishes, the transformation is called a pseudo-transformation. 
In defining the transformation it was expressly stated that 
the determinant must not be zero. This condition excludes 
just these transformations called pseudo-transformations. 
The equation of the transformation is written 

ax+6. 
1. = 

i! ca +d? 

if the determinant ad — be = 0, thend = ae Substituting this 

value of d in the equation, we have 
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Cm een ao? (6) 

which shows that every point on the line is transformed into 

the fixed point a The inverse of the transformation T' is 

written 
=== da+b 

cxi—a ~ 
uv 

The determinant of this is also ad—be, which equated to zero 

also gives d= a Substituting this value of d in the last equa- 

tion, we have 
b(ex—a) ay 

Wy a(cxi—a) > t= =e} (7) 
which shows that every point on the line is transformed by 

the psuedo-transformation (7) into the fixed point — a 

The invariant points of a pseudo-transformation are also 

given by equation (38). Putting d=" in this equation, it 

breaks up into . 

(«-$) (w+) =0; (8) 

thus showing that > and — 7 are the invariant points of the 

pseudo-transformation. 

THEOREM 2. A pseudo-transformation transforms every point on’ 
the line into one or the other of its invariant points. 

7. Three Conditions Determine a Projective Transforma- 
tion.—The equation of a_projective transformation T contains 
three independent constants, viz., a:b: ¢: d. We infer, there- 
fore, that three conditions determine such a transformation. 
In particular, three points and their corresponding points de- 
termine uniquely and completely a projective transformation. 

Let x’, x’, x’ be any three points on a line, and «,', x,/’, x,/”’ 
their corresponding points, respectively. Substituting succes- 
sively in (1) the coordinates of each pair of corresponding 
points, we have three equations, viz. : 
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cua,’ +dx/ —ax’ —b=0, 

ex!" /’ +dax/’ — ax’ —b=0, (9) 
Cee + dg!" = aa!” i b = 0. 

These equations are linear and homogeneous in a, 8, ¢, d, 
and determine the ratios of these quantities uniquely and 
completely, provided no two of these equations are identical 
or have their coefficients proportional. 

THEOREM 3. There is one and only one projective transforma- 
tion that transforms three given points on a line into three other 
given points. 

8. The Identical Transformation.—Suppose that the trans- 
formation (1) leaves three points of the line invariant. If 
we put o/—a)) o> 2 and /"— a" in equations (9) these 
reduce to the following: 

cu? +(d—a)a’ —b=0, 

cu’? +(d—a)u” —b=0, (10) 
ce’? + (d—a)a’’—b=0. 

The determinant of these equations, 
ei2, oo! Th 

wa lt 1) = (a! — oe") (a — 2!") (a' — 2"), Gals) 
apftl2 rogtlt S14) 

does not vanish so long as the three points are distinct ; con- 
sequently, the coefficients of the above equations must vanish 
identically. Thus, ¢c=0,b=0, d=a. Putting these values 
in (1) we get #,=«, which is the identical transformation. 
The identical transformation we know transforms every point 
of the line into itself. 

THEOREM 4. A projective transformation which leaves three 
points of a line invariant is the identical transformation and leaves 
all points of the line invariant. 

9. Invariance of Cross-ratio. Let x, x’, v7”, x’, be the 
coordinates of any four points on the line. The function 
oa hl — ar 5 . : 
=: ~? 8 called the cross-ratio (Doppelverhaltniss, ra- gl—a! * all — 

tio anharmonique) of the four points. Let & be the value of 
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this function; we shall designate the cross-ratio by the sym- 

poles = (arse at): 

Let the four points a, 2’, w’, x”, be transformed into 

v,, &,', &;'", x,/’ respectively by the projective transformation 
) aneb 

aoe cet, 

We wish to compare the cross-ratio of these four points with 

that of their four corresponding points. To do this we have 

only to substitute (1) in the cross-ratio function and reduce 

the resulting expression. Thus 
ax’ +b ax+b ax/’+b ax+b 

gi! — 0 , a! —m ca! +d ce+d _cx!"+d cx +d 

a! — any! al—ay a+b ae’ +b (ael/+b  ax'+b 

ca! +d " cx’ +d cal’td sf cx'+d 

(ad— be) (cx/+d) (w"—ax) , (ad—be) (ex’+d) (x"'/—2) 

~ (ad—be) (ex+d) (x"—a!') ~ (ad—be) (ex+d) (%"’—2x’) 

a 

WIS eae = 

Hence we see that the cross-ratio of four points on a line is 

unaltered by a projective transformation of the points on the 

line. 

THEOREM 5. A projective transformation of the points on a line 
leaves invariant the cross-ratio of any four points on the line. 

10. Resultant of Two Transformations.—Let T and T, be 

two transformations whose equations are respectively 

_ ae+b * — am +h 

Ls ex¢-tad and #, = ci +d)" (1) 

The first transforms the point x into x, and the second 

transforms x, into z,.. We suppose the operations are carried 

out in the order in which the equations are written. If we 

eliminate x, from the above, we get 

70h (aa-+bic) « + (aib+bhid) 9 

“2 (e1a+dic) x + (cib+did) * (12) 

It should be observed that (12) is of the same form as (1) and 

differs from it only in the values of the coefficients. Equa- 
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tion (12) therefore expresses a projective transformation T., 
which transforms the point « directly to x,, and is equivalent 
to the successive applications of T and T, in the order named. 
The transformation T, is called the resultant of the trans- 

formations T and T,, which are called the component trans- 
formations. The operation is symbolized thus: TT,=T.. If 
the two component transformations 7 and T, are taken in the 
reverse order, the resultant, T7,7=T,’, is not the same as T.. 
Thus: 

aera (aa+be1) «+ (abi+bd;) 

r, aloe (cai+de,) «+ (ebi+dd)) ’ (12’) 

which is not the same as T,. The two projective transforma- 
tions T, and T,’ are called conjugate transformations. 

By referring to the transformations lettered T, T,, T., we 

see that the determinant of 7, is 
aat+bie ab+bhid| , 

aat+die cb+did}? 

but this is the product of 
a b |ay bi | , 

(c 4 by }¢1 di}? 

these determinants are respectively the determinants of T and 
T,, the components of T,. Hence the determinant of a trans- 
formation, 7T,, which is the resultant of transformations T 

and T,, is equal to the product of the determinants of T and T,. 
This result is capable of immediate extension; for let T,, 

T, and T, denote three transformations, the result of whose 
successive applications is equivalent to 7; the compounding 
of T, and 7, is equivalent to a third transformation, T,,. 
The resultant of 7, and T. is T,, and the determinant of T, is 
equal to the product of the determinants of T,,, and T.; hence 

the determinant of T, is equal to the product of those of T,, 

T,, and T,. This mode of reasoning is applicable to the re- 
sultant of any number of transformations; hence by induc- 
tion we infer the following theorem : 

THEOREM 6. The resultant T, of % projective transformations 
fh. (Cit se ly eae oe cer n-1) is a projective transformation, and the 
determinant of the resultant is equal to the product of the determin- 
ants of the components. 
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11. Commutative Transformations. Two transformations 
T and T, are said to be commutative when the resultants, 
taken in either order, are equal; 7. e., when 7, and 77’ of the 
last article give the same transformation. We may find the 
conditions that must be satisfied in order that T and T’, are 

commutative by equating corresponding coefficients in equa- 
tions (12) and (12’). We thus get 

ee ESR 
ai—d =e by *) C1 gi 

as the necessary conditions of commutativity. 
The invariant points of T and T, are given by the roots of 

the respective equations, art. 4, 

cx? — (a —d)x —b=0 and ca’ — (a,—d,)x —b,=0. 

The conditions of commutativity show that these two equa- 
tions have the same roots. It will be shown later that these 
necessary conditions are also sufficient. Hence 

THEOREM 7. Two projective transformations T and Ti are com- 
mutative when and only when they have the same invariant points. 

$2. Types and Normal Forms of Projective 
Transformations. 

12. Two Types of Projective Transformations. The inva- 
riant points of a transformation T are given by the roots of 
the quadratic equation (3). The roots of this equation are: 

(A, A’) miosd= VN (a+d)?— 4 (ad — be) 

2c (13) 

These two roots are distinct or coincident, according as 
(a+d) —4(ad — bc) 40, 

or = 0. 

Thus there are two distinct types of transformation. The 
first type is characterized by the fact that it has two invariant 
points, while the second type has only one. Every transfor- 
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mation, not identical, belongs to one or the other of these 
types. 

13. Implicit Normal Form of Type I. A transformation 
T of type I, whose invariant points are A and A’, may be 
written in the form: 

Sa. (14) 

where the constant k is teenie in the terms of the coeffi- 
cients, a, b, c, d, as follows: 

(a+d—V(a+d)?—4(ad—be) )” 
li ers : (15) 

To show this, solve equation (14) for x,; this gives us 
(A—k A!) x—AA!(1—k) 
(1—k)u—(A’—kA) ” (16) 

-2= 

which is of the same form as 

ax +b 
1 Geta 

Comparing the coefficients of these forms, we have 
b Al—kA d A—kA! a EAA =.= on Oe 

1—k Oy Gide Se aD @? 

solving for A, A’ and k, we find 
A= a—d+ Vv (a+d)?—4 (ad—be) , 

2c 

vaya a—d—Nv(a+d)?—4(ad—be) ; 

2c 

(a+d— Vv (a+d)2—4(ad—be) ex. 

k= 4 (ad—be) (17) 

age a+d— VN (a+d)?—4 (ad—be) 

= a+d+ w(a+d)?—4 (ad—bc) } 

1+k)? d)? or (1+k) ns (a+d) 

k ad—be * 

The values of A and A’ thus obtained are the same as the 
roots of equation (3). Equation (14) is called the implicit 
normal form of type I. 
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14. Implicit Normal Form of Type II.—A transformation 
of type II, whose single invariant point is A, is reducible to 
the form 

1 1 
ay |e ee == be 

(18) 

To verify this, solve for x,; thus, 

an 2 GareQeao“k 
t= tx+ (1-tA) . 

(19) 

This is the same form as (1). A and ¢ are found in terms of 
a, b, c, d, as before, by comparing coefficients and solving for 
A and t; thus, 

a—d 2c 
Ava on ane te— aaa" (20) 

Equation (18) is called the implicit normal form of type II. 

THEOREM 8. Every transformation of the form, j= 

belongs to one or the other of the implicit normal forms, 

rw—A x 1 1 

aA k x — Al Oe mo 7 mew + t. 

15. Geometrical Interpretation of the Normal Forms.— 
The normal form of type I may be written: 

b= ang = (A'Ame,) ; (21) 
i. e., k is the eross-ratio of the four points A’, A, x, #,, where 

A’ and A are the invariant points, and x and «, a pair of cor- 
responding points. Here « and «, are any pair of correspond- 
ing points, and k is a constant quantity. 

In the normal form of type II the expressions x—A and 
x,—A are the distances of a pair of corresponding points 
from the invariant point. The normal form of type II may be 
written : F 1 

Beka! ye ig aaa t (18’) 
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which shows that the difference of the reciprocals of the dis- 
tances of a pair of corresponding points from the invariant 
point is constant for all pairs of corresponding points. Let x 
be the point at infinity on the line; ¢ is thus seen to be the 
reciprocal of the segment Ax, where x, is the point into which 
the point at infinity is transformed. 

THEOREM 9. Ina transformation of type I, &, the cross-ratio of 
the invariant points and a pair of corresponding points, is constant 
for all pairs of corresponding points; in a transformation of type II, 
t, the difference of the reciprocals of the distances of a pair of corres- 
ponding points, is constant for all pairs of corresponding points. 

16. The Natural Parameters. When the transformation 
is written in the form of equation (1), we see that there are 

three independent parameters viz., —, oe -*, when it is of 

type I; in the case of a transformation of type II, the relation 
(a+d)’=4(ad—bc), is satisfied, and there are but two inde- 
pendent parameters. The coefficients, a, b, c, d, have no 
simple geometric meanings; but in the normal forms A, A’, k 
and A, t have definite important geometric meanings. The 
parameters A, A’, k and A, t are called the natural parame- 

ters of the transformation. 

17. Explicit Normal Forms. Equations (16) and (19) may 

be put into the forms: 
ze 1) 0. ra wie (0 

Ay ie A A Olina 
! AyW || 

i = = ang: —_ : —s (22) 

A 1 1 A 1 1 

A’ 1 k 1 0 t 

These are called the explicit normal forms of types I and 
II, respectively. 
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18. Determinants of Normal Forms. The determinant of 
the explicit normal form of type I is found as follows: 

x 1 0 

Aiea 
_|A’ 1 KA’ _ (kA A)n +AA!(1—k) 
Gee i ~ (k=1)"+(A'—kA) 

Pla anc 
At ae 
|kA'—A AA!(1—k) AS ek (23) k= A! ll 

The determinant of the a normal form of type II is 
|1+tA —tA2 

= | =]. (24) 
t 1—tA 

19. Type II as the Limiting Form of Type I. It is evident 
that type II is the limiting form of type I when the two inva- 
riant points coincide. From equation (14) we see that k = 1 

; 1—k ; . 
when A=A’. The fraction Te i becomes indeterminate 

when A=A’. Putting for A, A’ and k their values from 
(17), we have: 

lim i1-k a BC 

A'=A A-A!~- atd° 

2¢ : lim 1-6 _ a bp MENCES ig og Ee 

By means of this relation the normal form of type II can 
be deduced directly from that of type I. Dividing both 
numerator and denominator of (16) by A—A’, we get: 

(A=kA') , _ AAMU—*) 
je AE a EA) 
nape C= AeA, 3 

(A=A)) “(A= A/) 

Putting A’=A and , ie et a i =t, this reduces to (19) . 

In the explicit eae form of type I, (22), subtract the 
second row from the last in each determinant, divide through 
by A’—A, and pass to the limit. In this way we get the 
explicit normal form of type II. 
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20. Characteristic Equation in Normal Form.—Let T be 
given in the normal form 

|x i 0) 

Aron &a| 
heh Jar x Ra’| _ (kA!=A) @+AA! (1K) | 
|e OY eer (1) 

Ales 1| 
VAG ot, Fel 

The characteristic equation then becomes 
|kA’—A—p AA!(1—k) | 

Waites A Aape| ae 

Developing this we get as the characteristic equation of T in 
the normal form 

fi Ss (JES 1) ON al yA (0) (25) 

where A is the determinant Ni ‘|: 

The roots of this equation are evidently — A and —kA. 
The characteristic equation of 7’ in the normal form is 

readily found to be 

pe —29+1=0. (25’) 

21. Resultant of T and T, in Normal Form.—Let us next 
consider the resultant of two transformations JT and T,, both 
of type I, given in their explicit normal forms in homogene- 
ous coordinates. Let the equations of T, T,, and T., be as 
follows: 

x y 0 | @ y 0| 

E02 — Aa Bae Alle pyi=|A BB; 
Al BA! Al OB! OkB®! 

v1 Yi 0 v1 Yi 0 

LS Og —|-Arm * UBIO eAn| inves Aree re eens 
Aj! By kyAy’ | Aj! By ki By 

a7 Yy 0 x y 0 

Te Ose |As'| (Be “AS aris 1) Asie Bagh oB2)p 

Ail BY keAd/ Ay BY keBy 
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We get the equations of T, by substituting x, and y, from T 
in) thus, 

De AS eer (Se BRAINS 

Ter Ppt, 340) Ee AD, cosy,—= | Ar Bi Bil: 
Ay By kiAy! Ay By kBy 

where A, and A, are the determinants in 7. These last equa- 
tions readily become 

an 0 0 “sy 0 0 0 

AL TBE Av Bi. 40 AL Bia ADS OB A. 0 
T,: pit, =| A’ Bl kA’ kB’ 0}. pp,Y.=|A' BY kA’ kB 0 . (26) 

060A BR A 00 A BR Bl 
0 0 AY BY kAy 0 0 Ay By kBy 

Comparing coefficients of x and y in the two forms of T, we 
get the following equations I to IV: 

BeerA B 0 

(1) \" Ag | Bi kA! KB Oo 

| Bo! KexAglllnn \"0 An Br VAN 

0 Ay By kiAj 

A A B 0 

Az As A! kA' kB’ Oo 

(IT) = 
Ad keAd! OP ATP Ep Biy IAG 

0 Ay By kAy 

ig) A 1B 0 

Be By |B’ kA!’ kB’ 0 

(IIL) = ; 
Br. keBy | } QO 2h, tan ehh 

| 0 Ay By kBy 

Al NA B 0 | 

As Bo | A!’ kA’ kB’ 0 

(IV) | lea I 
Ay keBy/ | 0 Ai Bi Ai 
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Since the determinant of T, is equal to the product of the 
determinants of T and T,, (art. 10), we have A,=AA, or 
using the values of the determinants (art. 18). 

Gon vamemeereial lio. alk 
ANVAsi) Be! | A’ B\ lay By|? 

The system of equations I—IV are not independent, but a 
system of three independent equations may be obtained from 
them by dividing any three of them by the fourth. Equation 
V is not independent of I—IV and may be deduced from 
them. These equations enable us to determine the natural 
parameters of T, in terms of those of T and T,. If T, or T,, 
or both T and T, are of type II, the same process of elimina- 
tion enables us to determine 7’,. 

22. Resultant of T’ and T,’ in Normal Form. The result- 
ant of two transformations of type II is usually of type I, as 
may readily be shown. We wish to determine the conditions 
that must be satisfied in order that the resultant of two 
transformations of type II shall also be of type II. Let the 
equations of 7’, T,’, and T,’ be as follows: 

ay 1 0 aay ih 10) x LO 

| A 1 A A; 1 Aj Ao 1 As 

if 0 tA’+1 | 1 0 tA, +1 yi 0 t.Ao +1 
0 = 5 I 9 din = = == 

itp 1 0 Hr Th (0) x iL (0) 

Ay Tt of aly Gh il As 1 1 

1 0 ¢ 1 0 ti df O te 

The resultant of 7’ and T,/ may also be written in the form 

lo 20 D0 |e a 0 0| 

Aa A oO ee ah A | 

i | i ® tA € @ kt O (Asn @ @ | ; (ZT) 

0 0 A, 1 Ai lo 0 Al i il 

\® @O Wi 0 tAi+1| lo o 1 0 t 
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This resultant will be of type II when the condition, (a +d)’ 
— 4(ad — bc) = 0, (art. 12) is satisfied. The determinant of 
T,/ is equal to the product of the determinants of 7’ and T,/ 

which are each equal to 7, hence A, = ¢ dl = 1, and the above 
condition reduces to (a+d)?=4. Applying this condition 
to equation (27) we get in terms of their natural parameters 
the condition that the resultant of TJ’ and T,/ shall also be of 
type II, viz. : 

it,( A — A,) : tt,(A i An) = 4 f = 0. 

Hence we must have one of the four following cases: t = 0, 
fi (oA — Aor ti (AIHA, = 4: 

These necessary conditions are also sufficient. If t=0 or 
t, = 0, then T” or T,’ is the identical transformation. The re- 

sultant of any transformation T and the identical transforma- 
tion is evidently 7. If A,= A, the two transformations of 
type II have the same invariant point. Sufficiency of this con- 
dition is shown in (art. 28). Finally let any numerical values 
be assigned to A,, A, ¢,, and t such that tt,(A —A,)*=4. 
For example let A= 4, t=i1and A,=2,t,=1. T”’ reduces 

5a — 16 ey, : 

(emi, becomes! ¢,—— =~.) 7, "istfound to be 

eine Navas? 2 whicn 1S 0 ype ’ Soe an a Ae 

Considering the identical transformation as not properly of 
type II, we reach the following result : 

THEOREM 10. The necessary and sufficient conditions, that the 
resultant of two transformations of type IL should also be of type 
II, are (1), that they have the same invariant point; or (2), that 
tt,(A —A,)*= 4. 

23. Symbolic Notation and Operation. A very useful and 
convenient symbolism has been invented for dealing with 
certain transformations and their combinations. We proceed 
to explain and illustrate this notation. 
A transformation is denoted by a single letter Tor S. The 

inverse of Tis denoted by JT. The resultant of T and S is 
=P 
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denoted by TS or ST according to the order in which they 
operate. The resultant of T and Tis denoted by 7. If T 
be repeated n times the resultant is denoted by T”, etc. The 
resultant of T”™ and T” is T”*". The resultant of T and its 
inverse is denoted by T7T-1=7’°=1. Thus unity is a con- 
venient symbol for the identical transformation. 
A symbolic equation of the form, 

HS — Sh e@s 
means that the resultant of the three transformations on the 
left is equal to that of the five on the right when taken in 
the order indicated. We may multiply each side of this 
equation by say 7’ by writing T~’ before each side; thus 

eT Si — le Melee 

Suppose we have two symbolic equations such as 

SS LS IE Ba Sy SIL 

by multiplication we get 

SESH) = SIPS i ie Syl ILS Side 

These examples sufficiently illustrate the principle. 

24. Operation on S by T. If TS is not the same transfor- 
mation as ST let us assume that there exists a transformation 
S’ such that TS’= ST. Let us multiply both sides of this 
equation by 7’, the inverse of T. This gives us T ‘TS’ = 
S’= TST, since TT~ is the identical transformation and 
denoted by unity. Hence S’ is a projective transformation, 
since it is the resultant of T7-", S and 7, each of which isa 

projective transformation. 
The two transformations S and S’ are conjugate transfor- 

mations, as the following equations show: S’=(T4S)T and 
S=T7T(T"S), i. e., (T-1S) and T combined in one order give 

S’, and in the reverse order give S. 
We say that the transformation S’ is obtained by operating 

on S with 7. Thus the operation of T on S produces S’ and 
is symbolized by S’'= T-'ST. This equation may be solved 
for S, so to speak, by the following process: Write T before 
each side of S’= T-'*ST and we get TS’=ST. Now write 
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T-‘after each side of this equation and we get TS’T7*=S, 
which shows the relation between S and S’. 

25. Equations of Sand S’. Let S be given by the equation 
— ae+h bi ax +b 

ies qaet+d cx + d° 

Since S’ is given by S’= T-1ST, we find the equation for S’, 

and let us operate on S by 7, given by «,= 

(—ada—bdeitachi+bed:) «+ (abai+b2c:—a%bi—abdi) 

( —eda,—d?e1+ 2b + edd; )x + (beai+bdei—acbhi—add; ) 

Ls ay! «+ bi! 

~ efa+d)" 

= 

(28 ) 

Let the natural parameters of S be k, A, and A’; and of S’, 
k,, A,, and A,’; we wish to find the relation existing between 
the natural parameters of S and S’. 

From the equations of S’ and S we readily find 

a, +d/= —A(a,+d,), (29) 

where A is the determinant of 7. Also from theorem 6 we 
ay’ bi’ | _|a hh have, Ge leeAah a (30) 

The value of k,, the cross-ratio of S’, is by (15) 

= (aa!+ di’ — V(ai'+ di’) 2—4 (ar! dy’ — bier) )? 

ae 4 (ay di’ —by cr) . 

Substituting from (29) and (30) we get 

k, ie (ai+ di — V(a+di)?—4(aidi— bici) )” ewe 

4 (a ai— bi ci) 

If the value of A, one of the invariant points of S, be sub- 

stituted for «in the equation, «,= a x, will be found to 

be equal to A,, an invariant point of S’.. Thus T transforms 
the invariant points of S into those of S’. 

THEOREM 11. When 7 operates on S to produce S’, according 
to the formula S’/= 7-7 ST, the invariant points of S are transformed 
by T into the invariant points of S’ and the cross-ratio of S’ is the 
same as that of S. 
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$3. One-Parameter Groups of Projective 

Transformations. 

26. Resultant of T and T, with Common Invariant Points. 
Let T and T, be two transformations of type I having the 
same invariant points A and A’, and let T transform the point 
2 to.x,, and let T, transform x, to x,. The resultant of T 

and T, also leaves A and A’ invariant and transforms « di- 
rectly to z,. Let T and T, be given in the implicit normal 

forms : 
m1 —A a—A w2— A am—A , 

5 ee ah SONG ery oer (14) 

We eliminate x, from these equations by multiplication, and 
obtain T,: 

we — A a —A 

ey Oo ema 

The cross-ratio of T, is therefore k,=kk,. Since kk,=k,k, 
it follows that T and T, are commutative, thus completing 
theorem 7. 

In the same way it may be shown that the resultant of any 
number of transformations with the same invariant points has 
its cross-ratio equal to the continued product of the cross- 
ratios of the components. 

The cross-ratio k is a complex number and may have a 
doubly infinite number of values; hence there are a doubly in- 
finite number of transformations, leaving two given points A 
and A’ invariant. In fact the system of transformations 
leaving A and A’ invariant contains a transformation corre- 
sponding to each number of the complex number system. 
Certain transformations of this system, corresponding to cer- 
tain special values of k, have received special names. Thus 
the transformations of the system corresponding to k= 1,— 1, 
0, © are called the identical, the involutoric, and the two 
pseudo-transformations, respectively. Any transformation of 
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the system for which k = 1-4, where 4 is an infinitesimal, is 

ealled an infinitesimal transformation. 
The transformations of this system have the property that 

the resultant of any two of them is a transformation of the 
same system; and the inverse of every transformation of the 
system is also in the system, as is shown below. Every sys- 
tem of transformations having these two properties is called 
a group of transformations. This group of transformations 
leaving A and A’ invariant is called a continuous group, since 
continuous variation of & gives rise to transformations, all of 
which belong to the group. This group is designated by the 
symbol G,(AA’) and is called a one-parameter group, the 
cross-ratio k being the variable parameter of the group. 

THEOREM 12. The totality of projective transformations which 
leave the same two points of a line invariant forms a continuous 
eroup; the cross-ratio of the resultant of any two transformations 
of this group is equal to the product of the cross-ratios of the com- 
ponents. 

27. Properties of the Group GAA’). The fundamental 
property of the group G,(AA’) is that the, resultant of any 
two transformations of the group is another of the same 
group. This is called the first group property. Other prop- 
erties of the group will now be developed. 

The inverse of 7, any transformation in G,(AA’), is 
also to be found in G,(AA’). To show this let T be the 
transformation which transforms the point x into «#,; then T 
is given by the equation 

Cae ee) 
The inverse of 7 transforms w, back into x; then T~‘ is given 

by 
DOS A Ser A 

ap JNO TT fhe ae ANOS 

Hence the cross-ratio of the inverse of T is given by 1/k; in 
other words the cross-ratios of a pair of inverse transforma- 
tions have reciprocal values. Since k is any number in the 
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complex number system, its reciprocal, 1 /k, is also a number 
in the same system. Hence the inverse of every transforma- 
tion in the group G,(AA’) is also in the group. This is called 
the second group property. 

The resultant of a pair of inverse transformations is the 
identical transformation, whose cross-ratio is given by 
kX1/k=1. Hence the group G,(A A’) contains the identical 
transformation. 

The group G,(AA’) contains one transformation which is 
identical with its own inverse. In this case we have the con- 

dition k = = or k#?=1; whence k==+1. The value k=1 

gives the identical transformation of the group. That this is 
its own inverse is self-evident. The value k= —1 gives the 
involutoriec transformation of the group. This transforma- 
tion has the effect of interchanging every pair of correspond- 
ing points on the line, since its second power is the identical 
transformation; thus this transformation gives rise to an in- 
volution, whence its name. 

The group G,(AA’) contains two very noteworthy trans- 
formations whose cross-ratios are 0 and, respectively. The 
first transforms all points of the line except A’ into A; the 
second transforms all points of the line except A into A’. 
These are pseudo-transformations and may be regarded as 
forming an inverse pair. 

The cross-ratio of the identical transformation is unity, and 
this transformation leaves every point of the line invariant. 
The transformation of the group whose cross-ratio is 1+ 4, 
where 4 is an infinitesimal number, moves every point on the 
line an infinitesimal distance, and hence is called an infini- 
tesimal transformation. 4 has an infinite number of dif- 
ferent values, viz., |p| e“, where is an infinitesmal and 6 

varies from 0 to 2x. If an infinitesimal transformation be 
repeated ” times, the cross-ratio of the resultant is (1+ 4)”. 
By a proper choice of 4, 7. e., of 6, and of x (sufficiently large), 

this cross-ratio may be made any number we please; hence 
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every transformation in G,(AA’) may be generated from an 
infinitesimal transformation of the group. The chief prop- 
erties of the group G,(AA’) may be summed up as follows: 

THEOREM 13. The resultant of any two transformations of the 
group G;(AA’) is a third transformation of the same group; the 
transformations of the group can be arranged in inverse pairs; it 
contains the identical, one involutoric, two pseudo, and an infinite 

number of infinitesimal transformations; every transformation of 
the group can be generated from an infinitesimal transformation of 
the group. 

28. One-Parameter Group G,/(A). Let T and T, be two 

transformations of type I having the same invariant point 
A. They may be written: 

1 1 1 1 

m—A < TA, a t and t2—A 7h m—A +t. (18) 

T transforms « to x,, and 7, transforms x,tow,. Their result- 

ant T, is obtained by eliminating «, from these two equations 
by addition, giving us: 

1 1 

i wee Oe 

Thus, ¢,=7t--¢,.. The resultant, T,, is of type II (thus 

completing theorem 10), has the same invariant point A, and 
its constant, t., is equal to the sum of the constants of T and 
IP. 

The parameter, t, being a complex number, may have any 
one of a doubly infinite number of values ; and hence there are 
a doubly infinite number of transformations of type II having 
the same invariant point: This system of transformations of 
type II having the same invariant point possesses the first 
group property, as has just been shown. That it also pos- 
sesses the second group property we proceed to show. Let T 
be the transformation : 

~ = 1 = — 

a —A = x 

I O 

Sein Os (18) 

its inverse, 7‘, which transforms x, back to 2, is 
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1 1 

ea wl 7 pS Al 
SES 

Hence the parameters of a pair of inverse transformations are 
numerically equal but of opposite signs. Since the negative 
of every complex number is also a complex number, it follows 
that the inverse of every transformation in the system is also 
in the system. Therefore the system of transformations of 
type II having the same invariant point possesses the second 
group property. This system has both of the defining group 
properties and is therefore a group. This group is continu- 
ous; it contains a transformation for every value ¢ of the 
complex number system. It is designated by G,'(A). 

THEOREM 14. The totality of transformations of type IT which 
leave the same point invariant forms a continuous group; the con- 
stant, t, of the resultant of any two transformations of the group is 
equal to the sum of the constants of the components. 

29. Properties of the Group G,/(A). The resultant of a 
pair of inverse transformations is the identical transformation 
whose constant is t, =t—t=0. The group G,/(A) therefore 
contains the identical transformation. 

The only transformation in the group which is its own in- 
verse is the identical transformation, 7. e., the group contains 
no involutoric transformation. It contains one pseudo-trans- 
formation for which t= ©. This transforms every point on 
the line to the invariant point. 
A transformation of the group whose constant t is infinitesi- 

mally near to zero, 7. e., t=|o\e*", where p is an infinitesimal 
and #@ varies from 0 to 2x, is an infinitesimal transformation. 
If an infinitesimal transformation is repeated n times, the re- 
sultant has the constant nt. By a proper choice of 7 and 6 
this may be made any number we please; hence every trans- 
formation in the group G,/(A) can be generated from an 
infinitesimal transformation of the group. 

THEOREM 15. The resultant of any two transformations of the 

group G,/( A ) is also a transformation of the group ; its transforma- 
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tions can be arranged in inverse pairs; it contains the identical 
transformation, one pseudo, but no involutoric transformation ; it 
contains an infinite number of infinitesimal transformations, and 
every transformation of the group can be generated from an infini- 

tesimal transformation of the group. 

30. Number of One-Parameter Groups. We have thus 

found two types of one-parameter groups of transformations 
of the points ona line, viz., G,(AA’) and G,/(A). Evidently 
there are as many groups of the first type as there are pairs 
of points on a line, viz., ©”. Also, there is a group of type 
II for every point on a line; therefore, ~' in number. It is 
also evident that every transformation of the points on the 
line belongs to one and only one of these one-parameter 
groups (except the identical transformation which is common 
to all). 

$4. Two- and Three-Parameter Groups of 

Projective Transformations. 

We shall now investigate the question of the existence of 
two-parameter groups of projective transformations of points 
onaline. We shall make use of a method which is of great 
importance and will be often used in the following chapters 
to prove the existence of groups of transformations. 

31. The Group G,(A’). We wish to examine the aggre- 
gate of transformations which leave a single point invariant. 
Let us take two transformations, 7 and 7, having one, but 
only one, invariant point A’in common. The point A’ may 
be taken for the origin without loss of generality. Let T 
and T, be taken in the normal form, 

in it 0) v1 1 0 

A1laA Ask dike ob 

A’ 1 kA’ Ay 1 kAy 
: 2,= — - Ti: 2% = ———.. DD 

r t ee On ic Z 2 ian Ree (22) 

Alias PAT ener 

ALT We At f@ ki 
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Making A’=0 and A,’ = 0 in (22) these simplify to 
x v1 

hi and ¢— 
1—k 1-h 5 31 
(Zjete ( Ar Jatha ( ) 

Eliminating x, from these two equations we get 

ES = —— ‘ ( a , 2 ce 2) Me (81a) 

But this is the same form as (31), viz. : 

T,: «= ——— 
(eas eP 

Comparing coefficients in (31a) and (31b), we have 
ke => kk 

a Be: ae mh ue» (32) 

These two equations enable us to express k, and A, in terms 
of k, k,, A and A,. 

From these results we see that the resultant of two trans- 
formations of type I, having one invariant point in common, 
has for one of its invariant points the common invariant point 
of the components, in this instance the origin. The first of 
equations (32) shows us that the cross-ratio of the resultant 
is also equal to the product of the cross-ratios of the compo- 
nents, viz.: k, = kk,, just as in the case where the two inva- 
riant points are common to the two transformations. 

Since (31a) is of the same form as (31), we see that the 
first group property is satisfied, 7. e., in the set S, (A) of «0° 
transformations given by (81) the resultant of any two of the 
set is also in the set. The two parameters of the set are the 
cross-ratio k and the abscissa of the other invariant point A. 
The structure of the set is evident; the origin A’ may be 
taken in turn with every other point on the line to form the 
invariant points of a group G,(A’A) and once with itself to 
be the invariant.point of G,’(A’). Hence it contains ~’ one- 
parameter groups of type I and one of type Il. Every trans- 
formation in the set S,(A) belongs to one of these one-para- 

meter groups; its inverse is in the same group and hence also 
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in S,. The set of transformations S, (A) has therefore both 
group properties; (1) the resultant of two transformations of 
the set is in the set; (2) the inverse of every transformation 
in the set is also in the set. Hence the set S,(A) is a group 
G, (A). 

THEOREM 16. All transformations which have a common inya- 
riant point forma two-parameter group; the cross-ratio of the result- 
ant of any two transformations of the group is equal to the product 
of the cross-ratios of the components. 

32. Properties of G.(A). From the continuity of the point 
system on a line and from the known continuity of each sub- 
group, we infer the continuity of the group G,(A). The 
transformations of the group G,(A) are not commutative. 
Since k, = kk,, it is evident that the cross-ratio of the result- 

ant is independent of the order of the components; but the 
position of the second invariant point of 7, is not independent 
of the order of T and T,. Forif A and A, are interchanged 

in (82), the value of A, is changed, thus showing that T and 
T, are not commutative in G,(A ). 

When T and T, have both invariant points in common and 

em : , their resultant is the identical transformation (art. 27); 

but when 7 and T, have only one invariant point in common 

and k, = 2 the resultant is of type II. For putting k, =1/k 

in (32) we get 
L— 7 k-1 1 1 6 

a reas Ea (33) 

whence A, must equal zero, since neither factor on the right 
can be zero. Thus the two invariant points of 7, coincide and 
it is of type II. The value of the constant t of T, is found 
as follows: 

lim 1-— ke k—1 /1 1 = ————— 4 
t kis A2 k G A ) (34 ) 

THEOREM 17. The group G.(A) contains o/subgroups G,(AA’) 
and one subgroup G,;/(A). The transformations in G.(A) are not 
commutative. The resultant of two transformations of type I in 

1 
G.(A), for which k, = = and A,’ not equal to A’, is of type I. 
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33. The Three-Parameter G,. It was shown (theorem 6) 
that the resultant of T and T,, any two projective transforma- 
tions of the points on a line, is again a projective trans- 
formation; also, (art. 4.) that the inverse of every such 
transformation is a projective transformation. From this we 
infer that all projective transformations of the points on a 
line form a group. This is called the general projective group 
G,. It isa group of three parameters ; for the equation of T 
contains three independent parameters, viz.,a@:b:c:d. If 
these coefficients, a, b, c, d, be made to vary continuously, all 

the resulting transformations belong to the group G,; and 
conversely all transformations belonging to the above group 
are obtained by continuously varying the coefficients in T. 
Such a group is evidently continuous. If the equation of T 
be put into the normal form, 

a4 = ho (14) 

the three natural parameters, A, A’, k, may be made to vary 

continuously, thus generating the group G,. The group G, 
contains ©! two-parameter groups G,( A), one for each point 
on the line. It contains, as we have already shown, ~’ groups 
G,(AA’) and «/ groups G,/(A). 

34. The Mixed Group mG,(AA’). The one-parameter 

continuous group, G,(AA’), is made up of transformations, 
each of which leaves the points A and A’ separately invari- 
ant. The points A and A’ may be interchanged by certain 
transformations of the points on the line. The aggregate of 
all transformations, which leave the pair of points AA’ inva- 
riant, either separately or by interchanging them, is called 
the mixed group, mG,(AA’). 

The only transformation of the points on a line interchang- 
ing a pair of points is an involutoric transformation. Let the 
four points A’, A, P, Q form a harmonic range and let T be 
the involutoric transformation of the group G,(PQ). T will 
interchange 7A’ and A. Since there are ~’ pairs of points 
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that divide A’ and A harmonically, it follows that there are 

co’ involutoric transformations that interchange A’ and A. 

The system of transformations in mG,(AA’) possesses both 

group properties. This is known to be true for these trans- 

formations in mG,(AA’) which belong to the continuous 

group G,(AA’); but it must be proved for those transforma- 

tions that interchange A’ and A. Let T and T, be two in- 

volutoric transformations each interchanging A’ and A; their 

resultant, therefore, leaves both A and A’ separately invari- 

ant, and hence belongs to the continuous group G,(AA’) and 

is also in mG,(AA’). Let T and T’ be two transformations, 

the first leaving A’ and A separately invariant, and the 

second interchanging A’ and A. Their resultant interchanges 

A’ and A, and is therefore an involutoric transformation be- 

longing tomG,(AA’). Hence all transformations in mG,(AA’) 

have the first group property. Since every involutoric trans- 

formation is its own inverse (art. 27), it follows that mG,(AA’) 

has the second group property. Hence it is appropriate to 

call the set of transformations in mG,(AA’) a mixed group. 

THEOREM 18. The aggregate of those transformations inter- 

changing a pair of points and those leaving them separately invari- 

ant forms a mixed group mG:( AA’). 

35. Operation by Ton G. If we operate with T as in art. 

24 on all the transformations of agroup G, we produce thereby 

a new group G’. This is proved as follows: Let S and S, be 

any two transformations of G and let SS, = S,, whence S, is 

also a transformation inG. Operating with 7’ on S and S, we 

et 
Se iS ieands. — Las ws 

hence SS le Ne Se — er Sls — ee Se, 
or SS 

i. e., the result of operating with T on the resultant of S and 

S,, is the resultant of S’and S,’.. Therefore if the transforma- 

tions S form a group G, the transformations S’ form a new 

group G’. We express this by saying that 7 has transformed 

the group G into G’, = 
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If T belongs to G, it is evident that G’ is the same group 
as G; for the resultant of T and S is always a transforma- 
tion in G and the resultant of 7‘ and (ST) is also in G. If 
T does not belong to G, then G and G’ are usually not the 
same group, but may be the same in some cases. 

If G is the general projective group in one dimension and 
T is also a projective transformation, then G’ is the general 
projective group. If Gis some subgroup of the general pro- 
jective group and T does not belong to G, then the trans- 
formed groups G’ and G are said to be equivalent subgroups. 
The invariant figure of G is tranformed by T into the invari- 
ant figure of G’ and corresponding transformations in G and 
G’ have the same cross-ratio; the two subgroups G and G’ 
have, therefore, the same structure. 

36. Invariant Subgroup. When a group G is trans- 
formed by T into G’, the subgroups of G go over into the 
subgroups of G’. When T belongs to G, the subgroups of G 
are only interchanged, since G’ is the same as G. If a sub- 
group of G not containing 7 is transformed by T into itself, 
such a subgroup is called an invariant subgroup of G. 

As an example let us operate on the group G.( A) by any 
transformation T belonging to G,(A). Take S in the form 

ax + dy cx + d~ 

found by making b = b, = 0, in equation (28). Thus 

o— and T in the same form «, = S’is readily 

Ss’: aloe CE dea . (39 ) 

Since S’ is also in G,(A), it follows that 7 has transformed 
G.( A ) into itself. 

G,(A) contains one subgroup of type II, viz., G,/(A). If 

axe + ay 
S be chosen from this group, its equation becomes x, = 

adi & 

S’ then reduces to #, = whence S’ also belongs to 
dea + aa’ 

G,/(A). Hence G,’( A) is an invariant subgroup of G,’'(A ). 
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37. Transformations of Pencils of Lines and Planes. The 
theory sketched in the foregoing pages applies equally well to 
the one-dimensional transformations of the lines of a flat pen- 
cil or the planes of an axial pencil. There are two varieties 
of such transformations, viz., those with two invariant ele- 
ments and those with only one invariant element. 

In the first case let O be the vertex of a flat pencil, A and 
A’ the two invariant lines of the pencil, and « and x, any pair 
of corresponding lines in the transformation. Then we have 
the cross-ratio O( A’Avx,) =k, and the theory requires no 
further development. 

The second case, with one invariant element, may be de- 

duced as the limiting form of the first case in the following 
manner: Let O( A’Axu,) =k; whence O(A’vAx,) =1—k. 
Writing out the last cross-ratio in full, we have: 

sin(AOA’) | sin (a1 0A’) 

sin (AOr) : sin (“10x ) ae 

Whence 
sin (a Ox) 1=k 

sin(AOx) . sin(#10A’)  sin( AOA! ) ; 

But (x,Ox) = (A’Ox) — (A’Ox,) ; therefore, 

lim sin( A’Ox)cos(A’Ox1) —cos( A/Ox)sin(A!Ox1) lim 1-k sas 

A'=A sin (AOx) . sin(#10A‘) an Al=A sin (AOA) WH § 

Hence cot (x,0A’) — cot(xOA’) =t, 

or cot 0, =cot0-+t. (36) 

THEOREM 19. In a transformation of a pencil of lines (or 
planes) of type II, the difference of the contagents of the angles 
made with the invariant line (or plane) by a pair of corresponding 
lines (or planes) is constant for all pairs of corresponding lines 
(or planes). 
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$5. Projective Transformations. 

38. The theory developed in the preceding $$ 1-4 is per- 
fect, complete, and perfectly general. The special case of 
greatest interest is that in which the variables « and «, and 
the constants a, b, c, d in the equation, 

az+b 

ty = copa? (1) 

are real numbers. Such a transformation transforms real 
points into real points; for if real values of x are substituted 
in equation (1), a, b, c, d being real, then ~«, is also real. 

The theory as developed in § 1 is modified in the case of 
real transformations in only one particular, viz. : in regard to 
the invariant points of the transformations. The invariant 
points of the transformation (1) are given by the roots of the 
quadratic equation 

cv +(d—-—a)x—b=0. 

With real coefficients the roots of this equation are real and 
unequal, real and equal, or conjugate imaginary, according as 

(a+d)— 4(ad — bc) : 0. There are thus three kinds of 

real projective transformations of the points ona line, dis- 
tinguished by the character of the invariant points. When 
the invariant points of the transformation are real and dis- 
tinct, it is called a hyperbolic transformation; when they are 
coincident, it is called parabolic; when they are conjugate 
imaginary, it is called elliptic. 

The character of the cross-ratio k is also different in the 
hyperbolic and elliptic cases. From equations (18) and (15) 
it follows that k is real when A and A’ are real; and com- 

plex, when A and A’ are conjugate imaginary. It follows 
also from equation (15) that in the elliptic case, k is a com- 

plex number, and |k| = 1, 2. e., k = e”, where 

a+d 

2 Nad —be 

1+k 
() = Aowyre GOS = 207TC COS, =, - 
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From the fact that there are three varieties of real project- 
ive transformations on a line we may safely infer that there 
are three varieties of one-parameter groups of such transfor- 
mations, viz.: hyperbolic, elliptic, and parabolic groups. 
These three types of groups must be studied separately. 

39. The Hyperbolic Group hG,(AA’). The hyperbolic 
group of one parameter, which is designated by the symbol 
hG,(AA’), consists of all hyperbolic transformations which 
have the same pair of real invariant points, A and A’, but dif- 
ferent real cross-ratios, k. The group hG,(AA’) contains a 
transformation corresponding to each value of k in the real 
number system. Hence the group contains an identical 
transformation for which k = 1, an involutoric transformation 
for which k = — 1, two pseudo-transformations for which 
k=0 and k= o, two infinitesimal transformations for which 
k=1+6 and k=1—6. 

From the law of the combination of the cross-ratios in the 
group, viz.: k,=kk,, we learn that the group hG, (AA’) con- 
tains three distinct subdivisions. Subdivision I consists of all 
transformations for which k is between 0 and 7; subdivision 
II, of all for which k is between 7 and ~; subdivision III, of 
all for which & is negative. The pseudo-transformation, 
k = 0, separates subdivision III from 1; the identical trans- 
formation, k = 1, separates I from II; the other pseudo- 

transformation, k = ~, separates II from III. 

The combination of any two transformations of subdivision 
I gives rise to a transformation belonging to the same 
subdivision; for the product of two positive proper fractions 
is a positive proper fraction. The inverses of all transforma- 
tions in subdivision I are in II. The combination of any two 
transformations in II gives also a transformation in II; but 
the inverses of those in II are in I. The combination of any 
two transformations in III gives one either in I or II. The 
involutoric transformation divides subdivision III into two 
parts; all the transformations in one of these parts are the 

=§ 
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inverses of those in the other part. Subdivisions I and II 
contain each an infinitesimal transformation. All transforma- 
tions in I may be generated by repetitions of the infinitesimal 
transformation T,-5; all transformations in II can be 
generated by repetitions of the other infinitesimal transforma- 
tion T,4;. The transformations in III, for which k is 

negative, cannot be generated from either infinitesimal 
transformation of the group. 

THEOREM 20. The hyperbolic group hG,(AA’) contains one 
identical, one involutoric, two pseudo, and two infinitesimal trans- 
formations; it consists of three subdivisions: subdivisions I and II 
contain each its generating infinitesimal transformation; the trans- 
formations in subdivision III cannot be generated from either infin- 
itesimal transformation of the group. 

40. The Elliptic Group eG,(AA’). The oné-parameter 
elliptic group, designated by the symbol eG,( AA’), consists 
of all real transformations having the same pair of conju- 
gate imaginary invariant points A and A’. The parameter, 
k = e*", is a complex number and its variation in the complex 
plane is confined to the unit circle about the origin. The 
group contains a transformation corresponding to each point 
on the unit circle. This circle cuts the axis of reals in only 
two points, viz.: when k = 7 and k = — 17; hence the group 
contains only two transformations for which k is real. These 
are respectively the identical and the involutoric transforma- 
tions of the group. Since e*’ cannot assume either value 0 or 
o, it follows that the group contains no pseudo-transforma- 
tions. The group contains two infinitesimal transformations, 
for which k = e* and k = e—**, where 4 is an infinitesimal. 

The elliptic group eG,(AA’) contains two subdivisions; sub- 
division I consists of all transformations in the group for 
which 6 is positive between 0 and 2; subdivision II, of all for 

which @ is negative between 0 and —z. The identical and 
the involutoric transformations of the group form the bounda- 
ries of these subdivisions. The transformations of one sub- 
division are the inverses of those in the other. Each subdi- 
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vision contains an infinitesimal transformation. If either in- 
finitesimal transformation be repeated » times the cross-ratio 
of the resultant is given by k=e*’*; by a proper choice of n 
this may be made any transformation of the group for which 
§is finite. Let 6/=2x—6; since e*4’ =e' @-—9) — e2rt 18 — e— 
it follows that any transformation of the elliptic group 
eG,(AA’) may be generated by repeating either infinitesimal 
transformation of the group. 

THEOREM 21. The one-parameter group eG; (AA’) contains one 

identical, one involutoric, two infinitesimal transformations; it con- 
sists of two subdivisions; the group may be generated by either of 
its infinitesimal transformations. 

41. The Parabolic Group pG,(A). All real parabolic 
transformations of the points on a line which have the same 
invariant point A form a one-parameter parabolic group, des- 
ignated by pG,(A). The parameter of the group is t and the 
law of combination of parameters in the group is expressed 
by t,=t-+t,. This group contains a transformation corres- 
ponding to each number in the real number system. The 
identical transformation of the group is given by t=0; the 
transformation corresponding to t= © is a pseudo-transfor- 
mation of the group. 

This group contains two subdivisions: Subdivision I con- 

tains all transformations for which t is positive; subdivision 
II, all for which ¢ is negative. The boundaries of the two 
subdivisions are the identical and the pseudo-transformations. 
The resultant of two transformations belonging to the same 
subdivision is a transformation belonging to that subdivision. 
The inverse of every transformation in one subdivision is a 
transformation in the other subdivision. 

The parabolic group pG,(A) contains two infinitesimal 
transformations, viz. : those corresponding to t= +4, where 3 
is an infinitesimal. Each subdivision of the group contains an 
infinitesimal transformation; and each subdivision may be 
generated by its infinitesimal transformation, but not by the 
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infinitesimal transformation belonging to the other subdi- 
vision. The group pG,(A) contains no involutoric trans- 
formations. 

THEOREM 22. The one-parameter parabolic group of real trans- 
formations on a line contains one identical, one pseudo, and two in- 
finitesimal transformations, but no involutoric transformation ; it 
consists of two subdivisions each of which is generated by its own 
infinitesimal transformation. 

42. The Group G,(A). The theory developed in $4 for 
complex constants and variables holds also for real transfor- 
mations. Equations 31-34 inclusive may be interpreted in real 
transformations as follows. The resultant of two hyperbolic 
transformations with one invariant point in common is gen- 
erally a hyperbolic transformation having one of its invariant 
points at the common invariant point of its components ; and 
the cross-ratio of this resultant equals the product of the cross- 
ratios of the components. Thus the resultant of hT(AA’) 
andhT,(AA”) ishT,(AA’’) and k,=kk,. The resultant will 

be parabolic in case k and k, have reciprocal values and TJ and 
T, are from different one-parameter groups. (See equation 
33.) 

The * real transformations leaving A invariant is made up 
of ~’ one-parameter hyperbolic subgroups, hG,( AA’), where 
A’ is in turn every point on the line except A, and one para- 
bolic subgroup, pG,(A), the limiting case of hG,( AA’) when 
A’ coincides with A. There are no elliptic transformations 
leaving A invariant. These * transformations leaving A 
invariant form a two-parameter group G,(A). 

THEOREM 23. The group G.(A) contains oo? hyperbolic sub- 
groups hG,( AA’), one parabolic subgroup pG;(A ), but no elliptic 
transformations. 

43. The Group G,. The aggregate of all real transforma- 
tions of the points on a line forms a three-parameter group, 
designated by G,. It contains * one-parameter hyperbolic 
subgroups, one for each pair of real points on the line; it con- 
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tains ~* one-parameter elliptic subgroups, one for each pair 

of conjugate imaginary points on the line; it contains ~* one- 

parameter parabolic subgroups, one for each real point on the 

line; it contains ©’ two-parameter groups, G,(A), one for 

each real point on the line. The structure of G, may be rep- 

resented by the formula 

G, = 01G,(A) = ~?hG,(AA’) + ~*%eG,(AA’) + ~'pG,(A). 

$6. Theory of Projection. 

Definitions. We begin with a few definitions of the 

terms which will be frequently used in this section. A set or 

row of points on a line is called a range of points; the line on 

which the points are situated is called the base of the range. 
A set of lines lying in a plane and passing through a fixed 
point is called a pencil of lines; the fixed point is called the 
vertex of the pencil, and each line of the pencil is called a ray. 

44, Perspective Projection. Let arange of points, A, B, C, 
D..., Fig. 1, be given on a line 1; let lines be drawn to A, B, 
C, D...., from a point P not on the line /; these lines form 

] 
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a pencil with its vertex at P. Let this pencil be cut by any 
other line, as l’, in points A’, B’, C’, D’... The operation of 
constructing the pencil through the point P and the points of 
the range on / is called projecting the range from P. The 
operation of cutting the pencil by another line, as 1’, is called 
taking a section of the pencil. The new range A’, B’, C’, 
D’... on the line 1’ is called a perspective projection of the 
former range, P being the center or vertex of the projection. 

45. One-to-one Correspondence. The points A and A’, B 
and B’, ete., are called corresponding points of the two ranges 
onlandl’. It is evident that to a point such as A on the 
line / there corresponds one and only one point, A’, on l’, the 
corresponding point lying on the same ray through P. This 
is true of every point on / except the point J, where the par- 
allel to /’ through P cuts /, and infinitely distant points on J. 
Therefore, with the exception of these points there is a one- 
to-one correspondence between the points of these two ranges. 

46. The Point at Infinity. In order to make this one-to- 
one correspondence hold without any exceptions we adopt the 
following convention. We say that two parallel lines meet 
in one infinitely distant point. According to Euclid’s hypothe- 
sis PJ is the only ray through P parallel to /’; J is therefore 
the only point on / which corresponds to points at infinity on 
l’. Inthe same way I’ is the only point on l’ which corre- 
sponds to points at infinity on /. One-to-one correspondence 
of points on the two ranges is therefore general with no ex- 
ceptions, if we assume but a single point at infinity on each 
of the lines / and /’. 

47. Self-corresponding Point. Wealso see that the point 
O on | corresponds to the point O onl’; in other words, the 
point of intersection of the lines / and 1’ is a self-correspond- 
ing point on the two ranges. Two ranges connected by a 
perspective projection are characterized by the facts that they 
have a self-corresponding point and that the rays joining cor- 
responding points meet in a point. They are sometimes 
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called perspective ranges, or are said to be in perspective 
position. 

THEOREM 24. Two ranges in perspective position have a one- 
to-one correspondence; the lines joining corresponding points meet 
in a point, the center of the perspective projection; the point of in- 
tersection of the two lines is a self-corresponding point on the two 
ranges. 

48. Invariance of Cross-ratios. The cross-ratio of the 
four points A, B, C, D is defined by the function 

= _ ACAD b= ABCD) ap 

The cross-ratio of the four corresponding points A’, B’, C’, D’is 

a / InN A'C’ : A'D! } k' = (A'B'C'D') = 3a : gp: We wish to show that these 

two cross-ratios are equal. 

The triangles APJ and A’PI’, Fig. 1, are similar; also the 
triangles CPJ and C’ PI’ are similar. 

eee ia leer and sO — el Ol 

: lets lel pers Jedi 
Bre Ae AIT and JC = cr: 

Subtracting, we get 

AC=JC—JA= =" (AV —-Cl) = 2 - AC. Al. CP A’. Cl 

In like manner we get 
JP. PY 

BOS ay ee, 

EA URS E iuoetal ty 
A ig) CD 

JP. PI LT 
BaD erga BL « 

Dividing, we get 
AC . AD A'C! | A'D! 
BOiat IBD BIC MD Ie ey) 

Hence the two cross-ratios (ABCD) and (A’B’C’D’) are 
equal. 
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THEOREM 25. When two ranges of points are related by a per- 
spective projection the cross-ratio of any four points of one range is 
equal to that of their four corresponding points in the other range. 

49. Non-perspective Projection. We now proceed to con- 
sider a more general method of projecting one range into 
another, which method will be shown to contain the perspec- 
tive method as a special case. 

Fig. 2. 

Take as before two lines / and 1’, Fig. 2, intersecting in O ; 
draw any conic, for simplicity an ellipse, touching both / and 
l’, We shall assume as known the fundamental property of 
a conic that from any point outside the conic two and only 
two tangents can be drawn to the conic. Let P be any point 
onl; from P draw the two tangents to the conic K. One of 
them is the line / and the other intersects the line /’ in some 
point as P’. We call P and P’ corresponding points of the 
two ranges on/ andl’. We readily see that from every point 
on / one and only one tangent other than / can be drawn to 
the conic K; and in like manner from any point on /’ one and 
only one other tangent can be drawn to K. This construction 
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gives a one-to-one correspondence between the points of the 
ranges on / and /’; and thus we see that the conic K deter- 
mines a new kind of projection of the line / on 1’, and also of 
the line 1’ on 1. 

Let T and T’ be the points of contact of the conic with 1 
_and l’ respectively. From T only one tangent can be drawn 
to K and that is the line / itself; this cuts /’ in O: hence 
T on / corresponds to O onl’. In like manner 1’ is the only 
tangent that can be drawn to K from T’: hence T’ on 1’ cor- 
responds to O onl. The tangent to K parallel to / cuts 1’ in 
I’; hence I’ corresponds to the point at infinity onl. In like 
manner J on / corresponds to the point at infinity on 1’. 

Projection of this kind is called non-perspective in order to 
distinguish it from the kind when the lines joining corres- 
ponding points meet in a point. 

We proceed to show that perspective projection is only a 
special case of non-perspective projection. If the conic K 
touches one of the lines / or l’ at O, it must also touch the 
other at O since it touches both. In this case the conic de- 
generates into a limited segment of a line having one ex- 
tremity at O. Let P be any point in the plane; the segment 
OP, Fig. 1, may therefore be considered as a conic touching 
both/ andl’. The tangents to this conic form a pencil of 
lines meeting in P; and this gives us a perspective projection 
with P as the center of perspective. 

THEOREM 26. The non-perspective projection of one range upon 
another is completely determined by a conic K touching both 
bases. Perspective projection is a special case of non-perspective 
projection in which the determining conic reduces to a line-segment 
with one extremity at the intersection of the bases of the two ranges. 

50. Cross-ratio Unaltered by Non-perspective Projection. 
We shall now prove the important fact that the cross-ratio of 
four points of a range is unaltered by a non-perspective pro- 
jection. We shall assume the well-known theorem that any 
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four tangents to a conic is cut by any fifth tangent in four 
points whose cross-ratio is constant.* Let AA’, BB’, CC’, 
PP’, Fig. 2, be any four tangents to the conic K. These four 
tangents are cut by the tangents / and 1’ in the four points 
A, B,C, P, and A’, B’, C’, P’, respectively, whose cross-ratios are 
equal by the above theorem. Thus the cross-ratio of any four 
points is unaltered by a non-perspective projection. 

THEOREM 27. If two ranges of points on intersecting lines are 
related by a non-perspective projection, the cross-ratio of any four 
points of one range is equal to that of the four corresponding points 
on the other range. 

51. Projective Ranges. We have thus far defined two dif- 
ferent methods of projecting one range of points into another, 
viz.: perspective and non-perspective projection. We observe 
that the properties of these two kinds of projection are very 
nearly the same. They both set up a one-to-one correspond- 
ence between the points of the two ranges, which is exception- 
less when we assume a single point at infinity in each range. 
They both leave the cross-ratio of four points invariant. 
They differ only in the fact that one (perspective projection ) 
gives a self-corresponding point in the two ranges, while the 
other does not. In fact, as we have shown, perspective pro- 
jection is only a special case of non-perspective projection. 
Two ranges of points on intersecting lines are called project- 
ive ranges, or said to be projectively related, or projective to 
one another when one of them is derived from the other 
either by a perspective or a non-perspective projection. 
Two ranges which are each projective with a third range are 

projective with one another. To show this let us suppose that 
a range FR on lis projective with R, on /, and also with R, on 
l,. Since R and R, are projective ranges they have a one-to- 
one correspondence and the cross-ratios of any four correspond- 

ing points are equal. Thus (ABCD) =(A,B,C,D,). Also R 
and FR, have a one-to-one correspondence and (ABCD) = 

*Salmon’s Conic Sections, p. 252. 
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(A,B,C,D,). Evidently R, and R, have a one-to-one corre- 

spondence and (A,B,C,D,) =(A,B,C,D,). Hence R, and R, 

are projective. 
Two projective ranges may be situated on the same line. 

Thus, for example, we might project perspectively a range 

A, B,C, Don | from two different points, Pand P,, and cut the 

two pencils thus formed by a second line /,. The ranges 

formed on 1, by the section of the two pencils are each pro- 

jective with the given range and hence projective with each 

other and situated on the same line. This case is of frequent 

occurrence. 
Two ranges of points are projective when and only when 

they satisfy these two conditions: first, they have a one-to- 

one correspondence ; second, the cross-ratios of any four cor- 

responding points are equal. 

52. Number of Points Determining Projectivity. We now 

proceed to the question of the number of points on each line 

which it is necessary to know in order to determine the pro- 

jection of one line upon the other. We shall assume the 

theorem that a conic is completely determined by any five 

independent conditions; in particular, that it is determined 

by any five tangents. The conic K which determines the pro- 

jection of | upon l’ must touch both / andl’; this gives two 

conditions for K. If now we select any three points on /, as 

A, B, C, and any three points on I’, as A’, B’, C’, to be respect- 

ively their corresponding points, the conic is completely 

determined; for the conic K must touch the lines AA’, BB’, 

CC’, 1, ’. When K is once found all pairs of corresponding 

points on the two lines / and l/ are determined by the tan- 

gents to K. Hence three points on / and their corresponding 

points on /’ are necessary and sufficient to determine a pro- 

jection of the non-perspective kind. 
In the case of perspective projection the projection is com- 

pletely determined as soon as the center of the projecting 

pencil isknown. This is determined by choosing two pairs of 

corresponding points on / and 1’ and drawing the lines joining 
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the points of each pair. The intersection of these lines is the 
required center. All other pairs of corresponding points are 
obtained by drawing the rays of the projecting pencil. But 
in assuming that we have a perspective projection we assume 
at the same time that O is a self-corresponding point on the 
two lines. Thus we see, as before, that we choose three 
points on/ and their three corresponding points onl’, and 
thereby the projection is completely determined. 

THEOREM 28. The projection of one range upon another is com- 
pletely determined by three points on one range, and their three 
corresponding points on the other. 

53. Projective Transformation. In Fig. 2 if l’ be revolved 
about O until it coincides with /, any point P’ on l’ will be 
brought to some point P, on 1, so that OP’=OP,. The two 
ranges of points are then considered as existing on the same 
line /. The operation of projecting by means of the conic K 
a range of points on / into a new range on /’ and then by revo- 
lution about O bringing the new range back to / will be called 
a projective transformation. The effect of a projective 
transformation is to shift the points of a line into new posi- 
tions so that there is a projective relation between the old 
and new positions of the points. 

THEOREM 29. Given two lines, / and U’, intersecting at O; a pro- 
jective transformation of the points on] is completely determined 
by means of a conic K touching both / and I’. 

54. Analytic Representation of a Projective Transforma- 
tion. We now proceed to consider the analytical aspect of a 
projective transformation of the points ona line. To this end 
we shall make use of the theorem that the cross-ratio of any 
four points (A BCX) is equal to that of their four corres- 
ponding points (A’B’C’X’). Taking O as the origin, let the 
distances to the four points A, B, C, and X be a, b, ¢, and x; 
and let the distances to the four corresponding points be a, b,, 
c, and 2z,. Since the cross-ratios of these two sets of points 

are equal we have 
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CeO Ci — a1 Hee eal 

a2) ° @=) wet TRS 2 

Simplifying, this reduces to the’ bilinear form 

TX, — pu + sxu,—q=0; 

or solving for x,, we have 
et 

This equation represents the relation between # and «,, any 
two corresponding points in a projective transformation. 
This equation therefore represents a projective transforma- 
tion, and all properties of the transformation may be deduced 
analytically from the equation. 

THEROEM 30. A projective transformation of the points ona 
line is represented analytically by a linear fractional equation in one 
variable. Or otherwise expressed,a linear fractional transforma- 
tion in one variable is a projective transformation. 

55. Summary. In $1 we defined a projective transforma- 
tion analytically by the linear fractional equation, 

_ +6 ( 1 ) 

ce+d?’ 

and proceeded to deduce the properties of projective trans- 
formations from this definition. In the present section we have 
defined a projective transformation geometrically, and have 
shown that its analytical representation is a linear fractional 
transformation of the form of equation(1). This proves that 
the transformation as defined in two entirely different ways 
is one and the same, and that the definitions are in harmony. 

$7. Geometric Theory of Projective 
Transformations. 

56. The instrument described in $6 for constructing a pro- 
jective transformation of the points on a line / by means of a 
conic K touching two lines / and /’ can be used to establish 
many important properties of such transformations. While 
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this geometric construction is not necessary for the establish- 
ment of any part of the theory of such transformations, yet 
the method beautifully illustrates the theory and gives ita 
concrete geometrical form. We add in this section a brief 
outline of the geometric form of the theory, and in the exer- 
cises at the end of the chapter many problems depending on 
this construction.* 

If the lines / and l’ are real and the conic K is real, then 
real points are transformed into real points and the trans- 
formation is real. The transformation determined by the 
conic K is designated by T',. 

57. Invariant Points. We observe in the first place that 
a projective transformation T,, usually leaves two points on 
the line unaltered in position, for generally two tangents 
can be drawn to the conic K perpendicular to the bisector OX, 
Fig. 3; these cut / and /’ in A and A’, B and B’ respectively. 

iGo: 

*The whole theory of the projective transformations of the points ona line may 
be developed by the above geometric construction without any resort to analytical 
formula. It was so developed by the author in a paper entitled ‘‘Continuous Groups 
of Projective Transformations Treated Synthetically,’’ published in the Kansas Uni- 
versity Quarterly, vol. IV, No. 2, October, 1895. 
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A and A’, B and B’, are therefore corresponding points, and 
the revolution about O brings A’ to A and B’to B. The 
points A and B are the wvariant or double points of the 
transformation. 

It has just been said that generally there are two tangents 
to K perpendicular to OX. This should be examined more 
closely. When the conic K is an ellipse, two real tangents to 
K can always be drawn perpendicular to OX; and hence the 
projective transformation determined by an ellipse always has 
two invariant points. When the conic K is a parabola, there 
are still two real tangents perpendicular to OX; but one of 
them is the line at infinity : hence the projective transforma- 
tion determined by a parabola always has two real invariant 
points, one of which is the point at infinity on /. 
When the conic K is a hyperbola, there are three cases to 

be considered. If the asymptotes of the hyperbola kK make 
with the line OX angles which (measured in the same direc- 
tion) are both less than, or both greater than, a right angle, 
then two real tangents to the hyperbola can be drawn perpen- 
dicular to OX, and the transformation determined by K has 
two real invariant points. If on the other hand the asymp- 
totes to K make with OX angles one less than, and the other 
greater than, a right angle, then the tangents to K perpen- 
dicular to OX are imaginary and the transformation deter- 
mined by K has its invariant points imaginary. Butif K has 
one of its asymptotes perpendicular to OX, the transformation 
determined by K has one real invariant point. Or, since the 
asymptote to a hyperbola is the limiting position of two par- 
allel tangents, we may say in the last case that the trans- 
formation determined by K has two coincident invariant 
points. 

58. Hyperbolic Transformations. The lines AA’, BB’, |, l’ 
are four fixed tangents to the conic K. Any fifth tangent, as 
PP’, cuts these four tangents in four points whose cross-ratio 
is constant. The range A,, B,, P, P’ may be projected or- 
thogonally on / by lines drawn parallel to AA’; and the cross- 
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ratio (A,B,PP’)=(ABPP,). But since the first cross-ratio 
is constant for all tangents to K it follows that the second is 
constant for all pairs of corresponding points; hence for every 
projective transformation which has two real invariant points 
we have the theorem that any pair of corresponding points 
and the two invariant points have a constant cross-ratio. A 
transformation with two real invariant points is called a 
hyperbolic transformation. In this case the constant cross- 
ratio k is a real number. 

Fig. 4. 
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59. Elliptic Transformations. Inthe case when the two 
tangents to K perpendicular to OX are imaginary, it still 
holds that the ecross-ratio of the four points of intersection of 
any tangent to K with the lines /, /’ and the two imaginary 
tangents AA’ and BB’ is constant. The two invariant points 
in this case are conjugate imaginary. A transformation with 
two conjugate imaginary invariant points is called an elliptic 
transformation. In this case the constant cross-ratio k is a 
complex number of the form e*’, 2. e., its modulus is unity. 
See exercise 8, page 61. This constant k in both hyperbolic 
and elliptic cases is called the characteristic cross-ratio of the 
transformation T. 

60. Parabolic Transformations.* But when the invariant 
points of the transformation coincide, we no longer have a 
characteristic cross-ratio for the transformation. However, 
another relation is found to hold for pairs of corresponding 
points, which relation is constant for all pairs of correspond- 
ing points in the transformation. We shall now proceed to 
determine this relation. It may be obtained in a very simple 
manner by considering the parabolic transformation as the 
limiting case of a hyperbolic transformation. 
We have (ABPP,) =k; hence (APBP,) =1—k. Writ- 

ing this out in full we get 

° —_s . = 1 a 

Pi PPE Z RIP, AE ANB 

When A and B coincide in (ABPP,) =k, we have k= 1; let 
eae 1-k ; 

the limit of 5 =; then 

BRR ee AR AP: a ee ip = fe t 

AP.AP, AP.APR  £AP, Let ye ie es 

1 1 

pian ape ine. (38) 

*The terms Hyperbolic, Elliptic, and Parabolic Transformations are due to Klein, 
and were first used by him in a paper entitled ‘* Ueber die Transformation der ellip- 
tischen Functionen und die Auflésung der Gleichungen 5* Grades,’’ Math. Annalen, 
Band 14, 1878. The names were suggested by the relations of the conic sections to 
the line at infinity. A hyperbola cuts the line at infinity in two real points, an 

—4 



50 GEOMETRIC THEORY. 

This gives a constant relation between P and P,, a pair of 
corresponding points. This constant is of course the recipro- 
cal of the segment AQ,, where Q, is the point into which the 
point of infinity is transformed. 

61. Number of Transformations. Every conic touching 
the lines / and l’ determines a projective transformation. It 
is therefore possible to construct as many different transfor- 
mations of the points on the line / as there are conics touch- 
ing ? and l’. We know that o* conics can be drawn 
touching any two lines; hence we infer that there are ©’ pro- 
jective transformations of the points on a line. Among the 
co* conics touching / and l’ are ~* hyperbolas having one 
asymptote perpendicular to the line OX. Hence we infer 
that there are ~* parabolic transformations each of which 
leaves only one point invariant. 

62. Continuous System of Transformations. Our next ob- 
ject is to subdivide and to classify these ~’ transformations 
of the points on the line 1. We consider first the quadrilat- 
eral ABB’A’ (Fig. 3). A range of 7 conics may be de- 
scribed touching the sides of this quadrilateral. Call this 
range R. Each of these conics determines a hyperbolic 
transformation which has A and B for its invariant points. 
Each conic of the range FR touches the line / at a different 
point ; and every point of the line / is the point of contact of 
some conic of the range Rk. If C be the point of contact of 
conic K, the characteristic cross-ratio of the transforma- 
tion produced by K is given by the cross-ratio of the four 
points A,B,C,O. The points A,B,O are fixed, while the 
point C varies for different conics of the range R. From the 
continuity of the point system on the line /, we infer the con- 
tinuity of the system of «/ transformations which leave A 
and 6 invariant. 

63. One-Parameter Groups. The range of conics inscribed 

ellipse cuts it in two conjugate imaginary points, and a parabola cuts it in two coin- 
cident points. The unique appropriateness of the names is shown by the results 
of art. 72. 
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in the real quadrilateral ABB’A’ determines a system of 
transformations each of which is hyperbolic and leaves in- 
variant the two points A and B. These ~! transformations 
evidently constitute the hyperbolic group hG,(AB). The 
conics of the range touching the line / between A and B are 
ellipses; those touching the line / external to the segment 
AB are hyperbolas. 

If the two sides of the quadrilateral AA’ and BB’ are con- 
jugate imaginary lines, the inscribed range of conics deter- 
mines an elliptic group eG,(AB) whose invariant points are 
the conjugate imaginary points A and B. All conics of this 
range are hyperbolas. 

If the range of conics consists of hyperbolas having one 
common asymptote perpendicular to the bisector OX, (Fig. 4), 
the group is parabolic, pG,(A). 

THEOREM 31. The range of conics inscribed in a quadrilateral 
consisting of the lines? and// and a pair of lines perpendicular to 
the bisector of J and // determines a one-parameter group of trans- 
formations on the line 1. 

64. Resultant of Two Elliptic or Hyperbolic Transforma- 
tions. Let 7’, be the transformation of the group G,(AB), 
which transforms P to P,; thenk =(ABPP,). Let T,, be the 
transformation of the same group which transforms P, to P,; 
then k, = (ABP,P,). The two transformations T, and T,,, are 
together equivalent to a single transformation T;,, of the 
same group which transforms P to P,. To prove this we 
have 

AV AZ au, AA AU [ed ra i OCI, (Aub 2, 2) — me Saar 

Eliminating the fraction containing P, from those two equa- 
tions we have 

AP | AP, _ 
east) apo (ABE, ). (39) 

The conic of the range R whose tangential cross-ratio is kk,, 
gives a transformation which is equivalent to the combined 
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effect of 7, and T,,. This may be expressed symbolically by 
the equation T;,T;,, = T;,,,.._ In the same way it may be shown 
that the combined effect of any number of transformations of 
the group is equivalent to some single one of the same group. 
hus ee eee sel WNereiS: — COG. ane. “bnerchar- 

acteristic cross-ratio of the resultant transformation is equal 
to the continued product of the characteristic cross-ratios of 
the component transformations T,T,T, ... T,. 

65. Resultant of Two Parabolic Transformations. Let T 
denote a transformation of the group pG,(A) which trans- 

: ea age Sa forms P to P,; then iste era Also let T, be another 

transformation of the same group which transforms P, to P,; 
if 

WN Fe = =t,. Eliminating the fraction ae from 

these two equations we have =5 - = = t, where t,=t-+t,. 

In the same way it may be shown that the resultant of any 
number of transformations of the group pG,(A) is another 
transformation of the same group, and that the characteristic 
constant of the resultant is equal to the sum of the constants 
of the components, thus ,=t-+-t,t,+ ... &-,. 

66. The Two-Parameter Group, G.(A). There are o°’ pro- 
jective transformations of the points on a line, and only ~? 
points on the line. Hence any point can be transformed into 
any other point on the line or into itself in ©’ different ways. 
In other words there is a system of * transformations which 
leaves any point A on the line invariant. We shall proceed 
to show geometrically that this system of transformation has 
the fundamental properties of a group, 7. e., that the com- 
bined effect of any two or more of the transformations of the 
system is equivalent to some single transformation of the 
system, and that the inverse of every transformation in the 
system is also in the system. To show this we take a range 
of points in the line / (Fig. 5), and project it by means of a 
conic K into a second range on the line l’. Revolve l’ about 
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O until it coincides with 1; we thus have a second range on 1. 
Let A and B be the invariant points of the transformation 
due to K. Now project this second range into a third range 
on l’ by means of a conic K’ touching AA’ and CC’. If we 
now join the points of the first range on / with the corre- 
sponding points of the third range on 1’, these joins all touch 
a conic K” which determines the projection of the first range 
into the third. This last transformation is equivalent to the 
combination of the other two. AA’ is one of these joins; 
hence the transformation determined by K’’ leaves the point 
A invariant. This same process may be extended to any 
number of transformations. 

For the geometric proof of the second group property, see 
exercise 2, page 62. 

67. Cross-ratio of the Resultant in G,(A). The trans- 
formation produced by the conic K” has one invariant point 

PIG. 5: 
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at A and another at some point D such that DD’ is the tan- 
gent to K” parallel to AA’. By means of the conic K the 
range ABCD-- is transformed into A,B,C,D,-, by means of 
the conic K’ the range A,B,C,D,-- is transformed into A,B, 
C,D,--, by means of K’’ the range ABCD-- is transformed 
into A,B,C,D,. Consequently we have 

(ABCD) = (ATB:C,D;): 
But AR — An — Ales — sen — te eT oD) 

a (ABCD) — CABG). 
Expanding we get 

AC BD AC BoD AC. BoC B,D 1 2 1 (40) 

BE” AD = BG AD? WHER’ Gera, — Ep - 
The characteristic cross-ratio of the transformation T due 

to Kisk=(ABCC,); that of the transformation T, due to 
K'isk,=(AC,BB,). Expanding and multiplying: 

eae , Ba _ ZB Gale AC.AB.B2G 

~ BC AG CE TAB BC. AC AB: 

AC. BG AB 

=(Se ee (Geel 
Substituting from equation (39) we get 

Le ABER) AB AR: 
ik, =e ein a DB DBA (UB (41) 

But (ADBB,) = k, the characteristic cross-ratio of the trans- 
formation due to the conic K”, thus kk,=k,. Hence the 

characteristic cross-ratio of the resultant in G,(A) is equal to 
the product of the characteristic cross-ratio of the components. 

68. The Perspective Subgroup, G,O. The two-parameter 
subgroup G,(O), which leaves the point O invariant, is made 
up of one-parameter subgroups each of which leaves O and 
some other point, as A, invariant. Fig. 6 shows the 
construction of a transformation which belongs to the one- 
parameter subgroup G,(OA). This transformation is 
determined by the degenerate conic OQ. All transforma- 
tions which leave the point O invariant are determined by the 
conics which touch J, l’, and O~ ; but since these three lines 
meet in a point, it follows that all these conics must be de- 
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generate, and each must consist of linear segments terminat- 
ing at O. Every transformation of this kind is a perspective 
transformation. The point Q from which the projecting 
lines are drawn may be any point in the plane; Q may there- 
fore have ~* different positions; and we see that there are 
co* perspective transformations, each of which leaves the 
point O invariant. These ’ perspective transformations 
form the two-parameter group G,(O). This subgroup con- 
tains all the perspective transformations in the general pro- 
jective group and no others. 

THEOREM 32. All the perspective transformations contained in 
the general projective group form a two-parameter subgroup G.(0O); 
this subgroup contains no transformation which is not perspective. 

69. Subgroups of the Perspective Group. We now proceed 
to the consideration of the one-parameter subgroups which 
compose the two-parameter perspective group. Each of 
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these subgroups has the point O and some other point, as A, 
for the invariant points. For o/ positions of the point Q the 
resulting perspective transformations leave the point A as 
well as O invariant. It is easy to see that these ~! positions 
of Q must all be on the line AA’, because the second invari- 
ant point of a perspective transformation is found by drop- 
ping a perpendicular from @ on OX. Thus the~? perspective 
transformations obtained by taking the center of perspective 
at all points on a line perpendicular to OX form a one-par- 
ameter subgroup of G,(O). 

$8. Geometric Theory of Projective Transfor- 

mations of Pencils of Lines. 

We pass now to the geometric construction of projective 
transformation in other one-dimensional forms, viz.: in a 
pencil of lines through a point and a pencil of planes through 
a line. 

70. A Simple Construction. A perfectly obvious construc- 
tion for a projective transformation of a pencil of rays is as 
follows: Let two planes Pl and Pl meet in a line /; and let 
O, a point on /, be the common vertex of two pencils of rays, 
one in Pl and the other on Pl. The planes determined by 
three pairs of corresponding lines of the two pencils together 
with Pl and P7 determine a cone of the second order having 
its vertex at O and touching both Pl and Pl. Tangent 
planes to this cone cut Pl and P! in corresponding lines of 
the two pencils. If now Pl be revolved about l until it coin- 
cides with Pl, a projective transformation of the pencil in Pl 
is completed. The properties of this transformation and 
groups of such transformations may easily be developed by 
this method. 

71. Another Method. A second method for constructing a 
projective transformation of a pencil of lines is obtained by 
considering the process dualistic to that used for a range of 
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points. Let O and O’ (Fig. 7) be any two points in the plane. 

Pass any conic K through O and O’ and draw a pencil of lines 
through O. Join the points where these lines cut the conic K 
to O’. We thereby construct a pencil through O’ projective 

a 

Fig. 7. 

with the given pencil through O. Corresponding rays of 
these pencils meet on K. If the whole plane be translated 
along the line OO’ without rotation until O’ is carried to O, 

we then have two pencils through O which are projectively 
related. These operations construct a projective transforma- 
tion of the pencil through O. 

72. Invariant Rays. The transformation thus constructed 
usually leaves two rays of the pencil invariant ; these are the 
rays parallel to the asymptotes of the conic K. If the conic 
is a hyperbola, the two invariant rays are real and the trans- 
formation is hyperbolic. If the conic is an ellipse, the inva- 
riant rays are conjugate imaginary and the transformation is 
elliptic. If the conic is a parabola, there is only one inva- 
riant ray, and the transformation is parabolic. 

In the hyperbolic and elliptic transformations, the cross- 
ratio of the invariant rays and a pair of corresponding rays is 
constant for all pairs of corresponding rays. Thus cross-ratio 
in the first case is real; in the second case, of the form e’”’. 
No further developments are necessary in these cases. 
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73. Parabolic Transformations. The parabolic case re- 
quires special attention, for the characteristic constant t of 
a parabolic transformation is not subject to a dualistic inter- 
pretation. Leta transformation T be determined by a para- 
bola K passing through O and O’ (Fig. 8). The single ray 

Fic. 8. 

left invariant by the transformation is parallel to the axis of 
the parabola K. Let r and 7’ be a pair of corresponding rays 
in the pencils through O and O’; and let them meet the conic 
K in the point @. We make use of the following theorem for 
a parabola: If from any point @ on a parabola chords be 
drawn to O and O’, two fixed points on the parabola, the dif- 
ference of the cotangents of the angles which these chords 
make with the axis of the parabola is constant. Thus 
cot, — cot? = cot», 6 and 6,, being the angles which the rays 
r and 7’ make with the invariant ray, and ¢ being the angle 
made with the invariant ray by the ray r” which is trans- 
formed into the perpendicular to the invariant ray. 

The relation cot#,=cot#+t, for a parabolic transforma- 
tion is readily deduced as a limiting case of the cross-ratio 
formula of a hyperbolic transformation. (See art. 37.) 

74. Projective Transformations of a Pencil of Planes. The 
theory of the real transformations of a pencil of planes is so 
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similar to that of a pencil of lines that nothing further than 

a brief statement is required on this point. The transforma- 

tions are hyperbolic, elliptic, and parabolic; these groups are 

the same as for the other one-dimensional forms, the range 

of points and the pencil of lines. 

Exercises on Chapter Il. 

A. GENERAL ANALYTIC THEORY. 

(1). Show that the determinants of a pair of inverse trans- 
formations have the same value. 

(2). Show that a pair of inverse transformations are of the 
same type, have the same invariant points and, if of type I, 
reciprocal cross-ratios. 

(3). Show that the resultant of a pair of inverse transfor- 
mations is always the identical transformation. 

(4). Show that the determinants of a pair of conjugate 
transformations always have the same value. 

(5). Show that two conjugate transformations have the 
same cross-ratio but not the same invariant points. 

(6). Let the invariant points of a pair of conjugate trans- 
formations be (A A’) and (BB’); show that the ,segment 
(AA’) is equal to the segment (BB’). 

(7). Show that the transformation, x, = a , transforms 

the point «= =< to infinity and the point «= == to the 

origin. Into what points are the origin and the point at in- 
finity transformed? 

(8). Find the invariant points of the following transforma- 
Hons) t— On 20> i), — aa il) ty— 2-1 Ol 
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(9). Find the equation of all transformations in the group 
G, that interchange two points A and A’; show that they are 
all involutoric transformations. 

(10). Prove that the system of ©* involutoric transforma- 
tions in G, does not form a group; also the system contains 
no infinitesimal transformation. 

(11). Ina parabolic transformation show that t= eS 5 

(12). Prove that the ~* parabolic transformation in G, do 
not form a group. 

(13). Show that two transformations are commutative 
when, and only when, they belong to the same one-parameter 
group. 

Let T transform S into S’ according to the formula 
S’=T'tST. Then— 

(14). If S is of type I, so is S’; and k =k’, where k and k’ 
are the cross-ratios of S and S’ respectively. 

(15). If S is of type II, so is S’; find the relation between t 
and ¢’, the characteristic constants of S and S’ respectively. 

(16). If S and T have one invariant point in common, S’ 
has the same invariant point; in this case if S is of type II 
and T of type I, then t/= kt, where k is the cross-ratio of T. 

(17). If S and T belong to the same one-parameter group, 

S’=S. 

(18). Show from equations I to V, art. 21, that = = 

1—In) (1— kn) Lt nth ; 
Conn = += where 1 =(A,AA'A,’, the eross-ratio of 

CH] 

the four invariant points of T and T,. 

(19). Deduce equation (31a) from equation (26). 

(20). Deduce the canonical forms, v,=kv+ A(1—k), 
“, = kx, and «,=x-+t, from equation (22). 
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B. REAL TRANSFORMATIONS. 

I. Analytic Theory. 

(1). Find the transformation which changes the points 

whose coordinates are 2, 8, 9 into the points whose coordi- 

nates are 1/2, 25/44, and 43/75 respectively. 

Ans. (A, A’) = 2x8 -k=31—8Vvi5- 

(2). Show that every real transformation with a negative 

determinant is hyperbolic and its cross-ratio k is negative. 

(3). Show that every transformation with positive deter- 

minant is either elliptic, parabolic, or hyperbolic with positive 

cross-ratio k. 

(4). Show that every transformation with positive deter- 

minant can be generated by the repetition of some real infini- 

tesimal transformation; show also that no transformation 

with negative determinant can be so generated. 

(5). The resultant of two transformations, one with a 

positive and the other a negative determinant, is a hyperbolic 
transformation with negative cross-ratio k. 

(6). Show that the resultant of two hyperbolic transforma- 

tions in G,(A) is (a) parabolic when k, = ,and AY ee AUS (0) 

is identical when k, =, and A, = A’. 

(7). Show that the cross-ratio of four real points on a line 
is always real. 

(8). Show that the cross-ratio of a pair of real and a pair 
of conjugate imaginary points is always of the form e*’. 

(9). Show that the identical and the involutoric trans- 
formations divide the elliptic group eG, into two subdivisions 
each of which contains the transformations inverse to those 
of the other. 
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(10). The group eG, contains no pseudo-transformations. 

(11). In an involutoric transformation the middle point of 
the segment AA’ is transformed into the point at infinity. 

(12). If Q is transformed to infinity and the point at in- 
finity to Q’ by a parabolic transformation T whose invariant 
point is A, then the points Q and Q’ are equally distant from 
A on opposite sides. 

Il. Geometric Theory. 

(1). The range of conics inscribed in the quadrilateral 
ABB’'A’, Fig. 3, contains three degenerate conics, viz.: the 
diagonals of the quadrilateral Om, AB’, A’B. Show (a) 
that the transformation determined by O-@ is the identical 
transformation of the group hG,(AB); and (6) that the 
transformations determined by AB’ and A’B are the pseudo- 
transformations of the group. 

(2). If the conic K’ is the reflection of K on the line OX, 
show that the transformations T, and JT, form an inverse 
pair. 

(3). Show that the transformation determined by the conic 
which has the line OX for one of its axes is involutoric. 

(4). What two conics determine the two infinitesimal 
transformations of the group hG,(AB)? 

(5). What conics of the range inscribed in ABB’A’ deter- 
mine transformations belonging to subdivisions I, II, III, 
respectively? 

(6). In the elliptic group eG,(AB), what conic determines 
(a) the identical, and (b) the involutoric transformation of 
the group? 

(7). In the parabolic group pG,(A) what conic determines 
(a) the identical and (b) the pseudo-transformation of the 
group? 
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(8). Show that the group G,(A) contains only hyperbolic 
and parabolic transformations. 

(9). Show that the two groups G,(A) and G,(A’) have in 
common all the transformations of the group hG,(AA’). 

(10). Show that the »* conics touching / and /’ determine 
o* transformations which form the group G,. 

(11). Show that the »’ parabolas touching / and /’ deter- 
mine a two-parameter group; find its invariant point. 

(12). Show that the system of parabolas having O~ for 
their common axis and touching / and l’ determines a one- 
parameter parabolic group ; find its invariant point. 

(13). Let 7 be a transformation whose invariant points 
are A and ~ ; and let P and P, be a pair of corresponding 
points of 7’; show that the characteristic cross-ratio of T is 
k= AP/AP,. 

(14). If the transformation T(A ~ ) transforms the seg- 
ment PQ into P,Q,, show that the length of the segment PQ 
is k times the segment P,Q,, 7. e., PQ = k( P,Q,). 

This is identical with the mechanical effect of stretching a rubber cord with one 

end fixed at A. Such a transformation is called a Dilation, and the group G2(A) is 

called the group of dilations. 

(15). Ifa tangent be drawn to one of the parabolas K of 
example (12) cutting / and l’ at Pand P’, show that the dif- 
ference of the segments OP and OP’ is constant for all tan- 
gents to K; hence show that the transformation determined 
by K transforms segments into equal segments. 

Such a transformation is called a Translation of the line into itself, and the group 
pGi() is called the group of translations. 

(16). Show that the characteristic cross-ratio of a per- 
spective transformation whose center is at @ (Fig. 9), is 
k= A'Q/ AQ. 
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(17). In the perspective group hG,( AO) what degenerate 
conics determine the identical, the involutoric, the two 
pseudo-transformations and a pair of inverse transformations 
of the group? 

(18). If we take on the line AA’, (Fig. 9), two points Q 
and @’ as the centers of perspective transformations T and 
T,, give a direct geometric proof that the resultant of T and 
T, is a perspective transformation whose center is also in 
AA’. 

(19). The group G,(O) of perspective transformations con- 
tains one parabolic subgroup; find the locus of Q for this 
parabolic perspective group. 

(20). Show that any system of parallel lines cutting / and 
1’ determines a projective transformation 7 whose invariant 
points are O and ~. 

(21). Find the relation between the value of k in the 
transformation of example (20) and the slope of the system 
of parallel lines. 
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COLLINEATIONS IN THE PLANE; TYPES AND 
NORMAL FORMS. 

1. General Analytic Theory of Plane Collineations. 
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3. Types of Plane Collineations. 
4. Normal Forms of Equations of the Five Types. 

5. Canonical Forms of Equations of Collineations. 

6. Real Collineations. 
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75. The present chapter is devoted to the theory of project- 
ive transformations or collineations ina plane. Following 
the methods of the last chapter we shall first, in § 1, define 
a collineation analytically and develop the fundamental prop- 
erties of such transformations. We shall then develop in 
§$ 2 two mutually dualistic geometric methods of constructing 
plane collineations. In § 8 we show both analytically and 
geometrically the existence of five distinct types of plane 
collineations. In § 4 we develop the normal forms of the 
defining equations of the five types, and in § 5 the canonical 
forms of these same equations. The special case of real col- 
lineations in the plane is then discussed in § 6, and the chapter 
closes with a list of exercises supplementing the theory. 

$1. General Analytic Theory of Plane 
Collineations. 

76. Analytical Definition of a Plane Collineation. Using 
rectangular or oblique Cartesian coordinates, the transforma- 
tion of the plane which is expressed by the linear fractional 
equations, having the same denominator, 

ax+by+e a/x+ bly +e! 

a! +b/y+e" ( 1 ) vy — ax + by +c! ang ga— 

(65) 
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is called a projective transformation or collineation of the 
plane. Using homogeneous point coordinates the same trans- 
formation is expressed by the linear equations, 

px, = ax-+ by + cz, py,=a'x+b'y+c'z, pz,=a"a-+ by + ce’. 

(2) 
We shall generally use the Cartesian system, but may occa- 
sionally use the other form. The change from the one sys- 
tem to the other is so easily made that the reader will have 
no difficulty in passing from the one to the other at pleasure. 
We shall assume throughout, unless otherwise expressly 

stated, that the coefficients and variables in equations (1) 
and (2) are complex numbers; we shall also assume that the 
determinant of the transformation does not vanish; thus 

Boe 
al! 1b el! 

The reason for excluding, for the present, transformations 
for which the determinant vanishes will be shown later when 
these special transformations with determinant equal to zero 
will be discussed. 

77. One-to-one Correspondence of Points. Equations (1) 
show that «, and y, are one-valued functions of x and y, or 
that to a given point (,y) there corresponds in a collineation 

one and only one point (#,,y,). Equations (1) can be solved 
for « and y; the values found are 

Me Ag+ A'’yit+ A” 

Cai+Cyi+ C” 

where A, A’, B, ete., are the cofactors of a, a’, b, ete., in A, 
the determinant of the transformation (1). 

The solvability of equations (1) is secured by assuming that 
A is not zero. Equations (3) are likewise one-valued func- 
tions of x, and y,. Hence to any chosen point (2,,y,) there 

corresponds one and only one point (,y). 
Equations (1) transform the point (2, y) into (w,,y,) ; while 

equations (3) transform the point (#,,y,) back to (a,y). Two 

on = #0. 

Ba+ B’yit+ B” 

Cm 4 Cy Cl (3) and Yy a Cai+Cyi+ C” , 
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such transformations are inverse transformations. (Arts. 3 
and 27. ) 

78. The Correspondence of Lines is Also One-to-one. The 
transformations expressed by (1) and (3) always transform 
lines into lines. Let the equation of any chosen line be 
lx-+ my +n =0; substitute for « and y in this equation their 
values from (38) and we have 

Am + Aly +A! Bai+ Bly: +B! 
(eaeerera es cna tno! (4) 

Clearing of fractions and collecting, we get a linear equation 
in x, and y,, which represents a straight line. Hence the 
transformation (3) transforms straight lines into straight 
lines. In like manner the transformation (1) can be shown 
to transform lines into lines. 

79. A Collineation is Self-dualistic. The transformation 
expressed by equations (1) is capable of a double interpreta- 
tion according as the variables represent point or line coordi- 
nates. When (a,y) and (#,,y,) are point coordinates, 
equations (1) and (8) immediately show that. points are 
transformed into points; and we are able to prove as above 
that lines are also transformed into lines. 

On the other hand, if (a, y) and (~,, y,) are line coordinates, 

the equations show at once that lines are transformed into 
lines, and it can be shown by substituting in the equation of 
a point that points are also transformed into points. 

Although we shall have but little occasion for the explicit 
use of line coordinates, yet the dual interpretation should 
be held in mind and will often be of great use to us. 

THEOREM 1. A plane collineation transforms points into 
points and establishes a one-to-one correspondence between the 
points of the two configurations; it also transforms lines into lines 
and establishes a one-to-one correspondence between the lines of the 
twoconfigurations; a plane collineation is a self-dualistic transform- 
ation. 
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80. Hight Conditions Determine a Collineation. Equa- 
tions (1) contain nine coefficients; but since we may divide 
the numerator and denominator of both fractions through by 
any one of the coefficients, it follows that there are only eight 
independent constants. Therefore eight independent condi- 
tions are sufficient to determine a collineation. Let the coor- 
dinates of four: points be (a, 4); (aga ey a (arena): 
and let their four corresponding points be respectively 

(2%;/; y;'); (x,", y.'); (x,'", Ue); (x,;", y:”) . Substituting in 

equations (1) successively the coordinates of each pair of cor- 
responding points we have eight equations from which to 
determine the eight independent constants in (1). These 
eight equations are linear and homogeneous in the nine coeffi- 
cients a, b, c, a’, ete., and therefore the eight independent 
constants are determined uniquely and completely. 

From the principle of duality we infer that a plane collinea- 
tion is also uniquely and completely determined by four lines 
and their four corresponding lines. 

It should be understood that the four points must be so 
chosen that no three of them lie on a line; if four lines are 
chosen, no three of them pass through a point. 

THEOREM 2. Any complete quadrangle or quadrilateral may be 
transformed into any other complete quadrangle or quadrilateral 
by a plane collineation in one and only one way. 

81. Cross-ratio Unaltered by a Collineation. It was es- 
tablished in Chapter I, article 9, that when two lines are 

projectively related, the cross-ratio of any four points of 
the one line is equal to the cross-ratio of the four correspond- 
ing points on the other line. This fact is independent of the 
position of the lines. They may be coincident, they may in- 
tersect and thus lie in the same plane, or they may be non- 
intersecting lines in space. The same theorem is true for 
two projectively related pencils, and is independent of the 
positions of the pencils. 
A plane collineation transforms a line g into g,; the range 
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of points on g is projectively related to the range on g, and 
the cross-ratio of any four points on g is the same as that of 
the four corresponding points on g,. So also for the two pen- 
cils of lines through P and P,, corresponding points of the 

transformation; the cross-ratio of four lines of the pencil 
through P is the same as that of their four corresponding 
lines through P,. 

THEOREM 3. The cross-ratio of any four collinear points or 
concurrent lines of the plane is unaltered by a collineation. 

82. The Line at Infinity. The collineation expressed by 
equations (1) transforms a point (x, y) into (x,, y,). If (a, y) 
be a point on the line a”’x+ b’y+c’=0, then (a, y,) isa 
point at infinity; for a’«+b’y-+c” is the common denom- 
inator of the two fractions in equations (1) and vanishes for 
all points (x,y) which lie on the line a’x%+b’y+c"”=0. 
Every point on this line is transformed into a point at infinity; 
hence the line, a’a-+b6’y-+c”’=0, is transformed into the 
line at infinity in the plane.* 

The line ax+by+c=0 is transformed into the axis 
“,=0, and the line a/x+6’y+c’=0 is transformed into 
the axis y,=0. Hence, the triangle formed by the three 
lines, aw + by+c=0, a/x+b/y+c'=0, a’4+b"y+ec"=0, 
is transformed into the triangle formed by the coordinate 
axes and the line at infinity. That the first three lines actu- 
ally form a triangle is secured by the condition A + 0. 

83. Invariant Points of a Collineation. If the collinea- 
tion expressed by equations (1) transforms any point (a, y) 
into itself, then x, and y, become «and y. The coordinates 
of such a point may be found by solving the equations 

ax+by+e aa+bly+e! 

Clearing of fractions these become 
ax? + (c’ —a)x —ce+(b’a —b)y=0), 

and by? + (a’«+c” — b')y—(a’«+c') =0. 

*For further discussion of the line at infinity see art. 88, 
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Eliminating y we get 
6!” aa + c!/ = b/ a= ax = c! 

b/a—b alx?+(c/—-a)x—ec 0 =(0, (6) 
0 b’« —b ax? + (c’ —‘a) a —e 

When the determinant is expanded, the coefficient of x van- 
ishes and we have a cubic equation of the form, 

av + Bar'+yr+d=0, (7) 

from which to find «. Let the three roots of this cubic be 
A, A’, A”. Substituting their values in the first of equations 
(5), we find three values of y, viz.: B, B’,B”’. The three 
points whose coordinates are (A, B), (A’, B’), (A”, B”) are 
invariant points of the transformation (1). In the most gen- 
eral case these points form a triangle which is called the 
invariant triangle of the transformation. There are special 
cases to be considered when the three invariant points do not 
form a triangle; for example, two of the three points may 
coincide, or all three may lie on a line, ete. All these special 
cases will be determined later. 

THEOREM 4. A collineation of the most general kind leaves 
three linearly independent points of the plane invariant. 

84. Invariant Lines of a Collineation. If equations (1) 
be interpreted in line coordinates instead of point coordinates, 
then the analytic work of the last article shows that a colline- 
ation in a plane leaves three lines invariant; these generally 
form a triangle. We have just shown that a collineation of 
the most general kind leaves invariant three points and three 
lines. The relation of these three points and three lines is 
evident at once. The three points are the vertices and the 
three lines are the sides of the same invariant triangle. Let 
A, B, C designate the vertices, and a, b, ¢ the opposite sides 
respectively of the triangle. 

If a collineation leave both A and B invariant, then c, their 
join, is transformed into itself; for c is transformed into some 
line c,, which must pass through A and B, because they are 
unaltered in position; and hence ¢ and ¢, must be the same 
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line. It is to be understood that not every point on c is 
transformed into itself; this is true only of A and B. But 
every point onc, except A and B, is transformed into some 
other point alsoonc. Thus the points on ¢ undergo a one- 
dimensional projective transformation, A and B being the 
invariant points of the transformation. The same holds 
for the other sides, a and 0, of the invariant triangle. In like 
manner the pencils through the invariant points A, B, C un- 
dergo one-dimensional projective transformations. 

THEOREM 5. A plane collineation of the most general kind 
leaves a triangle invariant, and produces a one-dimensional project- 
ive transformation along each of the invariant lines and through 
each of the invariant points. 

85. The Identical Collineation. The question at once pre- 
sents itself whether there exist collineations in the plane 
which leave invariant more than three points or more than 
three lines. Suppose we have a collineation T leaving inva- 
riant the triangle ABC and a fourth point D of the plane, 
such that no three of the four points are in a line (Fig. 10). 

Fic. 10. 

The lines AD, BD, and CD, are invariant lines of the trans- 
formation 7, since they are the joins of two invariant 
points. The pencil of lines through one of these invariant 
points, for example A, undergoes a one-dimensional trans- 
formation, which leaves three of its lines invariant: such a 
one-dimensional transformation is an identical transformation 
and leaves all lines through A invariant (Chapter I, Theorem 
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4). For the same reason all lines through B and C are in- 
variant lines. 
Now the intersection of two invariant lines is an invariant 

point ; hence every point in the plane is an invariant point, 
for it is the intersection of at least two invariant lines; also 
all lines are necessarily invariant lines. A transformation T 
which leaves every point of the plane invariant is an identical 
transformation. 

If the fourth invariant point D be taken on one side of the 
invariant triangle ABC, for example on BC, then the one- 
dimensional transformation along the invariant line BC leaves 
three points B, C, D invariant and therefore leaves all points 
on the line invariant. Consequently all lines through A are 
invariant lines, for each has two invariant points, one at A 
and the other at its intersection with BC. All points on a 
line through A are not invariant points of the transformation 
T, which is therefore not an identical transformation. This 
case will be discussed later. 

In the same way it may be shown that a collineation of the 
plane which leaves four lines invariant, no three of which 
pass through a point, leaves all lines and all points of the 
plane invariant and is an identical collineation. 

THEOREM 6. A plane collineation 7 which leaves invariant 
four points forming a quadrangle or four lines forming a quadri- 
lateral leaves all points and lines of the plane invariant and is an 
identical collineation. 

$2. Geometric Construction of Plane 
Collineations. 

86. Geometric Methods. Thus far in this chapter we have 

considered the plane collineation, or two-dimensional projective 

transformation, from the analytic point of view. Weshall now 

reconsider the same subject and obtain the same results by 

means of geometric construction. Each method is alone suffi- 

cient for the foundations of the theory of collineations, but 
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the best way to obtain a complete mastery of the subject is to 
approach it from both points of view and then carefully com- 
pare the results. The broader outlook thus obtained more 
than compensates the reader for the extra time and labor ex- 
pended in learning two methods. 

87. Perspective Projection. Let two planes 2 and 7’ in- 
tersect ina line 1; from any point P, not in either plane, draw 
lines to all points of z. Each of the lines is cut by 2’ ina 
single point. Two points, A and A’ in a and x’ respectively, 
collinear with P are called corresponding points in the two 
planes. By means of the bundle of rays through P the points 
of x are projected into the points of a’. Every plane through 
P cuts x and x’ in a pair of corresponding lines that meet on I. 
It should be observed that to the line g, joining two points A 
and B in x, corresponds the line g’ joining A’ and B’, their cor- 
responding points in x’. Also to the point A, the intersec- 
tion of a pair of lines g and h in z, corresponds A’, the point 
of intersection of their corresponding lines g’ and h’ in z’. 

This method of constructing corresponding points and lines 
in a and z’ is called a perspective projection of xon za’. By 
means of this perspective projection whose vertex is at P, we 
establish a one-to-one correspondence of the points and lines 
of the two planes x and a’. This one-to-one correspondence 
is not without exceptions; but these exceptions may be re- 
moved by means of special assumptions. 

88. Line at Infinity. The plane through P parallel to 7’ 
cuts a in a line 7; the plane through P parallel to z cuts z’ in 
a line 7. If we assume with Euclid that through a given 
point P one and only one plane can be passed parallel to a 
given plane, and if we further assume that two parallel 
planes intersect in an infinitely distant line, then our one-to- 
one correspondence of points and lines is without exception. 
The line 7 in a corresponds to the line at infinity in 7’, and 
the line at infinity in a corresponds to the linez in za’. Thus 
by introducing the hypothesis that all infinitely distant points 
in a plane lie on a line at infinity the one-to-one correspond- 
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ence established by perspective projection is made perfectly 
general; compare Chapter I, article 46. 

89. Perspective Ranges and Pencils. Let p be a plane 
through P cutting / in O, and xand a’ inaand a’ respectively. 
The ranges of points on a and a’ are in perspective position 
and projectively related as defined in article 51; their point 
of intersection O is a self-corresponding point of the two 
ranges. 

The pencil of planes intersecting in the line PO is cut by 
and x’ in two pencils of lines which have a one-to-one corre- 
spondence, corresponding lines of the two pencils being 
coplanar with PO. Their common line / is a self-correspond- 
ing line of the two pencils. Two pencils of rays which are 
the sections of a pencil of planes by two other planes are said 
to be in perspective position and are projectively related. 

90. Self-corresponding Points and Lines. The aggre- 
gate of all points in a plane is called a field of points and the 
ageregate of all lines is called a field of lines. When two 
fields of points are connected by a perspective projection all 
points common to the two fields, 7. e., all points on the line J, 
are self-corresponding points of the two fields. When two 
fields of lines are connected by a perspective projection the 
common line | is a self-corresponding line of the two fields. 
The line / and all points on it are the only self-corresponding 
elements of the two fields. 

91. Invariance of Cross-ratios. The cross-ratios of any 
four collinear points in a and of their four corresponding 
points in z’ are equal. This follows from the fact that if four 
points in a lie on a line, say a, their four corresponding 
points in z’ lie on a’ which meets a in O, a point on/. The 
ranges on a and a’ are projectively related and in perspective 
position, and the invariance of cross-ratios of corresponding 
points was proved in art. 48, Chap. I. 

In like manner the cross-ratio of any four concurrent lines 
in x is equal to that of their four corresponding lines in 7’, 
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for both sets of lines are cut by / in the same set of four 
points. 

THEOREM 7. Perspective projection of one plane upon another 
establishes a one-to-one correspondence between the points and also 
between the lines of the two planes. The line of intersection of the 
two planes is a self-corresponding line and every point on it a self- 
corresponding point; the cross-ratio of any four collinear points or 
concurrent lines in one plane is equal to the cross-ratio of their four 
corresponding points or lines in the other plane. 

92. Non-perspective Projection. In Chapter I, $6, we 
found two methods of projecting a range of points on a line 
into a range on another line, viz.: perspective projection and 
non-perspective projection. Two ranges rendered projective 
to one another by either of these methods were found to have 
precisely the same properties, differing only in the fact that 
two perspective ranges have a self-corresponding point, while 
two non-perspective ranges do not. Projectivity was found 
to be one and the same property in each case, the difference 
being only a result of position. Perspective projection was 
shown to be only a special case of non-perspective projection. 
We have thus far in the present section defined perspective 

projection of one plane upon another and have investigated 
the properties of two fields of points and lines connected by a 
perspective projection. We wish now to consider something 
analogous to the non-perspective projection of Chapter I, arti- 
cle 49. Let us take two fields of points a and ’ related by a 
perspective projection and, while the correspondence remains 
unaltered, shift one of the planes, say x, into a new position so 
that 2 and x’ will intersect in a new line l’. The lines joining 
corresponding points will no longer meet in a point P and 
there will be no self-corresponding points of the two fields. 
We wish to find a method of constructing the point A’ in 7’ 
corresponding to a given point A in x, and the line q@’ in 7’ 

corresponding to a given line a in ~. Such a method, if 

found, might well be called a non-perspective projection of x 

ona’. Judging by analogy we should expect to find perspec- 
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tive projection appearing as a special case of such a non- 
perspective projection. 

93. Two Corresponding Conics, K and K'. Take as be- 
fore two planes x and 7’, intersecting in a linel. In the 
plane a draw any conic K touching / at L; and in 2’ another 
conic K’ also touching / but at another point, LZ’. From P, 
Fig. 11, any point in x not on K, draw two tangents to K; 
these will intersect / in two points, Q@ and R. From Q and R 

Fig. 11. 

draw tangents to K’ in a’; these will intersect in a point P’. 
Pand P’ in x and 7’ respectively are called a pair of corre- 
sponding points of the two planes. It is evident that this 
construction determines a one-to-one correspondence between 
the points not on K and K’ respectively of the two planes x 
and x’. 

Let P, be any point on the line PQ; it is evident from the 
construction that its corresponding point P,’ will lie on P’Q. 
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Thus to the points of the range on a tangent to K correspond 

the points of the range on a tangent to K’, corresponding 

tangents to K and K’ meeting on/. Hence the construction 

transforms the tangents to K into the tangents to K’ and de- 

termines a one-to-one correspondence between the two sets of 

tangents. 
Suppose that the point P moves along PQ and approaches 

A, its point of tangency with K; the construction shows that 

the corresponding point P’ will approach A’ the point of tan- 

gency of P’Q and K’. Hence in the limit the point of tan- 

gency of P’Q with K’ corresponds to the point of tangency of 
PQ with K. Therefore the construction determines a one-to- 
one correspondence between the points of K and the points of 
K’; the tangents at corresponding points meeting on J. 

Let P and P, be two points in z not on K, and let the tan- 
gents drawn from them to K meet / in Q and R, Q, and R,, 
respectively. Let ¢ be any tangent meeting these four fixed 
tangents in A, B, A,, B,. Since ¢ and / are both tangents to 
K, the cross-ratios (A BA,B,) and(QRQ,f,) are equal. The 
construction transforms P and P, into P’ andP,’; the tangents 
from these points to K into the tangents from P’ and P,’ to 
kK’; the tangent t into the tangent t’ and the points A, B, 
A,, B, on t into A’, B’, A,’, B,’, the points where ?¢’ cuts the 
tangents from P’ and P,/ to K’. Since ¢’ and / are tangents 
to K’, the cross-ratios (A’B’A,'B,’) and (QRQ,F,) are equal. 
Hence we have (ABA,B,)=(A'B’A,'B,'). Therefore the 
range of points on a tangent to K and the corresponding 
range of points on the corresponding tangent to K’ are pro- 
jectively related. 
We wish to show next that straight lines in 2 not tangent 

to K are transformed by our construction into straight lines 
ina’. Let P, bea point in x not on one of the tangents from 
P to K and let a pencil of lines be drawn in x through P, cut- 
ting PQ and PR in two ranges of points, which are therefore 
projectively related and in perspective position. Our con- 
struction transforms this configuration in z into the following 



78 THEORY OF COLLINEATIONS. 

configuration in 2’; the range of points on PQ goes over 
into a projectively related range on P’@; also the range on 
PR goes over into a projectively related range on PR. 
Since the ranges on PQ and PR are projectively related, the 
corresponding ranges on P’Q and P’RF are also projectively 
related. These ranges are also in perspective position, since 
P, the self-corresponding point of the perspective ranges on 
PQ and PR, goes over into P’, which is therefore a self-cor- 
responding point of the ranges on P’Q and P’R. Since these 
ranges have a self-corresponding point, it follows that the 
lines joining their corresponding points meet ina point. This 
point is determined by the intersection of any two of the 
lines joining corresponding points. We know that in a the 
two tangents from P, to K cut PQ and PR in pairs of corre- 

sponding points. These tangents go over into the two tan- 
gents in 2’ fromP,’ to K’ and hence these tangents also join 
pairs of corresponding points on P’Q and P’R. Therefore, 
P/ is the vertex of the pencil in a’ projecting the range on 
P’Q into that on P’R. Let X and Y bea pair of correspond- 
ing points on PQ and PR respectively. The points P,, X, Y 
in z are collinear; their corresponding points in z’ are P,’, X’, 
Y’, which are also collinear, therefore our construction trans- 
forms straight lines in =z into straight lines in a’. 

Since our construction transforms collinear ranges on tan- 
gents to K into collinear ranges on tangents to K’, and every 
collinear range in x into a collinear range in 7’, it readily fol- 
lows that any range of points on a line g in z is transformed 
into a projectively related range on g’ in z’. Also any pencil 
of rays through a point P in z is transformed into a project- 
ively related pencil through P’ in a’. 
We have now proved that our construction by means of 

two conics K and K’ correlates the plane a to a’ in precisely 
the same manner as the perspective projection described in 
art. 87, except in the matter of self-corresponding points and 
lines; 7. €., it establishes a one-to-one correspondence be- 
tween the points of the two planes, between the lines of the 
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two planes; and the cross-ratio of any four collinear points, or 
any four concurrent lines, in the one plane is equal to the 
cross-ratio of the four corresponding points or lines in the 
other plane. Our construction is therefore fully entitled to 
be called a non-perspective projection of a into z’. 

THEOREM 8. Two conics K and K’ in the planes z and 7’ re- 
spectively, both touching their line of intersection 1, determine a 
non-perspective projection of 2 into 2’. 

94. Real Non-perspective Projection. In the special case 
that the conics K and K’ are real conics, the non-perspective 
projection transforms real points and lines into real points 
and lines. In this case the points inside of K cannot be con- 
structed directly. It is evident that the polar of P with re- 
spect to K projects into the polar of P’ with respect to K’. 
Let P be a point inside of K and let p be its polar with re- 
spect to K. Choose two points on p outside of K’ and con- 
struct the corresponding points in 2’. These points determine 
the line p’, the projection of p. Construct the pole of p’ with 
respect to K’; this point is P’, the projection of P. 

95. Four Pairs of Corresponding Lines. Let four lines 
a, b, c, d, be chosen in z and their four corresponding lines 
a’, b’, c’, d’inz’. Let each set be so chosen that no three of 
them are concurrent and no two meet on l. The five lines 
a, b, c, d, | determine a conic K in z, and the five a’, b’, c’, 
d’, l’ determine K’ inz’. The two conics K and K’ determine 
uniquely and completely a non-perspective projection of xa 
on 7’. 

THEOREM 9. Four pairs of corresponding lines in the most 
general position are necessary and sufficient to determine a non- 
perspective projection of one field of lines on another. 

96. Four Pairs of Corresponding Points. Let us choose 
four points A, B, C, D in x and four points A’, B’, C’, D’ in x’. 
Let these points in each plane be so chosen that no three of 
them are collinear. Let us assume that A and A’, B and B’, 
etc., are pairs of corresponding points in a non-perspective 
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projection. We wish to show that the projection is thereby 
uniquely and completely determined. 

Connect AB, BC, CD, and DA, by lines which we shall call 
a, b, c,d, respectively. The lines joining corresponding points 
are their corresponding lines a’, b’,c’,d’, respectively. The 
lines a,b,c,d,l in a and a’,b’,c’,d’,l/ in a’ determine the 

- conics K and K’ respectively; and these conics determine a 
non-perspective projection of x on x’. 

But the four points ABCD determine six lines, and these 
taken four at a time give us fifteen quadrilaterals. These 
fifteen quadrilaterals give rise to fifteen different pairs of 
conics, which determine either fifteen different projections of 
aon x’, or the same projection in fifteen different ways, or 
more than one and less than fifteen, some of them being du- 
plicated. 

Let us consider the lines AB, AC, etc., in a and their cor- 
responding lines A’ B’, A’C’, etc., ina’. The intersections of 
opposite sides of the quadrangle A’ B’C’ D’ correspond to the 
intersections of the corresponding opposite sides of the quad- 
rangle ABCD. In this way three new pairs of corresponding 
points are determined. New quadrangles may be formed 
out of these seven points in each plane, and thus other pairs 
of corresponding points obtained; and so on indefinitely. 
Hence when four pairs of corresponding points are given in 
the two planes, an unlimited number of pairs of correspond- 
ing points are determined. These considerations show that 
four pairs of corresponding points in the two planes determine 
one and only one non-perspective projection of a on a’. It 
will be shown later that there are * different constructions 
of the same non-perspective projection. 

THEOREM 10. Four pairs of corresponding points in the most 
general position are necessary and sufficient to determine a non-per- 
spective projection of one field of points on another. 

97. Projective Transformation. Since the constructions in 
the two planes are exactly alike, the operations of the last 
article are strictly reversible. By means of the conics K and 
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K’, the configuration in a’ corresponding to any given config- 
uration in a can be constructed. And further, one of the 
planes as a’ may be revolved about lJ until it coincides with a, 
and then the constructions all thought of as in the same 
plane. We shall make constant use of this last conception. 

By means of a non-perspective projection a field of points 
in x’ can be constructed corresponding to a given field in 2%. 
By a revolution about / this new field of points may be 
brought back to a and both fields of points thought of as ex- 
isting in the same plane. This operation of projecting the 
points in x into a new system of points in 7’ and, by revolv- 
ing about lJ, bringing the new system back to 2 will be called 
a projective transformation or collineation of the plane 2. 
Such a projective transformation is determined and com- 
pletely constructed by means of two conics K and K’ in the 
plane ~ and touching a line 1. 

THEOREM 11. A projective transformation or collineation of 
the points and lines of a plane is completely determined by means of 
two conics K and K’ both touching a fixed line / of the plane. 

N 

*The lines joining corresponding points of the planes z and x’ form a linear con- 
gruence (Strahlen-Congruenz) of the third order and first class. See Reye’s Geo- 
metrie der Lage, II. Band, p. 94. 

—6 
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98. Invariant Lines and Points. The twoconics K and K’ 
touching the line / will have generally three other common 
tangents designated by a,b,c, Fig. 12. We shall next 
examine the relation of these lines to the transformation de- 
termined by the two conics K and K’. Let us take a point X 
on the line ¢, and draw two tangents from it to the conic K ; 
one of these tangents is the line ¢ which cuts | at C’; the 
other cuts / at some point as Q’. The corresponding point to 
X is found by drawing tangents to K’ from C’ and Q’. One 
of these tangents is again the linec; the tangent from Q’ to 
kK’ intersects ¢ in X’ the corresponding point to X. In like 
manner every point on the line c is transformed into a point 
on the line ¢; in other words, the line ¢ is an invariant line of 

the transformation. Similarly the lines a and 6b are inva- 
riant lines of the transformation. The fixed line / is not an 
invariant line, although a common tangent to the two conics. 

The points A, B, C, which are the intersections of the in- 

variant lines a, b, c, are invariant points of the transformation. 
This is evident from the fact that the two tangents from A 
to K are the lines b and c; the two tangents from C’ and B’ 
to K’ are also 6 and c, which intersect at A, the starting point. 
Thus A is a self-corresponding point of the transformation ; 
the same is true of B and C. 

It is easy to see from the construction that these three 
lines are the only ones left invariant by the transformation 
determined by K and Kk’. In particular cases where the 
conics K and K’ are especially related to one another, e. g., 
touch one another, the invariant figure may be different. 
These special cases will be determined later. 

THEOREM 12. ‘The three common tangents, other than J, to the 
two conies K and K’ are invariant lines, and their three points of 
intersection are invariant points of the transformation. 

99. «* Different Constructions of the Same Collineation. 
There are ~* conics touching the three invariant lines a, b, ¢ 
of the collineation T. From these * conics may be formed 
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coo’ pairs of conics. Among these ~‘ pairs of conics there are 
oo” pairs which give the same collineation 7. To show this 
let us choose any conic C touching a, b, and ¢; the collineation 
T transforms C into C’ touching a, b,c, and some other com- 
mon tangent m. Corresponding tangents to C and C’ are 
concurrent with m. These conics C and C’ and the line m 
may be used to construct the collineation T in the same way 
that K, K’, and 1 were used. It is evident that to each of 
the conics touching a, b, and ¢ there is a corresponding 
conic; hence there are ~? different constructions of the same 
collineation. 

THEOREM 13. A collineation 7 can be constructed by means of 
a pair of conics in o? different ways. 

100. A Second Construction. From the self-dualistic char- 
acter of a plane collineation it is evident that the construction 
in the plane dualistic to that developed in the last paragraph 
also holds. This new construction may be deduced from the 
last by the principle of duality, or it may be developed inde- 
pendently from first principles. We shall take the latter 
course for the sake of the methods employed, and also for the 
sake of the wider view of the whole subject thus obtained. 

101. Two Intersecting Conics, K and K,. Suppose that a 
collineation T transforms a point S into S,and S, into S,. The 
pencil of lines through S is transformed into the pencil of 
lines through S,. The original pencil through S and the de- 
rived pencil through S, are projectively related, and hence the 
locus of the intersection. of corresponding rays of the two 
pencils is a conic K passing through both Sand S,. In like 
manner the pencil through S, is transformed into the pencil 
through S, and the locus of the intersection of the corre- 
sponding rays in these two pencils is a second conic, K,, pass- 
ing through both S, and S,, Fig. 13. Since the pencils 
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through S and S, are transformed into the pencils through S, 
and S., respectively, K must be transformed into K,. 

The line SS, is a common ray of the two pencils through S 
and S,; considered as a ray of the pencil through S it is 
transformed into the tangent to K at S,. Since S is trans- 
formed into S, and S, into S., the line SS, is transformed into 
the line S,S,. Hence S, is the point where the tangent to K 

at S, cuts K,. 

Consider a point P on K and its corresponding point P, on 
K,. The lines SP and S,P, since they meet on K, are corre- 
sponding rays of the two pencils through S and S,._ But S is 
transformed into S, and P into P,; hence SP and S,P, are 
corresponding lines of the same two pencils. Therefore, S,P 
and S,P, are the same straight line since they both correspond 

to SP. Hence P and P,, corresponding points on the two 
conics K and K,, are collinear with S,. Hence we have the 

important result: * 

*Reye-Holgate, Geometry of Position, p. 187. 
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THEOREM 14. The collineation 7, which transforms S into S;, 
and S; into S., transforms the conic K, determined by the projective 
pencils through S and S;,, into the conic K;, determined by the pro- 
jective pencils through S,and S.; every pair of corresponding points 
on K and K;, are collinear with S;. 

102. Construction of a Collineation by Means of K and K,. 
By making use of the principle that corresponding points on 
K and K, are collinear with S,, we can construct the line g, 
which corresponds to g, any line of the plane. 

The line g cuts K in two points, Q and R; join Q and R to 
S,; these joins cut K, in R, and S,, corresponding points to R 
and S; the line joining R, and S, is the line g, which corre- 
sponds to g. 

The transformation T transforms a point P into P,; if P be 

given, we may find P, by drawing any two lines g and g’ 
through P cutting K; find by the above construction the cor- 
responding lines g, and g,’; these intersect in P,, the point 
which corresponds to P. 

If a line g does not intersect K, the construction of g, may 
be accomplished by choosing two points, G and G’, on g and 
constructing their corresponding points, G, and G,’; these 
two new points determine g,. 

If gis a tangent to K, g, will be a tangent to K, and the 
points of contact will be collinear with S,. If the given line 
g passes through S, and cuts K in P and K, in P,, the corre- 
sponding line is found by joining P, and S,. 

THEOREM 15. A collineation of the plane can be constructed by 
means of two conies K and K; intersecting in a point S;. 

103. Invariant Points and Lines. The conics K and K, in- 

tersect in S, and generally in three other points A, B, C. 
Since any line through S, cuts K and K, ina pair of corre- 
sponding points, it follows that A, B, and C are self-corre- 
sponding points on K and K,. In other words, A, B, and C 
are invariant points of the collineation 7. The lines AB, 
BC, and CA are self-corresponding or invariant lines of the 
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collineation 7. For example, the line AB cuts K in A and B 
and the corresponding line cuts K, in the corresponding 
points; but these are also A and B; hence the line AB is 
transformed into itself. 

104. «’* Different Constructions of the Same Collineation. 
There are ~* conics passing through the three invariant points 
A,B,C. From these ©” conics one can form ~‘ pairs of con- 
ics. Out of these ~’ pairs of conics, ©” pairs give the same 
collineation. Let us choose any conic L passing through A, B, 
and C. The collineation 7 transforms L into L, intersecting 
Lin A,B,C and V,. The course of reasoning used in art. 101 
shows that corresponding points on L and L, are collinear 
with V,. The two conics L and L, and the point V, may be 

used to construct the collineation T in the same way that 
K, K, and S, were used. It is evident that to each of the ~’ 
conics through A, B, and C there is a corresponding conic, and 
hence there are ~’ different constructions of the same col- 
lineation T. 

THEOREM 16. The same collineation 7 can be constructed by 
means of a pair of intersecting conics in o* different ways. 

105. Comparison of the Two Constructions. The two 
methods developed in this chapter for constructing a collinea- 
tion are dualistic to one another. In order to render this 
dualism more apparent we give here the principle properties 
of both methods in the following form : 

THEOREM 17. A collineation 7 is completely determined and 
constructed by means of two conics K and Kk, having a common 

angent / P tangents 
ae Hs corresponding SOL K and K;, are 

{ coneurrent with J ) r { tangents to } 
2 A 5 - » er "ee © 4 a=! * . | collinear with S, _ { The other three common | points on | 

Kand K;, are the three 1 Sue ae of the invariant triangle of 

the transformation 7. 
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$3. Types of Plane Collineations. 

106. We have thus far dealt only with the most general 
form of plane collineations and have avoided the considera- 
tion of special cases. These special cases must now be con- 
sidered, and they lead us to the fundamental conception of 
types of collineations. We shall show that there are five dis- 
tinct types of plane collineations each of which is characterized 
by its invariant figure. A plane collineation is a self-dualis- 
tic transformation in the sense that it is both a point-to-point 
and a line-to-line transformation, and hence every plane figure 
invariant under a collineation must be a self-dualistic figure. 
This necessary condition will often enable us to determine 
whether any given figure can be the invariant figure of a col- 
lineation. 

107. Type I. It has been shown in articles 98 and 103 that 
the most general form of a plane collineation leaves invariant 
atriangle. This figure, consisting of three points and three 
lines, is a self-dualistic figure. If a collineation leaves inva- 
riant more or less than three points and three lines forming a 
non-degenerate triangle, it ceases to be a collineation of 
type I. 
A collineation T of type I leaves invariant a triangle ABC. 

All points on the side ¢ of the invariant triangle undergo a 
one-dimensional projective transformation whose two inva- 
riant points are A and B. The same is true of the points on 
the other two sides a and b. Likewise the pencils of lines 
through A, B, and C, respectively, undergo one-dimensional 
projective transformations, and in each pencil there are two 
invariant lines. Hence it is evident that the properties of a 
plane collineation of this type depend in an intimate manner 
on the properties of a one-dimensional transformation of the 
first type. 

108. Type II. If two vertices of the invariant triangle of 
type I coincide, then two sides must also coincide; for the 
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change is a self-dualistic change and the modified figure must 
be a self-dualistic figure. This modified figure consists of 
two invariant points, A and B, and two invariant lines, / and U’. 
Two of the invariant points are on one of the invariant lines ; 
and two of the invariant lines pass through one of the inva- 
riant points (Fig. 14, II). This is the invariant figure of 
type I]. The one-dimensional transformations along the line 
AB and through the point A are of the first type; those 
along the line / and through the point B are parabolic. 

109. Type III. If the two points A and B of the invariant 
figure of type II coincide while the lines / and l’ do not coin- 
cide, the resulting figure is not self-dualistic; the same is 
true if the two lines / and l’ coincide but not the points A and 
B. Neither of the resulting figures is self-dualistic, and 
hence there are no types of collineations in the plane charac- 
terized by these figures. But if A and B coincide and at the 
same time / and l’, the change is self-dualistic, and also the 
modified figure. The invariant figure (14, III) consists of a 
single invariant line and a single invariant point on the inva- 
riant line. Such a figure is called a lineal element. This 
gives us type III. The one-dimensional transformation 
along the invariant line is parabolic; so also is that of the 
pencil through the invariant point. 

110. Type IV. A collineation of the plane which leaves 
invariant four points of the plane, no three of which lie on a 
line, is an identical transformation, and leaves every point of 
the plane invariant. It may happen, however, that a third 
invariant point is situated on one of the sides of the invariant 
triangle of type I. In that case every point on this side is an 
invariant point, art. 8, and hence every line through the 
opposite vertex is an invariant line. The resulting figure 
(14, IV), which consists of all the points on a line / and all 

the lines through a point A not on the line J, is self-dualistic. 
This is the invariant figure of a collineation of type IV, which 
is called a perspective collineation. The one-dimensional 
transformations along all lines through A and in all pencils 
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with vertices on I are of the first type with two invariant 

elements. 

111. Type V. A special case of the last figure is also ob- 

tained when we assume a third invariant point on the line 

AB of the invariant figure of type 11; likewise when we as- 

sume another invariant point on the invariant line of the lineal 

element of type III. The resulting figure (14, V) is self- 

dualistic and is the invariant figure of a collineation of type 

V, which is called an Elation. The one-dimensional trans- 

formations along all the invariant lines and in all the invari- 

ant pencils are parabolic, having one element invariant. 
This completes the list of types of collineations of the 

plane ; for if we modify these invariant figures in all possible 

ways we get no new self-dualistic figures. 

THEOREM 18. There are five types of collineations in the plane; 
each type is characterized by one of the self-dualistic invariant fig- 
ures of Fig. 14. 

C | 

A | BA Te e 

Fic. 14. 

112. Analytic Determination of the Five Types. Let the 
collineation be given analytically in the homogeneous form : 
Thus 

Ot, — 0,0 Dy 1 ¢,2), 
py, — a,c + by + C22, (2) 

i, = ORY SU Gye 

Putting x,=2, y,=y, and z,=z we have three linear equa- 
tions from which to determine the coordinates of the inva- 
riant points. These equations are 

(a,—p)«+by+ez2=0, 

av +(b,—p)yt+e2=0, (8) 

a,¢+b.y+(c,—e)z=0. 
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When these equations are simultaneous, their resultant van- 
ishes ; thus 

po b, C, | 
|, b,—p G = (I). (9) 

|; b, C5? 

This cubic in p, designated by A(p) = 0, is called the charac- 
teristic equation of the collineation. 

There are several cases to be considered. The equation 
A(p) =0 may have three single roots ¢,, p., p;, one single root 

p, and a double root p., or a triple root p,. Moreover the 
coefficients of the three equations (2) may satisfy certain 
conditions so that these three are equivalent to only two 
equations ; or they may satisfy such conditions that the three 
are equivalent to one. If aroot of A(p) = 0, say p,, is substi- 
tuted for p in (8) and no other conditions are imposed on the 
coefficients, then the three equations (8) are equivalent to 
only two. They are satisfied by one and only one set of val- 
ues of the ratios w:y:z. (Geometrically speaking the three 
lines represented by (8) meet in a point.) If the first minors 
of (9) are all simultaneously zero, then equations (8) are 
equivalent to only one. They are satisfied by ~‘ sets of val- 
ues of the ratios «:y:z and these sets of values satisfy a 
linear relation. (Geometrically speaking the three lines (8) 
coincide and may be considered as intersecting at all points of 
a line.) 

113. Type I. Let us consider the case where A(p) = 0 has 
three single roots, p,, p2, p;. In this case the first minors of 
(9) can not all vanish; for if they do, the conditions for a 
double root are satisfied. A double root of A(p) =0 satis- 
fies not only A(p) = 0, but also its derivative A’(p) =0. But 
A’ (ep) = — (A, +A4,,+A,;), Where A,,, ete., are the first 
minors of the elements in the principal diagonal of (9). 
Hence, if the first minors of (9) all vanish, A(p) =0 has a 
double root. 

If one of these roots, as p,, be substituted for p in equations 
(8), these three equations have a common solution. Solving 
equations (8) for the ratios «:y¥:z, we thus find the coordi- 
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nates of an invariant point of the collineation. Substituting 
successively the three roots of A(p)=0 in equations (8) and 
solving each simultaneous system, we obtain the coordinates 
of three invariant points. 

If equations (2) be interpreted in line coordinates, the same 
analytic work gives us the coordinates of three invariant lines. 
These three invariant points and three invariant lines form 
the vertices and sides of an invariant triangle. Hence, when 
A(p) = 0 has three distinct roots, the collineation leaves a tri- 
angle invariant and is of type I. 

114. Type II. If the cubic, A(p) =9, has a single root o, 

and a double root p,, the invariant figure of the collineation (2) 
is no longer a triangle. If the first minors of (9) are not all 
simultaneously zero, the collineation has two invariant points 
and two invariant lines. The invariant point (or line) corre- 
sponding to the double root p, may be regarded as two coinci- 
dent invariant points (or lines). The single root p, gives us 
an ordinary invariant point (or line). The two invariant 
lines intersect in one of the invariant points (the double one) 

and the two invariant points lie on one of the invariant lines 
(the double one). Hence, when A(p) = 0 has a double root 
and the first minors of (9) are not all simultaneously zero, the 

collineation is of type II. 

115. Type II. If A(p)=Ohasa triple root and the first 
minors of (9) do not all vanish, then there is only one value of 
p that makes (8) simultaneous. Hence the collineation in 
this case leaves only one point invariant. In line coordinates 
the same conditions shew that the collineation leaves only 
one line invariant. The condition that the invariant point 

lies on the invariant line is evidently satisfied, so that the in- 
variant figure is a lineal element. Hence, when A(p) = 0 
has a triple root and the first minors of (9) are not all sim- 

ultaneously zero, the collineation is of type III. 

116. Type IV. If A(p)=0hasa double root p, such that 
when p, is substituted for p in (8) the first minors of (9) are 
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all simultaneously zero, then the collineation has an invariant 
figure unlike any of the above cases. The single root p, gives 
us a single invariant point (or line). The double root p, gives 
coo! invariant points which lie on a line and o¢ invariant lines 
which pass through a point. The single invariant point given 
by p, does not lie on the line of invariant points given by ., 
since the first minors of (9) do not all vanish when 9, is sub- 
stituted for p in (8). Hence, when the above conditions are 
satisfied, the invariant figure consists of a line of invariant 
points and a single invariant point not on this line; the col- 
lineation is of type IV. 

117. Type V. If A(o)=0has a triple root for which all 
the first minors of (9) are simultaneously zero, there are «+ 
invariant points which lie on a line and ~’ invariant lines 
which pass through a point. The intersection of these in- 
variant lines is an invariant point which must be one of the 
points on the line of invariant points. Hence, when the 
above conditions are satisfied the collineation is of type V. 

118. Geometric Construction of Types of Collineation ; 
Type I. The method of constructing a collineation given in 
article 98 also shows in an elegant manner the five types of 
plane collineations. When the conics K and K’ of Fig. 12 
are not in contact, the invariant figure is a triangle. Hence, 
the collineation determined by two conics, which do not 
touch each other, is of type I. 

For special positions of the conics K and K’ the invariant 
figure will be different. Thus special cases arise when the 
conics touch one another, or touch the line / at the same point, 
or have contact of the second or third order, etc. These 
special cases give rise to the other four types of collineations. 

119. Type II. Let us next consider the case of a collinea- 
tion where the two conics touch one another. The invariant 
figure in this case consists of b, the common tangent to the 
two conics, A their point of contact, and another common 
tangent a intersecting b at B, Fig. 15a. 
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(2) 

“GT “SIM 
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This kind of a collineation may be considered as a special 
ease of the last, when two sides of the invariant triangle co- 
incide. This case gives us type II. 

120. Type III. Instead of simple contact, as in the last 
case, the two conics K and K’ may have contact of the second 
order at a point A. When the conics have a contact of the 
second order, they have one and only one other common tan- 
gent. In this case the common tangent, a, to the two conics 
at A is the only invariant line of the transformation and the 
point A is the only invariant point on the invariant line, 
Fig 15). 

In this case the invariant figure consists of a line a anda 
point A on this line a. This combination of line and point is 
a lineal element. A collineation of this special kind is of type 
III and leaves invariant a lineal element. 

121. Type IV. Again, the two conics may both touch the 
line / at the same point, the contact being of the first order. 
In this case the two conics K and K’ have two other common 
tangents, 6 and a, which intersect at some point C (Fig. 15c). 
It is at once evident from the figure that the transformation 
determined by K and K’ leaves the lines b and a and the point 
Cinvariant. A little further consideration of the construc- 
tion shows that the points A, B, and L on the line! are inva- 
riant points. Consider the point 5A on b infinitesimally near 
to A. From $A the two tangents to K are b and a line infin- 
itesimally near to 1, meeting /at dL. From $Z and A the 
tangents to K’ intersect at 6’A. So that SA is transformed 
to \‘A. AsdA approaches A, 3/A also approaches A. In 
the limit A is an invariant point. Similar constructions hold 
for B and L. 

But if a collineation leaves more than two points of a line in- 
variant it leaves all points on the line invariant (art. 8). There- 
fore, every point on the line/ is an invariant point of the trans- 
formation. Any line g drawn through C intersects / in some 
point as G. Therefore, the line g, having two points G and 
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C invariant, is an invariant line. Thus we see that every line 
through C is an invariant line. Hence we conclude that the 
collineation determined by the two conics K and K’ touching 
the line / at the same point leaves the point C, all points of 
the line J, and all lines through C invariant. If the two re- 
maining points of intersection of K and Kk’ are coincident, 
i. e., if the two conics have double contact, the resulting col- 
lineation is still of the same character and the invariant figure 

the same. This case is type IV. 

122. Type V. When the two conics have a contact of the 
second order at the point LZ on the line /, the invariant figure 
takes still another form. In this case only one other common 
tangent, a, can be drawn to the two conics. This common 
tangent intersects / at A (Fig. 15d). The collineation deter- 
mined by the two conics in this position leaves invariant all 
points on the line / and all lines through A. If the two conics 
have contact of the third order at L, then / is the only com- 
mon tangent they have (Fig. 15e). Sucha collineation leaves 
invariant every point of the line / and every line through L. 
The invariant figure is the same as before. This constitutes 
type V. 

123. Perspective Collineations. Types IV and V constitute 
what are known as perspective collineations. In article 87 
we discussed two projective planes in perspective position. 
When the plane z’ is revolved about the line / until it coin- 
cides with a, the resulting collineation in ~ is called a 
perspective collineation. Evidently all points on / are self- 
corresponding or invariant points of the collineation. The 
perpendicular ray from Q on the plane bisecting the angle be- 
tween x and za’ cuts a and a’ in C and C’ respectively. Revo- 
lution about / brings C’ to C, and thus C is an invariant point 
of the collineation. All lines through C are necessarily inva- 
riant lines, for they each pass through two invariant points, 
viz.: C and an invariant point on/. Therefore, the invariant 
figure of a perspective collineation is the same as that of type 
IV. All collineations of type IV are perspective collineations. 
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124. Elations. When the point Q is any point in the plane 
bisecting the external angle of 2 and 7’, the perpendicular 
from Q on the internal bisecting plane of a and a’ meets that 
plane in a point on /. In this case the invariant point Cis a 
point on J and the invariant pencil of lines through C has 
its vertex on 1. But this is the invariant figure of type V. 
Such a collineation is called an Elation.* All collineations 
of type V are elations ; elation is a special case of perspective 
collineation. 

125. Second Construction of the Five Types. When the two 
conics K and K, of the construction of art. 101 intersect in four 

points S, ABC, Fig. 18, we have a collineation of typeI. If 
the two conics have contact of the first order, as for example 
when A and C coincide, the collineation is of type II and the 
invariant figure is the degenerate triangle AB/, Fig. 16(a). 
If the two conics intersect at S, and have contact of the sec- 

ond order at a point A, the invariant figure is a lineal element 
Al and the collineation is of type I, Fig. 16(b). If 
the two conics K and K, have contact of the first order at S,, 
Fig. 16(c), then the common tangent to K and K, at S, is an 
invariant line, also the lines joining S, to the other two points 
of intersection are invariant lines. Thus we have three in- 
variant lines through S, and one invariant line not through 
S, The collineation is of type IV with vertex at S, and axis 
through the other two points of intersection of K and K,. If 
the two conics have contact of the second or third order at 
S,, Fig. 16(d) or 16(e) respectively, the collineation is of 
type V, as may readily be seen. 

*Lie: Vorlesungen iiber Continuierliche Gruppen, p. 262. 
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$4. Normal Forms of Equations of 

the Five Types. 

126. In $2 of chapter I it was shown that there are two dis- 

tinct types of projective transformations on a line, and that 
the analytic expressions for these two types can be put into 
elegant determinant forms in which the constants have defi- 
nite geometric meanings. It has just been shown that there 
are five distinct types of plane collineations, and our next 
task is to find normal forms of the equations of these five 
types. We shall find forms strictly analogous to those 
already found for one-dimensional transformations, article 17. 
We shall first determine the fundamental geometric prop- 

erty of a collineation of type I with reference to its invariant 
triangle. This geometric property is then expressed in 
analytic form in terms of the coordinates of a pair of corre- 
sponding points and the coordinates of the invariant points of 
the collineation. We shall first reach an implicit normal 
form and then pass to the explicit normal form by solving a 
set of linear equations. The reduction of the equations of a 
collineation to their explicit normal form, 7. e., the expression 
of a collineation in terms of its natural parameters by means 
of an elegant determinant formula, is an analytic result of 
prime importance. 

From the normal form of a collineation of type I we pass 
readily to the normal forms of collineations of the remaining 
types. 

127. Three Cross-ratios Whose Product is Unity. We shall 
now consider in detail the most general case of a collineation 
whose invariant figure is a triangle (type 1). Let the ver- 
tices of the triangle be represented by A, B, C; and the oppo- 
site sides by a, b, c, respectively. By means of a collineation 
T the line @ is transformed into itself in such a way that the 
points B and C on it are invariant points of the transforma- 
tion. Now we know that the one-dimensional transformation — 



NORMAL FORMS. 99 

of the points on a line, which leaves two points of the line in- 
variant, is characterized by the constant cross-ratio of the in- 
variant points and any pair of corresponding points (Art. 15). 

Let k, be the characteristic cross-ratio of the one-dimen- 
sional transformation along the line a. In like manner we 
have transformations of one dimension along each of the in- 
variant lines 6 and c. We shall call their characteristic cross- 
ratios k, and k, respectively. In reckoning these cross-ratios 
the points will be taken always in the same order around the 
triangle. Thus we see that every collineation of type I in the 
plane determines three characteristic cross-ratios along the 
three invariant lines. It is also evident that the pencil of 
lines through the vertex A of the invariant triangle is trans- 
formed into itself in such a way that the rays AB and AC are 
invariant rays of the transformation. Also the cross-ratio of 
the invariant rays and any pair of corresponding rays of the 
pencil is constant for all pairs of corresponding rays; this 
cross-ratio is equal to k,, the characteristic cross-ratio along 
the side a opposite A. Similar considerations apply to the 
pencils of rays through the invariant points Band C. We 
shall now proceed to show that these three cross-ratios are not 
independent, but are connected by a very simple relation. 

nies aye 
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Let g and g,, Fig. 17, be a pair of corresponding lines in the 
transformation T; let PP,, NN,, and MM,, be the pairs of 
points of intersection of g and g, with the sides of the in- 
variant triangle. Since k,=(ABM,M), k,=(BCP,P), and 
k,=(CAN,N) (observe the order in which the points are 
taken) we have 

Va Hd Pee AM.BM BPi.CP CM.AN_ 

Cte ANION Ii | 0B) GPa iO NIRAUNG 

But by the theorem of Menelaus* we have 

AM. BP. CN _4 ,.g AM. BP. CN _ 
BM. CP. AN oe Ain, Cle LNA 

Hence lealcek ey alla 

THEOREM 19. Every collineation of type I in the plane deter- 
mines a characteristic cross-ratio alone each of the invariant lines 
and through each of the invariant points. When these three cross- 
ratios are reckoned in the same order around the triangle their pro- 
duet is unity. 

Fic. 18. 

* Cremona, Elements of Projective Geometry, page 112. 
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128. Cross-ratio of Corresponding Areas. Let (ABC) be 
the invariant triangle, Fig. 18, of a collineation T and let P 
and P, be any pair of corresponding points in the plane, P 
being transformed to P,; from P and P, draw perpendiculars 
to BC, CA, and AB (dotted lines). 

The cross-ratio of the pencil through the vertex C is 

sinACP; , sinACP  Pibi , Pb 

k,=C(ABP,P) — GmiaGia ° HmaGi2 W im ° 72h 

But the perpendiculars from P and P, on the sides of the tri- 

angle A BC are proportional to the areas of the triangles of 
which they are the altitudes. Hence 

i NON eee 
oe) Pia 9) Pa we SPIBCs | APEC 

In like manner we have 
ee SAB Ee ieee. aA PBS 

OO IACA ~ AIGA 2 NIRA (AIPA 

We easily verify that k,k,k, = 1. 
Since P and P, were taken to be a pair of corresponding 

points in the plane, and since, by Theorem 9, Chapter I, 
the cross-ratio of the invariant elements and any pair of cor- 
responding elements in a one-dimensional projective transfor- 
mation is constant for all pairs of corresponding elements, we 
have found the following important theorem : 

THEOREM 20. The cross-ratio of the areas of four triangles 
whose vertices are any pair of corresponding points in the collinea- 
tion T and whose bases are any two sides of the invariant triangle 
of T is constant for all pairs of corresponding points. 

129. Implicit Normal Form of Equations of Type I. The 
equations of a collineation are usually given in the form 

ax+by +e 
a’! «x + b/y + ¢!/ 

a «+b y+e' AMO reser cee (1) 
i a’ a+bly el! 

When these equations represent a collineation of type I, they 
can be thrown into a normal form in which the constants in 
the equation are the coordinates of the three invariant points 
and the characteristic cross-ratios along the invariant lines. 
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In Fig. 18 let the coordinates of P be (x, y) and of P, be 
(x, y,); let the coordinates of the three invariant points be 

(A, B), (A’, B’), and (A”, BY). 
Expressing the areas of the triangles in the last article in 

determinant form in terms of the coordinates of their vertices 
we have 

|v YW ‘| Le] 1 ce ye 22)| eae yal 

|A B 1| Angee | Ais ail |A BY 
HAV ISIE ii A” BY 1} Ales etl) ABU eh 

[| ea en ay Lee ie 
PAN BO a AUR BE Ki AIPRORL ALE!) 4d 
[Al BUS AUB ial AU BU ati| AB i 

1 yi 1 mil || 

AB: AB | 
Al BY Si Ala Bi eT) 

ja yp; et OP al 

AB a AB 1 
PAUSE ANB 

These three forms are not independent and the last may be 
regarded as superfluous. 

Putting k, =k and a =k’ then the most convenient form 
b 

is as follows: 

dB aH cee 2), ll ai i IL iO aoil|| 

A B 1 | Be AB yt Al UB i 
AU BUT PA TB al Al UBL ee Jes ah 

SE Sify Eee aq ay (10) 
\ixr Yr 2 Tee AOfing 3 | v1 Yi | LEY ia 

Al BY AL ESS a A!’ B' i AN Sse 

| A” BUS AUR 1| ALT BE th AES 

These implicit normal forms are capable of another inter- 
pretation ; the values of the determinants are proportional to 
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the perpendicular distances from P, and P to the sides of the 
invariant triangle. They express the fact that the cross- 
ratios of these perpendiculars are constant for all pairs of cor- 
responding points. 

130. Explicit Normal Form of Type I. Equations (10) are 
linear in x, and y,, and may be solved for these quantities, 
giving us the explicit normal form of T. To solve these 
equations we proceed as follows: Let the equations of the im- 
plicit form be written 

amy Gye al ae = all 

ANOBLING AN BA 
Alp Plertldnl yen, Aen, iy 

ci yl ‘| Dd? abit AH D 

A’ Br 1| A! Bt 
A” BY 1\ A” Bl 1 

Expanding and collecting ; 

w, | D(B-B") ~kN(B - BY) | _y, | D(A-A")- kN (A'— A") | 
= — D(AB!— AB) + kN (A/B!— A"B’), 

a, ) D(B- B’) WN (B’-B") { — y,} D(A- A) -wN(A'— AY | 

= — D(AB!— A/B) +N (A'B" — A"B) . 

Solving by determinants ; 

|e wy if @ 
[eAle SBiee ot | WALES ap eilA 

D\A' B 1\(AD—A'KN+A'KN’) AU By i KAR 
; | A” BY 4 ar Be 7 WA"! 
i AP SBM 1 le 7] 2 Y 

p\|A4’ B 1 (D—kN + k!N’) AgusB a pies 7 
| All B" 1 | A’ B i k 

Al BY 1 ke 

(11) 
1 y 1 0 | 

A B 1! A YBa 2128 
D| A’ B 1|(BD-BkN+B’KN’) WAL tReet IB! 
(ABU AC BUSS tee Bi 

Yi |A Ba - |e @ ff @ 7 
D|A' B 1 (D—kN+K'N’) WAL) SOR miata 

A” Bl 7 Al Be Ti Kk 
Av Bla i 
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If we pass from Cartesian to homogeneous coordinates, 
these forms may be written: 

| a yz 0 | (ay eueraneO | 
SBCA |) 6) 2 ie eae 

Pt =\a Bp cra |> PYUr=\|a B oO RB |} 
| All Bl cl ki A” | | All Bi Cc" k/ B" 

| y Zz 0 | 

eee 
per =| BoC ko |: (12) 

| 4” BY c” wc"! 

Making the C’s and 2’s unity in (12) and dividing the first 
and second by the third, we return to equations (11). 

The law of formation of these determinants is evident. 
The determinant of the invariant triangle is bordered above 
by x, y, 2, on the side by A, k A’, k’ A”, ete. 

THEOREM 21. A collineation of type I can be expressed in a 
symmetric determinant form in which the coefficients are functions 
only of the eight natural parameters of 7. 

These explicit normal forms will be of great use to us in 
the following chapters. By giving to A, B, k, ete., the proper 
values any assigned collineation of type I can be written down 
at once. The analogy of these normal forms with the normal 
forms of type I in one dimension is evident (see Art. 17). 

131. Inverse of Tin Normal Form. If equations (10) be 
solved for x and y instead of «, and y,, we get the normal form 
of the inverse of 7. From the implicit normal form of T, 
equations (10), we see that the explicit normal forms of T 
and its inverse 7” differ only in the fact that k and k’ are 
changed into k~ and k’~’. 
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132. Determinant of Normal Form. 
of the normal form of T may be found as follows: 

A= —| 

| A B 
= [kA kB 

| ki A" k/ BY” 

BTA 

BI I GAY 
B’ 1k A" 

fe} HL 133 

BIST IB! 
B’ 1 kB! 

B 
B 

B! 

Alen 
= i; k/| A’ 

| All Bl 

[A 1 A 
| A’ 1 kA’ 

| A” 1 kA” 

A 1B 
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The determinant A 

ABA 
A! Bl kA! 
A” BU AN 

A BRB 

| A’ Bl kBY 
| A”! B"’ k/B” 

ANB A 

A Bek 
All B' ki 

B' 

Bl 

Ay See 
B’| |» 

A B 
B’ 

whose a, 3’, etc., are the minors of A, B’, ete., in 

A! 

All 
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A Beal 

Jey Gil 

EB 
Sa elie! 

A 
A! 

All 

Bo is 
jess Bll 
BY 1 

The determinant of the normal form of the col- 
lineation 7 is equal to the product of the cross-ratios & and k/ into 
the cube of twice the area of the invariant triangle. 

133. Characteristic Equation of the Normal Form of T. 
The characteristic equation of the normal form of T is readily 
written down as follows, compare Art. 20: 

Ba eA 

iB ih a |) = (0) 
Bl" 1 kt A” | 

B ih 3 

BI SL kB! 
Br it kB" 

B 1 1 

B 1 k 

Be tig 

A 
A! 

All 

Al 

| 
fal | 

k A’ 
ki A” 

B 

kB’ 
kt! BY 

il Z 

k 

A B A 

At Bl kA! 
All BY ki A” 

JA Jes 183 

A’ Bl kB = (). 
All B" k! Bi | 

ara Geol nit 
A’ B k |—o | 
Alt Br kl! | 
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Expanding this equation we get 

oe —(1+k+k’) Dp? (kk'+k+k’) D’p —kk’ D? =0,. (18) 

A B 1 | 
where ID) = OT 

All B’ il | 

This equation factors at once into (p — D) (pe —kD) (p —k’D) 
= 0; the three roots are therefore D, kD, k’D. 

THEOREM 23. The roots of the characteristic equation of the 
normal form of Z are D, 4D, kD, where D is twice the area of the 
invariant triangle of 7. 

134. Properties of Type II. A collineation of type II may 
be regarded as the limiting case of a collineation of type I 
when two vertices of the invariant triangle approach coinci- 
dence. Let T’ be a collineation of type II leaving invariant 
the figure ABI, Fig. 19. Along the invariant line AB and 

Fic. 19. 

in the pencil through A there are one-dimensional transfor- 
mations whose cross-ratios are respectively k and k,. Along 
the invariant line / and through the invariant point B there 



NORMAL FORMS. 107 

are one-dimensional parabolic transformations whose charac- 
teristic constants are respectively t and t’. We must first 
find what relations exist between these constants i and k, and 
t and t’ respectively. 

135. k and k, are equal. In the invariant triangle ABC 
of type I the product of the cross-ratios k,, k,, k, is unity 
when they are reckoned in the same order around the 
triangle. In the triangle let C be moved to coincidence 
with A, then k,, along AC, reduces to unity (Art. 19) and 

we have k,k,=1 or k, = = . Now k,=A(CBPP,), hence 

S = A(BCPP,)=k,. Hence the characteristic cross-ratio 

of the transformation along AB is the same as that of the 
pencil through A, the order of the elements being as follows : 
k=(BAxxz,) = A(ULPP,), where x and x, are a pair of cor- 

responding points in the line AB or I’. 

THEOREM 24. Ina collineation of type Il the one-dimensional 
transformations along the invariant line 4 & and through the inva- 
riant point A are both characterized by the same cross-ratio 4. 

1 

aes B 
Fic. 19a. 

136. Relation between t and t’. If we consider the figure 
ABI as the limiting form of the triangle ABC, we ean find 
expressions for the parabolic constants ¢ and t’. Let the 
angle 1 AB be denoted by #, Fig. 19a. Along the side AC 

or Al we have t= lim. tae as C approaches A. In the pen- 



108 THEORY OF COLLINEATIONS. 

ee B 
cil through B we have t’= lim. —.. Hence | == lim. — 

B=0 sinB ah 2! AG: 

But in the triangle ABC, even when C is very near to 

Te _ sinA 

7 BC 

since AB is the limit of BC. 

° sin B sin A sin ¢ 
; and lim. —— =lim. —— = —~ A, we have - AG Na ae en 

f= Se 4, (14) 

THEOREM 25. In a collineation of type If the parabolic con- 
stants ¢ and ¢/ of the two one-dimensional parabolic transformations 
along the invariant line Al and through the invariant point B are 

. sin 
connected by the relation t= —— ¢’. 

137. Normal Form of Type II. The normal form of the 
equations of a collineation of type II may be readily obtained 
from those of type I by considering type II as the limiting 
form of type I when one of the invariant points, as C, ap- 
proaches A along the line b. In the normal form of I, equa- 
tions (11), subtract the second row from the fourth row in 
each determinant and then divide the fourth row in each de- 
terminant by d, the length of the segment AC. Now let C 

; AN — A os IB Tg 
approach A and put lim. — (5, Juan 7 =’, and 

A'vN=A d A’=A a 

ki —1 
lim. —— =t; we then get 
Lif 

le oO f @ | x y 1 O 
ABi1A | AB1 B 

| a’ Ba kA’ | | A’ Br kB | 
c ec 0 tA+c |e € © tB+c! | 

iy = -— a —, (15) 
| a: Th eh <8) Cas eee Lene O, 

[Aa Bid AB at ae 
jl TY i TD Al Bist aki 
kee AOE OG OD 

Evidently ¢ and c’ are cosine and sine of # the angle which 
l of the invariant figure of type II makes with the «-axis. 
If the axes of coordinates are oblique, then ¢ and c’ are pro- 



NORMAL FORMS. 109 

portional to the sines of the angles which / makes with the 
y- and w-axis respectively. In either case ¢ and c’ are not in- 

dependent. 
In homogeneous coordinates the above result may be writ- 

ten in the form 

1} OF BO | 22 Mp 2 

TSAR Bu CrA |. os Bare B: : 
Oa Al Be Ciel 9 PYr—| ar BC KB , 

[eC c'CO tA+cC| cC (CO tB+e'C 

x y ma 

Aer eatC AC. 
P41-la B OKC (16) 

leG eC 6 tC 

The determinant of the normal form (15) of type II, is 

PAC Bare, \s 

IN eB) Ce 
le ce! ~0))| 

THEOREM 26. A collineation of type II is expressible in sym- 
metric determinant form in terms of its seven natural parameters. 

138. Another Method for Type II.* In the last article we 

derived type II from the general case, type I, by letting A’ 

approach A along the side AA’ of the invariant triangle. 
The following method, which is presented so as to be applica- 

ble to type III, also is more general and includes the above 

method as a special case. A, A’ and A” being the invariant 
points, draw any continuous curve s from A through A’ and A”, 
Fig. 20. Let the curve have a definite tangent and curvature 
at A, and let the direction of the tangent and the curvature 
be continuous throughout s. Now let A’ approach A along the 

curve s, A’ remaining fixed. In the determinants of the 

normal form of type I substract as above the second row from 
the third and write A’— A=AA, B/—B=AB. Divide the 

new third row through by As, the length of the are AA’. 

*The method of this article and its application in the next article is due to Dr. 

Paul Wernicke. I am under obligations to him for valuable assistance in regard to 
the normal form of type III, as here presented. 
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ae AA AB k-1 : dA dB 
The limits of [Gsq, andj, are respectively [—,. =, 

t. The normal form of type II then becomes 

% Ye LO x Yy i) 

A AB eA A 5B. SSB 
DEN Ey AN UE ys 
isis ‘ds ds ds ds 
Al” B’ 1 ki A” All Br 1 ki Bi 

v= ’ Yi = 
x yo i @ 5 
A Bion st (Same denominator. ) 

dA dB 
rae vee ee 
ds ds 
All Br a k! 

But - and = are the direction cosines of the tangent to s 

at A, 7. e., cosine and sine of its angle with the positive 
x-axis, and may be replaced by « and 3 respectively ; we have 
also a?+ B= 1. 

Fic. 20. 
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139. Normal Form of Type II. A collineation of type II 
is the limiting form of one of type I when all three vertices 
of the invariant triangle approach coincidence, say at A, 
and all three sides of the same triangle approach coincidence 
in the line/. To find the normal form of the equations of 
type III, we let A” and A’ approach A along the curve s of 
Fig. 20. When the points A, A’, A” are consecutive points 
on the curve we may replace the coordinates A’, B’, A’, B’’ 
by the following expressions: A’=A+dA, B’/=B-+dB, 
A” =A+2dA+@A, B’=B+2dB+d°B. Weshall di- 
vide each determinant of the normal form of type I by twice 
the area of the invariant triangle AA’A’”. Wemay write 
2D= AA’. A’'A” sing. But when 4A, A’, A” are consecutive 
points we have chord A A’ = are AA’=ds, chord A’A” = are 
A’'A” =ds and sino = =cds, where c is the curvature of s 
at A. Hence 2D=cds’. 

In each determinant of the normal form of type I subtract 
the second row from the third, subtract twice the third row 
from the fourth and add the second row to the remainder, 
divide the new third row through by ds and the new fourth 
row by cds*. Substituting the above values of A’, etc., we 
find for the value of x, 

x y 1 0 

A B 1 

dA dB (k=1) | aA 
ds ds ds ‘ds 

dA @B ki —2k+1 kW —-kdA kid?A 
== 9 A +2 Sain 

cds? cds? cds? cds ds cds? 
t= ’ 

x ] iO) 

A B 1A 

dA dB, k-1 
ds ds ds 

aA dB i ki'—2k+1 

cds? cds? cds? 

and a similar expression for y,. 
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The cross-ratios along the sides of the invariant triangle 
AA’A” are as follows: k is the cross-ratio along AA’, k’ is 
that along AA”; let that along A’A’ be k,, then k’=kk, 
(Art. dei): These three k’s each approach the limit 7; the 

limit of = is t, as above. 

To find the value of eee , we proceed as follows: re- 

place k’ by kk,, and find the values of k and k,. Let g be 
the line joining P and P,, a pair of corresponding points, and 
let g cut the sides of the invariant triangle in L, M, N, respec- 
tively, Fig. 20. Projecting the cross-ratio k from A” on g 

LP MP, 
LP MP* 

 —MP NP _ LP+ML | MP+NM 
7a MPN WLP Lome (MPAONMe 

=) eae 

we have k= In like manner we have 

(ML.MP:+LP.NM+ML.NM) —k (ML.MP+NM.LPi+NM. ML) 
LP:\.MP+ML.MP+LP:.NM+ML.NM 

ML.MPi+NM.MP-k(ML.MP+NM. MP) 
ale aly MP\. NP ; 

When A, A’ and A” are consecutive points on s, ML and NM 

are infinitesimals of the same order as AA’ and may be 
. k—2k+1 

made equal to each other. The ae becomes 
eds? 

k2—-2k+1 , k (MP+MP:\ NM _ 1-k 
eds? as \eenea) FE ds 

MP+MP,\ NM 
MP. cl ds * 

= — +ht where —/h is the 

é k/-k ; 
The expression ——— easily be- limit of > (; oa 

t 
comes _. 

. . 1 9 

Since c is the curvature of s at A, | =a, the radius of cur- 

vature of s at A, —— ean ag ore the direction cosines of the 

tangent to s at A, oa may be replaced by « and £, respec- 
d?A , d2B foe ye 

tively ; also a?+(6’=1. a, and a, are the direction 

cosines of the normal tos at A, and may be replaced by «’ 
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a p 
and #2’, respectively ; also «’*+ 3’*=1, and |, ,,|=1. The 

a | 

normal form of type III may be written 

i ay tk 

ABiA 
a § 0 At+a 

a! 0 A (at?+ht)+2ata-+ a! 

¢, = ; 
«sy (0) 

AN Bes oly eT 

a B 0 t 

a Bf 0 at?+ht (17) 

a R]Y a gl 0 

AieBs TB 
a 6 0 Bt+ ) 
a ff 0 B(at?+ht) +2at3+ (7 

Ug = 

(Same denominator.) 

140. Properties of Type IV. A collineation S of type IV 
leaves invariant a point O and every point on l, a line not 
passing through O, and the pencil of rays through O, Fig. 21. 

Fig. 21. 

—8 
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In the special case that the point O lies on 1, the collineation 
of type IV reduces to one of type V. Collineations of these 
two types are perspective collineations. Fixing our attention 
on the fundamental invariant figure we see that every inva- 
riant line in the plane except / has on it two invariant points, 

O and its point of intersection with /; also every pencil hav- 

ing its vertex A on/ is an invariant pencil in the plane, and 

has in it two invariant rays, /andtheline AO. The effect of 

a perspective collineation of type IV is to move a point P along 

the invariant line OPP, to P,. Thus we have on each of the 

invariant lines through O a one-dimensional transformation 

with two invariant points O and A. Likewise in each of the 

invariant pencils with vertex on / we have a one-dimensional 

transformation of the same kind. A one-dimensional trans- 

formation is characterized by the constant cross-ratio of the 

invariant elements and every pair of corresponding elements. 

Thus along the line AO we have (AOPP,)=k. Let A, be 

another point of 1; in the pencil with vertex at A, we have 

the cross-ratio A,(AOPP,)=k. Since every line through O 

cuts this pencil in a range having the same cross-ratio k, it 

follows that the one-dimensional transformations on all lines 

through O are characterized by the same constant k; also 

the one-dimensional transformations in all pencils with ver- 

tices on / are characterized by the same value of /. 

THEOREM 27. A perspective collineation S of type IV is com- 

pletely characterized by its fundamental invariant figure and a char- 

acteristic cross-ratio #. The one-dimensional transformations along 

all invariant lines except / and in all invariant pencils except O of S 

are characterized by the same cross-ratio /. 

141. Type IV a Special Case of Type I. A perspective col- 

lineation S of type IV may be regarded as a special case of 

typeI. We proved for type I that k,k,k, = 1, where these 

quantities are the characteristic cross-ratios taken in the same 
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order around the triangle. Along one side, e. g. BC, of the 
invariant triangle we have k,=(CBXX,). If k,=1 and B 
and C do not coincide, then X and X, must coincide and every 

point on the line BC is an invariant point, and every line 
through A is an invariant line of the collineation. Thus when 
one of the cross-ratios as k, of type I becomes unity without 
B and C coinciding, T degenerates into S, a transformation 
of type IV. 

142. Cross-ratio the Same on all Lines Through A. Since 

k,=1, we have k, = = ; thus the characteristic cross-ratio 

along CA is the reciprocal of that along AB. Interchanging 
C and A in the formula for k, we get the reciprocal of k, ; 
hence the eross-ratio along AC reckoned from A to C is equal 
to that along AB reckoned from A to B, 7. e., (CAYY,) = 
(BAZZ,)=k,. The cross-ratio of the pencil through C is 
k,=C(BAPP,). But every line through A is now an inva- 
riant line and all the lines through A cut the pencil through 
C in the same cross-ratio k,. Thus we see again that the col- 
lineation S produces one-dimensional transformations along 
each of the invariant lines through A and these one-dimen- 
sional transformations are all characterized by the same 
cross-ratio k. 

143. Type IV a Special Case of Type I. A transformation 
T’ of type II is characterized by a loxodromic one-dimensional 
transformation along its invariant line AB and a parabolic 
one-dimensional transformation along its invariant line Al. 
If t, the characteristic constant of the parabolic transforma- 
tion along A/, be equal to zero, the transformation along 
Al is the identical transformation and every point on Al is 
an invariant point. The invariant figure is now the point B, 
all lines through B, and all points on/. For 7’ it was proved 
that the characteristic cross-ratios along AB and through 
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A were equal. Hence it follows in the degenerate form S 
that the characteristic cross-ratio along any invariant line is 
equal to that in any invariant pencil. 

THEOREM 28. A collineation of type I degenerates into one of 
type IV whenever the cross-ratio along any side of the invariant tri- 
angle is unity and the two vertices on that side do not coincide. 
A collineation of type Il degenerates into one of type [V when the 
parabolic constant along A/ is zero. 

144. Normal Form of Type IV. The equations of the 
normal form of type IV are gotten from those of type I by 
making k’=k, k=1 or k’=1. In the first case the line 
joining (A’, B’) and (A”, B’’) is the line of invariant points. 
If k’=1, the line of invariant points is that joining (A, B) 
and (A”, B’); if k=1, the line of invariant points is the 
line joining (A, B) and (A’, B’). 

The same equations may also be gotten by making ¢=0 in 
the normal form of type II. The line A/ of Fig. 19 then be- 
comes the line of invariant points and B is the isolated inva- 
riant point. The last equations are: 

mo OW tf | @ i @) 

AS fel Al ak Yay IP 183 

A! Bi ft kA! PAV Bela 3,4) 
c ce 0 c¢ le ec Oc | 

a, = —, y= ————.._ (18) 
x 0: in hp th) 

7 dep ak al YAN dep UN 

A’ B1sk Al OB! 1 ke 

Bo Gg Oo Oo 8 Y 

145. Properties of Type V. In the case of an elation the 
invariant figure consists of all points on a line / and all lines 
through a point Oon/. An elation S’ transforms a point P 
of the plane into P, some other point on the line OP. On 
each of the invariant lines through O there is a one-dimen- 
sional parabolic transformation having its single invariant 
point at O. Every pencil of lines having its vertex at A, any 
point on J, is an invariant pencil of the collineation. On each 
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Rig. 22: 

of these invariant pencils there is a one-dimensional parabolic 
transformation having / for its single invariant line. 

Let S’ be an elation leaving invariant the fundamental 
figure of Fig. 22. A line g parallel to / will be transformed 
into g, also parallel to/; for g and g, both belong to a pencil 
whose vertex is the point at affinity on /. The line at infinity 
will be transformed by S’ into some lineas g;. Let us first 
consider here the parabolic transformation along the line OP 
perpendicular to .; we have, Art. 60, 

erie 1 1 1 eee 

ODO) an OP: = OP; 

The characteristic constant ¢ is the reciprocal of the seg- 
ment OP, where P, is the point into which the point at infinity 
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istransformed. Along any other line through O as OS making 
an angle @ with / we have 

1 uf 1 5 

0S OS ~ os, — sind. 

Let A, any point on /, be the vertex of an invariant pencil of 
rays and let AO=d. The elation S’ transforms AP into 
AP,and AP, into AK perpendicular tol at A. Let the angle 
PAO=}4, P,AO=>9,, P-AO=9,, ete. Along OP we have 

1 1 1 

OP = OP = OPIe 

But ae > = =. 7 =t. Substituting these 

values we have 
cot, — cote =dt. (C1) 

Thus we have the expression for a one-dimensional para- 
bolic transformation of the pencil of lines through a point 
on l, 

THEOREM 29. Anelation is completely determined by its funda- 
mental invariant figure and a single characteristic constant. The 
parabolic constant of the one-dimensional transformation along 
any given invariant line // of the fundamental figure is ¢ sin @, where 
tis the parabolic constant along the line perpendicular to the axis 
and @ is the angle which /’ makes with the axis. The parabolic con- 
stant of the one-dimensional transformation in any given invariant 
pencil of the fundamental figure is 7¢, where d is the distance along 
the axis from the vertex 0 of the elation to the vertex of the given 
pencil. 

146. Type V a Special Case of Type II and of Type III. 
We showed in the last article how type IV might be consid- 
ered as a special case of type II, whent=0Ointype II. We 
shall now show that type V is also a special case of type II. 
In type II when k, the characteristic cross-ratio of the trans- 
formation along AB and through A, is unity, these two 
one-dimensional transformations are both identical transfor- 
mations and hence every ray through A is an invariant ray; 
therefore for k = 7, the transformation T’(kt) of type II de- 
generates into S’ of type V. 
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A collineation of type V may also be regarded as a special 
case of type III when the one-dimensional parabolic trans- 
formations along Al and through A become identical. 

147. Normal Form of Type V.* The normal form of type 
V is found by making k = 7 in that of type II, or by making 
a=0 and h=0 in that of type III. Making k= 1 and the 
usual reductions in equations (15) we get 

Tey) a 10. Deny aL V0 

AID NIS I “TL. Al Al Ie} tl /8 

Cimcon OmaCr \ Cie ye 0) eis 

ec ec! 0 At+e | ec c} O Bt+e¢d | 

i , and y, = ————_—__,__ (20) 
ah Op wl 0) (3 Oil) 

Ae By Ve 87 AN BAP 3 

wk @) Gi dn OO @ 

cel KONE Chicks <6 

$5. Canonical Forms of Collineations. 

The normal forms of plane collineations given in $4 
are perfectly general. The axes of reference have no special 
relations to the invariant figure of the collineation, but the 
normal forms of the equations may often be greatly simplified 
by choosing the axes of reference in special positions with re- 
spect to the invariant figure. The equation of a collineation 
in a very simple form will be designated as a canonical form. 
Often a given collineation can be reduced to two or more very 
simple forms; in such a case we speak of two or more canon- 
ical forms of the same collineation. 

*The normal forms of the equations of the five types of plane collineations were 
first given by Prof. Gabriele Torrelli in the Rendiconti di Circolo Matematico di 
Palermo, Tome viii, pp. 41-54. They were found independently by the writer and 
published by him in the Kansas University Quarterly, vol. vill, pp. 45-66. As pre- 
sented here they differ in minor details from Torrelli’s forms and from my own pre- 
vious forms, 
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148. Canonical Forms of Type I. Let a collineation T of 
type I be given in the homogeneous normal form 

o/h co Ok | 12 ) 2 
A Binh AS Al PAMAY 98s Gn cB 
A Bo kA |> PYr=\ar B CO kB 
All Br Cc" kk! A” All Bl Cc" k/ B’ 

x y 2 0 

ALOR aCIC 
A’ BC! ik 
A!’ Bl Cc" k'C” 

If the invariant triangle be taken as the triangle of refer- 
ence these equations are greatly reduced. Let the coordi- 
nates of the vertices of the invariant triangle be (0,0, C), 
(A’, 0,0), (0,B”,0). Substituting these values in equations 
(12) we get 

ot, — AB’ Ca. py — it AUB Cy. 02, — Alb Cz. 

Setting p =p’ A’B’’C where p’ is a new proportionality fac- 
tor we have 

? px, = 

pz, = (12) 

pla = kx, 

( ply = ky, (21) 
Pa =z. 

Equations (21) constitute the homogeneous canonical form 
of the collineation T, the triangle of reference being the in- 

variant triangle. 
We can pass from homogeneous coordinates to Cartesian 

coordinates by dividing the first and second equations of (12) 
by the third, and then making the z’s and C’sall unity. Also 
we can get the canonical form of the collineation in Cartesian 
coordinates by making the same changes in equations (21). 
Thus we get 

( ; z ey: (22) 

in which the invariant triangle is made up of the coordinate 
axes and the line at infinity. The constant cross-ratios along 
the a- and y-axes are respectively k and k’. 

THEOREM 30. The homogeneous and Cartesian canonical forms 
of a collineation of type I are respectively 

Pm =k, ce 

(Fina and ea? 
PA =2, 
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149. Canonical Forms of Type II. The Cartesian normal 
form of a collineation of type II is 

a i w mH i @ 
ANB it eA PAR Baan 

A! B' 1 kA! A’ B! 1 kB! 

CoC OmtAl tae Cece OmtB- co! 

Le WN my Hh © UTES Q iF © » (15) 
AD Be aes Al Bier 1h 21 | 

AUS BUS Tawi AW Is} i Hip) 

CO C8 OD & ¢ Go | 

Let the invariant point (A, B) be taken for the origin and 
let the axes of x and y be respectively the lines AB and / of 
Bical we SeuuIno ALO hi 0 by — 0 ¢— (0) and ¢o— 1. 
equations (15) reduce to 

eed eet Sa MY ae aA j (23) 
1+ a a+ty 1+ Al x+ty 

This is a convenient form of type II when the invariant 
figure is in the finite part of the plane. If (A’,B’) be the 
point at infinity on the x-axis, then A’= — in (23). Making 
this reduction we get 

kx y 

1+ty’ Chi 1+ty~ 
‘a (24) 

Another and somewhat better canonical form is obtained 
when the point (A’, B’) is at infinity on the y-axis and (A, B) 
at infinity on the z-axis. In homogeneous form (24) may be 
written 

bi) — kan 0; —Y, 02,—2-1-b Y. (25) 

Changing « to y, y to z and z to x, this becomes 

eY,=ky, 02,=2, Ol —£- te (26) 

Passing back to Cartesian coordinates, this becomes 

Clo (21) 

(A, B) is now the point at the extremity of the w-axis and 
(A’, B’) at the extremity of the y-axis. 

150. Canonical Forms of Type III. The invariant figure 
of a collineation of type III is a line / and a point A on/. We 
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wish to find the reduced form of the equations of type III 
when the origin is taken at A and the w-axis along the line /. 
The normal form of type III is given in equations (17) Art. 139. 
If the invariant point is at the origin, then A=0 and B=0. 
If the invariant line coincides with the axis of x, then a= 1 
and (>=0; fora and @ are respectively cosine and sine of the 
angle which / makes with the axis of x. Since a’ and 3’ 
are the direction cosines of the normal to s at AB, they be- 
come 0 and 1 respectively for this position of the invariant 
figure, ‘Substitutme A — 0) (B— 0) a— 6 — 0.0 —0) Boa 
in (17) we get 

“+2 at y ae y 

Ti = 1+ta+ (at?+ht)y ’ Ui Faire ae ana (28) 

Equations (28) may also be put in the form 
v1 x 

SS 

ae (28a) 
1 1 x 2 
Baal Coane +ht). 

Equations (28) constitute the canonical form of type III 
when the invariant figure is in the finite part of the plane. 
A second canonical form is obtained by putting the inva- 

riant line at infinity and the invariant point A at the ex- 
tremity of the y-axis. To do this we make equations (28) 
homogeneous by introducing z as follows : 

pv,= “2+ 2at y, 
PY:=Y, 
p2,=2+tx+(at?+ht)y. 

Changing y into z, z into x, and « into y, these equations 
become, when z is made unity, 

v,=xt+ty+(at?+ht), y,=y+2at. (29) 

THEOREM 31. The canonical forms of a collineation of type ITI, 
when the invariant figure is in the finite or infinite part of the 
plane respectively, are 

EN fea aie eee trere ya, SE Oe 
Yl y y Y1 Y¥ 

and 
m=a+tyt+tat+ht, y=y+2at. 
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151. Canonical Forms of Type IV. The canonical forms 
of a collineation of type IV may be most easily obtained from 
those of type I or of type I]. The homogeneous normal form 
of type IV, when the invariant figure is in the finite part of 
the plane, is gotten by making k= 1, or k’=1, or k’=kin 
equations (21). Thus making k’ = 1, we get 

90) = kay 

@ =4, (30) 

If we make k’=7 in (22) we get the Cartesian canonical 
form of type IV where the axis of the collineation is the 
y-axis and the vertex is at infinity on the x-axis. Thus 

(are (31) 
If k’=k in (22), the collineation is of type IV with the ver- 

tex at the origin and the axis of the collineation at infinity. 
Thus : 

(saa (32) 

yi=ky. 

If we make t=0 in equations (23), the resulting collinea- 
tion is of type IV with the axis along the y-axis and the ver- 
tex on the w-axis at a distance A’ from the origin. We thus 
get 

=F eile (aus (33) 

152. Canonical Forms of Type V. The canonical forms of 
type V are readily obtained from those of type II, by making 
k=1; for when k=1 in the equations of type II the one- 
dimensional transformation along the line joining (A, B) and 
(A’, B’) is an identical transformation, and type II reduces to 

type V. Making k= 17 in (23) we get 

tat ty ? Uae ¥ (32) 

The vertex is now at the origin and the axis of the elation 
is the y-axis. Making k=1 in (27) we get 

t,=a+t, ¥,=Y. (35) 
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The axis of the elation is the line at infinity and the vertex 
is the point at infinity on the z-axis. 

Equations (34) and (35) constitute the two essentially differ- 
ent canonical forms of type V, when the vertex is respectively 
in the finite and infinite part of the plane. 

$6. Real Collineations in a Plane. 

So far in the present chapter the development of the theory 
of collineations has proceeded on the assumption that in the 
defining equations both coefficients and variables are complex 
numbers. Also in the geometric constructions the points, 
lines and conics employed were not limited to real elements. 
We shall now go on to the consideration of the special case of 
real collineations, 7. e., collineations that transform real points 
and lines into real points and lines. The defining equations 
of areal collineation are real in both variables and coeffi- 
cients; the conics used in the construction are always real 
conics. 

153. Sub-types of Type 1. If the defining equations (1) of 
a collineation are real, then the cubic equation, 

ae+ Bee+ya+o=0, (7) 

whose roots are the three «-coordinates of the vertices of the 
invariant triangle, has real coefficients. In the general case 
when the three roots are distinct, one root is always real and 
the other two may be either real or conjugate imaginary. 
We therefore distinguish two sub-types of type I; in case the 
invariant triangle is real in all of its parts the collineation is 
said to be hyperbolic; in case the invariant triangle has one 
real and two conjugate imaginary vertices, and hence one real 
and two conjugate imaginary sides, the collineation is said to 
be elliptic. 
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154. The Hyperbolic Case. The invariant triangle of a 
hyperbolic collineation is real in all its parts; hence the one- 
dimensional transformations along the invariant sides and 
through the invariant points are real and hyperbolic. The 
cross-ratios k and k’ along the lines AB and AC respectively 

Bee : 
are real numbers. The cross-ratio =~ through A is also real. 

155. The Elliptic Case. An elliptic collineation leaves 
invariant a triangle with one real vertex, A, and two conju- 
gate imaginary vertices, B and C, Fig. 23. The one-dimen- 

Fic. 23. 

sional transformation along BC is elliptic. So, also, is that 
through A. The character of the one-dimensional transfor- 
mations along the imaginary lines AB and AC cannot be in- 
ferred from anything developed in Chapter I. & and k’ 

cannot be two independent complex numbers, for = must be 

a complex number of the form e’*. From equations (10) it 
follows that if (A’, B’) and (A”, B”’) are conjugate imaginary 
points, then & and k’ differ only in the sign of 7 and hence 
must be conjugate imaginary numbers. 

THEOREM 32. Real collineations of type lina plane are either 
hyperbolic, with three real invariant points, or elliptic with one real 
and two conjugate imaginary invariant points. 
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156. Type I, the Parabolic Case. When a real hyper- 
bolic collineation of type I degenerates into one of type II by 
reason of two of its invariant points coinciding, the resulting 
invariant figure consists of two real points and two real lines. 
Likewise when a real elliptic collineation degenerates by rea- 
son of its two conjugate imaginary points coinciding, the 
resulting figure again consists of two real points and two real 
lines. It is clear that a real collineation of type II leaves in- 
variant a figure real in all of its parts. It is also clear that 
this real collineation of type II stands in the same relation to 
the hyperbolic and elliptic cases of type I as the real para- 
bolic transformation in one dimension stands to the hyper- 
bolic and elliptic transformations. The one-dimensional 
transformations along the invariant lines of the invariant 
figure of type II are a real parabolic and a real hyperbolic 
transformation, 7. e., t and k are always real numbers. 

157. Type III. The invariant figure of a real collineation 
of type III consists of one real point and one real line through 
it. The one-dimensional transformations along the invariant 
line and through the invariant point are both real parabolic 
transformations. The constants a, h and ¢ are all real num- 
bers. 

158. Types IV and V. A real perspective collineation of 
type IV leaves invariant a figure consisting of all points on a 
real line BC, and all lines through a real point A. Every in- 
variant line except BC has on it two real invariant points and 
hence the one-dimensional transformations along the invariant 
line through A are all real and hyperbolic. Thus the cross- 
ratio k is always a real number. 

The invariant figure of a real collineation of type V consists 
of all points on a real line / and all lines through a real point 
A onl. The one-dimensional transformations along the real 
invariant lines are all real parabolic transformations and ¢ is 
always a real number. 
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Exercises in Chapter 2. 

A. ANALYTIC THEORY. 

1. Obtain equations (3) by solving equations (1) for # and y. 

2. Show that the determinant of (3) is the square of the 
determinant of (1). 

3. Discuss the collineation (1) when A= 0. 

4, Show that the collineation (1) transforms a conic into a 
conic and a curve of the nth degree into a curve of the nth 
degree. 

5. Find the coordinates of the point which is transformed 
into the origin by (1); also the coordinates of the point into 
which the origin is transformed. 

6. Find the equation of the line into which the line at in- 
finity is transformed by (1). 

7. What values do the coefficients have in (1) when it rep- 
resents an identical transformation? 

8. Give a direct analytic proof that the cross-ratio of four 
collinear points or four concurrent lines is unaltered by the 
collineation (1). 

9. Prove the theorem of Menelaus quoted in Art. 127. 

10. In the normal forms of types I, II and III, show that T 
and its inverse 7 differ only in this, that k and k’ are 
changed into 1/k and 1/k’, k and t into 1/k and —t, and t 
into —t, respectively. 

11. Show that the determinants of the normal forms of 
7\ Jay il ARE aL 

types II, IV, III and V are respectively k |4’ B 1], k|A4’ B 1), 
Gt QO dd 7 

ih, ehaxel he 

12. If both terms of the equations (11) of the normal form 
of T are multiplied (or divided) by any factor M0 or ~, 
the determinant of T will be multiplied (or divided) by M°. 
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13. Show that the characteristic equations of the normal 
forms of types II and III are respectively 

p'— (2k) Det + (2k-+ 1) D'p—kD° = (9 — D}' (p— kD) =0, 
and Pa Paes lS (=i) eS. 

14. Verify the invariance of the points A, A’, A”, by sub- 
stituting their coordinates successively in the normal form of 
type I. 

15. Show directly from the normal form of type I that 
and k’ are the cross-ratios of the one-dimensional transforma- 

tions along AA’ and AA” respectively. 

16. Solve the problems analogous to 14 and 15 for types II, 
III, IV and V. 

17. Show that k and k’ in type I are the ratios of the roots 
of the characteristic equation of T. 

B. GEOMETRIC CONSTRUCTION. 

Using the first method of § 2 for constructing a collineation 
by means of two conics, K and K’, touching a line /: 

1. Show that the line / in Fig. 12 is transformed into the 
tangent to K’ from the point of contact of K and 1. 

2. What point corresponds to the point of contact of K 
and 1? 

3. Show that the tangent to K from the point of contact 
of K’ and lis transformed into 1. What point corresponds to 
the point of contact of K’ and 1? 

4. Discuss the collineation when both K and K’ are para- 
bolas. 

5. Show that if the conics K and K’ coincide, the collinea- 
tion T is the identical collineation. 

6. Show that interchanging K and K’ changes T into its 
inverse, 7. 

7. Show that a given collineation T can be constructed by 
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co? different pairs of conics K and K’. Onesuch pair of con- 
ics is associated with every line / in the plane. 

8. When the line J is the line at infinity in the plane, the 
two conics K and K’ are parabolas; determine their axes. 

9. Show that there are ~’ collineations of type I leaving 
the same triangle invariant. 

10. Show that there are ~” collineations of type II having 
the same fundamental invariant figure. 

11. Show by this geometric method that there are ~* col- 
lineations of the plane. 

12. What conditions must the conics satisfy in order that 
the transformation be a pseudo-transformation. 

13. Discuss the cases when K and K’ are one or both de- 
generate conics. 

Using the second method for constructing a collineation by 
means of two conics K and K, intersecting in S,: 

14. Show that there are ~* collineations in the plane. 

15. Show that every collineation leaving the triangle A BC 
invariant can be constructed by using the same point S, as a 
vertex. 

16. Discuss the method of construction when one or both 
of the conics K and K, are degenerate conics. 

17. When K and K, are similar and similarly placed conics, 
the line at infinity is invariant and parallel lines are trans- 
formed into parallel lines. 

18. When K and K, are both circles, show that angles are 
transformed into equal angles and all figures into similar 
figures, the ratio of areas being that of K to K,. 

19. When K and K, are circles of equal radii, show that the 

resulting collineation is a rotation of the plane about the one 
real invariant point through an angle equal to the angle be- 
tween the radii. 

—9 
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CONTINUOUS GROUPS OF COLLINEATIONS. 

Theory of Continuous Groups of Collineations. 
Resultant of Two Collineations; Gs. 

Analytic Conditions for a Sub-group of Gs. 

Groups of Type I Defined by Linear and Quadratic Relations. 
Groups of Other Types Defined by Linear Relations. 

Normal Form of Groups of Type I; k-Relations. 

Fundamental Groups; One-Parameter Groups and Path-Curves. 
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Groups of Types I, II, and III; Table of Groups. 

Groups of Real Collineations. 
Exercises. 

Un UR UR LR LR UP U2 SH SR Gr ae 6 62) Ge) Gal SD Galt G5 (9) fo 

159. The present chapter is devoted to the theory of con- 
tinuous groups of plane collineations and the determination 
of all essentially distinct varieties of such groups. We shall 
also investigate the chief properties of those groups and 
classify them according to their characteristic properties. In 
$1 there is developed the fundamental group concept and a 
general method of handling groups of collineations. In $2 
we find in three different ways the resultant of two collinea- 
tions and establish the existence of the general projective group 
G,. The analytic conditions which are necessary and suffi- 
cient to define a sub-group of G, are developed in $3. In $4 
we determine all sub-groups of G, for which the defining re- 
lations are limited to linear and quadratic relations among the 
elements of the matrix M of G,. In $5 we determine all va- 

rieties of sub-groups of G, that are defined by these same 
linear and quadratic relations and the additional relations 
among the elements of M that cause a collineation to degen- 
erate into one of the lower types. The normal form of T is 
used in $6 to further develop the theory of these groups and 
to uncover the fundamentally important k-relations. In $7 
we investigate by means of the normal form the fundamental 

(130) 
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groups of each of the five types of collineation and their one- 
parameter groups and path-curves; and in §8 the whole 
theory of groups of perspective collineations is developed by 
the same instrument. The list of all varieties of continuous 
sub-groups of G, is completed in §9 and a table of these groups 
is given. Groups of real collineations are treated in $10. 

$1. Theory of Continuous Groups of Col- 

lineations. 

160. Systems of Collineations. In the last chapter we 
studied in detail the properties of each of the five types of 
plane collineations. We shall now consider the properties of 
certain infinite systems of these collineations. 

Let a collineation T of type I be given in the canonical 
form, Art. 148, 

T : cee (1) 

yi=k'y. 

Let k and k’ each assume in turn all possible values; we 
get thereby a system of ~° different collineations. . This sys- 
tem of collineations has the important property that each col- 
lineation of the system leaves invariant the triangle formed 
by the w- and y-axes and the line at infinity. The two quan- 
tities k and k’ are called the parameters of the system, which 
is therefore called a two-parameter system. In general a 
system, S,, of ”collineations (7 <8), which is obtained by 
varying 7 independent parameters, is called an r-parameter 
system. The r-parameter system is said to be a continuous 
system when it contains the collineations corresponding to 
every possible complex value of the v independent parameters. 

161. Component and Resultant Collineations. Let T and 
T, be any two plane collineations. 7 transforms the points 
P, P’, P”, ete. of the plane into new positions P,, P,’, P,’’, 
ete., and the lines /, /’, 1’’, etc. of the plane into new posi- 
Mons LL ete, --L,.transtormsythe points 2;,, 25 °P,”", 
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ete., and the lines t,;U,’; l/’, ete:, into P); Pi; Py’ petc:, and 
l,, l,’, l./’, respectively. The two collineations T and T, act- 
ing in succession are equivalent to a single transformation U, 
which transforms the points P, P’, P’’, directly to P., P.’, P.”, 
etc., and the lines 1, l’, l’’, etc., directly to l,, l,’, 1,/’, ete. 
Since U transforms points into points and lines into lines, it 
is a collineation* which we may designate by T,. We say 
that T, is the resultant of T and T,, and that T and T, are 
components of T,. This relation may be expressed in the 
form of an equation as follows: 

Teale 

where the two components 7 and T, operate in the order 

named. 
If the two component collineations T and T, operate in the 

reverse order, first 7, and then 7, their resultant T,’ is not 
always the same as T,. Thus T,T=T-,' and in general 

TT,#~T,T. The two resultants T, and T,’ are called conju- 

gate collineations. When T, and T.’ are the same, that is 

when 7'T,= T,7, the two collineations T and T, are said to 

be commutative. 

162. Groups of Collineations. A set or system of collinea- 
tions is called a group, as in Chap. I, Art. 26, when it has the 
following properties : 

First group property. The resultant of any two collinea- 
tions of the system, taken in either order, is also in the system. 

Second group property. The inverse of every collineation 
in the system is also in the system. 

Unless a system of collineations possess both group proper- 
ties, it is not entitled to be called a group. A system may 
be so selected that it has the first group property, but not the 
second. As an example of this we may select the system of 
one-dimensional transformations given by the equation 
v,=kx, where k has all complex values consistent with the 
condition |k|= <1. This system has the first group prop- 

* For a general analytic proof see § 2 of the present chapter. 
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erty; for k,=kk, and when |k|<1 and k,|< 1, then also is 
k, <1and the first group property is established. The in- 
verse of #,—ke is c=—k“a,; when |k| <1, then is |k~| >. 

No transformation in the selected system has its inverse also in 
the system ; hence the system is not a group according to the 
definition. 

163. Parameters of a Group. When a system of collinea- 
tions having 7 parameters is a group, the parameters of the 
system, as defined in Art. 160, become the parameters of the 
group, which is called an r-parameter group. For example 
the system of collineations given by the canonical form of 
type III, Art. 150, 

%,=x2-+2at (2) 

¥,=y+ta+at?+ht, 
depends upon three parameters, a, h, and t. It will be proved 
later that this system forms a group. Giving to a, h, and 
t, all possible values we have ° collineations which form a 
three-parameter continuous group; continuous, because of 
the continuous variation of its parameters. Two consecutive 
collineations in a continuous group differ only by infinitesimal 
values of one or more of its parameters. 

164. Classification of Groups. Continuous groups of col- 
lineations may be classified in several ways ; according to the 
number of their parameters, according to the figures which 
they leave invariant, or according to the types of collineations 
composing them. The best plan of classification is one that 
arranges them according to the types of collineations con- 
tained in them. We shall therefore speak of groups of type 
I, type III, ete.; the group mentioned in the previous article 
is of type III, because the collineations which go to form the 
group are mostly of type III. 

165. Group Notation. In chapter II we made use of the 
notation T, T’, T’, S, S’, as suitable designations for the 
five types of collineations. Groups of the five types will be 
designated respectively by G, G’, G’, H, H’. The number 
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of parameters in the group will be expressed by a subscript ; 
thus a two-parameter group of type I will be written G,. It 
is oftentimes desirable to express in the symbol the figure 
left invariant by all the collineations of the group. This is 
done by enclosing in parenthesis the symbol for the invariant 
figure. Thus the symbol G,’’(Al) designates the three- 
parameter group of type III, leaving invariant the lineal 
element Al. This is the group whose equations are given in 
Art. 163. 

166. Groups of the Same Variety. Two groups composed 
of the same type of collineations and having the same number 
and kind of parameters are said to be of the same variety 
when their invariant figures differ only in position, shape or 
size. For example there are ~’ lines in the plane and each 
line is invariant under the ~’ collineations of a six-parameter 
group. These ’ groups are all of the same variety. It is 
unnecessary to study more than one group of each variety. 
We shall enumerate and investigate forty-four varieties of 
groups of plane collineations. Groups of the same variety 
are also said to be equivalent, according to the definition of 

groups given in Art. 35. Thus if G operated on by T gives 
G’ by the formula G’ = T-'GT, then G and G’ are groups of 
the same variety. 

167. Determination of the Resultant. A necessary condi- 
tion that a given system of collineations forms a group is that 
the system should possess the first group property, 7. e., the 
resultant of any two collineations of the system is one of the 
same system. The process of finding the resultant of two 
collineations is one of the most important operations we shall 
make use of in the present chapter. We must therefore ex- 
amine the process in detail. 

Let a collineation T be given in homogeneous coordinates 
by the equations, 

ae »Y,2), 

es Py »Y,2), (3) 

Y,z); 
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where the three functions f, ¢ and ¥ are linear and homoge- 
neous inw, yand z. TJ transforms the point (a, y,z) into the 
point (“,, y;,2,). Let T, be a second collineation of the same 
system which transforms the point (w,, y,,2,) into the point 

(2, Yz,2.). The equations of T, are 

TE 5 pee Ba ay a a (3’) 
P)22 = Wn (X41, Y1,21); 

where the functions f,, ~, and v, are of precisely the same 

form as for T'; they differ only in the values of the coefficients. 
The resultant, T,, is found by eliminating ~,, y,, z, from the 
two sets of equations. This gives us a set of equations ex- 
pressing %,, Y,, 2, directly in terms of a, y, z. T, may be 

written 
P2%2 = fe( x,y,z), 

ie : eat ee ie (3”’) 
Po z =wWe (x,y,z). 

If the functions f,, ¢., and ¥, are of the same form as 
the corresponding functions for T and T, and differ only in 
the values of the coefficients, then 7, belongs to the same 
system as T and T, and the system possesses the first group 
property. 

168. An Illustrative Example. As a simple illustration let 
us consider the system of collineations of type II given by 
equations (26), Art. 149. Let T be given by the equations 

Pmu=x+tz, 

DT by ky, (4) 
Paz=2Z. 

Let T, be given by the equations 

awv=u+hz, 

ths > Ay=hy, (4’) 
Pl 22 = 21. 

Eliminating (2,, y;, z,) from T and T, we get T, as follows: 

poawe=ax+(t+h)z, 

2: pye=khy, (5) 
f2%2=2, 

which is of the same form as J and T,,. 
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But T, may also be written in the form 

fox2e = x+ fez, 

ie c p2y2=key, 
(4”) 

p2%2 =2. 

Comparing coefficients of corresponding terms in the two 
forms of T, we get 

t=t+t, 
k= kk, ©) 

Since T, is of the same form as T and T,, T, belongs to the 

same system as T and T,; hence the given system has the 
first group property. 

The inverse of T is given by the equations 
Plea —t 21, 

TH! y=, (7) 
ei eie 

Hence the inverse of T is a!s9 in the system and the system 
has the second group property. The system is therefore a 
group. It has two parameters, k and ¢, and is thus a two- 
parameter group. Every collineation in the group leaves in- 
variant the figure (A, A’,/); the appropriate symbol of the 
group is therefore G’,(AA’l). 

The two equations (6) express the constants of T, in terms 
of those of T and T,. They are called the equations of con- 
dition or conditional equations of the group. The number of 
conditional equations is always just sufficient to determine the 
constants in 7’. 

169. Subgroups of a Given Group. Let G,, r<9, be an 
r-parameter group of collineations, defined by a set of equa- 
tions involving 7 independent parameters. It frequently hap- 
pens when one or more of these parameters is kept constant 
and the others are made to vary, that the system of collinea- 
tions thus selected from G, has both group properties and is 
therefore a group within a group, or as it is called a subgroup 
of the larger group. Subgroups of a given group may often 
be obtained by setting up a constant relation between two or 
more of the parameters of an r-parameter group and thus 
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diminishing the number of independent parameters. Many 

examples of subgroups obtained by both of the above men- 

tioned methods will be given in the following sections of this 

chapter. 

170. Invariant Figures and their Groups. We wish now 
to prove a theorem of great importance in the determination 
of continuous groups of collineations. Let 7 and T, be two 
collineations each of which leaves invariant a certain figure 
F’; since T leaves F invariant and T, also leaves F’ invariant, 
their resultant 7, must also leave F' invariant. Thus the 
entire system of collineations leaving a certain figure F’ inva- 
riant has the first group property. Since T leaves F invariant, 
it transforms points of F' into the same or other points of F’; 
hence T~ the inverse of T also transforms the points of F’ 
into the points of F, 7. e., it leaves F invariant. Thus we see 
that the system also has the second group property. Such a 
system is therefore a group. Thus we see that the invariance 
of a plane figure under a certain system of collineations is a 
sufficient condition that they form a group. It does not fol- 
low that this is a necessary condition. 

THEOREM 1. The system composed of all plane collineations 
which leave a certain figure invariant forms a group. 

$2. Resultant of Two Collineations. 

The determination of the resultant of two collineations in 
the most general form is our immediate problem. When the 
two component collineations T and T, are taken in the most 
general form and no restrictions laid upon the values of their 
parameters, their resultant T, in either order is assumed to 
be likewise in the most general form. Any other assumption 
concerning the form of T, is equivalent to some restriction on 
the values of the parameters of the components. If no re- 
strictions are laid upon the values of the parameters, it is 
clear that the collineation is of type I. The results of $$ 
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2, 3, and 4 hold only for collineations of type I unless other- 
wise expressly stated. 

171. Resultant of Two Collineations in Cartesian Form. 
Let T and T, be given by the Cartesian equations 

F a¢r+by+eai _ aatbey tee | 

T EY Fh a par ? 1 asa+bsy+tes ? (8) 

and 
a an+tAy+tn _ am + fay + 72 

1 Ty ay = = 2 5 
fs an+ fsyitys ” ie 4301+ fsyitys © 

The first of these transforms the point (a, y) into (%,, y;) ; 

the second transforms (,, y,) into (x, y.). The resultant of 
T and T, is a transformation of same kind that transforms © 
(w, y) directly into (x., y,). The equations of this resultant 
are obtained by eliminating «, and y, from the equations of T 
and T, They are as follows: 

— (a4 +42 +asi) &+ (br41+ bef +b3n) y+ (aiai+ez/Ai+ s/n) 

oe (a1 43+ 4233+ as7/2) ©+ (6143+ b2/33+ bss) y + (c1 43+ €2/33-+ e373) ? 

i: (9) 
ips (a1 42+ 2 /72+ 3/2) «+ (bi 42+ be 32+ b372) y+ (c142+ €2/32 + Cafe) 

(b= (a1 43 + a9/73+ as7s) © + (b1 43+ b2/%3+ bs7’s) y + (C1934 ¢2/33+ e373) * 

The equations are again of the same form as (8) and the 
transformation T, is therefore a collineation. 

THEOREM 2. The resultant of two collineations is again a col- 
lineation. 

172. Determinant of the Resultant. The determinant of 
TAS 

lar4+a2n+as71 brat+befitbs aateAtesn | A; By, Cy 
Aj= | 0142+ 02 %+as7%2 61 424+ b2/32+bs7/2 cdo + co 92+ €372| == | Ar Bo Co ( 10) 

| 143+ a@2/33+as7/s bia3+bei3+bs/s  ¢1 43+ c233+ cs/s | As B3 C3 

This is equal to the product of the determinants of JT and T,, 
VAvA 3 

a b a aq fi fa 

A = |a2 be cl and A,= |# f& 1. 
as bs cs| ag fis Fs 

huss Ay — AAS 

It is evident that the determinant of T_, the resultant of 
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T, T,, T.,.. 7, in any order, is equal to the product of the 

determinants of the component collineations. Thus 
DENARAU OA... 

THEOREM 3. The determinant of the resultant of two or more 
collineations is equal to the product of the determinants of the com- 
ponent collineations. 

173. Definition and Notation of a Matrix. We shall now 

introduce the notion of a matrix and develop a few of its 

useful properties. A matrix may be defined as a system of 

mn quantities arranged in a rectangular array of m rows 

and n columns. We shall be concerned only with the case 
where m = n in which case we have a square matrix of order 
n. It is customary to distinguish a square matrix from a 
determinant by placing double bars on each side of the array. 
Thus : 

a hh oi} 
a2 be ce 

as bs ¢3 
M= 

is a square matrix of order 3. The determinant of the 
matrix is a thing distinct from the matrix itself. 
A matrix is said to be of rank if it contains at least one 

r-rowed determinant which does not vanish, while all deter- 
minants of an order higher than 7 which the matrix may con- 
tain are zero. If the determinant of the matrix does not 
vanish, the matrix is of rank n. 

The coefficients in the equations of a collineation form a 
matrix which may be taken as the analytic representation of 
the collineation. We may therefore speak of the matrix M 
of a collineation T and deal with the matrix instead of the 
collineation itself. 

174. Multiplication of two Matrices. The product of two 
square matrices is defined by the law of composition of two 
linear transformations as shown in Art. 172. This law of 
composition expressed in general terms gives the following 
definition: The product MM, of two matrices of the nth 
order is a matrix of the nth order in which the element that 
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lies in the 7th row and jth column is obtained by multiplying 
each element of the ith row of M by the corresponding ele- 
ment of 7th column of M, and adding the results. This law 
of composition is called Cayley’s rule. 

It is evident from the definition that the product MM, is 
not in general equal to the product M,M. Thus the product 
of two matrices is not definite unless the order of multiplica- 
tion be specified ; or we may say that the multiplication of 
matrices is not in general commutative, e. g., MM,+ M,M. 
Two matrices are said to be conjugate when the rows and 

columns of one are in the same order the columns and rows 
of the other. Thus 

ja bb a a a2 as|| 

M=\@ b& ec] and M’/=j\h & bs 
las bs cs Ci C2 C3 

are conjugate matrices. 

175. Determinant Form of the Resultant. Let T and T, 
be two collineations in homogeneous form as follows: 

Pa=uaxthy+az, Aw=Am+Ayt+naza , 
ips Pyi=a2u+ boy +c2z, ER: P1Yy2 = a+ Soyitjyen , Cay 

Pa =azsx+bsy +esz, Pi 22 = 4391+ 3yY1 +7321 - 

The collineation T, is obtained by eliminating «,, y,,z, from 

the above equations. This may be done as follows: Find the 
inverse of T by solving the three equations of T for x, y, z. 
Thus we get 

A 
— © = A+ Aoyit Asn , 
p 

A 

T-1 >) —y=Bin+ Boyit Bsa , (1) 

A 

— 2=C1%4+ Coyit+ Crz , 

where A is the determinant of T and A, B, ete., have the 
same meanings as in equations (3), Chapter II. 
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The three equations of T~‘ and the first one of T, form a 
system of four simultaneous linear equations ; hence 

A 
—-—2x Ai Az As 

p 

A 
—_ - Bi Bs, WB: sat Rca rhodes bea (13) 

A 
SS 4 CQ Co Cs 

P 

— Pir © fi nh 

This equation expresses the relation between «, y, z and «,. 
Solving this equation for x, we get 

lz y z O | 
ae Be Co, ar 

PP1 Ae =| 4, BO Als 
A3 Bs Cs i} 

In like manner we get similar results for y, and z,; thus 

ocean 27h enacane (0 ce DE ra oO 

|Ar Bi Ci a Ane Bima Gy is 

P(x A Yo = | Ao Bo Co j32|? PP1 A me = Az Bo C2 j33|° ( 14) 

|As Bs Cs fe As Bs Cs 7s| 

When the determinants are expanded, A divides out of both 
sides of each equation. 

176. Decomposition of the Normal Form into Factors. As 
an illustration of the usefulness of the determinant form of 
the resultant, we shall make use of it to deduce a theorem of 

fundamental importance in the theory of collineations. Equa- 
tions (14) show a striking resemblance to the normal form of 
type I, Art. 180, and, though the A’s, B’s, ete., in the two 
forms have different meanings, they suggest the decomposi- 
tion of the normal form into factors. Since 7, expressed in 
the form of (14) breaks up into factors T and T, expressed by 
(11), so T expressed in the normal form of type I breaks up 
into factors T = UV, where the matrices of U~ and V areas 
follows : 

A A! Al A kA! kA” 
U+4=\\— B Bll andV=|l\B eB KBrll. 

GC! Cr C kc KC! 
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‘ 100 A Al Al 
But V factors into V=llo « o|| X ||B B Br l_=T'S. 

00k Cue 

Since U-'=S, we have U=S™ Hence 

Serre Ss 

We see that the collineation S transforms the triangle of 
reference into the invariant triangle of 7; thus the point 
(0, 0,1) goes over into (A”, B”, C’’), the point (0, 1,0) into 
(A‘B’, C’),-and(7,0;0) into (A,B,C). Hence Ss trans- 
forms the invariant triangle of T into the triangle of refer- 
ence. The collineation of 7 is consequently decomposed into 
three operations acting in the following order: S~ trans- 
forms the invariant triangle of T into the triangle of reference, 
T’ leaves the triangle of reference invariant, but transforms 
every other point in the plane, S transforms the triangle of 
reference back into the invariant triangle of T. 

T’ is a collineation in its canonical form, Art. 148, and T is 
the result of operating on JT’ by S. T is thus the so-called 
transform of T’ by S; T’ and T are equivalent collineations. 

In like manner the normal forms of each of the other types 
of collineations may be broken up into the product S‘T’S, 
where S is a collineation depending on the invariant elements 
of T, and T’ is the canonical form of its type. 

THEOREM 4. Every collineation T in its normal form may be 
factored into S~‘7’S , where 7’ is the canonical form of its type. 

177. Resultant of T and its Inverse. Another interesting 
application of the determinant form of the resultant is its use 
in finding the resultant of a collineation T and its inverse 77’. 
Let T be written in the form : 

Pr=anx+biy+ez, 

.: Pyi = aou-+ boy + c2z, (11) 

Pa =azx+bsy + 82, 
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and let its inverse 7 be written, 
A 
— a2= Ain, + Ay + Ast, 
p 

A 
— y2=Bix,+ Boyi+ Bazi, 
FE ? 

A 
— 42> Cx, + Cry, + C32, . 
P 

(12) 

Forming the resultant by the method of Art. 175, we have, 
xu 

Aj . A2 — Ti AP%= 74, 

|As 

F |4. By G| 

Since | 4: Bo GC 
A; Bs Cs 

Ye 0 ne 0 

By Gi Ai 2, || At Bi (Gr By) 
Bo Co As|? = C= Az Bo C2 Be}? 

Bs C3 As As Bs Cs Bs| 

| 2 Yh Vz 0 | 

pp, — ||\4n ten (En Gu) 

+ me = | Ao Bo Co Co|* ( 14) 

As Bs Cs Cs | 

= A’, the equations of T, reduce to x,=4,, 

Yo = Y, %. = 2%; thus T, is the identical collineation. 

d. THEOREM The resultant of any collineation 7 and its inverse 
is the identical collineation. 

178. Resultant in the Normal Form. Let Tand T, be two 
collineations in homogeneous normal forms, 

A: 

(1X2 

Pv, = 

x Yy z 0 )2 8 2 z 
ABs 1G) A Pee PAl BiG. B 

AB © KA) PYr>= |r Bee xB |» 
Al Bl Cc" kA! | A” Bl Cc" kB! | 

% yY 2 0 

AEB: TC: C | 

Pia WAUea RCT CK: (15) 
Al Bl Cc" k/C” 

a yl Za 0 | Yl Az 0 | 

A Bm GM Ai | 1 _ |40 Bh Gi By | 
Ay! BY Gi! knAy! |? 0242) ay By Gi! ln By |? 
Ai” By!’ Cy! ky! Ay!’ | | Aa” By’ Cy” ky! By!’ | 

v1 Yi aA 0 | 

os Aj By Cy Ci / 

01%. = Al 7280 Gl TeyGNI||° (15 ) 

| Ai!” Ba! Ci!’ ky’ Cy") 
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Their resultant 7T,, is also of the same form : 

| © Yy z 0 an WY] z 0 

; _ |Ae Bo Ce Az |, __|A2 Bo Co Bo |. 

T. 0 (HD Ve = | Ad B! Cos keAy |? P2 Ys — As! Bo! Co! keBo! |? 
| Ag! Bs" Co! Kee! Ag!” | Ad!’ B,! C,!! kp! Bo! 

la y z 0 | 

As By C2 C2 

A,! B,! Cl ke C,! 

Ao!’ Bo! Co! Keo! Co! 

wes (15”’) 

Eliminating ,, y,, and z, from the equations of T and T,, we 
get T, as follows: 

Az Ay Az 0 | Au Ay Az 0 

y = A, By Cy Aj | ex A, B, Ci B, 

PP1 2 ad Aj! By Gil ky, Aj! ’ PP1 Y2= By Cy! k, By 

A," B,!’ (On kA," 

Au Ay Az 0 

A,!! By! Cy!’ ky'B," 

Sl eBincr Se 
PP1%2 ar” Bae By iG) WeiGil (16) 

| Ay” By" Cc," ky'C," 

~ 

\ 

where Ax is the determinant value of pw,, ete. 
The resultant may be expressed in the form of determinants 

of the seventh order, as follows : 

Ee wf Brg 0 0 0 

Ale Ba, A B C 

Al BUG) KAY KB kG! 
0 Ve — Al B’ (Od ki A” k/B’ k/iCv te 

O @ © A, B, CQ A; 
O Oh @ A; By Gy kyAy! 
0 0 0 Ai’ By! Gy” kA," 

CY) Nz 0 0 0 0 

Als Bua, A B Cc 0 

A! B! OC KA! kB kC’ 0 
(0, Yo = All B!’ (Gi? kiA" k/B"” k’'C" 0 

O MD @ Ay ih CG By 
0 ® @ i B/ Cy kB 
0 0 0 / By!’ Ci!’ ky By" 

ey ial ee, 0 0 0 0 

ZN de Gh LE 0 
A! B! @’ kA! kB’ kC’ 0 ‘00; Zp =| A” BY Cl WA" WB! kC! @ |. (17) 

Aj! By Cy’ ky, Cy’ 

y/ By!’ C,!" ky Cy" 
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It will be observed that these determinants differ only in 
the last column. 

179. Equations of Condition. Equating coefficients of a, 
y, and z, in the two forms of T., viz., equations (15’’) and 
(17), we get the following nine equations : 

B g A B G 0 

1s (Oh Ab Bie Ciee cA Bt ice! 0 

| BY GC! eet = BUEN CU CEAE TUBES GU Ca I 

Bo! Cy! Ito! Aa!’ 0 0 A, B, C, A, 

0 0 An Bike Gi! VerAGl 
0 0 A By! Cy! ky! Ay! 

4 Cones Bee aC 0 
ii eae kee Wore Al Cl kA kB kC 0 
A,! C. InAs! == | A” GUAM Ti BM kiG! 0 Il 

Ao!’ Coll Kol Ao! 10 0 A, B, C, AG le 

0 0 A, By Cy! kA 

0 0 A By Cy" iy Ay! 

A B a B C 0 

Ab B, Ab AUB cA kBY VicC! 0 

| Ao! Bi ican! ea AY Bi kKEAU KBE iu @ | Ill 

Aol! Boll Keo! Aa!’ 0 0 A) B, Cy A, | 

OPO AL SBE NCH ierAy! 
On Oe AG! BUG) ViePAnt! 

Be CoP ABU RG. Aso. 1) 

| 7 - + i CW It Al af BU A Ol 0 

BOC ar ere ae ne few ees: 7 2 2 ie ON OAT Bia RCT Ski By 
10 OF FAG Bi Gi ky/By! | 

|A C A B (63 0 

|A’ C’ kA’ kB’ kC’ 0 
me as nee 2 AV (Off? kl A” k/B” kc” 0 V 

ee Ce le ORO neAG BN C.- SB. |* 
: = = Pia 0 0 A,’ By Gi! ky, By 

lo 0 Ai’ Bi" Ci! ky By" 

TAR BY 7A! B (G; 0 

AIBA SicB? kC’ 0 
A a 4s 

ve — at | A” BURA" BBY kev 0 VI 

‘Aa! Bo! Keo! Bol! | emer li ()) 0 A, B, Ci B, % 

2 3 See | @ © AW TEV Gi Valext 
0 OARS EBV CHO Tet B! 
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Boyes mA B C 0 

B C C BEG! kA’ kB! Ok 0 
So 2 1 1 Tel All Jel BY eu By Gi kecy |= |B" CY WAY BY KC om VII 

O  @ An CIR Cy Cy 

0 O An! By (Gil kexGi! 
OM 0. AW BY GE hel Gur 

[RAs Cs AL B (6; 0 

oh C C A! @ KA! kB’ k@’ 0 
2 2 | A” CURA" kB! kicv 0 

~ ee) Agi Ge! koCo l\=16 0 AM B, G ( |\0 VIII 

0 0 Aj! By! Cy k, Cy! 

0 0 UI SULA OFLA HUA OFLA 

(Ale AMES per 0 
3 AI B! TAL cB Vike! 0 

‘1 ie “ k a the A" BU RA" kB" kev 0 IX 

Ao! BR. i'l ~ We 0 A; B, C C 

OF 0 A’ By! Cy! kd; 
oO Av! Bl Gi kG 

These nine equations are not independent; dividing each of 
these equations through by any one of them, we obtain eight 
independent equations which enable us to express the eight 
parameters, A,, B,, k,, etc., in terms of A, B,k, A,, k,, ete. 

1793. Determinant of the Resultant. It was shown in Art. 
172, that, if 7 and T, are two collineations whose determi- 
nants are respectively A and A,, the determinant A, of T,, 
the resultant of 7 and T,, is equal to the product of A and 
A,; 4:s= AA. Making use of the value of the determinant 
of Tin Art. 132 we have the equation 

An, Bs Cy |3 AY BV 'C; |'5:" "AG By Cy i 

ke. ig,!| Ao! Bo! CG! | = kk’ k, lee Al Bl Gt} ANE men Callie x 
ACU Ba OnE A” BY Cl\ | Ay BY Gil 

180. The Group G,. We have shown in three different 
ways by the eliminations in Arts. 171, 175 and 178 that the 
resultant of two collineations is again a collineation. The 
inverse of a collineation is also a collineation as was shown 
in Art. 77, and again by the form of 7‘ in equations (12). 
Since the system of all the * collineations of the plane has 
both group properties, it is proved that they form a group Gy. 
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This is called the general collineation group or general pro- 
jective group of the plane. 

THEOREM 6. The system of o* collineations of the pli ne form 
a group Gs. : 

$ Analytic Conditions for a Subgroup of G,. 

181. We shall develop in this section some fundamental 
theorems in the theory of groups of collineations and shall es- 
tablish the necessary and sufficient conditions for the exist- 
ence of a subgroup of G,. 
We shall use throughout this and the next two sections the 

homogeneous form of a collineation T and shall take the pro- 
portionality factor p equal to unity. Thus 

m=acrt+tbyt+ez, 

Ti W=aQr+by+toz, Giles) 
4 =a;u+b3y+c32. 

This form is just as general as that used in Art. 175, and for 
our purpose far more convenient. In this form three definite 
numbers «, y, z, are transformed by T into three other definite 
numbers «,, y,,2,. But if the three equations (11’) be each 
multiplied by p40, we see that T transforms px, py, pz into 
0X1, 0Y:, 92,3 1. €, the ratios «:y:z are transformed into 
(DASA Paeras 

There are two homogeneous forms of linear transforma- 
tion each of which is equivalent to the same Cartesian form, 
viz.: T as above and 7; thus 

nial —%, =ae+by+e2, 

ee = Y, = dou + boy + oz, (7) 
— 2, =a; + bay +¢32. 

But the * transformations 7’ do not form a group. The re- 
sultant of two of them is a transformation of the kind T. 
We shall use only the first kind to represent a collineation and 
care must be taken in any equations that involve the squaring 
of the equation T; for such an operation merely introduces 
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the transformations of the second kind. In particular we 

note that the determinant of T is the negative of the deter- 
minant of 7; thus T may be written 

Whence A = — A, where . is the determinant of 7. 

182. Evistence of Subgroups of G,. Our first question is 
to ask if the general projective group G, contains continuous 
subgroups. 

Let the matrix of a collineation 7 be 

a) b, Cc) || 

M=\ea b eo | : 

a; bs ¢3| | 

let ‘the determinant of the matrix be not zero; and let the 

characteristic equation of the matrix have three distinct roots, 
so that the collineation is of the most general type. If all the 
elements of the matrix vary independently we have the eight- 
parameter group G, of all collineations in the plane. In order 
to select out from this group a system of collineations with a 
smaller number of parameters we must reduce the number of 
independent parameters in the group G,, 7. e., we must impose 
upon the elements of Mone or more relations. This necessary 
condition is also sufficient ; for if we impose 7 relations upon 

the elements of M, we reduce by 7 the number of independ- 

ent parameters. If this system of collineations is to have the 
first group property, these relations on the elements of M 
must be of such a form that if they are imposed upon the ele- 
ments of the matrices of J and T,, they will also be satisfied 

by the elements of the matrix of T,, where T,=TT,. It 

thus appears that a necessary condition for the existence of a. 
subgroup of G, is the existence of a set of one or more rela- 
tions among the elements of M having the property that they 
are satisfied simultaneously by the elements of the matrices 
Ol Ean daelins 
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The existence of subgroups of G, is evident geometrically. 
It was shown in Theorem 1 of this chapter that the invariance 
of a geometric figure under all the transformations of a cer- 
tain system is a sufficient condition that they form a group. 
This may be expressed analytically by saying that the inva- 
riance under T of one or more functions of the variables is a 
sufficient condition for a subgroup of G,. If a certain func- 

tion of the variables remains invariant under a linear trans- 
formation T, then the corresponding parameters of the 
original and of the transformed functions must be equal. 
This implies that one or more relations exist among the ele- 
ments of the matrix M, and it also gives us a hint as to the 
form of such relations. Thus it appears that the existence of 
a proper set of relations among the elements of M is a suffi- 
cient condition for a subgroup of G,. 

183. The Substitutions U and V. We must first ex- 
amine the form assumed by the substitution for the elements 
of M, in terms of those of Mand M,. We note first the form 

assumed by the substitution for the elements of the first row 
of M,. From the two forms of M,, equation (10), we have 

the substitution, 
A, =a, 4, + 42/7; +43" , 

U, : Si =biatbofitbsn , (18) 
Ci = C14, + 62/3; +3") ; 

which is in the form of a linear transformation, the variables 

being the elements of the first row of M,, and the matrix of 
the transformation being the conjugate of M@. We also note 
that the substitutions for the second and third rows of M, 
give us the same linear transformation so far as the matrix 
is concerned, the variables being the elements of the second 
and third rows of M, respectively. The elements of the three 
rows of M, form therefore three sets of cogredient variables. 
The three substitutions may be expressed by one formula, 
thus : 

A, =4,4;4+ a2/3,+ 437i ’ 

OF 5 B; = 61%; + b2/5;+ b37i , (i=1,2,3) (18’) 
Ci = 14,4 Co fi tesr: ; 
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In like manner we see that the substitutions for the ele- 
ments in the columns of M. are in. the form of linear trans- 
formations in the elements of the corresponding columns of 
M, the matrix of the transformation being M,. The trans- 

formation on the first column is written thus : 

A, =a,4,+ /1d2+714s , 

V, 5 Ay = 420, + 202+ 724s , (19) 

As = 420) + 3302 +73As 5 

and the others similarly. Hence the following theorem : 

THEOREM 7. The substitutions for the elements of M2 in terms 
of those of Mand M, are, in one of two ways, in the form of the 

same linear transformation in three sets of three variables each. 

The three sets of cogredient variables are the elements of the three 
rows of M, (or columns of M) while the matrix of the transforma- 

tion is the conjugate of M (or M, itself). 

184. The Set of Relations R. Our problem is now to de- 
termine the properties of a set of relations on the elements of 
M such that their existence is both a necessary and a sufficient 
condition for a subgroup of G,. Let us assume the existence 
of a system of collineations within G, having the first group 
property and hence a set of relations that are all satisfied by 
the elements of M, M,, and M,. Let the set R be y in num- 
ber and let them be represented by F’,(@,,0,, .- 34, . -)=Crs 
(k=1,2,..7), where l,, l. .. l,are constants or parameters 
of the functions F’,. It is conceivable that a given function 
F of the set may contain all, a part, or none of the parame- 
ters of the set; also that one or more of the F’s may contain 
all, a part, or none of the elements of M. Let us substitute 

for 4,, B,, etc., in these relations on M, their values from equa- 

tion (10) in terms of the elements of Mand M,. Consider 
the new relations thus formed as functions of «,, 3,, etc., 

the elements of M,. Since these new relations on «,, /3,, ete., 

are by hypothesis of exactly the same form as the original 
relations on 4,, 8,, etc., they may be written F',(a,, 3,,... ; 
L/, l,/,...1/) =e, and we can equate the corresponding pa- 
rameters of the two sets. We thus get l,/=1,, l,’=l., ete., 
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where l,’, l,’, ete., are functions only of l,, 1,, ete., and the 
elements of M and may be written 9;(a,,b,,.. 31,1, ..)=l,. 
This gives us a set of relations among the elements of M. 
But this set of relations thus obtained among the elements of 
M must be, at least, a part of the set of assumed relations 
Te (Gp 0) 1. i, Gs 9») 1G.) We cannot. in this'way get 
more relations on the elements of M than our assumed set, 
for by assumption all the relations among’the elements of M 
are also satisfied by the elements of M, and M,. We may 
get by this process exactly the assumed set of relations or a 
part of them. Evidently there is one and only one function 
¢ for each parameter / in the set R; and among the constants 
c, are the 7 parameters /;. The parts played by M and M, 
may be interchanged in the above process. 

Let us select one equation ¢,=1, of the set and investigate 
the parameters contained in the function ~,. The function 
fa May contain all of the 7 parameters or only a part of them. 

First let us suppose that }, contains all of the 7 parameters. 
Then transforming }, by U and equating parameters as above 
we get the whole set of equations ~;=1;. The function ¢, re- 
peats itself in /,’ which is therefore by this process a function 
of all the parameters including /,; presumably the rest of 
the parameters of the transformed function are also functions 
of all the parameters including /,. Any one of these trans- 
formed parameters as 1,’ that contains /, contains all the pa- 
rameters ; for transforming »,=1, by U we get again 1,’=,. 
But by this process 1,’ is a function only of the parameters in 
g, and the elements of M. Since we know that l, contains all 
the parameters, @, must contain all of them. In like manner 
every function ¢,, 4, ... in the set that contains l, con- 
tains all the parameters, and from each of these functions can 
be generated all the functions of the set ¢;. The set of equa- 
tions p;= 1; is therefore a self-generating set and no equation 
not already in the set can be generated from any equation of 
the set. The system of collineations defined by 9,=1, there- 
fore has the first group property. 
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Next let us suppose that ~, contains only 7, i<j, of the 
parameters /;. From », we are able to generate a set of 7 of 
the equations ~;=/,. No equation in the set 9,;=l; contain- 
ing a parameter not in }, can be generated from the 7 equa- 
tions generated from 7. This smaller set of 7 equations is a 
self-generating set and also defines a system of collineations 
having the first group property. 

Hence the set of equations ¢;=1; is a self-generating set or 
contains within itself one or more self-generating sets »;=1;. 
Thesystem of collineations defined by ¢;=/; has the first 

group property; and if the set of relations FR is identical 
with this subset ¢;=/;, the two systems of collineations are 

the same. But if the set R contains more relations than 
~;=l,, then the system of collineation defined by the subset 
is the larger and contains as a subsystem the system of col- 
lineations defined by the set R. We shall confine our atten- 
tion for the present to the larger system of collineations 
defined by ~;=1/;. We can now state the following theorem : 

THEOREM 8. The set of relations R which defines a system of 
collineations within Gs, having the first group property. contains a 
subset in the form of a set of functions of the elements of the matrix 
M, each equated to a constant, and each of these constants occurs 
among the parameters of the functions. 

185. The Functions o;. Our next concern is to deduce the 

properties of the functions 7;. These functions must satisfy 
two conditions, if the set of equations ~;=/; define a system 
of collineations having the first group property. 

lst, they must be unchanged in form, or as we shall say 
automorphic, under the linear transformation U (or V); and 

2d, the parameters of the transformed functions must re- 
produce in some order the original functions and no others. 

The theory of linear transformation leads us at once to the 
most general class of functions that satisfy the first condition, 
viz., that are automorphic under linear transformation. They 
must be functions only of homogeneous polynomials in the 
elements of M. Since our transformation U (or V) involves 



ANALYTIC CONDITIONS. 153 

three sets of three variables each, we see that our functions 

@; may contain homogeneous polynomials in one, two, or three 
sets of three variables each. For example, these may be homo- 
geneous linear, quadratic, cubic, etc., forms in one set of 

variables ; bilinear, quadrato-linear, etc., in two sets; or tri- 
linear, ete., in three sets of variables. From the theory of 

linear transformation we are led to the following general 
statement: A necessary and sufficient condition that a set of 
functions ¢; shall be invariant in form under a linear trans- 
formation T in three cogredient sets of three variables each is 
that each function of the set be a function only of complete* 
homogeneous polynomials in one or more of these sets of 
variables. 

186. The Second Condition. The second condition, that 

the constants of the transformed functions shall reproduce 
the original functions, gives us at once the specific form of 
the functions ~;. They can be none other than complete ho- 
mogeneous polynomials in the elements of the rows or col- 
umns of M; for the constants in the transformed functions 
are the coefficients of the powers and products of «,, 3,, etc., 

in the transformed polynomials entering into the functions, 
and these coefficients are complete homogeneous polynomials 
in the elements of the rows or columns of M. An illustration 
will make this clearer. Suppose, for example, that @ is an 
exponential function of a linear homogeneous polynomial in 
the elements of one row of M,; thus e /4:+m&+n% | We 

then have the three forms e/“tmbtna, g@latmiatnn , 
elAi+mBi+nC: | Making the substitutions U, in the last form 

we get A 
e (la, +mb,+ne)) 44+ (las+mbo+ ner) i + (Las + mb; +Nes)7rs 

* By a complete homogeneous polynomial in a given number of variables we mean 
one that contains all the terms consistent with the number of variables and the de- 
gree of the polynomial. Such and only such polynomials are invariant in form under 
a general linear transformation in all the variables of the set. 

—10* 
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but this must be identical with e!/™+mAi+"n ; equating par- 
ameters in these two forms we get 

la, +mb,+nce,=l, 

las+mb.+neo=m, 

laz;+mb,+n¢c3=n; 

we do not get by this process the form e/a +mht+na, It is 
easy to see that the only forms of the functions ?; which re- 
produce themselves by this process are complete homogene- 
ous polynomials in the elements of M. 

187. The Polynomials 9;. The homogeneous polynomials 
$; are not the most general form of such polynomials, but are 
restricted to such forms as occur in the coefficients of the 
transformed forms ¢,’.. In order to determine this restriction 
we must examine more closely the phenomena of linear 
transformation of homogeneous forms in three cogredient 
sets of three variables each. 

Let f; be a set of 7 homogeneous polynomials in one, two, or 
three sets of three variables each; and let each polynomial of 
the set be transformed by a linear transformation T with 
matrix M’ in three cogredient sets of variables ; it is required 
that the coefficients of the transformed polynomials shall re- 
produce in the elements of the matrix of T the original set of 
polynomials and no others. 

Our method of procedure is as follows: We choose from 
the set of functions f; any one f of the set and transform this 
by 7; the coefficients of the transformed form f’ are also func- 
tions of the set f, and so we join these to f and call the new 
system thus found f;, We now transform the system f; by 
T and join tof; the new functions appearing among the co- 
efficients of the transformed forms; we continue this process 
until the system closes. We then have the system of func- 
tions f;. 

Let us choose from the set f; any function f of the set; fwill 
be a homogeneous function of some degree r either in one, 
two, or three sets of variables ; for only polynomials of these 
three types occur in f,. Let f be transformed by T into f’; 
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no matter to which of the types f belongs, among the coeffi- 
cients of f’ will be found a homogeneous polynomial of degree 
rin the elements of the first column of M’. Let us replace 
@,, 4,4, by %, y, 2, respectively in this function; let us call 
this function f, and use it as the generator of the system /f;. 

Let f, be transformed by 7’; the following statements hold : 

(a) The number of terms in f, and therefore in the trans- 

(r+1) (7+2) ; : 

(b) The coefficients of the transformed form f/f,’ consti- 

formed form f,’ is 

tute a set of a homogeneous polynomials each of 

degree r in the elements of the columns of M’ and each con- 
: 41) (r+2 

tains a terms. 

(c) The corresponding terms of this set of polynomials all 
have the same coefficient, viz.: the coefficient of the corre- 
sponding term of /,. 

(d) Three of the coefficients of f/ are homogeneous poly- 
nomials in the elements of a single column each of M’. 

(e) Whenr>i, ae of the coefficients of f,’ are ho- 

mogeneous and symmetrical polynomials in the elements of 
pairs of columns of WM’. 

(g) When r>1, r—2 of the coefficients of f,/ are homo- 

geneous and symmetrical polynomials in the elements of the 
three columns of MW’. 

In the set of 7t2"**”) 

efficients of f,’ we replace the a’s by 2, y, z; the b’s by 2’, y’, 
2’; the c’s by «”, y”, 2’; we now have a set of functions f; 

which must be contained within the set /;. 
Let f and f, be homogeneous and symmetrical polynomials 

of degree 7 in two and three sets, respectively, of three varia- 
bles each, and let each of them be linearly transformed by the 
same J’ as above. Precisely the same set of statements hold 
also for each of these polynomials as for the polynomial /,. 

polynomials obtained from the co- 
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Therefore when the set of functions f; is transformed by T, 
the coefficients of each of the transformed functions repro- 
duce precisely the original functions f;. The process therefore 
closes and the set of functions f, is identical with the set f.. 

188. A Complete Family of Automorphic Forms. This re- 
sult is independent of the degree v.of the function f with 
which we started, and it is also independent of the numerical 
values of the coefficients of f/ Such a set of functions f; with 
arbitrary coefficients therefore exists for every positive in- 
teger r. The set of functions f; must have the following 
properties : 

1st. Each function of the set must be of the same degree 
r in the combined three sets of variables. 

2d. Each function of the set must be symmetrical in each 
of the three sets of variables. 

3d. The set of functions must contain all the functions ob- 
tainable by all possible combinations of the three sets of va- 

riables consistent with the degree r, viz. : “ tO +*) 

Ath. The corresponding terms of each function of the set 
must have the same coefficient. 
A set of functions having these properties we shall call a 

complete family of automorphic forms. 

THEOREM 9. The most veneral set of functions f of degree r in 

three sets of three variables each which satisfy these two conditions. 
viz.: (1) that they are automorphic under a linear transformation 7 

in three sets of cogredient variables. and (2) that the coefficients of 

the transformed functions reproduce just the original functions. isa 
complete family of automorphic forms of degree r. 

189. Examples of Complete Families. We give a few ex- 
amples of complete families of automorphicforms. Let r= 1; 
in this case we have three linear functions of three terms 
each in three sets of variables, the coefficients of the corre- 
sponding terms being the same in all three functions, thus 

le +my +nz , 

fk > lal+my! +nz! , (20) 
le’+my"+n2". 
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Let these functions be transformed by 7; the transformed 
forms f,’ are 

(la; +mar+na;) x+ (lbi+mbs.+nb;) y + (lei+mer+nes)2 , 

fi! : (lay+maz+nas) w+ (di +mbs +nbs) y/ + (ler +mertnes)z , (20') 
; (la, +mar+na;) “x”+ (1b,+mb.+nb;) y+ (ley +mes+ne3) 2”. 

Wesee here that the coefficients of each of the transformed 
forms reproduce in the elements of the columns of M_ the 
original functions. 

Again let r=2; the six functions of ourcomplete family are 

as follows : 
la?+my2+nz2+2puy+2quz+2ryz2, 

lol? + my!?+n2z!2+ 2pa'y! +2qa' 2+ 2ry'2’, 
a. bal omy? 22 op allyl + 2quell2 + 2ryl 2", 2] 

trae laa’ +myy!+nz2'+p (ry! +aly) +q(a2'+a'z) +7 (y2’+y’'Z), ( ) 

laa’ +myy!+nz2"+p (cy + avy) +¢q (v2 + 2"2) +r (yz"+y'2), 
La!a!/ +m yly" +nz2" +p (aly! + x!’y’) +q (a!2!! +-25!’2') +r (y!2" ao yz). 

It is easy to verify in this case also that the coefficients of 
each of the transformed forms reproduce in the elements of 
the columns of M’ the original forms. 

In like manner we can write down a complete family of au- 
tomorphie forms of any degree 7 and verify the fundamental 
properties of the family. 

190. The Hffect of the Transformations U and V. We 
must now return to the consideration of the equations ?; = l; 
among the elements of M, which define a system of collinea- 
tions within G, having the first group property ; and we shall 
apply the results of Theorem 9 to these equations. 

Let the three sets of cogredient variables be respectively 
the elements of the three rows of the matrix M,; let 9;(4, 8, 
ete.,) be a complete family of automorphic forms in the ele- 
ments of the rows of M,and let ~; be transformed by U. 

Since the matrix of U is the conjugate of the matrix of M, 
the coefficients of each of the transformed forms +; will repro- 

duce in the elements of the rows of M the original forms in 
the rows of M,. Equating corresponding coefficients of the 
original and transformed forms we have a set of equations 
$;(a,, b,, ete., ) =l; which satisfies both conditions of Art. 185. 
We may let our three sets of cogredient variables be re- 
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spectively the elements of the three columns of M,,; if the 
complete family »; of automorphic forms in the elements of 
these columns be transformed by V, the coefficients of each of 
the transformed forms ¢; will reproduce in the elements of 
the columns of M, the original forms. Equating as before 
corresponding coefficients of the original and the transformed 
forms we have a set of equations ¢;(«,,«,, etce.,) =1; which 

satisfies both conditions of Art. 185. 
We are now able to restate Theorem 8 in a more precise 

form, thus: 

THEOREM 8a. ‘The set of equations ¢; =1; on the elements of the 
matrix M, which defines a system of collineations within Gs having 
the first group property, consists of a complete family of automor- 
phic forms in the elements of the rows or columns of M, each mem- 
ber of the family equated to the corresponding coefficient of the 

family. 

191. The Linear Families. If our complete family of au- 
tomorphic forms is linear in the rows of M, the equations 
or— rare 

la, +mb\+nca=l, 

J hee - laotmb,+ne,.=m, (22) 

la;+mb;+ne;=n, 

where |, m, and n, are arbitrary constants and not all zero. It 

is an easy matter to write these equations in terms of 4,, ete., 
transform them by U, equate coefficients of corresponding 

terms and get the same equations in a, b,, ete. 
A convenient method of verifying the sufficiency of these 

conditions is as follows: Write down these relations on the 

elements of M and M,, thus: 
la;+mb,;+ne,=l, la,tmj,t+n7,=l, 

la,st+mb,+nes=m, and la.+mfo+ny2=mM, 

la; +mb;+ne3=n, lo,+miz+n73=N. 

Substitute for J, m, and n, on the left-hand side of the sec- 

ond set their values from the first set and collect, we thus get 
1A, +™m8,+nC,=l, 

lAs+-mBs+-nCs=™m, (227) 

1A, +mB8;+nC,=n. 
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Hence if these relations are imposed upon the elements of M 
and M,, they are also satisfied by the elements of M.. 

In addition to the relations of equations (22) there may be 
other relations at the same time on the elements of M, M,, 
and M,. But the relations (22) are alone sufficient to insure 
that the system of collineations satisfying them has the first 
group property. 

A second family linear in the columns of Mis 
la,+mact+na;=l, 

R, :  lbitmb+nbs=m, (23) 
le; +men.+ne3 =7n. 

The sufficiency of these relations may be shown in a manner 
similar to that for R,. 

192. The Quadratic Families R,. If r=2 in our complete 
family of automorphic forms, we can write down two sets of 
quadratic relations ¢;=1; on the elements of M, one in the 
rows and the other in the columns of M@. The set in the col- 
umns of / is as follows: 

lay? + may? + na;2 + 2p ayao+ 2G aia; + 2raca; =l, 

1b\2? + mb.? + nb;2 + 2p bibs + 2qb1b3 + 2rbob;=m, 

Re: Le; + mes? + nes? + 2p C)€2+ 2G ee; + 27resxe,=N, 24 
2 + Llayb\+marzb.+na3b; +p (aibs +26) +¢q (ab; +a3b1) +7 (2b; +a3b0) =p, ( ) 

laye,+mar2es+ nase, +p (deo + d2e1) +q (Gi¢es+azc1) + 7 (Ave; +a3¢2) =q, 

Lb,e, + mboes + nb3c3 + p (dies + boe:) +. (dies + B31) +7 (boe3+ b3¢2) =r. 

The system of collineations defined by these relations has 
the first group property. The sufficiency of the conditions 
may be shown by actually transforming the relations in 4,, B,, 

etc., by V and equating coefficients; or by substituting as 
above the relations on the elements of , in those of M. 

These examples suffice to illustrate the general theorem ; 
the same consideration may be extended to complete families 
of any degree. 

193. Other Expressions for »;. We have thus far only 
one method of expressing a complete family of automorphic 
forms which may be stated precisely as follows: When a 
complete homogeneous polynomial of degree 7 in one set of 
three variables is transformed by a linear transformation 7, 
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the coefficients of the transformed form are polynomials in 
the elements of the matrix of 7; these constitute a complete 
family of automorphic forms of degree r. 
A complete family of automorphic forms may be expressed 

in another very convenient manner. Let us take two linear 
transformations T and T’ such that the matrix of T’ is the 
conjugate of that of T. Thus 

G=He+biy+eiz, t=a,2+ary+a32z, 

T : y=matbytez, and T’: y=baetbytbsz, (25) 
2=03%+b3y+ C32 , Z= CU +e0y+C32. 

A complete family of linear automorphic forms in the rows 
(or columns) of M may be obtained by replacing the variables 
x,y,z, of T (or T’) by l, m, n, respectively. 
A complete family of quadratic automorphic forms in the 

rows (or columns) of M is obtained by squaring the three 
equations of 7 (or 7’) and forming their products two at a 
time and then replacing «’ byl, y* by m, z* by n, xy by p, ete. 
A complete family of cubic automorphic forms is obtained in 
an analogous manner and the process holds for the family of 
degree 7. 

194. Determinant of an Automorphic Family. Associated 
with every complete family of automorphic forms is a certain 
determinant which requires attention. The determinant of 
a linear automorphic family is equal to \ the determinant of 
T or T’ (25). It is evident from the last mode of expression 
for a complete family that the determinant of the family can- 
not be independent of A. It is not difficult to prove the fol- 
lowing identity : 

a2 db 2 2a,b; Zajc, 2bicy 

As” - - - 

a;? 

ad» 

a\As 

A203 

In like manner the determinant of a cubic family is equal to 
A’; and in general the determinant of an automorphic family 
of degree 7 is equal to A to the power 7°. 

Il a 
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195. The Second Group Property. It remains to be shown 
that the system of collineation satisfying a set of relations 
?;=l, also has the second group property, viz.: that the in- 
verse of every collineation in the set is also in the set. 
We shall begin by establishing the second group property 

for the set of linear relations given in equations (22). A 
collineation T and its inverse 7~ are as follows: 

%, =a,e+biy+¢12, Ag=Ajr,+AryitAszv, 
pee Yi=a2x+boyte.z, F-1: Ay=Bi21+ Boy: + Ban, 

2 =a," +b3y + ¢32, 2=C\9,+ Coy: + C3z. 

The coefficients of T satisfy the relations 
la,+mb,+ne,=l, 

Ke : la,+mbo+ne.=m, (@22)) 

la; +mb;+ne3;=n. 

If the coefficients of T~‘ also satisfy R,, we must have 
1A,+mA.+nA;3=Al, 

R’, :  lBitmB, +nBs=Am, (26) 
1C,+mC.+nC; = An. 

But equations R,’ may be derived directly from R, as fol- 
lows: Multiplying the first equation of R, by A,, the second 
by A,, the third by A, and adding, we get the first equation 
of R,'. In like manner by multiplying by the B’s and C’s we 
get the other equations of R,’. Hence the system of collinea- 
tions satisfying the relations R, has both group properties and 
is therefore a group. 

The same process may be applied to the set of quadratic 
relations given in (24). If we multiply the six equations of 
(24) respectively by A/, B?,C?, 2A,B,, 2A,C,, 2B,C,, and 
add, we get 

LA?+mB/+nC?+ 2pA,B,+2q4,C,+2rB,C,=A°l. 

In like manner we obtain the whole set of relations 
lAi?+mBy2+ - - - - =A?2l, 

tAo?+ - - - - - =A??m, 

lA3?+ - - - = - =A®%n / 5 3 ’ Fee, ae mes ne (27) 
LA, A3+ - Se 5 5 SA, 

lA, A3+ = SS Se == / NAPs 

But these relations show that 7T~ satisfies equations (24). 
=i1 
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Hence the system of collineations satisfying equations (24) 
has both group properties. 

This method is applicable in general to any set of equations 
9;=1, where ?; is a complete family of automorphic forms of 

degree 7 in the elements of the rows or columns of M. For 
every set of relations R, given by ¢;=1; there is a correspond- 
ing set R,’ given by ¥;=A’l;, where J; is obtained from ¢; by 
substituting for the elements of M their cofactors in the mat- 
rix conjugate to M. Hence the system of collineations sat- 
isfying a set of relations ¢;=/; has both group properties. 

THEOREM 10. Every set of relations ¢; =1;, where¢; is a com- 
plete family of automorphic forms in the elements of the rows (or 
columns) of M, implies another set ¢; = A7l; where ¢; is a complete 

family of automorphic forms in the elements of the columns (or 
rows) of M-?. The first set of relations ¢; = 1; establishes for the 
system of collineations satisfying them the first group property; the 
second set ¢; = Atl; establishes for the system the second group 
property. 

196. Analytic Conditions for a Subgroup of G,. Weare 
now in position to determine the form which the relations R 
must assume in order to define a subgroup of G,. We have 

shown in Theorem 9 that the functions ¢; must constitute a 
complete family of automorphic forms of degree rv. It fol- 
lows that among the relations R which define a subgroup of 
G, there must be a complete family of automorphic forms 
each equated to the corresponding coefficient of its family. . 

THEOREM 11. A necessary and sufficient condition for the ex- 
istence of a subgroup of G, is that the elements of the matrix M sat- 
isfy a set of equations ¢; =1; consisting of a complete family of 
automorphic forms in the elements of the rows or columns of M, 
each equated to the corresponding coefficient of the family. 
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$4. Groups of Type I Determined by Linear 

and Quadratic Relatiolns. 

A. SUBGROUPS OF G,; GEOMETRIC METHOD. 

We shall now attack the problem of the determination of 
all varieties of subgroups of G, of type I which are defined 
by a linear or quadratic set of relations R. Before taking 
up the general analytic method of solving this problem it is 
desirable to consider it synthetically and give, as it were, a 
geometrical forecast of the principal results. The geomet- 
rical method is lacking in rigor but is valuable for the light 
which it throws on the problem. 

197. Number of Collineations of Type I. We have seen 
that every collineation of type I leaves a triangle invariant 
and is further characterized by two independent cross-ratios 
k and k’. Every collineation of type I depends therefore upon 
eight constants, viz., the six coordinates of the three vertices 
of the invariant triangle and these two independent cross- 
ratios. Since each of these constants may assume o’ differ- 
ent values, we see that there are ~‘ collineations of type I in 
the plane. We are also enabled to distinguish two distinct 
kinds of variable parameters, viz., coordinates of invariant 
points and characteristic cross-ratios. 

If we suppose the vertices of the invariant triangle to re- 
main the same but let the cross-ratios k and k’ vary through 
all possible values, we get a system of ~? different collinea- 
tions all having the same invariant triangle. By Theorem 1 
of this chapter these form a group which may be designated 
by G,(AA’A”’), the two parameters being k and k’. 

Since there are ’ triangles in the plane, it follows that 
there are ~* such two-parameter groups as G,(AA’A’’) in the 
plane. Hence, the group of all collineations in the plane G, 
contains ~* two-parameter subgroups G,(AA’A’’). Notwo 
of these two-parameter groups can have a collineation of 
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type I in common; for, if two collineations T and T, are 
the same, the eight parameters of the one must be equal to 
the eight parameters of the other; but if the collineations 
leave different triangles invariant, all of the six coordinate 
parameters of the one cannot be equal to those of the other. 
Hence 7 and JT, cannot be the same except when both are 
identical collineations. 

198. Subgroups of G,. By the aid of the principle that all 
collineations which leave a certain figure invariant form a 
group, it is not difficult to enumerate all varieties of sub- 
groups of G, that can be compounded out of the * two-para- 
meter groups G,(AA’A’’) in the plane. It is only necessary 
to recall all configurations of lines and points that can be 
made up of triangles. They are as follows: a line l, a point 
A, a pair of lines //’ (and their intersection ), a pair of points 
AA’ (and their join), a lineal element Al, a point A anda 
line / not through A, two points AA’ their join and a line / 
through one of the points, three points or three lines forming 
a triangle. These eight configurations (shown in Fig. 24) are 
the invariant figures of subgroups of G,, as follows: G,(l), 

G,(A), G,(Al), G(AA’), GU’), G,(4,l"), G (AAT), 
G,(AA’A”). We shall briefly discuss each variety of group 
in detail. 

199. The Groups G,(l) and G,(A). There are ~* col- 
lineations of type I in the plane and only ~®* lines in the 
plane; hence, any line of the plane can be transformed into 
any other line or into itself in ~° different ways. The o° 
collineations, which transform a line / into itself, form a six- 
parameter group G, (1). There are ~‘ triangles having the 
side 1 in common; each of these triangles is the invariant 
triangle of a two-parameter group G,(AA’A”). Thus we see 
that G, (1) is made up of ~* two-parameter groups G,(AA’A”). 

In like manner, we see that any point A of the plane is the 
invariant figure of a six-parameter group G,(A). Each of 
the / triangles having A for one vertex is the invariant tri- 
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angle of a two-parameter subgroup of G,(A). The groups 
G,(l) and G,(A) are dualistic groups. G, contains «* sub- 
groups G,(l) and also ~* subgroups G,(A). 

Each of these groups contains, besides collineations of type 
I, also collineations of other types ; but the collineations com- 
posing a group G,(l) or G,(A) are chiefly of type I. The 
structure of all these groups will be examined in detail 
in Chapter IV. 

200. The Group G,(Al). The general projective group 
G, contains ~* subgroups G,(Al), one for each lineal element 

in the plane. Each group G,(Al) is made up of «* two-par- 
ameter groups G,(AA’A”) whose invariant triangles have 
one vertex and one side in common. Each group G,(l) con- 
tains ©’ subgroups G,(A/), one for each point on /; likewise 
each group G,(A) contains ~’ subgroups G, (Al), one for each 
line through A. The group G,(AL) is self-dualistie. 

201. The Groups G,(AA’') and G,(Ill’). Two points AA’ 
and their join / form the invariant figure of a four-parameter 
group G,(AA’). The group G, contains ~/ equivalent sub- 
groups G,(AA’), one for each pair of points in the plane. A 
group G,(AA’) is composed of «’ two-parameter groups 
G,(AA’A"’) whose invariant triangles have the vertices A 
and A’ in common. 

In like manner, G, contains ©* equivalent subgroups G, (Il’), 
one for each pair of lines in the plane. A group G,(ll’) is 
composed of ©” two-parameter groups G,(AA’A’’) whose in- 
variant triangles have one vertex and two sides in common. 
The groups G,(AA’) and G, (/l’) are dualistic. G,(1) contains 
o’* subgroups G,(AA’), also ~* subgroups G,(ll’); G,(A) 
breaks up in a similar manner. 

202. The Group G,(A,l’’). There are ©* combinations of 
point and line in a plane where the point is not on the line. 
Each combination of point and line is the invariant figure of 
a four-parameter group G,(A,/’). The group G,(A,l’) is 
composed of ” two-parameter groups G,(AA’A’’), whose in- 
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variant triangles have a vertex and the opposite side in com- 
mon. Thus we see that G, contains © equivalent four-par- 
ameter sub-groups G,(A, 1’); these groups are self-dualistie. 

203. The Group G,(AA'l’'). Triangles ‘in number can 
be arranged with two of their vertices at A and A’ and their 
third vertex on a line Al’. Each of these triangles is the in- 
variant triangle of a two-parameter group G,(AA’A’’); these 
co! two-parameter groups unite to form a three-parameter 
group G,(AA’L’). 

The group of all collineations in the plane G, contains ©’ 
equivalent subgroups G,(AA/l’); a group of this kind is self- 
dualistic. The group G,(AA’) contains ©‘ subgroups of the 
kind G,(AA/l’), one for each line through A; also one such 
group for each line through A’. The group G,(/l’) contains 
co! subgroups of the kind G,(AA’l’), one for each point on 1’, 
and also one for each point on /. 

204. The Group G,(K). A collineation transforms a conic 
into a conic. Since there are ~’ conics and ©’ collineations 
in the plane, we infer that each conic of the plane may be 
transformed into itself in ©*’ ways. These ©* collineations 
leaving the conic K invariant forma group G,(K). Any col- 
lineation of the group transforms the points on K into points 
on K and tangents to K into tangents to K. Also a lineal 
element of the conic K, consisting of a point on K and the 
tangent to K at the point, is transformed by T into a lineal 
element of K. In particular, if a point on K is invariant the 
tangent to K at A is also invariant. 
A conic K and a point A, not on K, may be simultaneously 

invariant under ~‘ collineations ; for there are only ~’ such 
combinations in the plane. We therefore infer the existence 
of a one-parameter group G,(A,K). In like manner we 
should expect to find a one-parameter group G,(/, K), leaving 
invariant a line / and a conic K. When Ajand K are both 
invariant and A is not on K, the two tangents from A to K 
are both invariant lines; hence their points of contact are 
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also invariant points and their join is another invariant line. 
The invariant figure consists therefore of a triangle (AA’A”) 
and a conic K having two of the sides as tangents and the 
third side as chord of contact. When K and / are both inva- 
riant and / does not touch K, then the two points of intersec- 
tion of | and K are also invariant ; hence the tangents at these 

two points are also invariant and their intersection is another 
invariant point. Thus we have the same figure as before and 
there is but one such variety of group, G,(AA’A’’K). 
When A is on K, the tangent / at A is also invariant; 

this case determines a two-parameter group G,(A/K). 

THEOREM 12. ‘The General Projective Group Gs has at least 
eleven varieties of subgroups of type I; these are G; (A), Gs (1), 

G;(Al), G,(AA’), G,(W), G,(AW), G:(AA'l), | Ge (AAA”); 

Gs; (K), Ge (ALK), G, (AA’A”K). 

B. GROUPS DEFINED BY LINEAR AND QUADRATIC RELATIONS. 

We shall now return to the analytic point of view and apply 
the results reached in Theorems 9 and 11 to the solution of the 

problem of finding all varieties of subgroups of G, of type I 

defined by linear and quadratic relations on the elements of 

the matrix M. 

205. Linear Functions of the Elements of the Rows. Let 

the complete family of automorphic forms be linear functions 

in the elements of the rows of M. Our set of relations FR are 

of the form 
la,t+mb\+ncq=l, 

R, -  las+mbs+neo=™m, (22) 
la,+mb3;+7c;=Nn, 

and these define the group given in the illustrative example of 

Art. 191. The form of these relations shows us at once that 

the ratios of three numbers /, m, 7, are absolutely invariant 

under all the transformations of the group. 
The geometric invariant of the group is also evident from 

the form of equations (22). These show that the point whose 

coordinates are proportioned to 1, m, 7, is invariant under all 
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transformations of the group. This isa six-parameter group, 
since the three relations among the nine elements of M leave 
six independent parameters. It will be designated by G,(A). 

206. Linear Functions of the Elements of the Columns. 
Let »; be linear homogeneous functions of the elements of 
the columns of M. Then by Art. 191 we have three relations 
of the form 

la,+masz+na;=l, 

R, : lbi+mb.+nb;=m, (28) 
le, +me+ne3=n, 

i. €., the » function of the elements of each column is equated 
to the coefficient of the elements of the corresponding row. 
Relations of this form satisfy the necessary conditions for a 
subgroup of G,. 

In order to show that this set of relations is sufficient to 
define a subgroup of G, we assume that they hold for T and 
ests 

laj+maz,+na;=l, la, 4+moa+na3,=1, 

1b,+mb,+nb3=m , lf, +mio+nf33=m , 

ley +me.+ne3 =n , fi tmre+ny3=n. 

Substituting for /, m, n, on the left hand side of the first set 
their values from the second set, we get 

lA, +mA,+nAz=1, 

1B,+m8,+nB;=m , (23) 
1C,+mC.+2C3=Nn. 

These relations hold therefore for T, and they are sufficient 
to define a group. 

If equations (23) are multiplied respectively by w, y, and 
z, and then added we get 

f= lx+my+nz=l (a,r+biy+eiz) +m(acx+boy+e.z) +n(azx+bzsy+¢32), 

=lx+myi+nz. 

This shows that the function f=la+my-+nz is invariant in 
form under all the transformations of the group and that this 
function has the same value at a pair of corresponding points 
of the plane. This function vanishes at all points of a cer- 
tain line of the plane and hence the geometric invariant of the 
group is the line / whose equation is 

let+my+nz=0. 
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The group is a six-parameter group and will be designated 
by G, (1). 

207. Most General Linear Function of the Elements. Let 
us now assume the most general possible linear relation among 
the elements of M,, thus 

p = 1A, + mA,+nA3+ pBi + 98. +7rB8; +80, +tC, +ul;=v. 

Substitute for 4,, 8,, ete., their values from M, and set the co- 

efficients of «,,3,, etc., equal to the coefficients 4,, 8,, etc.; 

we thus obtain the following nine relations : 
la, + pbi+se=l, mat+tqryi+ti=m, na,+rb)+uca—n, 

laz+pbz+se.=p, ma2,+qb.+teo=q, nao +rbs+ue=r, (28) 

la; +pb;+sce3;=s, ma; + qb3+te,;=t , na,+rb;+uc3—=u. 

Our one assumed relation among the elements of M, leads to 
nine relations among the elements of M and evidently there is 
no group corresponding to our assumed relation. 

But ¢=v may be considered as the sum of three independ- 
ent relations as follows: 

1A, + p8,\+8s%=l, méAr.+q8.+tl.=q, nA3+7rB3;+nCl,=u. 

Each of these relations is in the form of a linear homogeneous 
function of the elements of a row of M, equated to a con- 
stant ; and we may therefore write down at once the three 
sets of relations, thus: 

1A,+ pB\+sCi\=1, mA,+q8,\+tCi\=m, nA,+7r8,+ul\=n, 

1A,+ pB.+sCs=p, mAr.+qB.+tCo=q, nA2+7rB.+uUli=r, ( 28’) 

lA, + pB. +sC3;=s, mA + q8;+ tC;=t, nA,+7rB8;+ul,—u. 

Applying to these three sets of relations the same process we 
applied to ¢=v we get the same nine relations as before and 
the correspondence is complete. We thus have the conditions 
for a group. 

These nine relations taken three at a time are equivalent to 
only six independent relations among eight independent par- 
ameters ; hence they define a two-parameter group G,. The 
geometric invariant of this group is readily seen by consider- 
ing the three relations down the first column of (28). These 
show that the point (/,p,s) is transformed into itself. In 
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like manner we see that the points (m, q,t) and (,7,w) are 
also transformed into themselves. If the determinant 

|l m n | 

= 2 de \ ay 
}s t¢ u 

the group leaves invariant a triangle and may properly be 
designated by G,(AA’A”’). 
When the relation 7 =v is transformed by substituting for 

A,,8,, ete., their values, we may collect in a different manner 
and equate the coefficients of a,, b,, etc., to the coefficients of 
A,, B,, ete., in@; this gives us a set of nine relations in the 

elements of MV, as follows: 
la, + moa.+na,=1, PaAt+qa+ras—=p, s4+ta+uUa;=s, 

1p, +-mBo+-nBs=m, pei+-qpe--rps—aq, sfi-+tfo+uhs—t, (29) 

lyitmre+nrz=n, pPnitde2tris=r, syittye+uy3,=—u. 

If we assume the nine relations 
1A, +m4.+nA3=l, pA,+qéA2+rA3;=p, sA\+td.+uUA3=s, 

1B, + mB.+nB;=m, pB\+qB.+7rB;=q, $8: +tB.+uB;=t, ( Zo.) 
1C,+mC,+nC;=n, pli+ql:+rCz;=r, sC,+tC, +uls;=—u, 

and transform them as before we get the same nine relations 
in the elements of the columns of M. Thus we have again 
the conditions for a two-parameter group. The geometric 
invariant of this group is the set of three lines whose equa- 
tions are lxa+my+nz=0, put+qytrz=0, suttytuz=0. 

If the determinant 
l mn 

ae ie 0, 

the group leaves a triangle invariant and may be designated 
by G, (lll). 

208. Implied Linear Relations. If we have given two 
sets of linear relations of the same kind, say R, and R,,, we 
can derive from these another set of linear relations of the 
other kind R,. Let Fk, and R,, be as follows : 

la, + mb; + nce, =l, Vaytm’b,+n'q=l’, 

Ines : las+mbs+ne.=m, Fees, > Vactmb+no=m, (22) 

la; -+mb3;+nce3;=n, UVa3+m/b3+ 7 c3=n'. 
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Multiply the second equation of R, by the third of R,,, the 
second of R,, by the third of R,, and subtract; we thus get 

L’A,+M’B,4+N’C,=L", 

where A,, B,, ete., are cofactors of a,, b,, ete., nm Mand L”, 

ete., are cofactors of /’’, etc., in 

Um! a 

Wanatany, 

In like manner we get the entire set 
LA, + MB, +N’ CG,=L", 

R! :) L"A,+M"B,+N'CG=M", (30) 
L" A, +M"B;+N"C;=N". 

From these three equations we readily derive the set 
L!a,+M"4,+N"as;=AL", 

R,. Livbi+ Mb, +N"b3= AM", (31) 
L"e,+ M"ez + N"c3=AN". 

This secures the invariance of the line L’*x+ M"y+N’z=0, 

which is the line joining the two points (/, m, 1) and (1’, m’, n’). 
In the same way two sets R, and R, imply the existence of 

a set of the other kind R,, which means that the point of in- 
tersection of the invariant lines | and l’ is an invariant 
point P. 

The three relations R,, R,, R,-, which define the group 
G,(AA'A”), taken two at a time give us three other rela- 
tions R,, R,, R,, which define the group G,(ll/l’’). Hence 

these two groups G,(AA’A”) and G,(Il/l’’) are equivalent 

groups. 
Two relations of different kinds R, and R, may be wholly 

independent of each other or a relation may exist between 
them. The invariant point (1, m, 7) will lie on the invariant 

line 2¢+ uy+rz=0, if 

Sal=al+um+rvn=0. 

209. Subgroups Defined by Linear Relations. We are 

now in position to enumerate all the subgroups of G, of type 

I that are defined by linear relations among the elements of 

the matrix M. It is clear that we may have groups defined by 

one, two, or three sets of relations of the kind R, or R, and 

any combination of R,’s and R,’s that does not impose too 

. 
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many conditions on the elements of M. If a relation Sal=0 
exists between the constants of R, and R,, the number of in- 
dependent conditions on M is decreased by one. The number 
of varieties of subgroups of G, defined by linear relations is 
therefore a definite finite number, since the number of such 
combinations is a definite finite number. The following 
groups are defined each by its proper set of relations: 

G,(A) defined by R,. 
G, (1) ‘é 66 R,. 

G,(Al) eee eh AN Owo A — Oe 
Gia) CEs SS Troster Ure 
G,(AA’) ae each ao lal fence 
Gy) BO CONT Feen nok aire 
G,(AA'l’) ee alte aly and SAL —Os0t SAL) — 10: 
GAA) ee sac lte. Clem and tc 
This list is in exact agreement with the list given in Theo- 

rem 12 except as to the groups G,(K), G,(AlK) and 

G,(AA’A’K) which remain to be investigated. 
We are able to infer from these results that there is no 

seven-parameter group of plane collineations. The smallest 
possible number of relations in a set R defining a group is 
three and the group so defined is a six-parameter group. 

THEOREM 13. There is no seven-parameter group of plane col- 
lineations. 

210. The Group G,(K). We come now to the problem of 
finding all continuous groups of collineations defined by quad- 
ratic relations on the elements of M. There are two possible 
complete families of quadratic automorphic forms in the ele- 
ments of M; one of them is homogeneous in the elements of 
the columns of M and the other in the rows. We shall 
first consider the former system. The set of relations is 

lay? + mas? + na32?+ 2paia2. + 2qai\a;+ 2ra.a; =I, 

lb,2 + mb? +nb32 + 2pbib. + 2qbibz + 2rbo.b; =m, 

. le;2 + mes? + ne32 + 2peies + 2qeie3+2re2c;=N, 2 

Te: layb; + masbs + naz3b3+ p(aibs+azb;) + q(a,b3+a3b1) +r (a2b3+a3b2) =P, ( 4 ) 

laye, + marc, +nase3 +p (a\C2+42€)) + g(Aie3+G3¢1) +7 (A2e3+a3C2) =Q, 
lb\e, + mbse2 + nb3e3 + p(bie2 + boe;) +. (bie3 + b3¢1) + 7 (b2€3+-b3¢2) =P. 
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This set of relations on the elements of M implies another re- 
lation, viz.: that the determinant of M is unity. This may 
be readily shown as follows: Form the symmetric determi- 
nant, 

iC aping 

D'=\p m7, 
lg rn 

and substitute for these elements their values on the left hand 
side of R,; the new determinant factors readily into A’ D’. 
Whence we have A’=1, where A is the determinant of VM; 
but by Art. 181 we can take only the positive sign. Hence 
A\ = il. 

If the six equations of FR, are multiplied respectively by 
x?, y*, 2°, 2uy, 2uz, 2yz, and added we get 
f= U(aya+biy+e.z) 2+m (arx+boy+erz)2+ ete. = lx?+my?+nz2+2pry+ 2quz+2ryz, 

which shows the function f is invariant under 7’, and has 

the same value at a pair of corresponding points of the plane. 
This function will vanish along the points of some conic K in 
the plane, which conic is invariant under all the collineations 
belonging to the group defined by R,. In order that this be 
a non-degenerate conic, we must assume D! # 0. 

The six relations R, on the nine elements of M leave three 
independent parameters for the group defined by R,. This is 
therefore a three-parameter group and will be designated 
by G,(K). 

THEOREM 14. The group defined by the quadratic relations R. 
is a three-parameter group and leaves invariant the conic whose 
equation is 

lx?-+ my?+ nz?+ 2pay + 2quz+ 2ryz = 0. 

211. Other Quadratic Relations. We saw in Art. 195 that 
the six equations of (24) imply another six, viz.: RP’, of (27). 
But since A = 17, the equations of R’, may be written thus: 

1A,2? ++ mB,\2+nC\2+ 2p AiBi+ 2q A1C, + 2r B,C, =1, 

1Ao?+ - = il; 

lA,?+ - - - - - =n, ps 3 

Ri’, * lA\Ao+ = = = = = =P, (27) 

lAyAs = : - - - =4, 
PARA gE 2 : : : - - 
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We shall now show that the set of relations R, (24) implies 
still another set R.’. Let us subtract the square of the last 
equation of (24) from the product of the second and third and 
reduce the result ; we get 

LA,? + MA,? + NA;?+2PA,A2+2QAiAs+2RA2A3=L, 

where L, M, ete., and A,, A,, ete., are the cofactors of 1, m, 
etc., and a,, a,, ete., in the respective determinants 

Ep Gi 
Pp m 

q r 

a, bd, Cc) 

a2 bs Co}, 

a; b3 ¢3 

and S 
n 

In like manner we deduce the entire set of relations R,”’ as 

follows: 
BAZ eiAs + = 
LB, + MB,2 + 
B62 Bf ogi) ee 

Le Bae: 

R, 2 LAB, + - = - - 

ions ier eo VARESS eel 
(27’) 

ot wow wea POVNA SS LB,C,+ US aioe sete Se 

If the six equations of R,’’ be multiplied respectively by 
a,, 67, ete., and added, we get as in Art. 195, 

La,? + Mb,?2+ Ne\?+ 2Paib, + 2Qaie, + 2Rbic, = L. 

In like manner we deduce the entire set of relations R,’” as 

follows : 
La,? + Mb,?+ Ne? + 

Lay? + - - 

R,!": an ; eA CaS 

La\a3;+ - - - - - - 

Lasa;+ - - - - - - 

Thus we see that if we have given a complete family of 
automorphic forms quadratic in the columns of M, we can 
deduce from it three other sets of quadratic relations. In 
fact if we have given any one of the four sets R,, R,’, R,/’, or 
R,/"’, we can deduce from it the other three. The last set of 
relations R,’’’ is a complete family of automorphic forms 
quadratic in the rows of M. It follows from this that if we 
have given a complete family of automorphic forms quad- 
ratic in the rows of M, such as l’a,7-+m’b,?+ ete.; these de- 

C270) 

TE fl ane tt von ezeh 
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fine a group G,(K’) which leaves invariant a conic K’ whose 
equation is 

L'x?+M'y?+ N’2?+ 2P'ay+2Q’/az+2R'yz=0. 

If 1’, m’, ete., are chosen so L’, M’, equal tol, m, etc., the 
conic K’ is the same as the conic K of Theorem 14. 

THEOREM 15. There is only one variety of group, viz.: Gs(K), 
defined by a set of relations quadratic in the elements of M ; this 

group may be defined in two ways, either by a set of relations quad- 
ratic in the elements of the rows or columns of M. 

212. Groups Defined by Linear and Quadratic Relations. 
A set of quadratic relations R, imposes five conditions on 
eight independent elements of 17; a set of linear relations R, 
or R, imposes two conditions on M. Evidently a quadratic 
and a linear set may be simultaneously imposed on the ele- 
ments of M and leave us still one independent parameter. 
Suppose that R, and R, are imposed simultaneously on the 
elements of M; these will define a one-parameter group 
G,( AK) leaving invariant a point and a conic. Similarly R, 
and R, define a group G,(/K) whose geometric invariant is a 
line and a conic. 

If we have given R, and R,, we can derive from these two 
sets another linear set of the kind R,. Let the set R, be as 

follows : 
WVaj+m'b+n/cq=l', 

Ress Vas+m'b.+n!/e.=m’, (22) 
Pp 

Va3;+m'b3;+n'ce3=n', 

and let R, be given by equations (24). Multiply the first 
equation of R, in turn by la,, pa., ga,;; the second equation 
of R, by pa,, ma., ra;, the third by qa,, ra,, na;; add the 

nine products and reduce by means of R,, we get 
.  (U'+pm!+ qn’) a+ (pl’+mm!'+rn’) ar+ (ql’+nm'+nn')as 

fi, i =ll!+pm'+qn’, (32) 

similarly we get 
(ll! + pm! +qn')b; + (pl! + mm! +rn’) bo + (ql’+rm!+nn') b;=(pl’+mm'+rn'), 

(ll + pm! +qn')e,+ (pl! + mm! +rn’) e2+ (ql’+rm!+nn') es= (ql +rm'+nn’). 
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The set of relations of the kind R, secures the invariance of 
the line 

(Ul! + pm! + qn’) «+ (pl! + mm! +rn') y+ (ql’/+rm'/+nn')z=0. 

But this line is no other than the polar of the point (1’, m’, n’) 
with respect to the conic, 

la? + my? + nz? + 2pxy + 2quze+ 2ryz = 0. 

In like manner the two sets R, and R, imply a linear set of 

the kind R, which secures the invariance of the pole of the 
line l’ with respect to K. Hence the two groups G,(AK) 
and G,(lK) are of the same variety. The geometric inva- 
riant of the group is the triangle (A A’A’’) and the conic K, 
related to it as shown in Art. 204; the group is designated 
by G,(AA/A"K). 

If the two sets of relations R, and RF, are so related to 
each other that the following condition exists, 

Ul/2 + mm/2+nn/2+ 2pl’/m!'+ 2ql'’n'’+2rm'n'=0, 

then there are two independent parameters and the group 
defined is a two-parameter group. The invariant point is on 
the conic K and the invariant line touches K at the invariant 
point. The group is designated by G,( AIK). 

213. Groups Defined by Other Sets of Relations. When 
we examine the complete cubic family of automorphic forms 
we see at once that the group defined by such a family is not 
a continuous group; for a set of relations R derived from a 
cubic family imposes nine conditions on eight independent 
elements of M and these conditions can be satisfied by only a 
finite number of sets of values of these elements. Hence in our 
study of continuous groups of plane collineations we can not 
make use of complete families of automorphic forms of degree 
higher than two. 
We can not impose simultaneously two independent sets of 

quadratic relations upon the elements of M and thereby ob- 
tain a continuous group; for in such a case the number of 
conditions (ten) again exceeds the number of independent 
elements (eight) of M, and if a group is thus obtained it 

12 
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must be a finite group. (The identical collineation alone con- 
stitutes a finite group.) 

It may be possible, however, to obtain a continuous group 
by imposing simultaneously upon the elements of M two sets 
of quadratic relations R, and FR,’ so related that the two in- 

variant conics have a special relation to each other. The only 
relations between the conics that we need to consider are 
those of contact ; for if two invariant conics cut each other 

at four no three of which are collinear points, these four 
points are invariant and the only collineation leaving them 
invariant is the identical one. We must examine, however, 
all possible cases of contact of two conics. 

All possible cases of contact of two conics have already been 
discussed in Art. 125 and their figures given in Fig. 16. If 
two conics K and K’ have contact of the first order, this re- 
duces by one the number of conditions on the elements of M ; 
but we still have nine relations on eight parameters and no 
continuous group. If K and K’ have second order contact, 
there are eight relations on eight parameters and no continu- 
ous group. But if K and Kk’ have a double contact at two 
points A’ and A”, it is possible that we may have a one- 
parameter group. For among the ©° collineations leaving 
the triangle (AA’A’’) invariant there are ~' that also leave 

K invariant ; these may also leave K’ invariant at the same 
time. That this is the case will be shown in the next §, and 
the group obtained is no other than G,(AA’A’’K). If K and 
K’ have third order contact, there is no continuous group (of 
type I) leaving them simultaneously invariant. It is possible, 
however, to find a system of collineations which interchange 
K and K’; this case will be considered later. 

214. The Limiting Case A(l)=0. In order to make the 
above discussion complete two limiting cases remain to be ex- 
amined, viz.: the group defined by three sets of linear rela- 
tions when the determinant of the three sets of constants 
Art. 207 vanishes, and the group defined by a set of quadratic 
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relations when the determinant of the invariant conic Art. 210 
vanishes. 

If we have three sets of linear relations R,, R,, and R,,, so 
related that the determinant 

Cains aa i 

U om wn 

“om” ni 
A(l)= =). 

then these three sets of numbers are linearly related. Hence 
there exist three relations, as follows : 

aL feU =", 
Am+tm! =m", 

An jin! =n". 

R,, may therefore be replaced by Ryp+np. But the determi- 
nant of R,, R,, and Rjp+4p vanishes for all values of % and wu. 
Hence if T leaves invariant three points which lie on a line J, 
all points on / are also invariant. In this case the three 
equations 

xc=a,cx+by+ec2, 

y= a." + boy +22, 
2=a30+bsy +c32, 

have an infinite number of linearly related solutions, and 
hence their determinant, 

a,;—1 b Cy 

EN (Gi) ==) a2) 9 beeen) |=) (38 ) 
ay b, C3—1 

is of rank 1, 7. e., its first minors all vanish. But this is just 
the condition Art. 112, that the collineations be perspectives. 
Therefore the group defined by R,, R,, R,, and A(l)=i0. 
a group in which the collineations are all perspective collinea- 
tions. It is a three-paramenter group, since the condition 
(1) = 0 decreases by one the number of independent condi- 
tions on the elements of M, and its geometric invariant is a 
line of invariant points. 

If we have given three linear relations R,, R, and R,,, with 

the condition that the determinant 
ie VG ae 

a) = Yl | =p). 
| lt omit nit 
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it may be shown in the same way that the group thus defined 
is a three-parameter group of perspective collineations whose 
geometric invariant is a point A and all lines through it. 
We might now go on and determine all groups of perspec- 

tive collineations defined by sets of linear relations on the 
elements of M. But this problem will be taken up later, and 
the results reached by other methods are only what the pres- 
ent method would yield. 

215. The Limiting Case D'=0. In discussing the group 
G,(K) defined by &, we assumed Art. 210, that the determi- 
nant 

Lp q 
Dae r 

G) iP WB 
0. 

If D’ = 0, the quadratic function breaks into factors; thus 
la? +my?+nz2z*+ 2pay + 2quz+ 2ryz= (Ae+lyt+~2) (A/x+Hly+”/2); 

whence we have /=22', m=uu', n=vy', p=Apn'=2'u, 
G=Ai! =)'v, r=pr'=u'v, The six relations, of (24) sre- 
duce to 

(Aqi+/a2+%a3) (Wai + d2+¥/a3) =27', 

(Ab; +b2 +4b3) (A! by + 2!b2 +4 b3) =H, 
(Ac, +H e2 +¥%e3) (Aer +H en +4 e3) =, 
(Aq, +Fa2+¥%a3) (7/6) +2! b2+4/b3) =2 /or7r, (34) 

(Aaqi+Ha2+/%a3) (Aa+M!e,+-c3) =A” or 2/¥, 

(2.6; +b. +%b3) (le, +2! e2+%!e3) =”! or LY, 

These relations define a mixed group mG,(Ill’) which will be 
discussed in § 3 of Chapter IV. Equations (84) may be 
factored in two ways, as follows: 

20, + Has+ ¥a3 =A, Wa, +H/a.+/a3=7', 
26; +b. +%b3 =F, and by + /b2+b3=L!, (34’) 
A¢, +e. +%C3=%", Mey +P 2 + Ye, =”, 

or 

hay + Hay + ¥a,=2, Hay + Ha» + als =2, 
Ab; + bs + ¥b3=P!, and Wb) + bo + /b3 = by ( oAu ) 

Ae; + Hes + ¥e3=/, Merch Mera wes —Y- 

Equations (34’) define a group G,(/l’); this is already included 
in the list of Art. 209. Equations (34’’) define a system 
of collineations which interchange the two lines 2% + wy-+ 1z = 0 
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and 4/e7-+u’y+r’z=0; this system of collineations does not 
form a group. 

216. List of Groups. We have now found the entire list 
of subgroups of G, of type I which are defined by linear rela- 
tions on the elements of M, or by quadratic relations, or by 
any combination of linear and quadratic relations. In addi- 
tion to the list given in Art. 209, we have three more groups 
one set of whose defining relations is quadratic, viz.: G,(K), 
G.(AlK) and G,(AA’A”K). Our list is now in exact agree- 
ment with that given in Theorem 12. We may now restate 
Theorem 12 in this form : 

THEOREM 16. The general projective group Gs has only eleven 
varieties of continuous subgroups of type I which are detined by 
linear and quadratic relations on the elements of M; these are the 
groups enumerated in Theorem 12. 

217. The Condition A(1)=0. If we have given the 
family of automorphic forms linear in the rows of M, 

la, + mb, + ne, =l, 

laz+mbs+ne.=m, ( 929 ) 

la;+mb3+ ne; =n, 

we can eliminate /, m, and n, and thus obtain the condition 
|a,—1 by C1 

A(1) = |® bo—-1 Cy = (0). (33) 
| ds b3 ¢3—1 

The family linear in the columns of M gives the same condi- 
tion. This necessary condition for a group defined by a 
linear set of relations is not a new independent condition on 
the elements of M. It is a sufficient condition for a group 
defined by a set of linear relations. For if the condition (83) 
be given in determinant form, there exists a set of numbers 
l, m, n, such that if the columns (or rows) be multiplied re- 
spectively by the numbers and the rows (or columns) added, 
each of the three sums will be zero. These sums give us at 
once the family of automorphic forms linear in the rows (or 
columns ) of M. 
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We may also eliminate /, m, , p, etc., from the quadratic 

family and obtain the condition, 
a,2—1 b;2 C)2 2a,b, Zajc, 2bic; 

as? b;2-1 - - 

a3" = = = = = 
BN (18) : ; _1=0. (35) 

aa; : - Z = 

Ao; 

This condition factors into 
a,—1 by C} a,+1 b; Cy 

(A*t—7 | do bs—1 C2 , | ae bo+1 Co ; 

) | ds bs ¢3—1 a3 bs e3;+1 ( 30 ) 

=(A+1) (A—1) A(1) A(—1)=0. 
Here we must discard the first and last factors, since they 

come from the introduction of the transformations 7, Art. 

181, when the quadratic family is formed by the process of 

Art. 193. Since \—1 always vanishes for the relations R,, 

we cannot assert here that A(7Z) will also vanish. This ques- 

tion will be settled in § 6. 

C. REDUCIBLE GROUPS AND CANONICAL FORMS OF GROUPS. 

218. Reducible.Groups of Plane Collineations. We shall 
now introduce the important conception of reducible groups 

of collineations. Groups of collineations may be divided into 

two distinct classes, reducible and irreducible. If a group G 

has the property that for each collineation in the group cer- 
tain elements of its matrix not in the principal diagonal are 
always zero while the determinant of the matrix does not 

vanish, the group is said to be reducible. Furthermore 

every group G’, equivalent to G according to the formula, 

G’=S~'GS, where S is any collineation with non-vanishing 

determinant, is also said to be reducible. 

Each group G’ in the infinite system of equivalent reducible 

groups may by a suitable transformation of coordinates be 

brought into the form of G having certain zero elements in 
its matrix, which therefore may be called the reduced form 

of the reducible group. The general projective group G, is 
according to the definition not a reducible group. Every re- 
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ducible group of plane collineations is therefore a subgroup 
of G,. We wish to determine all varieties of such subgroups. 

219. Reduced Matrices of Subgroups.of G,. The matrix 
of each of the subgroups of G, enumerated in Art. 209 may be 
written in a reduced form.. For example, the group G,(A) is 
defined by the homogeneous and symmetrical relations 

la; + mb, + ne, = l, 

ie > las+mbs+ne2=™m, (22) 

la; + mb;+nce3 =n. 

If we make 1=1, m=0, n=O, in R,, these equations 
reduce to a,=1, a,=0,a,=0. The matrix M reduces to 

1 6b; cy 

0 bs Ce 

0 bs c3 

and the invariant point (1, m, 7) becomes (1, 0,0), one vertex 
- of the triangle of reference. It is easily verified that if a= 1, 
CAO 1G: 10 an dua, — lt oe—0 og — OP thenniA, —ile As — 0) 

A,=0. There are three equivalent reduced forms for the 
matrix of this group, viz.: 

’ 

Hn OG | || a 0 G4 | || a1 b, 0|| 

0 be ee | ) I a2 1 ¢2\| , |do b. O|| 
0 b3 ¢s]| la3 0 c¢s| lla3 63 1 

It may readily be verified by multiplication of matrices that 
each of these reduced matrices has both group properties, and 
represents therefore a reduced group. 

In like manner if we make /=1, m=0, n=O in the rela- 
tions R, which define G,(/), we get a,=1, b,=0, c,=0. The 
matrix M reduces to 

ie OO 

is bs C2 
b 

a3 b3 C3 

and the invariant line becomes the line, x =0, of the triangle 
of reference. Without going further into details we may 
write down at once one reduced form of the matrix of each 
of the other subgroups of G, defined by linear relations. 

it > (0) 10) Che ln (0) 

G,(Al) = & . Onle G,(A,l) = | bp oe 
Gin (Ny (5 ih \ 
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as) ive Oto? 

SS bs 0 : C= 0 b ol, 

came es | @3 3 C2 | 

NG i Seatowatg 

G(AAI) =| 0  0|, G,(AAIA=\0 b 0}, 
0 63 

0 0 cs 

It is easy to show by matrix multiplication that both group 

properties hold for each of these matrices, and that each of 

these eight subgroups of G, defined by linear relations is a re- 

duced group. 

220. Necessary Condition of Reducibility. We have thus 

far shown that every group whose defining equations are 

linear is a reducible group. We wish now to find a necessary 

condition of reducibility. A reducible group G’ is one that 

may be transformed by a collineation S, thus SG’S7=G, 
such that for each collineation in G certain elements of its 

matrix are always zero, this being its reduced form. 

Let us first assume that one of the elements in the principal 

diagonal of M, say a,, is always zero. Putting a,=0 and 

a,=0 in equations (10), Art. 172, we have 4,=4@,3,+4571, 

which is not zero; and we have no reducible group. 4, will 

vanish if we assume say a,=0 and y,=0; but then 4, and ¢, 

will not vanish. 4, will vanish if we assume a,=a,=0, or 

3,=y,=0; but then the determinant of M vanishes and we 

have only pseudo-collineations. Hence an element in the 

principal diagonal of M can not be zero for all collineations in 

a group. 
Next let us assume that some element noe in the principal 

diagonal is zero; by suitable interchanges of rows and col- 

umns this element may be brought into the upper right hand 

corner of M; hence without loss of generality we may assume 

c, is always zero. Putting c,=y,=0 in (10) we get ¢,=¢,3,, 

and we have no reducible group unless ¢,=0 or 3,=0. Mak- 

ing c,=¢,=0 and y,=y.=0, we get ¢,=c,=0, and have a 

reducible group; making c,=b,=0 and y,=3,=0 we get 
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¢,=8,=0 and we have another reducible group. Each of 
these two matrices (or their equivalents) viz. : 

ia; Bb) O Ov 

M, S/o. b 0, and M,= > bz ¢2|| 
| a3 bs C3 a3 b; C3 | 

gives us the largest possible reducible group in G,. Every 
other reducible group in G, will be contained within one of 
these. Hence in seeking fora general criterion of reducibility 
we need only consider these two. In the first case c, and in 

the second a, may be made unity without loss of generality. 
The matrix M, shows at once that the line « = 0 is trans- 

formed into itself by every collineation of the group G;,; 
hence the transform of G,, viz.: G,’ =S‘G,S, isa group which 

transforms into itself some linear function as l’a + m/y+ n’z. 
But the necessary and sufficient condition for the invariance 
of this linear function under T is the set of linear relations 

Va, + ma. + n/a; =V, 

Ub, + m’'bs + nbz =m’, (23 ) 

Ve, + me+n'ce; =n. 

The matrix M, shows that the point (0, 0, 7) is transformed 

into itself by every collineation of the group G,; hence the 
transform of G,, viz. G’,, leaves invariant some point whose 
coordinates are (/, m, 1). The necessary and sufficient con- 

dition for the invariance under T of the ratios of the three 
numbers /, m, 7 is the set of linear relations 

la, +mb,+nec, =/, 

lar +mb2+ne.=m, (22) 

la; + mb; + 2c3 =n. 

Hence for these two reducible groups G,’ and G,’, and there- 
fore for all reducible groups with a smaller number of par- 
ameters, a necessary condition of reducibility is the existence 
of a set of linear relations in the elements of the rows or 
columns of M. We have now established the following: 

THEOREM 17. A necessary and sufficient condition that a sub- 
group of Gs be reducible is that at least one set of its defining rela- 
tions. 2, be linear in the elements of M. 
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It remains to be pointed out that the groups G,(A/K) and 

G,(A A'A"K) are each reducible and that G,(K) is irredu- 

cible. We have thus far found two irreducible groups, viz: 

G, and G,(K). It will be shown later that these are the only 

irreducible groups of plane collineations. 

221. The Orthogonal Group. The group G,(K) is 

irreducible and hence its matrix can not be brought to a 

canonical form containing two or more zeros; but nevertheless 

its defining equations R, may be reduced to certain canonical 

forms. These we now proceed to find. 
The group G,(K) leaves invariant in form the quadratic 

function 
fealv’t+ my + nz + 2pxry + 2quz+2ryZ. 

From the theory of quadratic forms we know that f may be 

brought by linear transformation to the form 

ety t 2. 
In this case the triangle of reference is one of the self-polar 

triangles of the invariant conic f=0. We may, therefore, 

without loss of generality set 1 =m =n =1 andp=q=r=0 

in the relations R,, equations (24). The relations R, reduce to 
a,?+ a.2+a32=1, a,b, + dsb. + a3b3 = 0, 

b,? + bo? + b3? =1, Q\C; + AxC2 + a3¢3 = 0, (36) 

cy? + ¢22 +3? =1, biey + bees +b3¢3 = 0. 

These are the well-known relations on the elements of M 

which define the orthogonal group in three variables. 

For the same values of the constants /, m, etc., equations 

(27) reduce to 
A teu 13 (nt A Ag Bibs Cis = 0) 
A,?+ Bo? + Co? = 1, A,\A3+ B\B;+ OC; =0, (36’) 

A;?+ B3?+ C3? =1, Av,A;+ BoB; + C.C3=0; 

equations (27’’) reduce to 
A,?+ A2?+ A? =1, A,B, + A2B2+ A3B3=0, 

B+ B24 B;?=1, A,C, + AsC2 + A3C; =0, (36” ) 

C2 + C.2 + Co” =1, B,C, + BC» + B3C3 =0; 

and (27) become 
a,?+6,?+¢,*=1, ad. + bbs + c\¢2 =0, 
as? + bo? + co? = 1, aa; + 6163+ ce; =0, (ea0uee) 

24 6.24 ¢,?= 1, Qo03 + bobs + coc; =0. 
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These four sets of relations hold for the orthogonal group ; if 
we have given any one set of these relations we can deduce 
the other three. 

THEOREM 18. The orthogonal group is a special case of the 
eroup G;(K) when the equation of the conic K is in the canonical 
form 

De eye ae 0. 

222. The Second Canonical Form of G,(K). The quad- 
ratic function f can also be brought by linear transformation 
to the canonical form f=y*?— «wz. We may therefore set 
—i— anda ——gi— ws) Lhetrelations: A, (24) 

then reduce to 
a2 = a3, bs? = bibs, C,* =¢\C;, 2 dob. = a\b6; + 43b,, 

2 doc2=a)¢C;+ 43¢, — 1, 2 boto = b,c; + b3¢). 

ete usiaput | @)—a-s @,—97 ¢ — 0". se5—i0° >) we then: find 
b,=208, b,=2yd, b.=ad+Py, and (ad—@By)=1. The 
matrix M is now in terms of «, 3, y, 46, thus 

a2 2a;3 8? || 

M=l|ar as+ fy Bol ; 
l| 72 270 62 || 

and the determinant of Mis («3—y)’=1. The invariant 
conic has the equation y? = «2 and the invariant triangle of 7 
coincides with the triangle of reference. 

This form of 7 is connected in an interesting way with the 
one-dimensional transformation 

oy = aa! + 34! 

yi =a! + dy! ~ 

Taking the square of the first, the product of the first and 
second and the square of the second, we get after replacing 
CA DvAD Ny Dy, 2 .and ee yyy. 

Xv = a2u + 2ajsy + /32z, 

Yi =ara+ (40+ 87 )y + 752, (37) 
4 =u + 2yr dy + iz, 

with the condition y,? — 7,2, = y’ — xz. 
This shows that the conic 7’ = wz is invariant and that the 

transformations in the group G,(K) have a one-to-one corre- 

spondence with those of the group G, of one-dimensional 
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projective transformations. When two groups of transfor- 
mations are so related to each other that there is a one-to-one 
correspondence between the transformations of the two groups, 
the resultant of any two transformations corresponding to 

the resultant of their correspondents, then they break up into 
subgroups in exactly the same way and have exactly the same 
structure. Two such groups are said to be holoedrically 
isomorphic. 

THEOREM 19. The group G; of one-dimensional projective trans- 
formations and G;( A) are holoedrically isomorphic. 

SA) 
5d. Groups of Other Types Defined by 

Linear Relations. 

The groups determined in the last § are all of type I. It 
was assumed that the elements of the matrix M were not 
subject to any of the conditions, Art. 113-117, that cause its 
characteristic equation to have multiple roots or the first mi- 
nors to vanish, 7. e. the collineations were assumed not to be 
of any of the secondary types. We shall now take up each 
type separately and determine the conditions under which all 
the collineations of a given group belong to a given type. 

TYPE II. 

223. No Siz- or Seven-Parameter Groups of Type II. The 
condition that a collineation shall be of type II is, Art. 114, 

that its characteristic equation, 
a—p b Cy 

(oy bo—! Co = 0, 

a bs C3—P 

shall have a double root; 7. e., that its discriminant shall van- 
ish. The vanishing of the discriminant D lays one condition 
on the elements of M. There are therefore ~’ collineations 
of type II. These do not form a seven-parameter group be- 
cause this one condition does not comply with the necessary 
and sufficient conditions laid down in Theorem 11. 

The largest group that could exist is a six-parameter group 
defined by one set of linear relations R, or R,. If we lay 
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upon the elements of M simultaneously the conditions R, and 
D, or R,and D, we have only ~’ collineations. There can 
not be, therefore, a six-parameter group of type II. 

There may or may not be a five-parameter group of type 
II, so far as we yet know. We must examine the system of 
«* collineations defined by say R, and D. If the resultant of 
any two collineations of this system is also of type II, then 
this system has the first group property. 

224. No Five-Parameter Group of Type Il. The group of 
collineations defined by R, alone is reducible ; its matrix and 
its characteristic equation may therefore be written in the 
reduced forms : 

{a, b O ja,—-p by 0 

M= |e %& 0|, and ANG) = 2 bo—? 0 =o. (38 ) 
a3 b; 1 as b, i/o 

One root of A(p) is given by the factor p—1=0; the other 
two roots of A(p) are the roots of the quadratic 

p?—(a,+b,)p+(a,b,—a.b,)=0. (39) 

Since A(p)=0 is to have a double root, two cases arise ; 
either 7 is one root of (39 ) or (39) has equal roots. We must 
consider these cases separately. 

(1). Let us suppose first that 1 is one root of (39); then 
we have for T the condition 

1—(a,+ 6.) + (a,b, —a,b,) =0. (1) 

The same condition holds also for T,, the elements of whose 
matrix are a,, 3,, etc.; thus: 

1—(4,+.)+4,3,—a,3,=0. (11) 

We wish to see if the same condition holds also for T,, where 
TT,=T,, 1. €., is it true that the vanishing of (i) and (11) 
makes the function 

(Aye 8e) ct Ay Be Ae (iii) 
also vanish? 

Since the determinant of 7, is equal to the product of the 
determinants of 7 and T,, we have 

ob, = (a,b, — a,,) (a1/32— 42/3;), 

Ache 8s =(a,+0,—1) (a,+,—1). 
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The function (iii) becomes 

1— (A, +82) + (a;-+6, —1) (4;+-8:—1). 

Substituting for 4,, 8., their values from equation (10) 

Art. 172, after putting c,=c.=0, y,=y.=0, and ¢,=y.=1, 

we get 

(a, rae 8) (2, a 1) (0; ar 1) (4, a ih) . (2/3, = Uae ie (iii) 

This quantity can not vanish because of the presence of the 

terms a,3, and b,a,, which do not occur in (i) or(ii). Hence 

T, is not of type II. 
(2). Let us next suppose that 7 is not a double root of 

A(p)=0, but that (39) has equal roots. The condition that 

(39) has equal roots is 

4 (a,b, — a,b,) — (a, + 6)? = 0. (ay) 

Writing down the same conditions for T, and T, we have the 

problem: Do the first two conditions 

4 (a,b, — a,b,) —(a,+6,)* =9, . (j) 

4 (2 — 4231) — (a, +82)? = 0, (i) 
UAC Be NAc On) alain Bs) (JJ) 

cause the third expression to vanish? Since A, = AA,, we 

may write the third in the form 

(a,-++ bas (a,+ Be)? — 4(,a, + 4,8, + bya, Ale b.0,)*. (3333) 

This function does not vanish because of the presence of the 

two terms a,3, and b,«,; hence again 7, is not of type II. 

Both cases (1) and (2) lead to the same result, viz.: the 

conditions R, and D do not define a five-parameter group of 

type II. 
In like manner we may take the two conditions R, and D 

and write M and A(¢) in the reduced forms, thus: 

ay b, «ch | a,—P by Cy 

M= Qa bo C5 and AN (0) = a» bs—P eo = (i) (38’) 

0 i) 1 0 0 1-/ 

The problem is now identical with the one just solved for F, 

and D and leads to the same results. 
We have thus proved that there is no five-parameter group 

of type II defined by D and a set of linear relations on M. It 

follows that there can be no five-parameter group of type II 
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defined inany way. For if it should be found that D and two 
or more sets of linear relations or D and R, define a group, 
the number of parameters would have to be less than five. 

THEOREM 20. There are no five- six- or seven-parameter groups 
of type IT. 

225. Four-Parameter Groups of Type II. We shall now 
prove the existence of four-parameter groups of type II. We 
saw in case (1) above that conditions (i) and (11) were not 

sufficient to cause (iii) to vanish because of the presence of 
the terms a.3, and b,a, in (iii) not involved in (1) and (ii). 

b,=Oand 3,=0, or a,=0 and «.=0. Each one of these 
conditions is also sufficient, for on either supposition we have, 
Sincewails'a FOOL (a9). @,— 1 andia,— 1, or/0,— 1and @,—71; 

and either supposition causes (1111) to vanish. 
We found also in case (2) that a necessary condition for the 

vanishing of (jjjj) is either 6,=0 and 3,=0, or a,=0 and 
u,=0O. Each of these conditions is also sufficient, for on 
either supposition we have from (j) 6, =a, and 3,=u, and 

these cause (}}jj) to vanish. 
We found also in case (2) that a necessary condition for the 

vanishing of (jjjj) is either b,=0 and 3,=0, ora,=0 and 
u,.=0. Each of these conditions is also sufficient, for on 

either supposition we have from (j) 6,=a, and 3,=.u, and 
these cause (jjjj) to vanish. 

Thus cases (1) and (2) lead to the same result and we have 

a four-parameter group of type II, if b,=0 or a,=0. Tak- 
ing all combinations we have four cases to examine, viz.: 
b, = 0 with / a single or a double root of \(p) = 0, anda, = 0 
with / a single or a double root. The proof holds in all four 
cases. For these four cases the matrix M reduces respec- 
tively to 

|a, O Of a, O 0| \\a,; 6, O| a, 6, Ol 

(1) ja m 0], (2) /e 2 0|, (3)/0 a ol, (4) |o 1 0 
Nosibe 3 a3 63 7 ad; b; 1| Gis [a if | 

Let the invariant figure of type II, Fig. (14 II), be lettered 
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A, A’,l,l’, where A and / are respectively the point and 
line corresponding to the single root of A(p) =0 and A’ and 
those corresponding to the double root of A(p)=0. The in- 
variant lineal element of matrix (1) is Al’, of (2) is A’l, of 
(3) is Al’, of (4) is A’l’. Since (1) and (8) are the same we 
have three distinct cases and hence three distinct four-par- 
ameter groups, one for each distinct lineal element in the fig- 
ure AA’ll’. These groups are designated respectively by 

G/(Al), G/(A’)), G,(A). 
Since the vanishing of either 6, or a, is both necessary and 

sufficient to establish the first group property we have proved 
the following important theorem : 

THEOREM 21. A necessary and sufficient condition for the ex- 
istence of a group of collineations of type II is that the invariant 
figures of all the collineations in the {sy stem have in common the 
same lineal element. 

226. Other Groups of Type II. Each of the above four- 
parameter groups in its unreduced form is defined by the fol- 
lowing sets of relations: R,, R,, SAl and D. In precisely the 
same manner we can show the existence of groups of type II 
as follows; R., R,’ and D: i, ke,’ and Wc h,, Wa, fu, oA 
and D, where the relation S’./ exists between the coordinates 
of the single line and double point. These groups are desig- 
nated respectively by G,/(AA), G,’(ll’), G,(AA'l’). We have 
therefore six varieties of groups of type II defined by linear 
relations on the elements of M. 

In order to make the discussion complete we should exam- 
ine for the group property the set of »* collineations defined 
by R, and D. But since the group defined by R, alone is irre- 
ducible, the application of the above process would be very 
tedious. Later we shall attack the problem by an indirect 
method and reach a negative result. 

THEOREM 22. There are six varieties of groups of type II de- 
fined by linear relations on the elements of M, viz.: 
G,/(Al'), GAGAW): GCA). G,'(AA’), Gly), G,/(AA'l’). 
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TYPE III. 

We shall now investigate the conditions that must be satis- 
fied by collineations of type III, if they are to form a group. 
The necessary and sufficient condition that a collineation be 
of type III is that its characteristic equation A(p) =0 shall 
have three equal roots, for which its first minors do not all 

vanish. ‘This is equivalent to two conditions on the elements 
of M, call them D and D’, and shows that there are ~° col- 
lineations of type III. For the same reasons that hold in the 
case of type I, we see that there can be no five- or six-par- 
ameter groups of type III. 

227. The Group G,’(Al). We shall first investigate the 
existence of a four-parameter group of type III, defined by 
R,, Dand D’. We may write the matrix M and the charac- 
teristic equation \(~) in the same form as in Art. 224. The 
factor p—1 gives one root of A(p)=0 which must be a 
triple root. It follows that the quadratic equation (39) must 
be satisfied by 7 and also have equal roots. This is equiva- 
lent to saying that the two conditions, which gaye us cases 
(1) and (2) of Art. 224, hold simultaneously. Since these two 
conditions separately lead to the same result, when combined 
they give us that same result. | Hence we infer that there is 
no four-parameter group of type III defined by R,, D and D’, 
or by R,, Dand D’. It also follows that a necessary and 
sufficient condition for a group of type III is the vanishing of 
either 6, or a, in the reduced form of the matrix M. 

The matrix M of this group may therefore be written in 
either form 

109 S040! te OT 0 

(1) ||. z olf or(2)\o x ol. 
|@3 63 7 las by 1 

The group leaves invariant the lineal element A/, 7. e., the 
collineations of the group all have the same invariant figure ; 
it is designated by G,/’(Al). We have thus proved that if 
a system of collineations of type III form a group, it is neces- 
sary and sufficient that each collineation of the system leave 

-13 
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invariant the same lineal element. It also follows that 
G,'(A1L) is the only group of type III defined by linear rela- 
tions on the elements of M. 

THEOREM 25. A necessary and sufficient condition for the ex- 
istence of a group of collineations of type III is that the invariant 
figures of all the collineations in the system have in common the 
same lineal element. There is but one group of type III defined by 
linear relations on the elements of M. 

AENQed oy IINYe 

In order that a collineation be of type IV it is necessary 
and sufficient that its characteristic equation A(p)=0 have a 
double root for which all the first minors of A(p) vanish. 
This is equivalent to three non-linear relations D, D’, D’ on 
the elements of M. lt follows that there are ~’ collineations 
of type IV and no four- or five-parameter groups of this type. 

228. Three-parameter Groups of Type IV. Let us exam- 
ine for the first group property the system of ~° collineations 
defined by R,, D, D’, D’. We may take Mand A(¢) as before 
in the reduced forms: 

Ja, bi 0| a,—? dy 0 

M= |e: oland A(p)= le te 0 | =0. 938) 
| a3 bs 1 | a3 bs 1 |\¥ 

One root of A(p)=0 is 7 and this value makes six of the first 
minors of A(p) vanish identically. It must make the re- 
maining three vanish also, viz.: 

a,—/ by Q—P 6} a2 bo—p 

a» bo—P , a3 b3 | ; a; bs 

This gives us three conditions as follows: 
(a, —1) (bs —1) =azb,, 

(a, —1) bs =azh, (40) 
(6b: —1) a3=a2b;. 

These three are not independent, since the product of the sec- 
ond and third gives the first. 

Applying the first condition exactly as in case (1) Art. 224 
we find that a necessary and sufficient condition for a group 
is either b,=0 ora.=0in M. If b,=0, a,—1 can not vanish 
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without A(p) vanishing identically. Substituting 6,=0 in 
(40) we get the conditions b,=0, b,=1, 6,=0. In like man- 
ner if a,=0, we have the conditions a,=1, a,=0,a,=0. 
The matrix M may now be written in either of the equivalent 
forms: 

a 0 O 1 bh O 

a 1 Oj|}or||O 5 Oj}, 
az; O 1 (tip al 

These show that all collineations of the group leave invariant 
the line corresponding to the single root of A(¢) and the points 
on it corresponding to the double root ; 7. e., all points on the 
line. The group may therefore be designated by H, (1). 

In exactly the same manner it may be shown that the sys- 
tem of collineations defined by R,, D,D’,D” form a three- 
parameter group whose matrix may be written in the 
equivalent reduced forms : 

gl (0), 00) a, bh «4 
Qebo Coll OF 0: “2 10 
OMROT ed O Oil 

These forms show that the collineations of the group all 
leave invariant the point corresponding to the single root of 
A(p) and the lines through it corresponding to the double 
root; 7. e., all lines through it. This group will be desig- 
nated by H,(A). 

THEOREM 24. A necessary and sufficient condition for the ex- 
istence of a group of collineations of type IV is that the invariant 
figures of all collineations of the system have in common either the 
same vertex or the same axis. 

Other Groups of Type IV. In a similar manner we can 
prove the existence of a two-parameter group H.(AA’) in 
which all the collineations of the group have a common vertex 
A, and axes intersecting in a common point A’; also a two- 
parameter group H,(/l’) in which all the collineations have a 
common axis /, and vertices on a common line l’; also a one- 
parameter group H,(A,/), in which all the collineations have 
a common vertex and a common axis. 
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THEOREM 25. There are five varieties of groups of type IV de- 
fined by linear relations on the elements of J, viz.: H;(4), H;(¢), 

H,(AA), He(tl’), H,(A,). 

TYPE V. 

229. The corresponding results for type V may be readily 
deduced from those for type I[V. There is one added condi- 
tion, viz.: That A(p)=0 have a triple root instead of a 
double root and a single root. We infer at once that there 
are «’ collineations of type V and no three- or four-parame- 
ter groups of type V. 

If to the analysis of Art. 228 we add the condition that 7 is 
a triple root of A(p) =0, we reach the conclusion that there 
is a two-parameter group of type V whose matrix may be 
written in either form, 

a Oe @ i (i @ 

iy TE ON OVE HO ah ON 

Gs) (One IN OM Nie ik 

also another two-parameter group whose matrix may be either 
i (a) (0) L* by ‘cy 

a 1 c¢s|) OF |\O0 ft O 

ON Ome? 00" 2 

All collineations belonging to the first group have in com- 
mon the line.of,invariant points; all belonging to the second 
group have in common the pencil of invariant lines. We des- 
ignate the first group by H.’(l) and the second by H,’/(A). 
We also find a one-parameter group H,/(A1/) in which all the 
collineations have in common the same axis and the same 
vertex. We also see that theorem 24 holds word for word 
for type V as well as for type IV. 

THEOREM 26. There are three varieties of groups of type V de- 
fined by linear relations on the elements of J/, viz.: H.’ (A), 4,’ (2), 
H,! (Al). 
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$6. Normal Forms of Groups of Type I. 

We shall now return to the theory of the groups of type I 
and continue by the use of the normal form of T the discus- 
sion of those groups begun in $4 by means of the homogen- 
eous form of 7. We shall express the relations R,, R,, R,., 
etc., in the normal form of T and deduce therefrom many im- 
portant results, the chief of which are what we shall call the 
k-relations. 

The normal form of 7 will be taken with the proportionality 
factor p equal to unity, thus: 

LAU 2 0 | 

pede 
All BY CRA" | 

Care must be taken as before to exclude from the discussion 

the form T, viz.: 
eyE ee 0 
ANB RG iA 
A’ BY Ct kay |» CLC. 
A” BY CU WAY 

i 

230. Normal Form of R,. Using the normal form of the 
collineation T, page 104,, the linear relations FR, defining the 
group G,(A) become: 

Bc A PMO AGRE ACA a eet 

YB ov wan) lan on war) "an ge war] |AlB O ar |=! 
; i 7 : Al’ BY Cl RIAU 

he GC) 2B ANC (iB Ay BRB ie a 2] 

180 te mia C48 tua ate 88 Sk mm 
: ; ‘ A!’ Bt (Ou k/B" 

(41) 
5 KGa MG} lg (A EI AgEB™ aC i eh ea 

L}B Cc’ kC’|—m| A’ Coke 4+ n/a BY ke =| 4, Gy Gy | =. 
| Br Cc! kc” A” Cl’ kc" All BY kG” | | 

All Bil (Oi k’cv | 
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We may eliminate /, m, and n from these equations, as in 
Art. 217, and thus get: 

la,|—7 bi, |e1| 

A(1)=|le|  aol-z lal | =o, (42) 
jas, bs es|—1 

where |a,| etc., are the elements of the matrix of the normal 
form of T. But this relation is no other than the character- 
istic equation of T, with p replaced by 7. Hence, by Art. 
133, it becaks up into three factors as follows: 

(A’—1) (kA’—1) (k’A’—1) =0, (42’) 

where A’ is the determinant of the invariant triangle of T. 
We wish to know the meaning of each of these factors. 

The form of equations (41) shows that the point (/, m, 1) is 
transformed into itself. But this can only be true for one of 
the invariant points of 7. Suppose that it is the invariant 
point (A, B,C); substituting A, B, C for |, m,n in equations 
(41) we get A’ A=A, A’/B=B, A’C=C. Hence we have 
A’=1. If the point (1, m, 1) is (A’, B’, C’), this leads to the 
condition A’ =—7 sci (loam) asi Ave BC”). then kai 

The conditions for the group G,(A) require that one fac- 
tor of (42’) must vanish. If A’ = 7, the invariant triangles 
of the collineations in G,(A) all have the point (A, B,C) in 

common which is therefore the invariant point of the group. 
Le GAS 1 CAT BC is the invariants point) teks Asie 
( A’, B’, C’) is the invariant point. 

231. The k-Relation. Suppose that the invariant point of 
G,(A) is the point (A,B,C). Since the relations R, hold 
for (-7- and Gh inuG CA"), wwe Nayeg Ne ee leenel 
A,’ =1. Equation X of Art. 1794 may be written in the form 

Rese Nl 2 aie Ne hen N eee xX 

Substituting the values of the A’’s in X we get 

Jeske Tek lester (43) 
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If the invariant point of G,(A) is (A’, B’,C’), we get in the 
same way the relation 

kel kl ke! ; 
Keo? a ke2key2 ‘ (43 ) 

If (A”, B”, C’’) is the invariant point, we get 
kes Keke, 
Ke? 7 jRE kiy2 ° (43’’) 

In all three cases we see that the product of the two cross- 
ratios in T, along the two sides of the invariant which meet 
in the common invariant point, both cross-ratios being taken 
in directions away from the point, is equal to the product of 
the corresponding cross-ratios of T and T,. 

232. This shows that we have a very simple relation 
among the k’s of T, T, and T,. The ‘‘k-relations” 48, 43’, 
43”, are due to the fact that T, T,, T,, were written so as 

to have one root of their characteristic equations = 7. Since 
division of all coefficients a,, b,, etc., by a root of the char- 
acteristic equation allows us to throw any collineation T 
into this form, we may state: 

THEOREM 27. The 4-relations 43, 43/ and 43” hold for the en- 
tire group Gs, provided its transformations be written as here di- 
rected. 

233. Normal Form of R,in G,(l). Using the normal form 

of T the relations R, defining the group G, (1) become 

Bua CurA BeeiG.h,B B Ae ChaG 
ABC! AG ee Be Co Bly, BIC! ake! | — 7, , 

|BUY CV RAY |B’ Cv kB B’ Cc’ WC" 

Auer Al AG IB A Cee . 
A\A co kA’ |+ ula Cc ke i|+yijac r|=p, (44) 

| All (Olt! ki A” All Cc" kB" | A” (Ou kicv 

Ai BeasA AL 1B 18} Ae SBeaCr «| 
7a Alee Biwi Ale 1 |All. B! EB a Ale Reser Clab—=77. 

Al Bl kiA” All B" kB" All Br kc” 

Again we may eliminate 2, «,7 from these equations and 
obtain, as in the case of R,, the condition A(1)=0. We 
shall find as before the significance of each factor in (42’). 



200 THEORY OF COLLINEATIONS. 

Multiplying the first equation by x, the second by y, and 
the third by z, and adding we get 

me MB WO | Mm Wy a WM | ay) az 10 

AS A Hl ES Bel BS 8 | arches, 
A” BY CY KAY Al! BY C! kA" A! BC” WC" | (45) 

or Cn Fe 0 | 

ace @ ean ae ae) =AG+Uy+ v2. (45’) 
| A” Bu Cl’ ki(2, AU +p B!4+4C") 

Equation (45) shows that the form of the function 22+ 
uy+ rz is invariant under the normal form of T. Its value 
is the same at a pair of corresponding points (a, y,z) and 
(%,,Y,,%,), and is therefore invariant under T at each of 
the invariant points of T. The function vanishes at all points 
of a certain line of the plane which can only be one of the 
sides of the invariant triangle of T. 

234. k-Relations in Subgroups of G,. The group G,(AA’) 
is defined by two sets of relations R, and R,. Suppose 
the invariant point determined by AR, is (A,B,C), then 
that determined by R, must be either A’ or A”; let us sup- 
pose it is A’. Since (A, B,C) is an invariant point of the 
group, we have the k-relation kk,’ =kk'k,k,/ ; since (A’,B’,C’) 

/ — ki key! ° : 2 ko ames 
is also invariant, we have ,; =,.,,.- Combining these two 

v2" “ny” 

relations we get 
Hea — lok An tesa lee (46) 

Thus for the group G,( AK) we have a double k-relation. 
In like manner we can determine the k-relations in all the 

other groups of the list of Art. 209. The results are as fol- 
lows: The groups G,(A), G,(l), and G,(Al) each have a 
single k-relation, viz., k,k,’/=kk’k,k,; the groups G,(A1), 

G,(AA’), G,(ll’), G,(AA‘l), and G,(AA’A”’) each have the 
double k-relations, viz., k, = kk, and k,’ = k'k/’. 

It should be noted that each group whose invariant figure 
has at least one lineal element has the double k-relations. 
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THEOREM 28. Every subgroup of type I in G; which is defined 
by linear relations “ on the elements of M, and whose invariant 
figure contains a lineal element has a double 4-relation. 

235. The Normal Form of G,(K). If we replace a,, b,, 
etc., in the relations R, by their values from the norma! form 
Of Tt Viz: 

BuiG- Ash [A CA 
€,=|B) C kA’ |, O=|A C ka’ |, ete., 

Br Cc’ kA’ | Al Cc" kl A!” 

we get the normal form of the conditions for the group G,(k). 
If these new relations be multiplied by 2’, y’, ete., and added, 
we get 

ce meen ee nO 4 Cee Ze) 10 
AvseB a Co “A ANE Gass 

Ll Boo Ra | ty B o pp |t ete. 
All Bi C’ kA" All Br Cc ki A!” 

= la? + my? + nz? + 2pxey + 2quz+ 2ryz =f, (47) 

which shows that the function f is invariant in form under 
the normal form of 7, (and also of 7') and has the same value 
at a pair of corresponding points of the plane. It is therefore 
invariant in value at an invariant point of the plane. The 
function f vanishes at every point of a certain conic K. 
We must now examine the relation of the conic K to the 

invariant triangle of T. Evidently the position of the conic 
is not independent of the position of the invariant points 
A, A’, A”. Since the properties of pole and polar with re- 
spect to a conic are projective properties, it follows that if a 
point P and a conic K are invariant under 7, the polar of P is 
also invariant. Suppose the invariant point A is not on the 
conic K; its polar pis an invariant line of T and cuts k in 
two points, B and C, which are also invariant points. But 7 
leaves invariant only these points; hence B and C coincide 
with A’ and A” respectively. The polar of A’ (or A”) which 
is on the conic is the tangent at A’ (or A’’), and this passes 
through A. Hence K passes through two vertices of the in- 
variant triangle and at these points touches two sides of the 
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invariant triangle (see Fig. 25). Evidently the conic K may 
have any one of three positions with reference to the invari- 
ant triangle. Each side in turn may be the chord of contact 
with the other two sides as tangents. 

236. The k-Relation for G,(K). We found in Art. 182 

that the determinant A of the normal form of T is kk’ A’; 
we also found in Art. 210 that the determinant of T in G,(K) 
is A=1. Hence we have for every collineation in G,(K) the 
condition kk’/A’=1. When A is the invariant point of T not 
on the conic, we have A’=1; substituting this value in 
kk' A’ = 1, we get 

ih =a- (48) 
This shows that the cross-ratios along the two invariant 

tangent lines to k from the invariant point A have reciprocal 
values. In the same way when A’ (or A’’) is not on the 
conic, we get 

Hino puget aay (48’) 
These relations have the same interpretation along invariant 
tangent lines to the conic. Hence in G,(K) the cross-ratios k 
and k’ are not independent of each other. 

Equation X of Art. 1795 reduces to the identity of 1 = 1 for 
the group G,(k) and we can get from it no relation between 
the k’s of T, T,and T,. Hence for the group G,(K) the sec- 
ond k-relation turns out to be not a relation between the k’s 
of two components and their resultant, but between the k’s 
of each collineation in the group. 

237. k-Relations for GAlK) and G,(A'A”’K). The 
group G,(A/lK) is defined by sets of both linear and quadratic 
relations, hence the results of the last article and of theorem 
27 both hold. Since this group has an invariant lineal ele- 

ment, we have k,=kk, and k,’=k’k,'’; but since vs, 

we have only one k-relation, viz.: 

e—Kice = oinnular reasoning applies to the group G,(A A’A’ Kk) 
and we reach the same result, viz.: one k-relation k, = kk,. 
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238. The Insufficiency of the k-Relations. We have seen 
that the existence of the k-relations in the subgroup of G, is 
a necessary consequence of the vanishing of the function 
A(1). Hence we conclude that the existence of a k-relation 
is a necessary condition for a subgroup of G,; but we can not 
infer that it is also a sufficient condition. For if we assume 
the existence of the k-relation k,k,’=kk’k,k,/ and combine it 
with equation X, we get A,’=A’A,’ and this alone is insuffi- 
cient to restrict the group G,. 

239. Wesum up the results of our investigation on the 
k-relations as follows : 

THEOREM 29. A 4é-relation between the 4’s of two components 
and their resultant holds in reducible groups; if the subgroup is ir- 
reducible the relation is between the 4’s of each collineation in the 
group. 

240. Reduced Normal Form of G,(A). Sinee the group 
G,(A) is reducible in the general form we may expect its 
normal form to possess the same property. The geometrical 
significance of the reduced form of G,(A) is that the inva- 
riant point coincides with one vertex of the triangle of refer- 
ence. If T and 7, have one vertex of their invariant triangles 

in common, it is evident geometrically that 7, will also leave 
the same point invariant. To show this analytically we let 
T and T, have the invariant point A in common and let this 
common point be chosen as one vertex of the triangle of ref- 
erence. For example, let the co-ordinates of A be (0,0, C); 
then in the normal form of T we must put A = B=0 and in 
T,, A,=56,=0. Substituting these values in the equations 
I-[X, Art. 179, we see that the right-hand sides of III and VI 
vanish and the right-hand side of IX reduces to 

Clan “pris Calan Bil: 
We now have the three following equations from which to 
determine the values of A., B, and C.: 

A, B. As A, B, Bz 

A f B,! kp A.! = ’ A)! B,! kp Bo! — OF 

Ap! Be! klAo! Ao! Bol! Keo! Bo! 
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[A B, G | 
|As’ Bo! keCx! | = CC, 
| As’ Boll Kol Col! 

Expanding these three determinants along the top row and 
collecting coefficients we get 

Al B! A; B, fore alee (49) 

where m,, etc., are all second order determinants in A,’, B,’, 

etc. Solving the above equations we have A,=0 and B, = 0 

unless |" ™|=@0. But the value of |” ,..| is readily found 

to be (1 = k.) (1—k,’) ae a *, which does not vanish so long 

as T, is of type I. Hence we have A,=0 and B,=0. There- 
fore T, also leaves invariant the point (0, 0, C) and its normal 
form reduces also to the same reduced form as T and T,. 

Equations IX and X reduce respectively to 
| Ao! Boy | __ ~|Al Bil pv |Ay By 

Gi Ao! Bal =—— (Gi All Br Cc A,! By!’ , IX’ 
and 

CEN aS oe pe ioe Clare eon te ee 

Dividing X’ by the cube of IX’ we get 

hike Keke tee. (43) 

which is the same k-relation that we found in Art. 231. 

241. Reduced Normal Form of G,(l). If T and T, have a 
common invariant line, then T, will have the same invariant 
Ime. Let the line /”, joining A’ and A”, be the common in- 
variant line of T and T, and let this line be taken as the line 
z = 0 of the triangle of reference. Thus we have C’ = C” =0 
and C,' = C,’’ = 0 in the normal forms of T and T, respectively. 
Substituting these values in equations I, IX, we find that the 
right-hand sides of equations VII and VIII vanish and that IX 
reduces to the same form as in Art. 240. Solving as before 
equations VII, VIII, and IX, for C,’, C,’, we find C,’/=C,=0. 
Equations IX and X reduce to IX’ and X’ respectively of 
Art. 240, and hence we have the same k-relations as before, 
WAZ [Gee —— CC eer 

Aj! By 3 / 

A,’ B.| xX 
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242. Reduced Normal Form of Other Subgroups of G,. 
Let T and T, have in common the invariant point A and the 
invariant line 1; the group is then G,(Al), and T, will also 
leave A and / invariant. Making A=B=B’=0and A,=B,= 
B,’=0 in equations I-IX, we find A,= B,= B,/=0. Equa- 

tions V, IX, and X reduce respectively to 

Ke CAI. Co ACB C3kAy Bees. Ve 

ALB CL AUBIN CRA Be Cr: IX’. 

kel Al Bees — ik AV BC kek APB C,. X’. 

Dividing V’ by IX’ we get k,’=k’k,’; dividing X’ by V’ we 
get k, =kk,. 

In like manner we can find the reduced normal forms of 
each of the remaining groups in the list of Art. 209 and 216, 
and verify in this way their k-relations as given in Art. 234, 
ele: 
We have thus verified, by means of the reduced normal 

forms of the reducible subgroups of G,, the theory of the k- 
relations stated in Theorems 27 and 28. The group G,(K) 
being irreducible the theory of its k-relations can not be veri- 
fied in this way; it will, however, be amply confirmed later. 

$Z. Fundamental Groups, One-Parameter 
Groups and their Path-Curves. 

243. We shall now consider for each type of collineation a 
certain group which we shall call the fundamental group of 
that type. We have shown, Chapter II, Theorem 18, that 

each type of collineation has its own characteristic invariant 
figure. We have also shown that all collineations of a given 
type which leave invariant this characteristic figure form a 
group, the so-called fundamental group for that type. The 
fundamental group of type I is the group G,(AA’A”’), Art. 
197, whose invariant figure is the triangle (AA’A’’). The 
fundamental group of type II is G,’(AA‘l), Art. 226; that of 
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type III is G,’ (Al), Art. 227; that of type IV is H,(A,l), 
Art. 228; that of type V is H,/( Al), Art. 229. 

The fundamental groups of types I, II, and III each have 
more than one parameter and break up into one-parameter 
subgroups. The fundamental group of types IV and V are 
one-parameter groups. Each one-parameter group of 
collineations leaves invariant a family of curves called the 
Path-Curves of the group. The property of these path-curves 
will also be investigated in the present section. 

The efficient instrument for the investigation of these fun- 
damental groups, and in fact of any subgroup of G,, is the 
normal form of the collineation JT. We shall, therefore, in 
this and in $$ 8 and 9, make constant use of the normal forms 
of the various types of collineations. 

A. FUNDAMENTAL GROUPS OF TYPES IV AND V. 

244. Fundamental Group of Type IV. A perspective col- 
lineation S of type IV leaves invariant a point A (the vertex), 
and a line / (the axis) not through A, all lines of the plane 
through A and all points on the line /, Fig. 14, IV. It is fur- 
ther characterized by a constant, k, the cross-ratio of the one- 
dimensional transformations along each of the invariant lines 
through A. The equations of S may be reduced to the ca- 
nonical form, Art. 151, 

Pa, = kx 

St py = ky (50) 
Pz) = 2. 

Since / may have any value whatever it follows that there 
isa set of / perspective collineations leaving the same figure 
invariant. Let S, be a second collineation of the same set. 

The equations of S, may be written 
1% = ky a Sea ea (50’) 

Eliminating (7, y,z,) from the equations of S and S, we get 

the equations of their resultant S, in the form 
Po %. = Ko xy 

S22 psy: = key, Where k, = kk,. (50) 
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Hence S, belongs to the same set as S and S, and the set has 

the first group property. 
The inverse of S is found by solving the equations of S for 

«andy. Thus 
63a =hkl x, 

Se sy=ky, 
SZ — <1 - 

Hence the inverse of S is also in the set and the set possesses 
the second group property. The set therefore forms a group 
designated by H,(A,1); it is a one-parameter group, the 
cross-ratio k being the parameter of the group. 

THEOREM 30. The fundamental group of type [IV consists of all 
collineations of type 1V having the same vertex and axis: it isa 
one-parameter group whose parameter is the cross-ratio 4. 

245. Properties of the Group H,(A,l). This group 
H,(A,1) has essentially the same properties as the one-para- 
meter group G,(A’A) of our one-dimensional transformations 
of points on a line (Chap. I, Art. 27). It is needless to repeat 
the statement of those properties. In both groups the law of 
combination of parameters is k,= kk, and the parameters 

vary in precisely the same way. The transformations of the 
two groups G,(A’A) and H,(A,/) have a one-to-one corre- 
spondence and because of this property are said to be holoe- 
drically isomorphic. 

246. Fundamental Group of Type V. A perspective col- 
lineation S’ of type V leaves invariant a point A (the vertex), 
a line / (the axis) through A, every line of the plane through 
A and every point on the line /, Fig. 14, V. Along every in- 
variant line through A there is a one-dimensional parabolic 
transformation having only one invariant point, viz., A. 

The canonical form of S’ may be written (Art. 152): 

Roo ag ee ee es ' ee (51) 
where the vertex A is the origin and the axis / is the #-axis. 
Since t may have any value whatever, we see that there is a 
set of ~’ elations all having the same invariant figure. Let 
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another elation of the same set be S,’ having the constant t,. 
The equations of S,’, are 

(HO eae by) este (51’) 
1+he@,’ Ae he 

Eliminating x, and y, we get the equations of the resultant 
S,’ as follows: 

S! i %®=—— —— (51’) tite? 9s Tie? 
where t,=t+t,. Thus S,’ belongs to the same set as S’ and 

S,’.. The inverse of S’ is found by solving the equations of S’ 
for x and y. Thus 

Sates = v1 eee (57) 

L—ta,? 

The inverse of S’ is also in the set; both group properties 
are satisfied and hence the set is a group designated by 
H/(Al). It is a one-parameter group, ¢t being the para- 
meter. 

THEOREM 31. The fundamental group of elations in the plane 
is a one-parameter group, whose parameter is ¢. 

247. Properties of the Group H,'( Al). The group H,/(Al) 
of elations in the plane and the group G,’(A) of one-dimen- 
sional parabolic transformations, Art. 29, are holoedrically 
isomorphic. They each contain a parameter t, which com- 
bines according to the parabolic law, t+ t,=t,. Hence the 
properties of H,’'( Al) need not be discussed in detail but may 
be inferred at once from the properties of G,'(A), stated in 
Chap. I, Art. 29. 

B. FUNDAMENTAL GROUP OF TYPE I AND ITS SUBGROUPS. 

248. Fundamental Group of Type I. It was shown in 
equation (21) Chap. II, Art. 148, that, when the invariant 

triangle of a collineation of type I is taken as the triangle of 
reference, the equation of a collineation T reduces to the 
form: 

con—ieaes 

T: sm=ky, (52) 
S21 =2, 
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where k and k’ are the cross-ratios of the one-dimensional 
transformation along the sides AA’ and AA”’ respectively. 
These equations contain two independent parameters k and k’. 
Giving to k and k’ all possible values, we get a double infinity 
of collineations all leaving the same triangle, 4A’A”’, inva- 
riant. We wish to show that these ~* collineations form a 
group. 

Let us take any two collineations 7 and T, from this set 
and form their resultant 7T,. It is evident, geometrically, 

that T, belongs to the same set; for if T and T, each leave 
the triangle AA’A” invariant, their resultant T, must also 
leave it invariant and hence must belong to the same set. 
This may also be shown analytically. Let the equations of 7 
and T’,, be respectively: 

$a =ka $1 %2 =k, 2, 7 , 

LP: m="y, and Ts swe=kim, (52’) 

Eliminating w,, y,, 2, we get T,. Thus 
So%e = koa, 

/ hege S242 = Kay, wherevie— ic, and ik kh! (52!) 

Since 7, is of the same form as T and T,, it belongs to the 
same set and the first group property is established. 

The inverse of T is 
Pla=kin, L. 

1 bie PPy=k*y, (52 ) 
Cae zie 

This collineation is also in the set and hence the second group 
property is established. Thus the set forms a two-parameter 
group, which will be designated by G,(AA’‘A”). 

THEOREM 32. The fundamental group of type I consists of all 
collineations of type I having the same invariant triangle; it isa 
two-parameter group whose parameters are the cross-ratios & and 4’. 

249. One-parameter Subgroups of G.(AA'A”). We shall 
now show that the group G,(AA’A’’) contains ~! one-para- 
meter subgroups. Let k’ be replaced by ky. The collineation 

—14 
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T is now characterized by two constants, k and r, and the 
group G,(AA’A’’) has the two parameters, k and r. 

Let r be fixed and let k alone vary. In this way we select 
from the group G,(AA’A”) aset of *collineations. We 
wish to show that this set forms a one-parameter group. 

To show this take two collineations 7 and 7’, from the set 
characterized respectively by the constants (k,7) and (k,, 7) 
and find their resultant. From equations (52’’) we have 
ke=tKkipand ky hk! 3 settine. b= andale— i ainetnese 
equations we get k,= kk, and k,!=k"k7 =(kk,)"=k,. Thus 
the resultant 7, is characterized by the constants (k.,7). 
Hence the resultant belongs also to the set and the first 
group property is established for the set. The inverse of 
T(k,v) is T(k',r); this also belongs to the set and the set 
is therefore made up of pairs of inverse collineations. Both 
group properties are therefore established and the set is a one- 
parameter group. This one-parameter group G,(AA’A”), is 
a subgroup of G,(AA’A”). The group G,(AA’A”) contains 
coo such subgroups, one for each value of 7. 

THEOREM 33. The fundamental group of type I, G,( 4 4/4”), 
contains o! one-parameter subgroups @,( A A’ A”),; each subgroup 
is characterized by a constant 7, and its variable parameter is &. 

250. Properties of G,(AA’A”’),. This one-parameter group 
has properties very similar to those of the group G,( AA’) of 
one-dimensional transformations discussed in Chap. I, Art. 
27. The identical collineation is in the group and is given by 
k= 1, the infinitesimal collineation of the group is given by 
k=1+6, Art. 27, where 6 is infinitesimally near to zero. 

Corresponding to k= 0 and k= there are two pseudo-col- 
lineations. The group is, properly speaking, discontinuous 
for these values of parameter k. It is continuous for all 
values of k except k=0 and k= —, 

251. Path-curves of G,(AA'A’’),. We wish to investigate 
the effect on a point P of the plane of all the collineations of 
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the group G,(A’AA”),. The infinitesimal collineation of the 
group 

Px=x+dou, 

PYi=Ytrdy, 

P2a=Z, 

moves P to P,; applied again it moves P, to P,; applied an 
infinite number of times it moves P along a certain curve in 
the plane called a path-curve. There are ‘of these path- 
curves so situated that every point in the plane lies on one 
and only one of them. The equation of this family of path- 
curves is found by eliminating k from the equations of the 
group, viz.: 

he hee Set (52) 
21 z 21 

Eliminating k we get 

ae me — ame ee — Ol ae ar tO (53) 

Thus the path-curves of the group G,(AA’A”)r are curves of 
order r and form a family whose parameter is C. Fig. 24. 

THEOREM 34. When the invariant triangle is taken as the tri- 
angle of reference, the family of path-curves of a one-parameter 
group G,; (AA’A”’), is given by x” 2~-" =Cy, where r is a constant. 

252. Geometric Meaning of r. It is not difficult to deter- 
mine, from the equation of the family of path-curves, the 
geometric meaning of 7. Take any point P=(w,, y,,z,) and 
draw a tangent at P to the path-curve through Pand join P 
to the vertices of the triangle (AA’A”). The equation of the 
tangent to the path-curve at P is 

EA te ( Cr) ye, — Us,e,1-2 (1 Or) — 0. 

The lines PA, PA’, and PA” are given by the equations 

PAS Sys — Cy 0. 
Aye 0 

PAL Ye. — 26, — O- 

For C= 1, the cross-ratio of the pencil P(TAA’A”) is found 
to be r. It is evident that this cross-ratio r is a constant for 
every point on every path-curve of the group G,(AA’A”),. 
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THEOREM 35. The constant 7 in the one-parameter group 
G,( AA’A’’), is the cross-ratio of the pencil of four lines formed by 
a tangent to one of the path-curves and the three lines drawn from 
its point of contact to the vertices of the invariant triangle. 

258. Path-curves are Straight Lines when r=1,0, 0. 
The path-curves of a one-parameter subgroup of G,(AA’A”’) 
reduce to straight lines for three values of 7, viz.: r=(1,0, ~). 
Let r= 1 in x"z*7 = Cy, and we get a pencil of lines « = Cy 
through A; let » =0 and we get z=Cy, a pencil of lines 
through A’; let 7 = © and we get « = Cz, a pencil of lines 
through A”. 
When 7 = 17 the cross-ratio of the one-dimensional trans- 

formations along the line A A’ and A A” are equal and hence 
that along the line A’ A” is unity, thus this last transforma- 
tion is identical; hence every point on A’ A” is an invariant 
point. Consequently every line through A is an invariant 
line; hence the subgroup of G,(A A’ A”) for r = 1 is a group 
of perspective collineations, having A for the vertex and 
A’ A” for the axis. In like manner we see that when r = 0 
and ©, we have subgroups of perspective collineations and 
vertices A’ and A”, and axes A A” and A A’ respectively. 

THEOREM 36. The group G:(4 A’ A”) contains three subgroups 
of perspective collineations, viz., the subgroups for which 7 = 7,0, «. 
For these three subgroups the path-curves are straight lines. 

254. Path-curves are Conics when r = — 1, 2, 1 [2- There 

are three other specially important subgroups of G,(AA’A”); 

these correspond to the values r=—1,2,1/2. Putting 
r=2 in a'z**=Cy, weget yz =Cz’*; the path-curves re- 
duce in this case to a system of conics having double contact 
at Aand A”. A’A and A’A are common tangents to the 
pencil of conics and A A’ A” is the chord of contact. In like 
manner, when 7 = — /, the path-curves are «xy = Cz*; when 

r = 1/2, the path-curves are «z= Cy’. These are also pen- 
cils of conics having double contact; in each case two sides 
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Fic. 24. 

of the invariant triangle are common tangents and the third 
side is the chord of contact. 

THEOREM 57. The group G2( A 4’ A”) contains three special 
subgroups for which the path-curves are conies having double con- 
tact; these are the subgruups for which 7= — 7, 2, 7/2. 

255. Rational and Irrational Values of r. The subgroups 
of G,(AA’A”) for which r is rational have important prop- 
erties not possessed by the subgroups for which 7 is irrational. 
The equation of the family of path-curves is 

ie —3(O) (53 ) 

These curves are algebraic or transcendental according as r 
is a rational or irrational number. The vertices of the inva- 
riant triangle are singular points on all curves of the family 
when 7 is irrational; one vertex is a singular point when r 
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is rational, except when the path-curves are straight lines or 
conics. 

For any integral value of 7, except the special values 
1, 0, ©, —1, 2, there are six subgroups for which the 

path-curves are algebraic curves of the order r, viz.: 7, 1/r, 

1—r, 1/(1—7), r/(r—1), (r—1)/r. Thus for r=32 the 
path-curves are cubics, viz.: 

je (OK? 

the path-curves are also cubics for r= 1/3, —2, —1/2, 2/3, 
3/2, and for no other values of r. 

256. Involutoric Collineations in G,(AA’A”). The 
group G,(AA’A”) contains three subgroups of perspective 
collineations, viz.: whenr=1,0, ~. Each of these groups 
of perspective collineations contains an involutoric collineation 
and hence G,(AA’A”’) contains three distinct involutoric col- 
lineations. The values of k and k’ which correspond to these 
involutorice collineations are as follows: When k= —1 and 
k’ = — 1, the involutoric collineation has its vertex at A and 
A’ A” for axis; for the pair of values (— 1, 1) the collineation 
is involutoric, having A’ for vertex and A A” for axis; for 
the pair of values (1, — 1) the collineation is again involutoric 
having A” for vertex and A A’ for axis. 

The equation kt=~*k” is satisfied by the pair of values 

k = —1, k”=1 when r is rational with even numerator and 

odd denominator; it is satisfied by the pair of values (—1, —1) 
when r is rational with odd numerator and odd denominator; 
it is satisfied by the pair of values (1, — 7) when r is rational 
with odd numerator and even denominator. The equation is 
not satisfied by either of these pairs of values when ¢ is an 
irrational number. Hence the involutoric collineation given 
by the pair of values (— 1, 1) belongs to every subgroup of 
G,(AA’'A") for which r is rational with even numerator and 
odd denominator; the involutoric collineation given by the 
pairs of values (— 1, —1) and (1, —1) are contained respec- 

tively in every subgroup for which r is rational with odd nu- 
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merator and odd denominator and odd numerator and even 
denominator respectively. None of these three involutoric 
collineations can belong to a group G,(AA’A”), for which r 
is irrational. 

THEOREM 38. Every one-parameter group @,( 4 BC), for whieh 
ris rational contains an inyolutoric perspective collineation; no 
such group for which 7 is irrational contains an involutorie perspec- 
tive collineation. 

C. FUNDAMENTAL GROUP OF TYPE II AND ITS SUBGROUP. 

257. Fundamental Group of Type II. The canonical form 
of a collineation 7’. of type II has to be, Art. 149: 

————— y, = —— = 
x+t il x+t o+ty ie ar ew (54) 

A 

when the invariant lines of the figure are the lines « = 0 and 
y = 0, and the invariant points are the origin and the point 
(A,0). Equations (54) may also be written: 

x 1 1 k-1«& 
ee GINO) a Lae ae ee eee 

A second collineation T,’ with the same invariant figure may 
be written: 

FS | ees Pg ec BL) SU ae / ibe of =p -: and a Te rele (54’) 

Eliminating «x, and y, from the equations of 7’ and T,’ we 
get the resultant 7, in the form 

js Se) RST Agen ep ee "1 f De re Upia ne are ae yt tes (54’’) 

where k, = kk, and t,=t-+t,. The inverse of T’ is found by 
solving equations (14) for x and y; 

/-1 - ny ps eae 1 =: i IIR = wy LOSS ie ctr 2S a Tea ae ot”) 

Hence both group properties are established for the set of 
collineations of type II leaving the figure (AA’/) invariant. 
The set is therefore a two-parameter group designated by 
G,'(AA’l), the parameters being / and t. 
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THEOREM 39. The fundamental group of type IL consists of all 
collineations of type Il which leave invariant the same figure A A/7; 
it is a two-parameter group, the parameters being / and ¢. 

258. One-parameter Subgroups of G,'(AA‘l). We pro- 
ceed to show that the group G,’(AA'l) breaks up into o/ 
one-parameter subgroups. The two independent parameters 
of G,’!(AA‘l) are k and ¢ and the laws of combinations of 
these parameters are expressed by k,=kk, and t,=t+t,. 
Let us set k = a‘, where a is a constant, and let t be the in- 
dependent variable. In this way we select from the group 
G,’/(AA’l) a set of ~‘collineations. Let T’ and T,’ be two 
collineations of this set, characterized respectively by the 
parameters (a',t) and (a",t,). Their resultant T,’ has the 
parameters (a”,t,), where t,=t-+t,. The inverse of ¢ has 
the parameters (a~‘,—t). Both group properties are satisfied 
by the collineations of the set satisfying the relations k =a‘, 
and the set isa one-parameter group designated by G,'(AA'l),. 
Within the group G,’(AA’l) there are ~‘’ such subgroups, 
one for each value of a (except a = 0). 

THEOREM 40. The fundamental group G2/(44/‘/) breaks up 
into o/ one-parameter subgroups G,/(AA//)q. 

259. Path-curves of G,’(AA‘l),. The effect upon a point 
P of the plane of all the collineations of the group G,/(AA’l), 
is to move it along its path-curve. The equation of the 
family of path-curves of the group G,/(AA’l), is found by 
eliminating ¢ from the pair of equations 

2 x il 1 at—1 & 

0 AN — Tee ee 
y yi pa A a Yi 

Eliminating we get 

Xv) i x) x 1 « 

log. nm ie AN = log. a fa _ Ay ells 

vain (56) whence « = Cyu 

The curves of this family are transcendental curves; they 
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all pass through the points A and A’ and have these points as 
singular points. 

THEOREM 41. The family of path-curves of the group @//(44/Z)q 
A=z 

are transcendental curvesand are given by the equationz=Cya 44. 

260. Two Special Subgroups of G,/(AA‘l). Among the 
co subgroups of G,’/(AA’l), two are of special importance 
and require attention. When a=1, we have k=1t=1. 
This signifies that the one-dimensional transformations along 
AA’ and through A are both identical transformations, and 
hence all points on / and all lines through A are invariant 
under all collineations of the group. The one-dimensional 
transformation in the pencil through A’ is parabolic and hence 
along all the invariant lines through A the one-dimensional 
transformations are also parabolic. This particular subgroup 
of G,’(AA'L) is therefore a group of elations H,/( Al’) (l’ 
being the line AA’). When t= 0and k alone varies (this is 
equivalent to a= ©), the one-dimensional transformations 
along / and through A’ are both identical. In this case all 
points on / and all lines through A’ are invariant under all 
collineations of the group. The group G,/(AA’l),_. is, 
therefore, the group of perspective collineations of type IV 
ELE (GACT): 

A-«% 
The equations of the family of path-curves x=Cya 44 

reduces to x = Cy for a= 1 and to y= C/(A — 2) fora= 0. 

THEOREM 42. The two-parameter group G./( 44/1) contains 
one subgroup of collineations of type V, viz.: Hy ( Al’) for a = 1; 
and one subgroup of collineations of type LV, viz.: H,( A’l) when 
Ci— Con. 

261. Properties of the Group G,'(AA'l),. The parameter 
of the group G,’(AA’/), is t and the law of combination of 
parameters is t, =¢-+t,. Consequently the properties of the 
group are quite similar to those of the parabolic group of one- 
dimensional transformations G,’( A) (Chap. 1, Art. 29). 
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Two groups G,’/(AA’l), and G,’(AA‘l), have in common 
the identical and the pseudo-collineations corresponding to 
t=0 and t=. We wish to ascertain if they have any 
other collineation incommon. If a collineation whose con- 
stants are k and t belongs to both the above groups, then k 
and ¢ must satisfy both equations k=atandk=a,'. This is 
possible only when a=a,. Hence the two groups have no 
collineation in common, save the identical and the pseudo- 
collineations. 

D. FUNDAMENTAL GROUP OF TYPE III AND ITS SUBGROUPS. 

262. Fundamental Group of Type II. The canonical 
form of a collineation T’ of type III has been found, Art. 150, 
to be 

Loar x 

—_—=—-+2at, 

ap 4 eh y : / fe ; (57') 
1 1 x 
—=—+t—+ (a#+ht) 
Y. y ) 

the origin is the only invariant point and the a-axis the only 
invariant line. 7’ depends upon three constants, a, h, t, and 
hence there is a set of ©’ collineations of type III having the 
same fundamental invariant figure. Let 7,’ be a second col- 
lineation of the same set given by the equations 

P Y2 Yi 
(AES : ov’ 

t 1 1 xy ( v) 
—=—+t4—+a 47+ hth 
Y2 Yi Yi 

The resultant of 7” and T,” is found by the elimination of 

x, and y, to be 
Hip) x 
— = — 4+ 2aots 

Y2 y 
/} /} 

iE. 1 1 x (57 ) 
== — th talk, 
Y2 y ¥y 

where 
t=t+t ’ 

d2t,=at+aqyiti, (58 ) 

Aote+ hot, =at+ 2att, +a,t, +ht+h, ty 
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The resultant, T,’’, belongs to the same set as 7” and T,”, 
and hence the first group property is established for the set. 

The inverse of JT” is gotten by solving the equations of 7” 
for x and y. Thus: 

S 

~+42a(—t), 

f Mi . 

Ins 
(57) 

ll 

ee 
y 
1 —=—-t> +at?- ht. 
y y < 

The equations of 7” and its inverse differ only in the sign of 
the parameter t. Hence both group properties are established 
and the set is a group of three parameters, G,’’( Al). 

263. The Two-parameter Group G,’(AIN). Let T’(aht) 
and T,’’(ah,t,) be two collineations of the group G,’’(Al), 
1.e., let T”’ and T,”’ be so chosen that they are characterized 
by the same constant, a. Then their resultant 7,” is also 

characterized by the same constant, a; for if a,=a in the 
three equations (18), then also a, = a and they reduce to two, 
as follows : 

bart 

Peto. eo) 

Hence in G,’’(Al) if a be kept fixed and h and t be allowed 
to vary, we select from G,’’(Al) ~* collineations which form 
a two-parameter group, G,/’(AlN).* 

On the other hand, if / or t be kept constant in equations 
(18), these three equations do not reduce to a smaller number 
and we have no corresponding subgroups. 

THEOREM 43. The fundamental group Gs” (AZ) contains «+4 

two-parameter subgroups G, (A/V), one for each value of the con- 
stant a. 

264. One-parameter Groups G,//(AlS).* Let a,=a and 
h,=h in the system of equations (58); these equations then 
reduce to a single equation t,=t+t,. Hence if a and h are 

both kept constant and ¢ alone be made to vary, we thus se- 
lect out of G,’’( Al) 1 collineations which form a one-para- 

*The significance of the symbol G, (AlN) will be shown in Art, 266, 
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meter group, G,'/’(AlS). The group G,’( Al) contains ~, 
such subgroups, one for each pair of values of aandh; the 
group G,’’( AlN) contains ~’ such subgroups, one for each 
value of h. 

THEOREM 44. Each two-parameter group G@,” ( Al ) contains 
oo?! one-parameter subgroups @,” ( A/S) , one for each value of A. 

265. Path-curves of G,'/(AlS). The path-curves of the 
one-parameter group G,’’( AlS) are found by eliminating the 
parameter ¢t from the equations of the group: 

x1 
= at 

yi y 
/} ° ince Sn) Ve Pane (57) 

— =—4+t— +a@+ht. 
1 y y 

Eliminating t we get 

1 22 ha, ml a hz = 

yi fay? ay, y fay? 2ay, — 
or w+ 2hey+4aCy?=t4ay. (60) 

The path-curves of the group G,’’( AIS) are therefore a family 
of conic sections. 

From the equations of the family of conics we see that they 
all pass through the origin A and have the line / or y = 0, for 
a tangent. Two conics of the family have no point of inter- 
section except the origin; in fact the conics all have contact 
of the third order at the origin. They therefore form a pen- 
cil S of conics through four coincident points. Fig. 25. 

THEOREM 45. The path-eurves of the group @,” ( A/S) are the 
conics of a pencil S having contact of the third order at the invari- 
ant point A. 

266. Geometric Meaning of the Constant a. It was shown 
in Chapter II, Art. 139, that a collineation of type III is the 
limiting form of a collineation of type I, when the invariant 
triangle (AA’A”’) shrinks to a point. In this case in the 
equation k’ =k” we have r= 2 and the path-curves of the 
group G,(AA’A”’), are conics having double contact at A and 
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Me: 
A” and the lines AA’ and A’A” as common tangents, Fig. 
24. When the collineations of type I in the group 
G,(AA’A”) pass over into collineations of type III as their 
limiting forms as A’ approaches A, the pencil of conies 
having double contact at A and A” becomes the pencil S of 
conics having contact of the third order at A. 

The constant a designates (Chapter II, Art. 139) the limit 

of < as the collineation of type I approaches type III. From 

the equations 
[= ((A’—A)?+ (B’—B) )' , 

Fic. 25. 

A BAT and Pees el Ove [IE es 
aa |.A” Bi | 0 | Al—2Al + AB! 2R'-B)|? 

we have 

2 aa ee ay he 61 
i LSE (61) 

| Av —2A!'+ A B’—2B'/+B 
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(Paw 
— Ag Aty— AyAtx* 

Passing to the limit we have 

ON =o eed eee 
m dxd?y—dydx 

where F is the radius of the limiting circle through three con- 
secutive points. If the three points AA’A” be ona curve, 
then FR is the radius of curvature at the limiting point A. In 
this case the points AA’A” do not lie in the path-curves of 
the group G,’/( AA’A’’),, but are the vertices of the triangle 

formed by two tangents and their chord of contact. Now in 
the limit the radius of the circle circumscribing the triangle 
formed by two consecutive tangents and their chord is one- 
half the radius of curvature.t Hence a is half the radius of 
curvature at A of each conic of the family of path-curves of 
the group G,’’( AIS). 

This conclusion may be verified directly by calculating the 
radius of curvature at the origin of the conic 

a? + 2hay+4aCy—4ay=0. 

We readily find the radius of curvature at the origin to be 2a 
and thus independent of C, the parameter of the family of 
conics. 

THEOREM 46. The constant a, in the group G,”( A/S) is half 

the common radius of curvature of the path-curves of the group at 
this common point of contact, a. 

267. Geometric Meaning of h. To find the geometric 
meaning of h we find the equation of the polars of a point A’ 
on the «-axis with respect to the pencil of conics given by 

v?+2heuy+4aCy?—j4ay=0. (60) 

The coordinates of A’ are («’, 0) and the polar of («’, 0) is 

a’ (ae’ +hy)=4ay. 

*Goursat, Cours de Math. vol. I, p. 490. 

+Salmon, Conic Sections, 6th ed., art. 398a. 
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This is independent of C and hence the polar of A’ with re- 
spect to each conic of the pencil is the same straight line 
through the origin. 

If A’ is the point at infinity on y= 0, its polar is the com- 
mon diameter of the pencil of conics. The equation of the 
common diameter, or line of centers, is found by making 
x’= a. We thus get for the line of centers, 

tate — 0). 

Hence h is the negative cotangent of the angle which the line 
of centers makes with the invariant line y = 0. 

THEOREM 47. The constant 4 in the group G,”( A/S) is the 
negative reciprocal of the slope of the line of centers of the pencil of 
invariant conies of G,”( AlS) . 

268. Special Subgroups of G,/’( Al). The fundamental 
group of type III G,”’( Al) contains two two-parameter sub- 
groups which require special attention, viz.: when a= 0 and 
when a@ = o, 

First let a = 0 in equation (57); we then have 

a 1 1 x 

Te = 7aand Sigieia aes (62) 
1 £ Yi 

y 

1+ta+hty ° 
Ores and. 4, 

x 

1+ tx, +hty 

These equations show that all lines through the origin are 
invariant lines and all points on the line «+hy=0 are inva- 
riant points. The collineation 7’ reduces in this case to S’, 

a perspective collineation of type II. The system of equa- 
tions (58) reduce to 

je Pe 
het; = hoe h ft. 2) 

The group G,’’( ALIN) for a = 0 is therefore the two-parame- 
ter group of elations H,’(A). 
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In the second case let ht = t’; substituting this value of t¢ 
in the equations of 7” we have 

Hial x 

il: 
1 1 i> Be a 

= t/2 t!. 

Yi yh yh i 

Now let both a and h approach © and let the limit of 2 

be A’, while t’ remains finite. Equations (57) reduce to 

—=— 4 A’t! 

Yi y 
Se oy (63 ) 
SS Sa St i! 

Yr y 

The collineation represented by these equations leaves in- 
variant every point on the «/-axis and every line through the 
point (A’0); it is therefore a perspective collineation of type 
V. Equations (16) represent the two-parameter group of 
elations H,’(l). 

THEOREM 48. The group G,/ (AZ) contains two two-parameter 

subgroups of type V, viz.: H./( A) and H,/ (7); thus @,’ ( ALY) for 
a=0= H,(A) and G,” ( ALN) for a= oa = Hy (2). 

269. Properties of the Groups G,'’( ALN) and G,'’(AlS). 
There are * conics touching the line J at the point A; and 
there are ~-/ circles touching / at A. Each one of these cir- 
cles is the circle of curvature of a system of ©* conics touch- 
ing / at A. The group G,”(AIN), for which a is constant, 
transforms into itself and thus leaves invariant the net N of 
coo* conics whose common radius of curvature is 2a. It con- 
tains the group of elations H,’( Al). . 

The group G,’’( AlS) whose parameter is ¢ and for which 
the law of combination of parameters is t, =¢t-+t,, is isomor- 
phic with the parabolic group G,’(A) of one-dimensional 
transformations. Its properties are therefore known and 
need not be restated in detail. 
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$8. Groups of Perspective Collineations. 

270. In§7 we investigated the fundamental groups of 
collineations of types IV and V, viz.: the one-parameter 
groups H,(A,/) and H,'/(Al). In the present $ we wish to 
determine all varieties of groups which contain only perspec- 
tive collineations. We know from the results of Arts. 123, 
228, that there are ~’ perspective collineations in the plane 
and -that these do not form a group. We also know that the 
system of «” collineations of type IV which have a common 
axis (or common vertex) do form a group. We have also 
learned, Art. 124, that there are ~’ elations in the plane and 
these do not form a group; and a number of similar ques- 
tions have been settled. 

But in the present § we wish especially to show how the 
normal form of the collineation S and S’ may be used to de- 
velop a complete theory of perspective collineations. Weshall 
also make free use of geometric methods. Perspective col- 
lineations are a special kind, and for this reason they are 
specially fitted to illustrate the various methods that may be 
employed. We shall therefore ignore for the most part the 
results already obtained for types IV, V and proceed to inves- 
tigate these types de novo; in so doing we shall sacrifice 
brevity for the sake of ample illustration. The results ob- 
tained will serve as a check upon the methods of $§ 4 and 5. 

A. GROUPS OF TYPE V. 

271. Two-parameter Group H,'(1). Let us take two 
elations, designated by S’( Al) and S,/(A,/) having the same 
axis | and their vertices A and A, on /, Fig. 27(a), and deter- 
mine the character of their resultant. Since S’ and S,’ both 
leave invariant every point on /, their resultant also leaves 
invariant every point on / and is therefore a perspective col- 
lineation. Let t and t, be the characteristic constants of S’ 

and S,’ respectively, and let us consider the effect of S’ and 
—15 
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(Ce) 

BIG aie 

(b) 

(a) 
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S,/on a line g parallel to 1. S’ transforms g to g, and S,’ 
transforms g, to g., both parallel to /. Let the perpendicular 
distances of g, g,, and g, from | be respectively p, p,, and p,. 
By the equations of Art. 145, we have 

ey and = ao bi 
Pr Pp Pe Pi 

Eliminating p, we get 
if 1 

ae 

Let us also consider the effect of S’ and S,’ on a pencil of 
rays through O, any point on/. The pencil through O un- 
dergoes one-dimensional parabolic transformations due to S’ 
and S,’ which are expressed, Art. 145, by the equations 

cot», — cote =dt and cot, — coto, = d,t,, 

where d=0A and d,=0A,. Eliminating cot, from the 
equations we have 

cot p, — cotg =dt+d,t, = d,t,, 

which shows that the resultant one-dimensional transforma- 
tion in the pencil through O is also parabolic. Hence the 
resultant of S’ and S,’ is an elation S,’(A,/) having its vertex 

at some point A, on/. The characteristic constant and vertex 
of S,’(A,1) are given by the equations 

t, =t+t, and d,t,=dt-+ d,t,. (64) 

The first group property is therefore established for the set 
of * elations having a common axis/. This set is made up 
of «1 one-parameter groups H,'(Al), one for each point on 
l. Since the inverse of every collineation in one of these 
groups is likewise in thesame group, it is also in the set made 
up of these groups. Hence the set of «° elations having the 
same axis is a group of two-parameters, t and d, designated 
byl,’ (L)). 

272. Analytic Proof of H,'(l). Let the axis of the elation 
1 be taken as the x-axis and let the origin be some point O on 
1. The equations of S’ are found by putting B= 0c = 1c’ =0 
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c,=0 and c,' =1 in equation as chapter II, the normal form 
of type V. We thus get 

: t+ Ati y 
Ss’: «4= and. y, = —— (65) 

1+ty 1+ty 

S,' is of the same form with different A and ¢. 
a + Avtiy: 

SHe. 4. = a anda (65’) 
1+ty 1+tyi 

Eliminating «#, and y, we get 

w+ Astey 
So! %= eT NiChO qt ee (65’’) 

1+ toy 1+ toy 

where t,=t+t, and A,t,= At+A,t,. The first group 
property is thus established analytically, the second is shown 
to exist by solving (65) for « and y; and again we see the 
existence of the group H,’(l). | 

273. The Two-parameter Group H,'(A). Let us consider 
two elations, S’ and S,’, having the same vertex A and dif- 
ferent axes through A. Fig. 28(b). Every line through A is 
invariant under both S’ and S,’ and hence is invariant under 

their resultant. Along each invariant line through A both 
S’ and S,’ set up one-dimensional parabolic transformations 
with a common invariant point A. The resultant along each 
invariant line is therefore parabolic and hence the resultant 
of S’ and S,’ is again an elation with vertex at A. Thus the 
first group property is proved. Since the inverse of each 
elation is in the same one-parameter group, the second group 
property follows and we have established the existence of the 
two-parameter group of elations having a common vertex. 
The convenient symbol for the group is H,'(A). 

274. Resultant of Any Two Elations. Let S’(Al) and 
S,'(A,l,) be any two elations whose invariant figures are in 

the most general position with respect to each other. Let / 
and J, intersect in the point O and let g be the line joining A 
and A’, Fig. 27(c). Both S’ and S,’ leave invariant O and g, 
hence their resultant leaves both O and g invariant. Along 
the line g we have two one-dimensional parabolic transforma- 
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tions with different invariant points. Their resultant is 
(Chap. I, Art. 22) usually loxodromic with two invariant 
points, say B and C; it may however be parabolic with one 
invariant point, B; or it may be identical leaving all points 
on g invariant. In the first case if there are two invariant 
points B and C on g, then the resultant of S’ and S,’ is of 

type I, leaving invariant the triangle (OBC) ; if in the second 
case there is only one invariant point B on g, then the result- 
ant of S’ and S,’ is of type II, leaving invariant the figure 
(OBgq); if in the third case every point in g is invariant, the 
resultant of S’ and S,’ is of type IV, having O for its vertex 
and g for its axis. Hence the resultant of two elations in the 
most general position is of type I, type II or type IV. 

275. Two Elations Whose Resultant is of Type III. In 
the above configuration let O, the intersection of J and l,, co- 
incide with A, the vertex of S,’, Fig. 27(d). The resultant of 
S’ and S,/ now leaves invariant the point A, and the line /. 

Along the line / the two component one-dimensional trans- 
formations are respectively parabolic, with invariant point at 
A,, and identical ; the resultant along / is therefore parabolic 
with invariant point at A,. The two component one-dimen- 

sional transformations of the pencil through A, are respec- 
tively parabolic and identical; their resultant is therefore 
parabolic, having / as the invariant line. The resultant of S’ 
and S,’ leaves invariant the lineal element A,! and produces 
one-dimensional parabolic transformations along / and through 
A, and is therefore of type III. 

276. Anulytic Proofs of Articles (273-275). The results 
of the last three articles may be deduced analytically. We 
shall only outline the proof, leaving the details to the reader. 
Starting with the configuration of Art. 273 let 0 be the origin 
and l and I, the w- and y-axis respectively. The normal forms 
of S’ and S,’ reduce to the following: 

a+Aty 

Se ran a — 1+ty (66 ) 
y 

1+ty ’? 
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) Bititm 
litte i Sie: = and Saree (66") 

The resultant will be of type I in general; it will reduce to 
type III, if B=0; and to type V if both A=0 and B,=0, 
thus proving the existence of the group H,’(A). 

THEOREM 49. The o/elations of the plane donot form a group: 
there are three varieties of groups of elations, viz.: //,/(Al). //./ (/) 

and A,/( A). 

Ba GROURSTOR Mi YErnmslive 

277. Resultant of Sand S,. We shall now take up the 
problem of determining the character of the resultant of any 
two collineations of type IV, and all continuous groups of 
such collineations. We shall begin with the analytic deter- 
mination of the resultant of two perspective collineations 
having the same axis. 

Let S and S, be two perspective collineations having the 
same axis but not the same vertex. Fig. 28(a). Let us 
choose the common axis of S and S, as the z-axis, and let the 
vertices of S and S, be any two points in the plane. Starting 
with the normal form of type I we put k=1, A=0, B=0O, 
B’' =0 in equations (12), chap. II. We thus get, after ex- 
panding and reducing, 

zt ey (I = ty ey 
eo Emer mee eae Ne Re eg 

1+ (- a) 1+ ( ae 

The vertex is the point whose coordinates are (A’’ B’’) and 
k’ is the characteristic cross-ratio of the perspective collinea- 
tion S. Dropping primes and double primes, since they are 
no longer necessary, we can put (67) in the form, 

v1 x A {k-1 1 1 t fk—1) 

eae ty k ), Wi == k ). (67) 

Writing S, in the same form with different vertex (A,B,) and 
different cross-ratio k,, we have 

a A en i re (22 (67’) 
Y2 ky Y\ By k | Y2 ky, B\ k 
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Eliminating «, and y, from these sets of equations, we get the 
resultant of S and S, in the same form as S, viz.: 

y th x ds A (=) A = i « Als = 

yo khy ' B \kk Bee Kaepnty BN 
1 1 (ieee Lin) 1 Pee 

Bykk, By kk, hoy Balkan o 

(67) 
ye ky 

Comparing coefficients of like terms in the two forms of (32’’) 
we have three equations, as follows: 

bs oe DH | EY z= A, /ki=1 

k.=kk,, B» ( ke es, irae aise ( ky Ik 

ky fl k 1 ky 1 

Bila © Bik," Bek” 

The fact that (67) is of the same form as (67), shows that 
the resultant of Sand S, is a perspective collineation S, 
having the axis coinciding with the axis of S and S,. Equa- 
tions (68) give us the values k,, A, and B,, in terms of k, k,, 
A, B, A, B,. Wecan now state the result: 

The resultant of two perspective collineations having the 
same axis, but different vertices, is a perspective collineation 
with the same axis; the cross-ratio of the resultant is the 
product of the cross-ratios of the components. 

278. The Group H,(l). Equations (67) contain three 
parameters k, A, B; hence there are ~* perspective collinea- 
tions having a common axis. It has just been shown that 
this set of perspective collineations has the first group prop- 
erty, viz.: the resultant of any two of the set is one of the 
same set. We can also show that the set has the second 
group property, viz.: the inverse of one of the set is also in 

the set. If (67) be solved for a and = we get the inverse: 

x xy A 1 k k=1 Wh 
Fe ag Aes Pie ear (6) 

This is of the same form as (67) except that & is changed 
into 1/k; hence the inverse of every collineation in the set is 

also in the set and the set is a group. The symbol for the 
group is H,(/). 

(68) 
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All perspective collineations haying a common axis forma, 
three-parameter group. 

279. The Group H,(ll’). We have already seen that the 
cross-ratio of the resultant of any two collineations in H,(/) 
is equal to the product of the cross-ratios of the components; 
thus k,=kk,. We next inquire into the position of the ver- 
tex of the resultant, whose coordinates are (A,, B.). 

From equations (68) we find 

AB, (k —1) + A, Bk (ky — BB, (kk, — (lee Ee ef ebealev Lt (GO) 
By (k — 1) + Bk (k; — 1) B, (k — 1) + Bk (ky — 1) 

It is easy to verify the following equation, 

Abas Siteeiet 
eee ane —a()s (70) 
TN aa ee 

Hence the point (A., B,) is collinear with (A, B) and (A,, B,). 
From this fact we infer that all collineations having the same 
axis and whose vertices are collinear form a group. This 
group is designated by H,(ll’), l’ being the line on which 
the vertices lie. 

The group H,(/) contains ©’ two-parameter sub-groups 
H,(ll’), one for each line l’ of the plane ; but two such sub- 
groups contain one one-parameter group H,(A,/) in common, 
A being the point of intersection of /’ and 1,’. 

280. The Groups H,(A) and H,(AA!‘). It may be shown 
in a manner similar to Art. (278) that all perspective collinea- 
tions having the same vertex A form a_ three-parameter 
group H,(A), and that all such collineations having their 
axes concurrent at A’ form a two-parameter group H,(A A’). 
The same thing may be shown geometrically as follows: Let 
S(A,1/) and S,(A,l,) be two perspective collineations having 
the common vertex A. Fig. 28(b). Both leave invariant all 
lines through A; hence their resultant also leaves invariant 
the pencil through A and is also a perspective collineation. 
Both also leave invariant A’, the intersection of / and 1,; 
hence the resultant is of type IV and its axis, l,, goes 
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‘through A’. This proves the existence of both groups H,(A ) 
and H,(AA’). 

All perspective collineations having a common vertex A 
form a group H,(A); all of these whose axes are concurrent 
form a group H,(AA’); all which have both vertices and 
axes in common form a group H,(A,/). 

281. No Group H,(A'l’). We wish now to use the 
analytic method to disprove the existence of a group which 
might be mistakenly inferred from the geometrical point of 
view. It is plausible to infer that the ~’ perspective collinea- 
tions whose axes are concurrent through A’ and whose vertices 
are on /’, collinear with A’, form a group, Fig. 28(c). To 
test this we have only to write down two such collineations 
and form their resultant. The group property is proved or 
disproved according as the resultant is a perspective or a 
non-perspective collineation. 

Taking A’ for the origin and /’ for the z-axis, S reduces to 
the form 

x p(i-k) «+ky 

Sy a = 15 SES y= 1k 
1 ee Le Sf= SS = 7= = + Pp B v B Yy I B B Yy 

(71) 

where p = - = tan 9, the slope of the axis of S. 

A second collineation S, of the same set is 

uy ; pi (1-k1) Hm +hy. 

S:a= isi Sy y= tk 1—k . i a (Aa eect PCN a Ge A, Se os Bae (71’) 
1 1 yy 

The resultant is 

=e Ah 2p _k ae |p 1—k, pcs k) (t=h)] ky (Se ey ees (ile) 
B, B, \ i y 

a) 
=r ) Pi B, 
B 

\ 

\Pa (1—ky) + oki (1=k) tb otkhy 

Ys = 1=k  1-=k _ (=k) (t=) ) ti [B(GT } 
SED a ple t— SS \ 

B B, B, Wasa aie ee 
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Comparing coefficients of x and yin components and result- 
ants we have 

k,=kk,, p.(1—k,) =p,(1—k,) + pk,(1—k), (72) 

ae (Ce eee lle) ale tle key (1K —= i) 
Peer ne mT op tine oP ogy 

l = 

B B B, 

We have here four independent equations involving the three 

quantities k,, B,,p,. Hence the resultant is not of type IV 
and the set of perspective collineations to which S and S, be- 
long does not form a group. Equations (71”) represent a 
collineation of type II leaving invariant the origin, the y-axis, 
the point (0, B,) on the y-axis, and a line l, through the 
origin, but no other point on /,. 

Equations (72) show that no group of the kind H,(A‘l’) 
exists; but if B, = B in (71’) and (71”) they show the exist- 
ence of the group H,(AA’); if p,=p in the same equations 
they show again the existence of the group H,(Il’). 

282. Resultant of Any Two Perspective Collineations. Let 
S and S, be two collineations of type IV whose axes / and 1, 
intersect in O and whose vertices A and A, lie on a line l’. 
Fig. 28(d). The resultant of S and S, leaves O and Il’ invari- 
ant. Along l’ the two one-dimensional transformations due 
to S and S, result generally in a one-dimensional transforma- 
tion with two invariant points A and A’. Hence the result- 
ant of S and S, leaves invariant the triangle (OA A’) and is 

cf typeI. The non-existence of the group property is thus 
proved for the ~* perspective collineations. 

THEOREM 50. The o°% perspective collineations of the plane do 
not form a group; there are five varieties of groups of type LV. viz.: 
Wg (CA) He (1), He (AA), Lg(GV), H,(A,1). 

283. Dualisticand Self-dualistic Groups. From the dual- 
istic character of a collineation, we infer that its fundamental 

invariant figure is self-dualistic. | When there exists a group 
of collineations, leaving a certain figure invariant, there must 
also exist a second group leaving invariant a figure dualistic 
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to the first. Two such groups are said to be dualistic to one 
another ; if the invariant figure of the group is a self-dualistic 

figure, the group is called a self-dualistic group. 
As examples, we may cite the following pairs of dualistic 

groups: H,(A)) and 4,(1), H,(’) and Hj(A A’), AAD 
and H,'(l); the one-parameter groups H,(A,/) and H,’(A1) 
are self-dualistic groups. 

This principle holds for all collineations of whatever kind, 
and hereafter, when the existence of a certain group has 
been proved, it will be assumed, without further proof, that 
the dualistic group also exists and has properties dualistic to 
the first. 

284. Resume of Perspective Collineations. In the follow- 
ing list, the structure of all groups of perspective collineations 
is indicated. A dash above a letter indicates that the line or 
point thus marked takes on different positions in the invari- 

ant figure of the group. Thus H,’(l) = ~ H,’/(A1) indicates 
that the point A takes all positions on the line/. Dualistic 
groups are bracketed together, and self-dualistic groups are 

bracketed alone. 

| H,’(Al)f, 
} gl (A, l) ; ’ 

Wee (Le) eee (A) 
|H,/(A) = 'H,'(Al), 
\ H,(Il’) of H,(A,1)+H,'(Bl), 
| H,(AA’) = 01H,(A,1)+H,/(AV), 
\ 7, (7) = »?H,(A,l)+H,'(1), 

| H,(A) o* H,(A,l)+H,'(A). 

| 

| 
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$9. Groups of Types I, II and III. 

In the last $ we found the complete list of varieties of sub- 
groups of G, that contain only collineations of types IV and 
V. In the present $ we take up the problem of finding the 
complete list for types I, II and III. In § 4 we found all va- 
rieties of subgroups of G, that are defined by linear and quad- 
ratic relations on the elements of M; and it was there 

expressly assumed that the elements of M were not subject 
to any of the restrictions that would make the characteristic 
equations of M have multiple roots. Hence the groups of the 
lists given in Theorem 12 are all of type I. In $5 we found 
all varieties of subgroups of types II and III that are defined 
by linear relations in the elements of M. But it does not fol- 
low that these are the complete lists of groups of these types, 
for each of these groups may have subgroups defined by some 
additional condition and still of their respective types. 
For example we found in § 7 that the group G,( AA’ A’’) has 
«o/’ subgroups of type I each characterized by a constant value 
of r. We shall find that each of the groups listed in Theorem 
12, except G,(AA’A” K), has one or more subgroups of type 
I; and that each group listed in Theorem 22 has «1 subgroups 
of type II. 

A. GROUPS OF TYPE I. 

285. Three Classes of Groups of Type I. We wish to 
make a rational classification of the groups of type I. In so 
doing we shall find three distinct classes of such groups, viz.: 
(1) Those containing collineations in which the cross-ratio 
parameters k and k’ are independent of each other; groups 
of this kind are made up of two-parameter groups of the kind 
G,(AA’A”); (2) another class containing collineations in 
which the cross-ratio parameters satisfy the relation hk’ = k’ 
for a constant value of 7; the groups of this class are made 
up of one-parameter groups of the kind G,(AA’A’’),; (3) a 

class of groups for which r = — 1, 2, 1/2, these are made up 
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of one-parameter groups whose path-curves are conics. 
Strictly speaking the third class is only a special case of the 
second, but we shall see that the special case is so important 
that these groups should be classified by themselves. 

286. Groups of the First Class. One list of groups of the 
first class is already complete. It consists of G, and the sub- 
groups of G, defined by one or more sets of linear relations 
on the elements of M@. These are by Art. (209) G,(A), G,(J), 

G,(Al), G,(AA’), GWU’), G,(A, 1), G,(AA'l), G,(AA’A”). 
We include here the general projective group G,, since it can 
be built up of the »’ two-parameter groups G,(AA’A’’) of 
the plane and cannot be included in any of the other classes 
of type I. 

287. Groups of the Second Class. We now proceed to 
the determination of groups of another variety, viz.: those in 
which every collineation is characterized by the same value of 
r. Ithas already been shown, Art. 249, that the two-para- 
meter group G.(AA’A’’) breaks up into «’ one-parameter 
subgroups, each subgroup being characterized by a constant 
value of 7. If we take all types of groups of the first class 
and in these set k’ = ky and keep r constant and let the other 
parameters vary, we will sometimes find subgroups by this 
process and sometimes not. The groups G,; G,(/), G.(A); 
G,(Al); G,(AMW), G,AA’),-G,W); G,(AA), must -each 

be examined separately. 
Every group of the first class which has the double k-rela- 

tions k, = kk, and k,’ = k’k,’ may be broken up into subgroups 

of the second class. To show this let k’ =k" and k, =k,, 
where r is any constant. Thenk,!=k’k/ =k ky; (kk,) =k7. 

Hence the two conditions k, = kk, and k,’=k’k,' reduce to a 
single one and all the collineations in the group of the first 
class satisfying the relations k’ = k” form a subgroup. There 
will be one such subgroup for every value of 7. 

It was shown in Art. 234 that there are five groups of the 
first class which have the double k-relations k,=kk, and 
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k,’=k'k, and which therefore break up into groups of the 
second class, viz.: G,( Al), G,(AA’), G,(ll’), G,( AA’) and 
G,(AA’A’’). We shall designate these groups of the second 

class by G,(Al),, G,(AA’),, G(U’),, G(AA),, G(AA'A”),. 
It is easy to show that the remaining subgroups of G, of 

the first class do not break up into subgroups in the above 
manner. The groups G,(A), G,(l) and G,(A,/) have the 
single k-relation k,k,’=kk’k,k/; if we put k’=k" and 
k,/ =k, we do not find k,’=k, for all values of r. Hence 
these groups do not break up into subgroups of the second 
class. There is, however, one exceptional value of 7 for which 
those three groups have one subgroup each; this exceptional 
case is considered later, Art. 289. 

The six critical values of 7, viz.: r=1,0, ©, — 1, 2, 4, are 

to be excepted for each of these groups of the second class. 
For r = 1,0, © the collineations are all perspective collinea- 
tions and the groups corresponding to these values of 7 are 
groups of perspective collineations. For r= — 1,2,4 the 
path-curves are conics and the resulting groups belong to the 
third class to be considered below. 

THEOREM 51. There are five, and only five, varieties of groups 
of the second class. viz.: G,;(4ABC),, G.(ABI),, G3(AB),, Gs (W),, 

G,(Al),. 

288. Groups Whose Path-curves are Conics. We come 
now to the consideration of the groups of collineations of 
type I which are made up of one-parameter groups whose 
path-curves are conics. These groups are in many instances 
only special cases of groups of the second class when 
r= -—1, 2, 4; but we shall also find many groups which 

are not special cases of the above. _ These latter cases are 
usually of great interest. 

There is only one variety of one-parameter group of this 
kind; in this case the two common tangents to the conic and 
the common chord of contact form the invariant triangle. 
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We shall denote the configuration, see Fig. 26, by Sen A"K) 
and the group is G,(AA‘A’K). 

289. Subgroups of G,(A, 1”), G,(A), G,(l) when r = — 1. 
The three groups G,(A), G,(1) and G,(A,1) have the single 
k-relation kk,’ =kk'k,k,’, but not the double k-relations. 
Hence these groups do not break up into groups of the second 
class for all values of ry. But for r = 1 we do find a subgroup 
in each of the above groups of the first class. Let k’=k" 
and k,'’=k,; in the relation k,k,'!=kk,k'k,’, then, we have 
keeles’ — (hic, "> 4 TE mows — sl) othenwk. kan oes Ene 
two cross-ratios in the resultant have the same relation to 
each other as in the components. Hence for r = — 1 we find 
the three groups G,(A,l’’),__,, G,;(A),-_,, and G,(l),__,. 

THEOREM 52. The eroups G,(4,/”), G.(4) and G,_(2) each 
contain one and only one subgroup for a constant value of 7, viz.: 
WALL MN 7) p—lig Gisl (CAD) her) Gis (dy) pene 

290. The Structure of G,(Al)r=2. The group G,(Al) 
y = 2 breaks up into subgroups in several different ways, and 
accordingly its structure is peculiar and worthy of attention. 

There are °* distinct conics touching /at A. This system 
of conics is composed of 1 nets N, such that each net con- 
tains ©” conics having contact of the second order at A, and 
hence all conics of a net N have a common circle of curvature 
at A. Each of the circles touching / at A is the circle of cur- 
vature of such a net. 

Each net N is composed of 1 pencils S such that the conics 
of each pencil have contact of the third order at A. The 
polar of the point at infinity on / with respect to the conics of 
the pencil S is a line l’ through A, the line of centers of S. 
Each line through A is the line of centers of one of the pen- 
cils of the net N. Since there are /’ nets N, each line 
through A is the line of centers of ~’ pencils S. The system 
of conics touching / at A is, therefore, composed of * 
pencils S. 
Now we know that the group G,(Al),_, contains the fol- 



GROUPS OF TYPE I. 241 

lowing varieties of subgroups, G,(AA’),-.,  G,(Il’),-2, 
G,(AA'l’),_... We must examine the three remaining con- 

figurations, viz.: (AlK), (ALS) and (ALN), and see if these 
are invariant under certain groups. 

291. The Group G,( AIK). Let us take any conic K of the 
system touching / at A. We can construct ~’ triangles, Fig. 
29, having one vertex at A, another at A’ on l, and a third 

Fic. 29. 

vertex A” on the conic, such that AA’ and A’ A” are tangents 

to K and AA” is the chord of contact. Belonging to each of 
these triangles is a one-parameter group whose path-curves 
are conics all touching AA’ at A. Each of these groups has 
K among its invariant path-curves. Hence these ~* collinea- 
tions leaving invariant the configuration (A/K) form a group 
of two parameters, G,(AlK), the two parameters being the 
cross-ratios k along | and the position of the point A” on K. 
The group G,( A/),-. contains ~* such subgroups, one for each 
conic in the system touching / at A. 

THEOREM 55. All collineations leaving invariant the configura- 
tion consisting of a conic, one of its tangents, and the point of con- 
tact, form a two-parameter group G, (Al). 

—16 
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292. The Group G,( AlS). Let us select from the sys- 
tem of conics touching / at A any pencil S such that all conics 
of S have contact of the third order with each other at A. 

One property of this pencil of conics is that the polars of a 
point on / with respect to the pencil S coincide, and this com- 
mon polar passes through A. A pencil of conics having con- 
tact of the third order is projectively transformed into a 
pencil of the same kind. We can construct * triangles hav- 
ing one side AA’ along /, one vertex at A, and one vertex at 
A” on one of these conics, so that A’A’’ isa tangent to the 
curve at A’, and AA” is the chord of contact. Belonging to 
each of these triangles isa one-parameter group G,(AA’A’’),_, 
such that one conic of the pencil S is included in its family of 
path-curves. Every collineation in such a one-parameter 
group leaves invariant one of the conics of S and interchanges 
the other conics of S; hence, it leaves invariant the pencil S 
as a whole and the lineal element Al. The aggregate of all 
collineations, leaving S invariant, forms a three-parameter 
group G,(AlS). 

Since the group G,(A/S) leaves invariant the lineal element 

Al, the pencil of conics S having contact of the third 
order at A, we see that G,(AJS) can be built up out of ~’ 
two-parameter groups G,(Al/K), one for each conic in S. 
Again, since the polars of any point A’ on / with respect to 
each conic of S coincide inl’, a line through A, we see that 
G,( AIS) is composed of ~’ subgroups G,(A’Al’),_.. 

THEOREM 54. All collineations leaving invariant the configu- 
ration consisting of a pencil of conics S having contact of the third 
order with each other, and their common point 4 and line /, forma 
three-parameter group G;( A/S). 

293. Analytic Determination of G,( AlS) and G,( AIK). 
The group G,(Al) is reducible, hence the point A may be 
taken as one vertex of the triangle of reference, as (0, 0, 1), 
and the line / as an adjacent side, as y= 0 of the triangle of 
reference. We may therefore put A= B= B’=0 in the 
normal form of 7, and thus get the reduced normal form 
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of T for this group. Putting A = B= B’=0 and A, =B,= 
B,, =0 in equations I-IX of Art. 179 and dividing the oth- 
ers by IX we get the five following equations of the conditions 
for the group G,(Al): 

Keres (Ket) 
ko =khy ; kee! =k! key’; -— = yp  ; I, t=kk,; IT, III. 7 Aiestin gar ee 

TV. (iba) $5 =k (=k) ET th ey) Se (73) 
y, Bat _ Ment Aol Wat b= AY W=h)(s—2) A” 

> RTS SL SS ag ee aay UG BY’ 
ki (ky/—1) i (ky—1) Ay’ 

By! A! BB!’ © 

Making k’=k* and k,'=k;/, then k,’=k; equations I-V 
then reduce to the following equations of condition of group 

G,(Al),.2: 
eee eee Te = 2 an Js 

IV. (a) 5, = (k— 1) > +k (hi DS: (74) 

V ko2—1 — ha—1 Ay! _k®=1 _k-1 A” | k(k-1) (:-1) A” 

= eB ene = CATEMER i Bit 
ke (kit-1) _ k? (ki—1) Ay” 

By! Aj! By!’ 0 

If in these equations we make A,’= A’ = A/’ (III) i, 
pears and we get the Sule mans of the group G,(AA’),_.. If 

on the other hand we make a =a = a , then (IV) te 

pears and we have left the equations of the group G,(Il’),_ 
If both assumptions are made simultaneously, equations Ill 
and IV both disappear and we have left the equations of the 
BEOUp GAC AA oo. [keAV eA AW ands Al Al = Ao 

and B,'’= B” = B,'’, then equations LI, IV and V all disap- 
pear and we have left only k, = kk, which is the equation of 
condition of the group G,(AAA’),_,.. Hence we see that the 
group G,(Al),_, contains the following varieties of subgroups: 

G,(AA"),-., G,(W’),-2, G(AA’L),-2, and G,(AAA’),_,. We 
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shall go on to show that G,(Al),_, also contains other varie- 
ties of of subgroups. 

Al 2 
294. The Growp G,(AIS),_.. If we set =, a and 

A." (or in more general f pe aS By! Ay ’ O ig al torm B! mau as A /? 

2 are : Vigie NE 
in the conditional equations of G,(Al),_., we have 7 = 45 

(or more generally ay the a) and IV reduces to III. We 

thus have left the equations of a three-parameter subgroup of 
G,(Al),_.. It is not difficult to see that this three-parameter 
group leaves invariant a pencil of conics S touching / at A and 
should therefore be designated by G,(AJUS),_,.. The equa- 
tions of such a system of conics may be written 

x? + 2hey+ Cy? =40y, (75) 

where C is the parameter of the pencil. The polar of any 
point A’ on / with respect to this pencil of conics is 

AlexthA'y=2ay or paca : 

Hence the condition a +h= = , implies that the point (A’B’”) 

is on the polar of the point (A’, O) with respect to every conic 
of the pencil given by equation (52). 

It is easy to show by direct substitution that the transforma- 
tion T which satisfies the above conditions leaves invariant 
the pencil of conics 

e+ 2heytCy=4ay. 

The group G,(Al) contains therefore ©’ subgroups 
G,(AIS),_., one for each pencil S touching / at A. 

295. The Group G,(ALK). Thepencil Scontains ~! con- 
ics and is invariant under ’ collineations of the group 
G,(AlS),_.. If we choose from the pencil S a single conic 
K, and from the group those collineations which leave K alone 
invariant, we shall have a subgroup of G,(A/S),_.. 



GROUPS OF TYPE I. 245 

. 4s +4 AU eva 1 a 
If in addition to the condition ;, =~, we also put 7, - Al 

: AU 2a 1 a : (or, more generally, if we put %,+=%, and p,=4,+C) in 

the three equations of condition of G,(AlS),_, these three 

will reduce to two, viz.: k, = kk, and = z= = ap (he al) 

We thus obtain a two-parameter subgroup OF 1Ga(AUS \e=.. 
which we shall call G,(ALK),_,. The equation of the conic 

K is obtained by eliminating A’ from the two conditions 

ay th =e and 7,=4-+¢. We find that the point (A”, B”) 

always lies on the axis a? + 2hay+(h?—4aC)y? = say, 
where h, a and C are fixed numbers. The group G,(AIS) 
contains ~/ subgroups G,(AlK), one for each conic in S. 

296. Collineations Common to G,(ALK) and G,(AIK’). 
Let K and K’ be two conics of the system touching / at A. 
We wish to determine whether the two groups G,(AIK) and 
G,(AIK’) have any collineations in common. If K and K’ 
belong to the same pencil S, the two groups have in common 
the subgroup G,’’ (AIS) of type III. If the econies K and K’ 
belong to different pencils S and S’ of the same net N, they 
have three points in common at A and intersect in only one 
other common point. In this case the groups have no col- 
lineations in common. _ If the conics K and K’ do not belong 
to the same net, they may have double contact at A and A”, 
and then the two groups have the subgroup G,(AA’A’’K) in 
common since K and K’ both belong to the same pencil K,,. 
If the conics K and K’ intersect in two points other than A, 
then the groups have no collineations in common. 

297. Collineutions Common to G,(AlLS) and G,(AIS’). 
Kach pencil S is the invariant figure of a group G,(AIS), 
hence, there are ~* such groups all contained within the group 
G,(Al),_... But since G,(A1),_, contains ~‘ collineations and 
co* subgroups G,(AlS), it follows that two such subgroups 
as G,(AlS) and G,(AIlS’) must contain certain collineations 
incommon. Let us consider two pencils of conics S and S’ 
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which do not belong to the same net N. A given conic K of 
the pencil S is cut by each conic of S’ in two points other than 
A. When these two points of intersection of K and K’ co- 
incide, the conics K and K’ are in contact. Each conic of S 
has a second contact with one, and only one, conic of S’. The 
locus of the points of contact of corresponding conics of S and 
S’is a line l’ through A. Therefore, we see that the two 
three-parameter groups G,(AlS) and G,(AIlS’) contain the 

same two-parameter group @,(AA/l’),_.. 

On the other hand, if the two pencils S and S’ belong to 
the same net N of conics having contact of the second order 
at A, the conics from S and S’ cannot have another contact, 
and hence two such groups G,(AlS) and G,(AIS’) have no 
collineations in common. 

In a certain net N there are ~’ pencils S, S’, S”, etce.; 

each of these pencils is the invariant pencil of a group 
G,(AlS). ©’ such groups, no two of which contain a col- 
lineation of type I in common, include all collineations of this 
type in G,(Al),_.. It is easy to see that the «’ sub- 

groups G,(AA’A”),_, inG,(Al),_. are all included in the 
co! groups G,(AlS) of the net N. If it be true that all 
eollineations of type I in G,(Al),-. are included in the 
o' groups G,(AlS) of the net N, then all collineations of 
type I ina group G,(AIS’), where S’ is a pencil of conics 

not included in N, are to be found in the ~'’ groups G,(AI/S) 
of thenet N. In fact, if we take G,( A/S’) in turn with each 
of the groups G,(AUS) of the net, we see that G,(AIS’) 
has a two-parameter subgroup G,(ABl’),_. in common with 
each group G,(AlS) of the net; the common subgroup 
G,(ABl’),_, is different for each of the groups G,(AIS) 
of the net. In this way it can be shown without difficulty 
that every collineation of type I in G,(AJ/S’) is also to be 
found in the net of groups G,(AJ/S). 

THEOREM 55. The group G@,(A/),-2 contains o? subgroups 
G,;(ALS); two subgroups G;( A/S) and G;( A/S’) contain no col- 
lineation of type Lin common when the two peneils are S and S’ be- 
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long to the same net V; they havea subgroup G:(AA/‘/),-. in 
common when S and 8’ belong to different nets. Kach group 
G,( ALS) contains o/ subgroups G.( Al A), one for each conic in 8. 

298. The Group G,(K). Among the groups of the third 
class must be included the irreducible group G,(K). It con- 
tains, Art. 204, the subgroups G,( AIK) and G,(AA‘A’k), 

both of type I and third class. These subgroups have both 
been found again by other methods. 
We have thus found eleven varieties of groups of the third 

class. Five of these eleven groups, viz.: G,(AAA’),, 
G,(AA'l),, G,(AA’),, G,(U), and G,(Al),, where r= —1, 2 
or 4, are only special cases of groups of the second class and 
not sufficiently peculiar to warrant listing them separately. 
On the other hand the six groups G,( AIK), G,(K), G,( AIS), 
G,(Al),__,, G,(A),--, and G,(l),__, are essentially distinct 

from the groups listed in the second class. 

THEOREM 56. There are six distinct varieties of groups of tpye 
li, Ula GSS, wine (n(4WiO), “Cal O\n Ea(ZUS)), Ga(OMW)eer 
G;(A),=-1 and G;(7),—-1. 

B. GROUPS OF TYPES II AND III. 

We pass now to the problem of determining a complete list 
of the varieties of groups of type II. We have already found 
in $5 a complete list of the different varieties of groups of 
type II defined by sets of linear relations on the elements of 
M with the additional condition D=0. In § 7 we discussed 
the fundamental group of type II, G.’(AA’l), and its sub- 
groups G,/(AA‘l), and found, Art. 211, that no collineation 
of type II can leave a conic invariant; hence there are no 
groups of type II defined by quadratic relations on the ele- 
ments of WM. 

299. Two Classes of Groups of Type IT. Weshall find two 
distinct classes of groups of type II, viz.: (1) those in which 
the two parameters k and ¢ are independent of each other ; 
and (2) groups made up of collineations in each of which the 



248 THEORY OF COLLINEATIONS. 

parameters / and t satisfy the relation k =a‘ for a constant 
value of a. Groups of the first class can all be built up out 
of the * two-parameter group G,'(AA’l) in the plane; groups 
of the second class can all be built up out of one-parameter 
groups G,’(AA’l),. 

300. Groups of the First Class. Our list of groups of the 
first class is already known; it consists of the six groups 
named in Theorem 22, viz.: G,/(Al’), G,(Al), G/(A’l/), 
G,’(AA’), G,’(U’), G,’(AA‘L). We wish, however, to verify 
the correctness of this list by means of the normal form of 
type II. Since each of these groups is reducible, this is an 
easy task. In this way we shall also find the & and t-relations 
that enable us to determine the list of groups of the second 
class. 
We proved in Theorem 21 that a necessary and sufficient 

condition for a group of type IJ is that all collineations in.the 
system shall have in common the same invariant lineal ele- 
ment ; and we drew the conclusion that there are three dis- 
tinct varieties of groups of type II with invariant lineal ele- 
ment, one for each lineal element in the figure (AA’l). We 
shall verify this conclusion by means of the normal form of 
type II. ; 

301. The Group G,/(Al). Let T’ and T,’ be so chosen 
that their invariant figures have the point A and the line / in 
common; and let A be the origin and / the y-axis. The nor- 
mal form of 7’ reduces to 

a 

Th oe Yea Fi Rez, 

and y, = 
Gi BR poe Be. 

1+ty+ S Spe 1+ty+ -—t) 
ADT a BEE Al 

Writing 7,’ in the same form as T’ and eliminating x, and y,, 
the resultant is found to be of the same form with the follow- 
ing conditional equations: 

(ice — ele = (2), t. = t= t;.. 

B,! B By! 
= (CaS Th) SS SF = 5) —— (en nd) EC (3) ris Pai re Cae) 

tv, = (76 ) 
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ko—1 Be! hates eile 19 
ohare elas -, 
bse the existence of the group G,’ (AD) is verified. 

302. The Group G,(A'l’). Let T’ and T,’ be so chosen 
that their invariant figures have the point A’ and the line 1’ 
in common; and let A’ be the origin and /’ the x-axis. The 
normal form of 7’ reduces to 

yrisgigDapet tin nt 
A 

e+ Pied 

oe 1—k t ‘SIPs z ee, )s 
ce! c! A : 

(78) 
* y 

Yi = iar t CPST 
k+ e+ (+i \y 

A c! c! A 

A simplification of the normal form results if we set Le =, 

It was proved in chapter II, Art. 136, that, if t and t’ denote 
the parole constants along l’ and through A’ respectively, 

t’= 7,9 t Where 9 is the angle/AA’. In the above normal 

form A is the distance between the inyariant points and c’ 
the sine of the angle between the invariant lines; _ hence t’ in 

the equation t/=“" is the parabolic constant through A’. c! 

Making this substitution equations (78) reduce to 
a+ tly y 

1-—k t! c k-1 C= (Same denominator. ) Th 

PG SS I oe 
Writing 7,’ in the same form and eliminating, the resultant is 
also in the same form with the following conditional equa- 
tions: : 
eer iles. (yao ote 

Th |o> Wits ki ki (1—k) 
(2) ek see 

a! Co 2 ka—1 1 1 

atta a at (g-a)+ 
1 C1 — Cue j/k—1 
— t/ tal 3 Hen + +o ( x ee 1 ( a ) 

Hence the existence of the group G,/(A’1) is verified. 

t= 

k+ 

(79) 
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303. The Group G,/(A‘l). Let T’ and T,’ be so chosen 
that their invariant figures have the point A and the line l’ in 
common, and let A be the origin and /’ the x-axis. The nor- 
mal form of T’ reduces to 

c 

ku + —-(i—k)y 
c! 

t, = | v, z (80) 
k—-1 We ce (1—k)} 21 (Same denominator.) 

1+ = 45 + —— . 

A’ (acl el) Lae 

Writing T,’ in the same form and eliminating, the resultant is 

also of the same form with the following conditional equa- 
tions: 

Qik — Kier 
ease Se, Kyat = A, A! Ay! 

(3): ese Shee Gee (81) 
C2! c! cy! 

te ete ics Be ath, 12% 
Cys US es 8a ee 

c./ co! A)! c! c;! ce! A! 

ne Gem = c G ky | Hy. Oye (| ) 

c! A)! (a A,’ 

Hence the existence of the group G,(Al’) is verified. 

304. The Group G,( AA’). If we make A,=A in the 
conditional equations of the group G,/(A’l’) we find the con- 
ditional equations of the group G,’ (4AA’) as follows: 

(1) io (C4) ea Se 
i 82 

(3) 3 -) = mk + e-D (ee) 

We also obtain the same equation by making A,’ = A’ in the 
conditional equations of the group G,/( Al) and writing ¢ for 

= . Hence the existence of the group G,’(AA’) is proved, and 

also that it is a subgroup of both G,/(A/l’) and G,/(Al). 

305. The Group G,/(ll’). If we make B’ = 0 in the normal 
form of the group G,’( Al), we obtain the normal form of a 
group G,’ (Il’) as follows : 

ka Yy 

’ Th = rena see oe Tap aang y+ AV’ x y A’ x 

to 
(86 ) 
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Making B’=0 and B,)=0 in the conditional equations of 
G,(AlL) we get 

Gyn, Omebacee, oe 
kek = tAN ak i=2) 

Ee a) espe 
The same normal form and conditional equation may be ob- 
tained by making c = 0, c’ = 1, c, =0 and ¢,' = 1, in the nor- 
mal form of the group G,/( Al’) and its conditional equations. 

306. The Group G,/(AA‘l). If we make A,’ = A’ in the 
normal form and conditional equations of the group G,’ (Il’), 
we fix the point A’ on the w-axis and obtain the normal form 
and conditional equations of G,/(AA‘l’), the fundamental 
group of type II. The normal form remains the same as in 
G,'(ll) and the conditional equations become 

Cl) ee hia, Ce et (85 ) 

The same results may be obtained by making c=0, ¢’/=0, 
¢,=1 and ¢,/=1, in the normal form and conditional equa- 
tions of G,/( AA’). 
We have now verified the list of all varieties of groups of 

type II that can be compounded out of the ©’ two-parameter 
groups G,/(AA'l’). 

THEOREM 57. There are six varieties of groups of the first class 
of type II, viz.: G.’( AA), Gl(4A’), Gy (Ul), G,/ (Al), Gs (AV) 
and G,/ (Al). 

307. Groups of the Second Class. It was shown in Art. 
258, that the group G.’( AA’l’) breaks up into one-parameter 
groups G,’(AA’l’), when we put k = a‘ and keep a constant. 
In like manner all groups of the first class of type II, which 
have among their conditional equations these two, viz.: 
k, = kk, and t, =t-+t,, break up into subgroups characterized 
by a constant a. The groups of the first class which meet 
these conditions are G,’(AA'l’), G,/(AA)), G,/ (ll), G,{(A’l), 
G,/(A'l’). We therefore have five varieties of groups of the 
Becondiclass, viz.: G,/(AAl).. (G,’(AA’)... G(W),, G;' (Al), 
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and G,’(A’l’),.. The group G,'( Al’) does not break up into 
subgroups of the second class. 

THEOREM 58. There are five varieties of groups of the second 
class of type II, viz.: G( 44/l'),, Ge ( AA’), Gs! (ll), Gy (Al), and 

Gs ( Ay ers 

308. Groups of Type III. We found in Art. 227, that 
there is only one variety of group of type III defined by linear 
relations on the elements of M and D=0 and D’=0. This 
is the group G,’’( Al) which is the fundamental group of the 
type. This fundamental group was investigated in § 7, and it 
was found to contain two varieties of subgroups, viz.: 
G.''( ALIN) and G,’’(AlS). Hence these three varieties of 
groups of type III form the complete list. 

THEOREM 59. There are three varieties of groups of type ITI, 
viz.: G,’ (Al), GJ’( AL), Gy’ (ALS). 

C. TABLE OF GROUPS OF COLLINEATIONS OF THE PLANE. 

In this table, the collineation groups of the plane are classi- 
fied according to the five types of collineations. Each group 
is designated by an appropriate symbol. The self-dualistic 
groups are enclosed in brackets, thus: | G,(AA‘A’’) | ; a pair 

of dualistic groups are bracketed together, thus: } ee! r. 

Similar tables are given by Lie, ‘‘Continuierliche Gruppen,” 
pp. 288-291, and by Meyer, ‘‘Chicago Congress Papers,” pp. 
188-190; but in these tables of Lie and Meyer the notation 
and classification is entirely different. The numbers on the 
right refer to Lie’s and Meyer’s tables respectively. 
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TYPE I. 

A.—Groups of the First Class. 

Symbol. Invariant Figure. Lie. Meyer. 

(Gag eG A Al Aa ieee Trisntlon. 5 Ab NAN AS. RAGA nse ehbo ch (31) (28) 
(2). { G;(AA'I’) He Two points, their joining line, and a line 

through one of these points............ (20) (15) 

(3). \ Gs (AA) le Two points and their joining line......... (11) =(9a) 

(4 Me | G; (WW) \ . Two lines and their point of intersection.. (12) (9b) 

(5). i G,; (A, lL’) tS Rointrandilines separates-aan 2: sesces see oe (10) = (8) 

(6). {4G (ay }. Lineal element. ........... € est Ae (ye) 
CO) Wescaye ys POINT ee. Coke ae (3) (2b) 
KSi)eel Gea) ae Baer thee a RS Sh ae eae. Zs (2) (2a) 
(9 ): } Gs ie INownvariant fe ures esac. east ereeni cree (1) (1) 

B.—Groups of the Second Class. 

(1). {G,(44/4”), |. Triangle and pencil of path-curves.. ..... (36) (26) 
CAS ena: ts Sameas G, (AAW) 28.0.0 0e.. Joes (27) (20) 
(CS) seer(A Ads js. Sameus GidAADi es). chuls. ck: (18) (14a) 
(SE SICEAGHING. ERCP cnr -1(@7)) ee a te re a a (19) (148) 
(a) eae GameanGe(Al) eo . i eletedr pate (7) ~~ (6) 

C.—Groups of the Third Class. 

( 1 ). { G, (AA’/A"K) 'z Triangle and pencil of conies having double 
CONGACTA MAS nets Oe ere eee ne (85) (26) 

(2 ). ; G2 (AIK) ie Conic and point A on it and tangent at A, (34) (25) 

() Ser eare-o ie Cae am apeeet oy a an eee (23) (17) 
(4 ). ; G; (AlS) f. Lineal element Aland pencil of conics hav- 

ing third order contact at A and touch- 
Tnigalie ted. ton Pp eee Ste DS, (14) (11) 

(ai) eas GacAnie-e- sSameraanG, (Abd). C8.en oe - (7 (1s) 
(Gist Gat) oars Winenllelementyca.b cssesuscet hs «<0. dese (8) 6) 
WG ean Cem(eAyy et wll 2s Pointescc. fe, eile act SA. bs sac cdc ds (5) (3b) 
SDC CR(G) one nee incr. ee heer tiat. oo. (4) (8a) 
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TYPE ae 

A.—Groups of the First Class. 

HiGUCA AN) (. 1, SameasiGa( AAW) o._ cigertehe eet (28) 
\ G55 (A Allaire Saree) (ALA) ed te ne eo ee (18) 
Gil) =< Nex Same aa") Se ce he eee (19) 
WGMCAU) ae Tineal element 2ote re reese a sent: (7) 
lqy(Al J. “ bee EE GET ae! ee be (7) 

$ Gy(Al) }- “ it aed Se ae ie ene eee (9) 

B.—Groups of the Second Class. 

{ G(AA'l), , Same as G;(AA‘l) and pencil of path- 
CULVES irc. tee eit. eee (36) 

\ Gi! (AA)al- SamerasiGa (4140) seen eiees.© (25) 
(Gua ae SamievseiG, (ll) ih Seceecpe ch ore en (26) 

\ Gs (Al)al- inealvelementacesasensceeecc creer eee (15) 

(G/ (AD), 5+ “ CERES OAL eee aa tony Aen (16) 

ONe3) TOU 

{ G," (AlS) fo Lineal element Al and pencil S of ©! con- 

ics having contact of third order with 
Watt Al sca yee meen ter cto (87) 

7 G.! (ALIN) - Lineal element Al and net N of «2 conics 
having contact of second order with l 
Pray plain ed, Se ere T AM ee AT (24) 

§ G;// (Al) 3 Lineal element Al and * conics touch- 
EU GLA Re NST a (13) 

TYPE IV. 

{M(Al $ All points on J and all lines through A.... (38) 
\ H,(W) / : The lines / and l’ and all points on/....... (32) 

( H, (AA’) \ The points A and A/andalllinesthrough A, (33) 

(H(A) ]- All lines through A............. 000.0. -00+ (22) 
lH, 1) SJ All pomntacotied con ei see etek (21) 

APARD We 

CAL) he All points on land all lines through A.... (39) 
\my(A))- All lines through A...........2. 020.00 000 (30) 
| H.! (1) ) : PNM Fey) Oa nacion soosaGans0ascpD0adAdC (29) 

(21) 

(14a) 

(146) 

(5a) 

(5b) 

(7) 

(27) 

(19a) 
(196) 

(12a) 
(12) 

(28) 

(18) 

(10) 

(29) 

(24a) 

(24D) 

(160 ) 

(16a) 

(30) 

(22b) 
(22a) 
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A comparison of the tables of Lie and Meyer show them to 
be practically identical; in fact, Meyer has only put Lie’s in- 
finitesimal notation into finite form. A comparison of the 
present table with Lie’s table shows some results worthy of 
notice. 

The groups numbered (18) and (19) in Lie’s table are the 
groups G,(AA’), and G,(l/’), for all values of r. These are, 
in general, of type I, second class, but they include also the 
groups G,’(AA’) and G,'(ll’) of type II, first class. The ex- 
istence of these latter groups would hardly be suspected from 
Lie’s or Meyer’s formule. 

Again, Lie’s group (7) is in general, G,(A/), for all values 
of r, but it also includes the groups G,/(Al) and G,/(Al’). 
The existence of the latter as distinct groups is unknown to 
Lie’s theory. 

The group G,(Al),_., (8) of Lie’s table, is only a special 
case of G,(Al),, (7) of the same table; and, though its struc- 
ture is somewhat peculiar, it is doubtful if it is worthy of 
special mention in the list. 

$10. Groups of Real Collineations. 

Thus far in treating collineations in a plane we have con- 
sidered the most general case where variables and parameters 
are complex numbers. We shall now examine the special 
ease of real collineations, 7. e., those that transform real 
points into real points. 

309. The Real Group G,. A real collineation is repre- 
sented analytically by the equations 

, _ arr hyte _ a2a+ bry tee 

Tae Bethe OU aa Pe Pos" (1) 
where variables and coefficients are all real numbers. If the 
coefficients are all real, the point (2,, y,) will be real when, 
and only when, (#,y) is areal point. The resultant of any 
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two real collineations is also real and hence all real collinea- 
tions in a plane form a real group RG,. This real group is a 
subgroup of G,, the general projective group of the plane. 
A list of the subgroups of RG, will be found to be nearly 

identical with the list of subgroups of G, given in § 6. 

THEOREM 60. All real collineations ina plane form a group 
ENG 

310. Hyperbolic and Elliptic Collineations of Type I. A 
collineation of type I leaves a triangle invariant, as was 
shown in chapter II, Arts. 98, 103. The coordinates of the 
vertices of the invariant triangle were found by solving the 
cubic equation 

Ge enh yt ok Op 

In the case of a real collineation the coefficients of this 
equation are all real, since they are rational functions of the 
real coefficients of the collineation. The roots of this equa- 
tion, when unequal, may be all real or one real and two con- 
jugate imaginary; the same is also true of the equation 
giving the y-coordinates of the invariant points. Hence there 
are two varieties of real collineations of type 1; one whose 
invariant triangle is real in all of its parts, and the other 
whose invariant triangle has one real and two conjugate im- 
aginary vertices, one real and two conjugate imaginary sides. 
We shall call these Hyperbolic and Elliptic collineations re- 
spectively. 

THEUREM 6. A real collineation of type Lis either hyperbolic 
or elliptic. 

311. The Hyperbolic Group hG,(AA'A”). All collinea- 
tions leaving a real triangle invariant form a group 
hG,(AA’A”). The one-dimensional transformations along 

the three sides are all hyperbolic, each with two real inva- 
riant points and a real cross-ratio k (Chap. I, Art. 39). 
Hence the hyperbolic collineation h T has a real invariant tri- 
angle and real cross-ratio parameters k and k’. 
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Since the parameters k and k’ assume all real values, there 

are * collineations in the group hG,(AA’A”). By setting 
k’ = k” we see that hG,(AA’A’’) contains ©’ one-parameter 

subgroups h G,(AA’A’’),; since k and k’ are both real, 7 must 
also be real. The constant 7 may assume the six critical val- 
ues (1, 0, © ) and (— 1,2, 4) which give the three perspective 
subgroups of hG,(AA’A’’), and the three subgroups whose 

path-curves are conics. 

312. The Elliptic Group eG,(AA’A”). Let A bea real 
point and A’ and A” a pair of conjugate imaginary points; 
then /’ joining A’ and A” isa real line and / andl’ joining 
AA’ and AA” respectively are a pair of conjugate imaginary 
lines. The cross-ratios k and k’ may be shown to be conju- 
gate imaginary numbers. The implicit normal form of T 
was given in Chapter II, Art. 129, by the equations 
1 Of, dl x 7] 1 ert Ch at! x y ij 

AM EB rt AR Bier st Ag Bd ABS ei) 
PEGG Gey dl A i| A Aly Je 4 
ae pp, Tl) “Va mG OO ee oe al x Oh wall (86) 

|A’ Bo 1 |A’ Be | ABN Al Bh ni | 
AY! Bh YX |Au BY A” BY 4 A” BY 

Since A’ and A’’, (B’ and B”) differ only in the sign of 7, 
being conjugate imaginaries, k and k’ can differ only in the 
sign of 7 and are also conjugate imaginaries. Hence k’ is not 
independent of k; but k may be written in the form of pe?’ 
and depends therefore upon two independent quantities, 
and 4; and hence there are ~’ elliptic collineations leaving 
the triangle (AA’A”) invariant. These form the elliptic 
group eG,(AA’A’). There is one collineation in eG,(A A’A”) 
corresponding to each value of the complex number k, or, 
speaking geometrically, to each point in the complex plane. 

To show how eG,(AA’A’’) breaks up into one-parameter 
subgroups we proceed as follows: Let k=pe?# = e(e+*)"; 
since k, = kk,, we have 

@ (e2 +1) t, — eco+tah+i(4 +h). 

=17 
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If 7, is chosen so that c,=c, then c¢, also equals ¢ and 
O.=0-+ 0,3 we, elet 0 eles 29+) )) Hence if ci be kept 
constant and # alone varies, we have a one-parameter sub- 
group eG,(AA’A”),. The two-parameter group eG,(AA’A”) 
contains ©‘ one-parameter subgroups, one for each value of ¢ 
ink=ele+?)é, 

There are two subgroups of eG,(AA’A’’) of special impor- 
tance, viz.: forc=o and c=]a—. When’¢—o. —eoand 
k’ =e-*#; in order that the equation k’ = k” should be satis- 
fied by these values of k and k’, we must put r=— 1. Hence 
the path-curves of the group eG,(AA’A”)._, area pencil of 
conics having double contact at a pair of conjugate imaginary 
points A’ and A”. The conics of such a pencil have no real 

TGs le 

points in common. The conics of such a pencil are either real 
or pure imaginary without a real point. 

If ¢ approach © and ¢ approach o at the same time, c# may 
approach a finite numbern. Insucha case k=e", a real 
number. 

The cross-ratio k’’ along the line A’A” must be of the form 
e’® , since the one-dimensional transformation along that side 
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k! pe v6 

k per? 

9=0, k” =1 and the transformation along A’ A” is identical. 
Hence the subgroup of eG,(AA’A”’)-= ~ isa group H,(Al’) 
of real perspective collineations. 

THEOREM 62. The real elliptic group eG.( A A’ A”) contains 
one subgroup whose path-curves are conics and one whose path- 
curves are straight lines. 

is elliptic.. Since k= hk" k= =e 24") “When 

313. Real Groups of Type I. Having determined two va- 
rieties of fundamental groups of type I we go on to enumerate 
the groups of higher order that can be compounded out of 
these. 

The invariant figures (A), (1), (Al), (AA’), (l’), (A,U”), 
(AA‘l’) must be examined separately. The real groups 
G,(A), G,(1) and G,(A,/’’) contain both hyperbolic and ellip- 
tic collineations. The groups G,( Al) and G,(AA‘l’) contain 

hyperbolic, but no elliptic, collineations of type I. There are 
two varieties of groups leaving two points invariant, viz.: 
hG,(AA’) and eG,(A’A”). In the first case the two points 
A and A’ are real and the group h G,(AA’) contains only hy- 
perbolic collineations of type I (and lower types). In the 
second case the points A’ and A” are conjugate imaginary 
points and eG,(A’A’’) contains only elliptic collineations of 
type I. In like manner we have two varieties of groups leav- 
ing a pair of lines invariant, viz.: h G,(ll’) and eG, (Il’). 

Kvidently the groups h G,( AA’) and hG,(ll’) break up into 
subgroups of the second class for a constant 7, just as 
hG,(AA’A’’) does. Also the groups e G,(A’A”) and eG, (ll’) 
break up into subgroups of the second class for a constant c 
just as eG,(AA’A’’) does. 

The real groups of the third class G,(A),__,, G,(1),__, and 

G,(A,l’’),__,, contain both hyperbolic and elliptic collineations 
of type I. The real groups G,( AIK) and G,( AlS) contain 
only hyperbolic collineations of type I. There are two varie- 
ties of real three-parameter groups leaving a conic K inva- 
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riant, viz.: hG,(K) and eG,(K). In the first case the conic 
K is real and eG,(K) contains only hyperbolic collineations of 
type I. In the second case the conic is imaginary, having no 
real points, and eG,( K) contains only elliptic collineations of 
type I. 

THEOREM 63. The real groups G,( AA’), G@,(/UV), G@s( A), and 

G@,(AA/’A”) exist in two varieties each, viz.: hyperbolic and elliptic. 

314. Real Collineations of Types II, IT, IV und V. A 
real collineation of type II leaves invariant a figure (AA’/) 
real in all of its parts. There is, therefore, only one variety 
of collineations of this type. Type II appears as the parabolic 
ease between the hyperbolic and elliptic cases of type I. 
A real collineation of type III leaves invariant a real lineal 

element Al and a real pencil of conics S. This type appears 
as the parabolic case between the hyperbolic and elliptic cases 
of type I when the path-curves are conics. 
A real perspective collineation of type IV or V leaves inva- 

riant a real axis, vertex and pencil of lines. 
A list of the real groups of types II, III, IV and V, is iden- 

tical with the list given on page 254, of the present chapter. 

Exercises on Chapter III. 

1. Give several examples of systems of collineations which 
possess the first group property but not the second. 

2. Give examples of systems of collineations that possess 
the second group property but not the first. 

3. Discuss in detail the properties of H,(A,/), the funda- 
mental group of type IV. 

4, Discuss in detail the properties of H,’( Al), the funda- 
mental group of type V. 

5. Show that through a given point P of the plane (not a 
vertex of the triangle AA’A’’) there passes one and only one 
path-curve of the group G,(AA’A”’),. 
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6. Show that one and only one path-curve of the group 
G,(AA’A”), touches a given line / (not a side of the triangle 
AA’A”’) of the plane, 

7, Show that the constant 7 in the one-parameter group 
G,(AA’A”), is the cross-ratio of the four points (TLL’/L’’) on 
any line g of the plane, where T is the point of the path-curve 
touching g and L, L’, L’’, are the points where g cuts the sides 
of the invariant triangle (AA’A”’). 

8. Show that an involutorie collineation in its plane is 
necessarily of type IV. 

9. From the self-dualistic character of a collineation show 
that, when the path-curves consist of a pencil of conics, they 

. must have double contact with each other and with the inva- 
riant triangle. 

10. What is the geometrical meaning of a in the equation 

B=tGOM yeu 

11. Develop the whole theory of perspective collineations 
by the methods suggested in Article 276. 

12. Show that 2a is the common radius of curvature at the 
origin of all conics of the system 

a+ 2hay+ 4aCy=4ay. 

13. Show that each collineation of type III in G,’’( Al) can 
be resolved into two elations, one belonging to the group 
H,/(A) and the other to H,’(/). 

14. Show that the group G,’’( AlN) contains as a subgroup 
the group of elations H,’( Al). 

15. Verify equations (24) of Article 217; prove that the 

determinant of a complete family of automorphic forms of 
degree n is equal to A”. 

16. Verify equation (35;) of Article 217 and factor the 
general determinant \,(1)=0. 

17. Deduce the equations and give an analytic proof of the 
existence of the groups H,(ll’) and H,( AA’). 
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18. Show that equations (36) represent a collineation of 
type II. 

19. Show that every collineation of type I belongs to one 
and only one two-parameter group G,(AA’A”’). 

20. Show that two groups G,(AA’A”) and G,(AA,'A,’), 
where A’, A”, A,’, A,” are collinear, have a common subgroup 
H,(Al’) of type IV. 

21. Show that G,(A) and G,(A’’) have in common 

G,(AA5); G,(l) and G,(l’) have in common G,(ll’); G,(A) 
and G,(l’’) have in common G,(A,l’’). 

22. Show that the following groups bracketed together are 
dualistic: 

(GA AAQ) on (CG (AA ae Gaal es, 
iG AtAGl), S62 = aGu GU) cee UG (CAd, ee ae 

23. Show that the following groups are self-dualistic : 

G,(AAT),-2, G,(Al),—z. 
24. Show that the two collineations of type I which are 

the resultants of T and 7” in different orders have the same 
invariant cross-ratio, but not the same invariant triangle ; 
show that their invariant triangles have equal areas. 

25. Show that G,’’( Al) is a subgroup of G,(A1l),_.. 

26. Show that G,’’( AlS) is a subgroup of G,( AIS). 

27. ShowthathG,(AA’A”’) contains three and e G,(AA’A”) 

only one involutoric collineation. 

28. Show that the family of path-curves of the group 
eG,(AA’A”’),_, contains both real and pure imaginary conics. 

29. Hither all three cross-ratios along the sides of the in- 
variant triangle of hG,( AA’A”’) are positive or one is posi- 

tive and two negative. 

30. The group G.( AlK’) contains no elliptic collineations of 
type I. 

31. The group eG,(iK) contains only elliptic collineations 
of type I. 



CHAPTER IV. 

GROUP STRUCTURE AND SOME SPECIAL GROUPS. 

. Structure of the Collineation Groups of the Plane, 

. Singular Transformations. 

. Mixed Groups. 

. Generation of Finite from Infinitesimal Collineations. 

. The General Linear Group Gs(l~). 

. The Group G;(K). 

Exercises. 
UN Sn UR tn eR Doe WH eS 

In the last chapter we determined all varieties of collinea- 
tion groups in the plane and classified them with respect to 
the five types. In the present chapter we shall examine into 
the structure of each variety of continuous groups of plane 
collineations and discuss the generation of such groups from 
infinitesimal collineations. We shall also discuss in detail 
two specially important groups, viz.: G,(/~) and G,(K) and 
their subgroups. 

The structure of each variety of collineation group will be 
discussed in § 1, and the existence of the so-called singular 
transformations and their properties will be brought out in 
$2. Mixed groups of plane collineations, 7. e., groups not 
continuous but containing continuous subgroups, are treated 
in$38. $4 is devoted to the important topic of the genera- 
tion of continuous groups of collieations from infinitesimal 
collineations. The group G,(/), which leaves the line at 
infinity invariant, will be discussed in detail in $ 5, and the 
group G,(K) in § 6. 

(263) 
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$1. Structure of the Collineation Groups of 
the Plane, 

Having found a complete list of the groups of collineations 
in the continuous plane, we must now examine more closely 
into the structure of each group. Many of these groups will 
be found to contain collineations of one type only, while oth- 
ers will be found to contain collineations of two or more types. 
In every case, there are collineations of a characteristic type 
which make up all or the greater part of the group, and 
among these are to be found in many cases a smaller number 
of collineations of one or more lower types. In most ir. 
stances, the collineations of these secondary types form con- 
tinuous subgroups of the given group; but sometimes these 
secondary collineations in a given group do not form a con- 
tinuous subgroup, in which case they are called Singular 
Transformations. 

The complete structure of some of these groups has already 
been given, while in other cases only the characteristic col- 

- lineations of the group have been indicated. The entire list 
of these groups should be examined; usually the structure of 
a group will be given without proof, but in a few typical 
cases where the structure is not at once evident, or where the 

group contains singular transformations, the proofs will be 
indicated. The verification of the structural formulas in the 
remaining groups will be left as exercises for the reader. 

315. Structure of the Perspective Groups. We found in 
Chapter III, Art. 284, eight varieties of perspective groups, 
viz.: three of type V and five of type IV. The group H,'(Al) 
contains only collineations of type V, and H,(A,l’’) only 
those of type IV. The structure of the other six perspective 
groups is here indicated by symbolic equations 

H/(l) = 0'H'(Al), 
H(A), eo ECA) 
(UL) = co" Ee (AR en CAGE 
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H,(AA') = @'H,(A,1) +H/(Al’), 
H,(t) =H; (A,l)-- ay (1), 

H,(A) = 0!H,(A,T)+ H(A). 
The correctness of these structural formule may be proved 

in detail ; we shall give two methods of proof, applying both 
methods to the same case. 

(1) Synthetic Method. Take for example the group 
H,(ll’); we will show that this group must contain collinea- 
tions of type V. Take from the group H, (Il’) two collinea- 
tions of type IV, S(A,1) and S(A,,/) (where A and A, lie on 
/, and/ and /’ intersect in A’), for which the cross-ratios along 
l are kand 1/k respectively. Along / we have two one-dimen- 
sional loxodromic transformations having one and only one 
invariant point A’ in common, hence, Chapter I, Article 32, 
their resultant is a parabolic transformation, leaving A’ in- 
variant, whose parabolic constant t has the value 

=i Naa (1) 

Since both transformations along / are identical, their result- 
ant is also identical. Hence, the resultant of S and S, is an 
elation S(A’l), which belongs to the group H,/( Al). From 
the above value of t we see that by varying the value of k, or 
the position of the points A and A,, all elations in the group 
H,/(Al) are obtained; thus, the group H,(lA‘l) contains 

H,( Al) asa subgroup. In a similar manner the structural 
formule of the other perspective groups may be verified. 

(2) Analytic Method. If A’ be taken as the origin and / 
and l’ as axes of x and y respectively, the normal forms of 
S(Al), S,(A,,/) and their resultant are respectively 

x ky 
S 5 iS : Yy SS 

Cane es ’ 1 a ’ ¢ 
fae sel 14 holy (2) 

B B 

v) ; ao ky Yi 

S;: = ki-1,? Y2 = by ee eee 
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iS : 47 = ON 7] = ky ° 

FE ng a eh ine 1).), 0? Seat A oe Wich y pla ete a) armen 2g) eS Sn Tt ot Regs oe RyeN Sh 
lal) ket | (a= whence k, = kk, and B. = = ae aan Now let k, =}, 

; : jl=al il 1 
in these equations; we have k, = 1 and Die ae eee } 

j Sys Meat 1 hence B,=0, Putting lim ae =t we find t=(1-’) (2-5). 

Hence S, reduces to 
beet 1% ere UE. 

Ue Th epi? way ieege 

and is therefore an elation. Since t may be made to assume 
all values by varying K or B and B,, all elations of the group 
H,'(A‘l) are contained in H,(ll'). The same method may be 
used to verify the structural formule of the other perspective 
groups. 

316. Structure of Groups of Type III. We found only 
three varieties of groups of type III, viz.: G,’’( AlS), G,/’(ALN), 
G,’’ (Al); these cases. are easily disposed of. The group 
G,’( ALS) contains only collineations of type II]. The group 
G,/’( ALN) contains the group H,’ (Al) as a subgroup (see ex- 
ercise 14 at the end of the preceding chapter). The group 
G,’( Al) contains, as we saw in Article 268, the groups 
H,/(A) and H,/(l) as subgroups. The structural formule 
of the groups of type III are shown as follows: 

G,! (ALN) = ~'G,(AlS) + H,'(Al). 
G,' (Al) eaG CALS) a. (Aaya ra uChye 

317. Structure of Groups of Type II. First Class. There 
are six varieties of groups of this class; we have found that 
the group G,’(AA'l’) contains the groups H, (A’, l’) and H,( Al) 
as subgroups; and hence we must expect that subgroups of 
types IV and V will appear in the groups of higher orders of 
this class. The structural formule of these groups are as 
follows :. 
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GJ(AAV) = GI(AAV)+ HV) +H (AD, 
Gy (AA!) =01G/(AAV)+ H,(lA) +H, (1), 
Gi(W) = @1GJ(AAV)+ Hi(W) +H (A), 
GJ (AV) =@2G(AAV)+ Hs(V) +H (A) +H (UV) +G;/(AV), 
GJ (AN) = @?G/ (AAU) + F(A) +A (l) + H(A) + G3" (AT), 

Gi (Al) = 9G. (AAV) + ©? Hi (AU) + He! (A) + He! (1) + Gy! (Al). 

Synthetic Method. As another example, let us examine 
the structure of the group G,/(Al’). The point A’ may take 
co” different positions in the plane, and for each position of 
A’ there is a group G,'/(AA’l’) which belongs to the group 
G,/(Al’). The o* one-parameter perspective groups 
H,(A’,l’), contained in these groups G,/(AA’l’), belong to 
the group H,(/’). The group H,(l’) contains the subgroup 
H,/(l'). The ~? groups of elations H,'(Al), contained in 
the groups G,/(AA’l’), form the group H,'(A) which is, 
therefore, contained in G,/(Al’). Since G,/(Al’) contains 
H,/(A) and G,'(1), it must also contain G,’(Al’). Thus 
the structure of G,/(Al’) is found. A similar course of rea- 
soning leads to the structural formule of the other groups of 
this class. 

Analytic Method. The normal form of a collineation T of 
type II in G,/(Al’) is, Art. 137, 

Bi 

i y+ Tie 1) x 
he iar i / 

, At == = — Sass _ 

- f foal Jaf » ¥, ‘jp=a [eh (4) 
i+ty+(—— _—4 )e SEU) se -—t)a 

AY Al A! Al 

If t = 0 in equations (4) these become 
B’ 

Y= (la) 
: kx A’ 

6 Ras eee Bot 2 (4a) 
1 foe fr 

which are the equations of the group H,(l’). 

If k=1 and A’ =0 in (4a) while tim. —- = t’, then these 

equations reduce to 
x y+ Btls 

%,=——, Y,= —- 
oe hit afi Yi 1+t/x 

These are the equations of the group H,'(1’). 

(4b) 



268 THEORY OF COLLINEATIONS. 

If k = 7 and A’ +0 in equations (4) these reduce to 
x y 

wy, = B! r= B! ’ (4c) 
1+ ty — — ta aL iy = SZ the 

Al Al 
which are the equations of the group H,'(A), 

B’ 

If je AU=S0e Bap Nie and lim. 

equations (4) these reduce to 
w@ 

=! in 
A’ 

y¥+nt'ax 

 {4+ty+(v—nt)a’ Cs aa ER nig LAA A (4d) 

These last equations are the equations of the group G,’’(Al’) 
although not expressed in terms of the natural parameters as 
in Art. 268. The same method is applicable to the other 
groups of this class. 

318. Second Class. The group G,/(AA/’l’)a, where a 4 0 
or ©, contains only collineations of type II. The structure 
of the other four groups of this class is shown as follows: 

Gi( AAG o* GAA )\ a2 HY Al)- asa. 

GU Naw =o GCA a= Ei CA Saee 

G,(Al)a =@'G/ (AAV )a-— Ay’) Sn) 

CA GCUINGR ea CHCA a ITE (AO) ASSy, Te, 

In this class of groups we meet, for the first time, with so- 
called singular transformations 8. T.; these will be discussed 
later. 

Synthetic Method. In order to show that the group of ela- 
tions H,’(/l’) is contained in G,’( Al’), we choose the collinea- 

tions T’(AA'l’), and T,/(AA,'l’), for which the parameters 
k and t are (at,t) and (a-‘,—t) respectively, and form the 
resultant. The resultant of the two one-dimensional para- 
bolic transformation along l’ is identical, 7. e., t, =t—t=0; 

that through A is parabolic, since the two pencils through A 

have the invariant line / in common and k, = at = z . Hence 

the resultant of T’ and T,/ is an elation S’(A,l’), where A, is 

some point onl’. By varying the values of t and the positions 

vy 
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of A’and A,’ all elations in the group H,’(l’) may be pro- 
duced. 

Analytic Method. Let k=a‘, t=0 and A’=0 but lim 

= = in equations (4) G,/( Al’) Article 317; these reduce to 
y+ Bax (5) 

and Y= 1+t a ~ 

Are x 

Ti cite 

These equations represent the group of elations //,’(/). 
In like manner the structural formule for the remaining 

groups of this class may be verified. 

319. Structure of Groups of Type I. First Class. The 
nine groups of type I, first class, show the following struc- 

tural formule : 
G,(AA') = G:(AA’A”) +H, (Al) + (AV) +H (A), 
G3 (AA!) = 01G (A) + G.! (Al) + Hp (ll) + He(A) +i () + Hy (AD, 
Gi(A) =0%G,(A) +00! G! (AAV) +H; (L) + He! (1) +282 (A), 
Gi (ll) =02G,(A)+200'G, (Al) + H(A) + He! (A) +2H2 (Wl’), 
Gy (A, Ul’) = 0? G2 (A) +00'G,! ( Al’) + 001 Hp (A) + Mi (A, 0”) 

+001 Hy!(t), 
G;(Al) =03G,(A) +02Gs! (Al!) + 02G2! (AV) + Gs! (AL) + Ha (1) 

+ H3(A) + He! (1) + Hy! (A), 
Go(l) . =04G,(A) +02G, (AU) +003 Gy! (Al) + 01G," (Al) 

+H; (1) +00? Ha (A) + Hy! (1) +00" Hy! (A), 
Go(A) =04G,(A) +03G,/ (Al) +03G)' (Al) + 01G; (Al) 

+ H,(A) +002 Hp (ll) + H./(A) +00! Hy’ (1), 
Gs = 0 §G, (A) +005 G,! (Al) +002G,"( Al) + 04H; (A, 1”) 

+03 Hy (Al). 

The verification of these structural formule presents no 
special difficulties. 

320. Second Class. The structural formule of the four 
following groups are exhibited thus: 

G,(AA'l’)r = 01G,(AA'A”’)r+ H,(Al)+S. T., 

G(AA')r = 0*G,(AA’A")r+ H(t) +S.T., 

G(r = 0*G (AAA) r+ H(A) +S. T., 

G(Al)r =@'G,(AA’A”)r+H(A) +H, (1) 
+ G,/"(Al) +S. T. 

Synthetic Method. From the group G,(AA’), take two 
collineations T(A A’A’’), and T,(AA’A,'’),, where A’ and 
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A,’ are not collinear with either A or A’. Let k,= —; 

k’=k and k,,=k~". The resultant of the two one-dimen- 

sional transformations along the line AA’ is identical since 
both invariant points are common and the cross-ratios have 
reciprocal values. The resultants of the one-dimensional 
transformations of the pencils through both A and A’ are 
parabolic, since they each have only one invariant line in 
common and reciprocal values of the cross-ratios. Hence the 
resultant of T and T, is an elation S’(al) where « is some 
point on/. It is easy to show that all elations in H,’(/) are 
contained in G,(AA’),. 

Analytic Method. The equations of the normal form of 
G,(AA’), are ; 

ket Ue — ky in 

Ea ee yee) rN (2) 
ap th y+ Same denom. 

A! A! B" 

boa fi se | Fav! 
Let k=1, B”=0 and lim. = (= = -) =t, then 

k—1 /ANk (ke! —1) ikea Tg 
lim. —— ( ai; ) 

tions (6) reduce to 
i 28 BL : Pate 6’) 
v= 1+ty ’ Y, = ty ( 

These are the equations of the group H,’(/). 
In like manner the structural formule of the other group 

of this class may be verified. 

321. Third Class. The list of groups of the third class 
shows structural formule as follows: 

G.( ALK) = 0'G,(AA’A”)+ G// (AIS), 

G,(K) = 0'G,(AA’A”) + ~0'G,"(AlS), 

= at where x issome constant. Equa- 

GAIS) 0 G,(AA'A”)+  G,(AlS) 
ACA) Ee Sete 

G,(A,1”),..;= ©°G,(AA’A") + 01H) (AAI) +S. T., 
G.("),.., = 04G,(AA'A")+ 0! H/(Al) +58. T., 
$2 PS | 8 +G,(AA’A") + 01H(1) +8. T. 
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The group G,( A/S) contains ©” subgroups G,(AA’A’’), 
where A’ is in turn every point on A/ and A” in turn every 
point in the plane. One conic of the pencil S passes through 
A”, and A’A” is tangent to this conic at A’. Take a collinea- 
tion T from the group G,(AA’A”’) and another T, from the 
group G,(AA,'A,’) having cross-ratio constants k and 1/k 

respectively. Their resultant is parabolic along Al and 
through A, and hence is a collineation 7” of type III belong- 
ing to the group G,’’( Al). It can be shown that all the col- 
lineations of the group G,’’( Al) are to be found in G,(S). 

Again, take two collineations T and T,, whose cross-ratio 

constants are k and = from the groups G,(AA’A’’) and 

G,(AA’A,'’), where A and A, are collinear with A. Their 
resultant is identical along A and through A, but is parabolic 
along A, and through A’; hence, it is an elation S’” and be- 
longs to the group H,/(Al). Evidently, all elations in 
H,( Al) are contained in G,(S). 

The remaining formule are easily verified. 

$2. Singular Transformations. 

We come to the consideration of the so-called singular 
transformations, Art. 318, in the collineation groups of the 
plane. These were defined as systems of collineations of one 
type not forming a continuous group, yet occurring in an 
otherwise continuous group of another type. We shall find 
two distinct kinds of singular transformations, viz.: discrete 
systems of collineations of type III or V occurring in groups 
of type II, second class; and discrete systems of collineations 
of type II occurring in groups of type I, second and third 
classes. 
We shall examine our systems of singular transformations 

to see if they have both group properties; we shall find that 
the systems of singular transformations of types III and V 
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occurring in groups of type II, second class, have both group 
properties, and hence are discontinuous subgroups of continu- 
ous groups. We shall also find that the singular transforma- 
tions of type II occurring in groups of type I, second and third 
classes, have the second group property but not the first, 
hence they do not form discontinuous subgroups of continuous 
groups. 

322. Singular Transformations in G’,(Al’),. Take two 
collineations of type II, T’(AA'l’) and T’ (AA,'l'), belong- 
ing to the group G,'(Al’), and let their constants k and t be 
(a‘,t) and (a",t,). For every value of a#0 or o, tand t, 
may be so chosen that t+t,40, whilea't*=1. To prove 
this, put a= re?’ and t+t,=p-+1q; we then have 

(neu) ex) = 1 : (70) 

Taking logarithms of both sides we get 

(p+iq) (log. r +79) =2na21; 

whence plog.r—qi=0 and qlog.r+p0=2nz2. Solving 
for p and q we find 

2n70 2nn log.r 
—— =, 8 

JD log.2r + 0 2 dl log 2r st “2 ( ) 

n has only integral values and hence, for values of a+ 0 or 
o,andn+0, t and t, can always be chosen so as to satisfy 

the conditions 
tai, Onand. G7 — she (9) 

The group G,’( Al’), has the following structure: G,’( Al’), 
= «0 G (ll), A (UV) +S. 1. Te T"( AA) and (Az) 
be so chosen that t+ t,=0, then a‘ =1; their resultant 
is identical along /’ and parabolic through A; hence, it is 
an elation S’(X/’) where X is some point on/. This elation 
belongs to the group A,/(l’). All elations of the group 
A,'(l’) are present in G,/(Al’),. But if T’ and T;’ be so 

chosen that t+ t,~0 and a‘** = 1, then their resultant is 
parabolic along the invariant line /’ and also parabolic through 
the invariant point A; hence, it is a collineation of type III, 

TUACAC a: 
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Now tand t, may be so chosen that t+ t, # 0 while a‘**: = 7 
in an infinite number of ways, one for each integral value of 
n in equations (8). Hence, there are ~’ such collineations 7” 
in G,’(Al’). But since » can have only integral values, these 
collineations of type III do not form a continuous system. 

323. The Discontinuous Group dG’ (Al’). We shall now 
examine this discontinuous system of collineations and see if 
it has one or both of the defining group properties. Let 
T’(Al’) and T,’(Al’) be two collineations of this system 
whose parabolic constants along /’ are t and t,. Their result- 
ant is of type III, since both belong to the group G,’(Al’). 
Since ¢ and t, are both of the form 

2nx (A+ilogr) 

6? + log? r (10) 
t=p+iq= 

where 7 has only integral values, we see that t., the sum of 
tandt,, isof the same form and n,="-+n,. Hence 7,//(Al’), 
the resultant of T”’ and T,’, belongs also to the discontinuous 
system, and this system of singular transformations in 
G,(Al’), has the first group property. 

Let T” be one of the collineations of the discontinuous sys- 
2n7(¢+ilogr) The 

#2 + log? r 

parabolic constant of 7’’~', the inverse of 7T”’, is —t and hence 
is of the same form as ¢t with — n for n in (10). Hence, the 
inverse of every collineation in the system is also in the sys- 
tem; thus this system of singular transformations has the 
second group property. 

Since this discrete system of singular transformations in 
G,'(Al’), has both group. properties, it is a group, but a dis- 
continuous subgroup of G,’(Al’). We shall designate it by 
iG) (CAL). 

THEOREM 1. The system of singular transformations of type 
IILin G@s/(A/’) forms a discontinuous group, d G”(A/’). 

tem whose parabolic constant along / is t = 

324. Singular Transformations in G,/(ll'),. If T/(AA') 
and T,'(A A,’/l’) be chosen from the same group G.’(//’), and sueh 

—18 
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that t+t,=0 and a‘** = 1, their resultant is parabolic along 

/ and identical along /’.. The resultant is therefore an elation 
belonging to the group H,/( Al’). Every collineation in the 
group H,'( Al’) is contained in G,’(ll’),. But if T’ and T,’ 

are so chosen that t+t,~ 0 and a‘** = 1, then their resultant 
is parabolic along both /’ and /. The resultant is an elation 
but it does not belong to H,’(Al’). The vertex of its inva- 
riant figure is at A and the axis of invariant points is a line 
through A not! orl’. Since 7 has only integral values, this 
system of elations is not continuous and does not form a con- 
tinuous group. The inverse of every elation in the system is 
also in the system. 

Since the group G,’ (/l’), is contained in the groups G,’ (Al’),, 
its system of singular transformations of type V is also con- 
tained in G,’( Al’), ; hence G,’( Al’), contains singular trans- 
formations of two kinds, viz.: types III and V. 

Since the group G,'( Al’), contains 1 subgroups G,’(Il’),, 
one for each line / through A, it must therefore contain a dis- 
crete system of ~’ elations S’(A), selected from the group 
H,'(A), which system has both group properties and thus 

forms a discontinuous subgroup of G,’(Al’),. But G,/( Al’), 
also has H,’/(/’) as a subgroup. If we combine an elation 
from S’(A) with one from H,’(l’), the resultant is a collinea- 

tion T’’(Al’) of type II]. Hence the singular transformations 
of type III in G,’( Al’), appear as the resultants of the ~* 
elations in S’(A) with those of the group H,’(l’). We also 
see that the discontinuous group S’(A) is a subgroup of the 
discontinuous group d G’’( Al’). 

THEOREM 2. The system of singular transformations of type V 
in G,(/l’)q form a discontinuous group dS/( 4). 

In the same manner it may be shown that the groups 
G,/(A’l), and G,'(AA’), dualistic to G,’( Al’), and G,’(Il’), 
contain singular transformations as follows: G,'( Al’), con- 
tains singular transformations of types III and V; G,’(AA’), 
contains a system of singular transformations of type V. 
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THEOREM 3. The groups G@s( A’), and Gy/(Al’)a of type IT, 
second class, each contains discrete systems of singular transforma- 

tious of types IIL and V; the groups @,/( Al’), and G,'( AA’), each 
contains discrete systems of singular transformations of type V. 

325. Singular Transformations in G,(AA’l’),. We shall 
next examine the group G,(AA’l’), for singular transforma- 
tions. Its structure was given in Art. 320, thus: G,(A A'l’),= 

o01G,(AA’'A”), + H,'(Al)+S.T. There are four cases to be 
considered, viz.: When * is rational with even numerator and 
odd denominator, 7 rational with odd numerator and odd de- 
nominator, 7 rational with odd numerator and even denomi- 
nator, 7 irrational. We must examine each case separately. 

Let r be rational with even numerator and odd denomina- 
tor. Then according to article 256 each subgroup G,(AA’A”’), 
in G,(AA’l’), contains the same involutorie perspective col- 
lineation S, having its vertex at A’ and its axis along /’; and 
the group G,(AA’l’), contains only this one involutoric per- 
spective collineation S. 

Let S be combined with T any collineation of type I in 
G.(AA'l’),; the resultant one-dimensional transformations 
along both / and /’ are both loxodromie, and hence the result- 
ant of S and T is of type I and is one of the collineations of 
the group G,(AA/l’),. On the other hand, let S be com- 
bined with S’, a collineation of type V in H,/(A1) (which is a 
subgroup of G,(AA’l’),). Along / we have an involutorie 
combined with an identical transformation, and the resultant 
in this direction is involutoric with invariant points at A and 
A’. Along l’ we have an identical combined with a parabolic 
transformation, and the resultant is parabolic. Through A’ 
we have an identical combined with a parabolic transforma- 
tion and the resultant is also parabolic. Hence, the resultant 
of Sand S’is T’, a collineation of type II, whose invariant 
figure is (A A’l’) and whose constants k and t are k = —1 and 
t equal to the t of S. If S be combined in turn with each ela- 
tion of H,'/(Al), we have an infinite system of collineations 
of type II, for each of which k = — 7 while t has all complex 
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values. The parameters k and ¢ of this system of collinea- 
tions of type II do not satisfy the relation k =a‘, and hence 
(article 258) do not form a continuous group. These collinea- 
tions of type II in G,(AA’l’), are singular transformations. 
The structure of G,(AA’l’), is thus seen to be 

G,(AA'l’),= 0 G,(AA'A”),+ H, (Al) + @'T’. 

Let us next examine for singular transformations the group 
G,(AA'l’), , where r is rational with odd numerator and even 
denominator. Each subgroup G,(AA’A”), of G,(AA/l’), 
contains one perspective involutoric collineation S; these are 
all different, and form a system (S) whose common axis is l 
and whose vertices are in turn every point onl’. Any one 
of these perspective collineations, combined with a collinea- 
tion of type I in G,(AA’l’),, results in a collineation of type 
Lalso belonging to G,(AA’l’),. The resultant of any collinea- 
tion of the system (S) with any elation of the group H,/(A1) 
is another perspective collineation S, of the system (S). The 
resultant of any two perspective collineations of the system 
(S) is an elation belonging to the group H,'(Al). Thus the 
group G,(AA'l’),, where r is rational with odd numerator 
and even denominator, contains «’ involutoric perspective 
eollineations, but no singular transformations of type II. 
These perspective collineations are not singular transforma- 
tions in the sense of the definition, for each of them belongs 
to a subgroup of G,(AA’l’).. 

In like manner, it may be shown that the group G,(AA’l’),, 
where ¢ is rational with odd numerator and odd denominator, 
contains © involutoric perspective collineations having a 
common vertex at A and axes in turn every line through A’ ; 
but it contains no singular transformations. The group 
G,(AA’l’),, where ¢ is irrational, contains (Art. 256) no in- 
volutorie perspective collineation and hence no singular trans- 
formations. 

From these results, we conclude that the group G,(AA'l’), 
contains singular transformations of type II when, and only 
when, its subgroups have one common involutoric perspective 
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collineation S. This depends on the manner in which the in- 

variant triangles of the subgroups G,(AA’A”), are put 
together. Thus, when the line /’ passes through A, the 
group G,(AA/l’), contains singular transformations when 7 
has even numerator and odd denominator. On the other 
hand, if /’ passes through A’, in which case it is designated 
by 1’, the group G,(AA‘l”’), has singular transformations 

when r has odd numerator and even denominator. 

THEOREM +. The group @,(4 4//’), where 7 isa rational num 
ber such that the subgroups of G, (4 4//’), all contain the same 
involutorice perspective collineation S, contains singular transforma- 
tions; these are of type II, and all have the same value of /, viz.: 
k=—1., 

326. Other Groups Containing Singular Transformations 
of Type II. Any collineation group of the plane which con- 
tains no subgroup of type II and which contains subgroups of 
the variety G.(AA’l’), such that each contains but a single 
perspective involutoric collineation S, will evidently con- 
tain singular transformations of type Il. In addition to 
G,(AA'l’),, the following groups of type I, second class, 
also contain singular transformations of type II: G,(AA’),, 

G,(Ul’),, G,(Al),. 
In type I, third class, the group G,(A/S) contains ©? sub- 

groups G,(AA’l’),_,. Each of these subgroups contains 

o/ singular transformations, and hence G,(A/S) contains 
o* singular collineations of type I. 
The group G,(A, /’’),__, contains ~’ subgroups G,(A Al’) 

,--1- There is evidently but one involutoric perspective 
collineation S in the group G,(A, /”),-_,, and this has its 
vertex at A and its axes coinciding with /’’; S belongs to 
every subgroup G,(AA/’l”),__, nG,(Al”),__,. S, com- 

bined in turn with each of the ~* elations in G,(A,/’’), gives 
o* singular transformations of type II. 
The group G,(l’’),-_, contains ~* subgroups G,(A,/’’) 

---1, one for each position of A in the plane; hence, it 
contains «* subgroups G,(AA’l”’),__,. Since each of 
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these two-parameter subgroups contains ~/ singular transfor- 
mations of type HI, it follows that the group G,(l”’),__, 
contains * such singular transformations. 

The group G,(A),-_,, dualistic to G,(l’’),__,, also con- 
tains ©’ singular transformations of type II. 

THEOREM 5. The following groups, and no others, contain sin- 
cular transformations of type Il: G@,(AA‘l’),, G@s;(AA’),, 
G;(ll’),, and G,( Al), (when 7 is rational); G;(AdS), G;(A,l”) 

perio GRU ssa thiil Gel Areas 

$3. Mixed Groups. 

327. In this section the following problems will be investi- 
gated: To find (1) all collineations in the plane that leave 
fixed one vertex of a triangle and interchange the other two 
vertices; (2) that interchange a pair of points; (3) that inter- 
change a pair of lines; (4) that permute the vertices of a tri- 
angle. 

These four problems lead us to the consideration of certain 
mixed groups of collineations. A mixed group is defined asa 
system of collineations which has both group properties and 
which is composed of a continuous group and certain discon- 
tinuous groups, which interchange certain parts of the in- 
variant figure of the continuous group. For example, all 
collineations, leaving a triangle invariant as a whole, form a 
mixed group mG(AA’A"’), which consists of the continuous 
group @,(AA’A’’) and all other collineations interchanging a 
pair of its vertices and also those permuting the three vertices. 

In order to determine all the mixed groups of collineations 
in the plane, we must first examine all varieties of invariant 
figures of reducible groups of collineations. There are only 
eight varieties of such figures (Fig. 24), viz.: A point (A), a 
line (/), a lineal element (Al), a pair of points (AA’), a pair 
of lines (/l’), a point and line not incident (A,/), two points 
and two lines (AA’/’), and a triangle (AA’A”). Of these 
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eight only three may be the invariant figures of mixed groups, 
viz.: (AA’), (ll’) and (AA’A”), for these are the only fig- 
ures in which points or lines may be interchanged without 
changing the figures as a whole. 

328. The Mixed Group mG.(APQ). Let A, P,Q be any 
three points forming a triangle. Any collineation that inter- 
changes P and Q must leave the line PQ invariant. Let 
(AA’A”’) be the invariant triangle of a collineation of type 
I, which interchanges P and @; then two of the vertices, as 
A’ and A”, must be on the line PQ and so situated that the 
cross-ratio (A’A’’PQ) = — 1. All collineations in the group 
G,(AA’A’’), for which the cross-ratio along the side A’A” is 
—1, leave A invariant and interchange P and Q; they be- 
long, therefore, to the mixed group mG,(APQ). 

Let & and k’ be the two independent parameters of the con- 
tinuous group G,(AA’A’’). Since the product of the three 
cross-ratios in the same order around the triangle must be unity, 
we have (k) (— 1)(1/k’) =1; thus, k+k’=0. Hence, out 
of the ~’ collineations in G,(AA’A”), where (A’A”PQ)=—1, 
there are ~/ that satisfy the condition k + k’ = 0 and inter- 
change Pand Q. The pair of points A’A” can be chosen in 
co! different ways, so that (A’A’” PQ) = — 1; if out of each 
of these groups G,(AA’A’’) we select the collineations that 
satisfy the relation k + k’ = 0, we obtain ~* collineations of 
type I that leave A invariant and interchange P and Q. 
Among these ~* collineations of type I interchanging P and 

Q, there are ~‘of type IV. In every group G,(AA’A”) there 
are two collineations, viz.: k = 1, k’ = — 1and k= — 1, k’/=1 
which satisfy the condition k +k’ = 0 and are not of type I. 
They are involutoric perspective collineations with the vertex 
always on the line PQ. 

Since no collineation of type III or V is involutorie along 
an invariant line, it follows that the mixed group m G,(A PQ) 
contains no collineations of these types. A collineation of 
type II, whose invariant figure is (AA‘/’), may be involutoric 
along AA’, but cannot belong to the mixed group m G.(A PQ), 
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for the point A would then have to be a second invariant 
point on the line /’, which is impossible. 

THEOREM 6. The mixed group mG.( AP@) contains, in addition 
to the continuous group G.(APQ), ©? collineations of type I and 
o! of type IV, which leave A invariant and interchange P and Q. 

329. The Mixed Groups mG,(PQ) and mG,(Il’). The 
continuous group G,(P@) contains ~ collineations leaving 
Pand Q separately invariant; we seek, in addition to these, 
all collineations which interchange P and Q. There are ~* 
triangles (A A’A”’) so situated that A’A” PQ are collinear and 
the cross-ratio (A’A’”"PQ) = — 1. Each of these triangles is 
the invariant triangle of a two-parameter group in which 
collineations satisfy the relation k + k’=0, and hence inter- 
change P and Q. Therefore, there are ~* collineations of 
type I which interchange P and Q. 

Let us consider the groups G,'(A’A’’l’) of type II, where 
(A'A”PQ)=-—1. The collineations of this group depend 
upon two parameters k and t. When & = — 17, the transfor- 
mations along A’A” are involutoric and interchange P and Q. 
The group G,/( A’A’’l’) contains ~’ such collineations, one for 
eachvalueof t. The figure (A’A”’/’) can bechosen in ©? differ- 
ent positions satisfying the condition (A’A’” PQ)=—1. Hence, 
there are ~° collineations of type II which interchange P 
and Q. 

Let g be any line of the plane cutting PQ in A’ and take A”’ 
on PQ such that (A’A’’PQ) = —1. The involutoric collinea- 
tion of the group H,(A”,g) interchanges Pand Q. There 

are evidently * such involutoric collineations, one for each 
line of the plane not passing through P or Q. 

In like manner, it may be shown that the mixed group 
mG,(ll’) has a similar structure to mG,( PQ); these groups 
are dualistic, and the properties of the former may be in- 
ferred at once from those of the latter. 
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THEOREM 7. The mixed group ae ae + contains, besides the 

continuous group ue ay . o* collineations of type I, <*of type 

ILand «* of type IV, which interchange vate and {@l. 

330. Collineations which Permute the Vertices of a Tri- 
angle. Let P, Q, R be the vertices of a triangle; we wish to 
find all collineations which change P intu Q, @ into Rand R 
into P; also, their inverses, viz.: those that change P into R, 
R into Q and Q into P. Let K be any conic circumscribing 
the triangle; with PQR as the triangle of reference, the ho- 
mogeneous equation of K may be written 

$45 +S=0. fo 
Let w’, y’, 2’ be the coordinates of any point A; the polar of 
A with respect to the triangle of reference is 

poe go ee Oe (12) 
The polar of A with respect to the conic K is given by 

a ( bz’ + cy’) + y(az’+ cx’) +2(ay’+ bx’) = 0. (13) 

We wish to determine the point «’, y’, 2’, so that its polars 
with respect to the triangle (PQR) ‘and the conic K coincide. 
Comparing equations (12) and (13), we find w’: y’: 2’ =a: bie. 
When the point A is not on a side of the triangle of refer- 

ence, we find one, and only one, position of A such that its 
polar with respect to the triangle is at the same time its polar 
with respect to the conic K. The converse of this proposition 
is also true; if we choose any point A and take its polar / with 
respect to the triangle of reference, we shall find one, and 
only one, conic K circumscribing the triangle for which A and 
l are pole and polar. 

The line / and conic K, whose equations are respectively 

4 +$+2=0 and 4+—+==0, 
intersect in a pair of points A’and A”. (AA’A”) is the in- 
variant triangle of a two-parameter group G,(AA’A’’); the 
path-curves of its one-parameter subgroup G,(AA’A”), _, 
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are conics and K is one of these path-curves. Consequently, 
all collineations of the group G,(AA’A”),__, transform K 

into itself. 
The coordinates of A are (a,b,c) of A’ (a, 0b, wc), of A” 

(a, wb, o¢), Where w?=1. The lines AA’, AA”, AP, AQ, 
AR are given by the following equations respectively: 
x y ray ua & y ahd 
SF SET Sarr OW ETT TE Sane we 

a ee 
From these equations we readily find that the cross-ratios of 
the three pencils A (A’A”PQ), A(A’A” QR), A(A’A’RP) are 

equal to each other and each equal to o, 7. e., 6 aa. Conse- 
quently, the collineations of the group G,(AA’A”),__,, 

U 

for which k = e a changes P into Q, Q into R, and R into P. 

The inverse of this collineation, for which k =e = , changes 
Pinto R, R into Q, and Q into P. 

There are ~’ conics circumscribing the triangle PGR; for 
each of these conics there is a point A and a line / which are 
pole and polar with respect to both triangle and conic. Con- 
sequently, there are ~’* two-parameter groups G,(AA’A”), 
each of which contains a pair of inverse collineations that 
permute the vertices of the triangle (PQR). Each of these 
collineations is of order 3. 

THEOREM 8. There are <? collineations of type Land period 3 
that permute the vertices of a triangle. 

331. The Mixed Group mG,(AA’'A”). The mixed group 
m G,(AA’'A’’) is composed of all collineations which leave the 
triangle (A A’A”’) invariant. These consist of the ~? colline- 
ations belonging to the continuous group G,(AA’A”’), the 
o* eollineations of type I which leave one vertex fixed and 
interchange the other two, the ~” collineations of type I and 
period 3 which permute the vertices of the triangle, and of 
the -/ collineations of type IV which leave one vertex inva- 
riant and interchange the other two. 
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$4. Generation of Finite from Infinitesimal 

Collineations. 

332. In the theory of continuous groups as developed by 
Prof. Sophus Lie, the infinitesimal transformation plays the 
most important part. The generation of finite transforma- 
tions and whole groups of transformations by the repetition 
of infinitesimal transformations of the group, is a fundamen- 
tal part of his theory. In the theory of continuous groups of 
collineations in one and two dimensions, developed in the 
preceding pages, the infinitesimal collineation plays no such 
important role. It is, however, of prime importance for us 
to know in what manner, subject to what conditions, and un- 
der what limitations, the finite collineations of a continuous 
group may be generated by the repetition of infinitesimal 
collineations of the group. In this way the points of contact 
of the present theory with Lie’s theory will be most forcibly 
exhibited. The theory of the generation of real continuous 
groups of collineations from real infinitesimal collineations 
differs so markedly from that of the generation of complex 
groups from complex infinitesimal collineations that the two 
cases are best treated separately. 

333. A. Generation of Complex Groups. It has been 
shown in the previous pages that every n-parameter group of 
collineations x <8, is composed of one-parameter subgroups, 
and that every one-parameter group contains at least one 
infinitesimal collineation. Our immediate problem is to dis- 
cuss the generation of one-parameter groups from their infini- 
tesimal collineations. We found in one dimension two types 
of one-parameter groups, viz.: G,(AA’) and G,/(A). In 
two dimensions we found five types of one-parameter groups, 
Wiz) 6G (ALAVA') G, (CAA), G.” (ALS), H(A, 1) and 
H,/(Al). Each of these types must be discussed separately. 

334. The One-dimensional Parabolic Group G,/(A). It 
was shown in Chap. I, Art. 28, that the variable parameter of 



284 THEORY OF COLLINEATIONS. 

the group G,'/(A) ist, and that the law of combination of 
parameters in this group is expressed by the equation 
t,=t+t,. The transformations in this group are commuta- 
tive, Art. 11, and ¢ assumes in turn all complex values. 

The group contains the identical transformation correspond- 
ing to the valuet=0. By definition, Art. 26, an infinitesi- 
mal transformation is one that differs by an infinitesimal 
value of the parameter from the identical transformation. 
Let us write ¢t in the form re*’ , where r is real and positive. 
The identical transformation of the group is given by r= 0. 
Infinitesimal transformations of the group are given by r=4, 
where 4 is an infinitesimal. Since 4 varies continuously from 
0 to 2x, the relation t= de’ gives us an infinite number of 
infinitesimal transformations in the group G,/(A). If t be 
represented geometrically by the Argand diagram, the values 
of t corresponding to these ~‘ infinitesimal transformations 
lie on a circle about the origin of radius r = 4. 

Let us choose one of these infinitesimal transformations 
corresponding to a fixed value of @, say #,, and designate it 
by J,. If I, be repeated we find the resultant of J, and J, as 
follows: t, =t, +t, = de + de =2se%, In like manner if 

I, be repeated n times, we have t, = nde. The position of 

the point t, on the Argand diagram is at a distance nd from 
the origin and on a line making the angle #, with the axis of 
reals. By a proper choice of » we can make the point t, move 
from the origin along the half-ray /», to any desired position 
on this ray. Consequently every transformation in G,/(A) 
corresponding to a value of ¢ situated on the half-ray /4, can 
be generated by the repetition of the infinitesimal transforma- 
tion I, given by t, =de*. In like manner we see that each 

infinitesimal transformation in G,/(A) can generate those 
finite transformations of the group whose corresponding val- 
ues of ¢ lie in the Argand diagram on a half-ray through the 
origin. It is evident that any given finite transformation in 
G,'(A) can be generated by the repetition of one, and only 
one, infinitesimal transformation. 
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THEOREM 9. The group G/ (A) contains «</infinitesimal trans- 
formations; every finite transformation in the group ean be gen- 
erated from one, and only one, infinitesimal transformation of the 
group. 

335. The One-dimensional Loxodromic Group G,(AA’). 
It was shown in Art. 26 that the variable parameter of the 
loxodromic group G,(A A’) is k, a complex number, and that 
the law of combination of parameters in this group is ex- 
pressed by the equation k, =kk,. In this group as in G,/(A) 
the transformations are commutative and k assumes in turn 
all complex values. 

This group contains the identical transformation corre- 
sponding to the value k=7. When the values of k are 
represented on the Argand diagram, the unit point, k = 1, 
corresponds to the identical transformation. Each point on 
the circle about the unit point with radius 5, an infinitesimal, 
corresponds to an infinitesimal transformation of the group. 
Hence the group G,(A A’) contains -! infinitesimal transfor- 
mations. 

Let us set k= re’ and r = ee’; whencek = e(¢+*)", where 
¢isareal number. When 6=0, k= for all finite values 
ofc. When #=34¢, an infinitesimal, we have an infinitesi- 
mal transformation corresponding to each finite value of c. 
Let us choose one of these infinitesimal transformations, say 
that corresponding to the fixed value, c,, and designate it by 
I,, If J, be repeated n times we have k,=e(a+%n59, By 
choosing 7 sufficiently large we may thus generate from J, cer- 
tain finite transformations of the group. The locus of the 
point k,=e(+%"", as n varies, is a logarithmic spiral 
about the origin, passing through the unit point and making 
an angle ¥ with the axis of reals such that cot’ =c. 

Such a spiral makes an infinite number of turns about the 
origin and the unit point divides it into two distinct portions, 
which we shall call the two halves of the spiral. One of these 
halves lies entirely within the unit circle and the other en- 
tirely without it. This spiral contains two points which cor- 
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respond to infinitesimal transformations, one in each half of 
the spiral and adjacent to the unit point. These are given 
by kK=et (1 +*)6? andk=e-(a+%)6@, Kivery finite trans- 
formation corresponding to a point on either half of the 
spiral can be generated by the repetition of its corresponding 
infinitesimal transformation. 

Different values of ¢ give us different spirals. c varies 
continuously through all real values from — © to +, so 

that these spirals lie infinitely close to one another. They all 
pass through the unit point. As ¢ approaches zero, the cor- 
responding spiral approaches as a limit the circle of unit 
radius about the origin; as ¢ approaches infinity, the corre- 
sponding spiral approaches as a limit the straight line which 
is the axis of reals. 
Two problems now present themselves for solution: Can 

every finite transformation in the group G,( AA’) be gener- 
ated by the repetition of an infinitesimal transformation of the 
group? Cana given finite transformation T of the group be 
generated by more than one infinitesimal transformation of 
the group? To answer these questions we proceed as follows: 
Let P be the point on the Argand diagram corresponding to 
the given transformation T;, and let the coordinates of P be p, 
and 6,+22n(” any integer). Since 

k, =" et(h+2nz) — g(e+72) (h+2nz7) i then 

log k, = loge, +71(0,+ 2n2)=¢(0,+2nx)+7(0,+ 2n7z) ; 

whence log p, =¢(#,+2n2) or ¢= ; 29 . Since » is any 

integer, there are an unlimited number of values of ¢ which 
satisfy the equation. Thus there are an infinite number of 
spirals of the family p = e (* +7)" through the point P. When 
n=0,1,2,3, .... the corresponding spiral starting from 
the unit point, makes 0, 1, 2, 3, . . . . turns about the origin 

before passing through P. Hence, every point in the plane 
of the Argand diagram, not on the unit circle, lies on an 
infinite number of discrete spirals, from which we infer that 
every transformation of the group G,( AA’), whose corre- 
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sponding point in the Argand diagram does not lie on the 
unit circle, can be generated from an infinite number of 
distinct infinitesimal transformations of the group. If the 
point P lies on the unit circle about the origin, the correspond- 
ing transformation T may be generated from either of the 
two infinitesimal transformations, k = e+’ ork=e-??, 

The solutions of our two problems are stated in the follow- 
ing theorem: 

THEOREM 10. Every finite transformation of the group @, (4 A’) 
can be generated by the repetition of aninfinitesimal transformation 
of the group; every finite transformation 7 of the group for which 
k=ret#,r 47, can be generated from an infinite number of discrete 

infinitesimal transformations of the group: if r=7, /’can be gener- 
ated from only two infinitesimal transformations of the group. 

336. The Two-dimensional Groups H,'( Al), G,/’ (ALS) and 
G,(AA'l),. Having discussed in detail the generation from 
infinitesimal transformations of finite one-dimensional projec- 
tive transformations, we turn now to apply these results to 
the generation of finite collineations in two dimensions from 
infinitesimal collineations. 

It was shown in articles 247, 269 and 261, that the three 
groups H,/( Al), G,’(AlS) and G,’(AA’l),, all have the same 

structure; 7. e., in each of these groups the parameter is ¢t and 
the law of combination of parameters is t, = ¢-+t,; t assumes 
in turn all complex values. It is evident at once that the re- 
sults obtained for the one-dimensional group G,’ (A) hold also 
for each of the two-dimensional groups H,/( Al), G,/’( AlS) 
and G,/(AA‘l),. Each of these groups contains the identical 
transformation and an infinite number of infinitesimal trans- 
formations. Each of these infinitesimal transformations is 
the generator of those finite transformations of the group 
whose corresponding points on the Argand diagram lie on its 
half-ray through the origin. Every finite transformation in 
one of these groups can be generated from one, and only one, 
infinitesimal transformation of the group. 
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337. The Groups H,(A,l) and G,(AA'A”),. It was 
shown in Arts. 245 and 250 that the two groups H,(A,/) and 
G,(A A’A”), have the same structure as the one-dimensional 

group G,(AA’). Ineach group the parameter is k, which 
assumes in turn all complex values, and the law of combina- 
tion of parameters is expressed by the equation k,=kk,. 
Hence all the results obtained above for the group G,(AA’) 
apply immediately to each of the groups H,(A,/) and 
G,(AA’‘A”),. Each of these groups contains the identical 
collineation and an infinite number of infinitesimal colline- 
ations. Each of these infinitesimal collineations is the gen- 
erator of those finite collineations of the group whose 
corresponding points on the Argand diagram lie on its half- 
spiral through the unit point. Every finite collineation in 
one of these groups can be generated from an infinite number 
of infinitesimal collineations (except those whose correspond- 
ing points on the Argand diagram lie on the unit circle) ; 
each of these exceptional collineations can be generated from 
two and only two infinitesimal collineations of the group. 

338. r-Parameter Groups of Plane Collineations. The 
structure of all collineation groups of the plane was discussed 
in $$ 1 and 2 of the present chapter. In regard to structure 

the groups of plane collineations may be divided into two 
classes, viz.: those which do, and those which do not, contain 

singular transformations. 
Groups containing no singular transformations are made 

up of one-parameter subgroups, such that every collineation 
in such a group belongs to at least one one-parameter sub- 
group. Consequently every finite collineation in an 7-para- 
meter group, G,, which contains no singular collineations, can 
be generated from one or more infinitesimal collineations of 
the group G,. 

In groups which contain singular collineations it is evident 
that all non-singular collineations of the group can be gene- 
rated from one or more infinitesimal collineations of the 
group; but no singular collineations in such a group can be 
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generated from an infinitesimal collineation belonging to the 
group. 

Every finite collineation in the group G,, the group of all 
plane collineations, belongs to at least one one-parameter sub- 
group and hence can be generated from one or more infini- 
tesimal collineations of the plane. 

THEOREM 11. Every finite collineation in the plane belongs to 
at least one one-parameter subgroup of Gs and can be generated 
from one or more infinitesimal collineations. 

B. GENERATION OF REAL GROUPS. 

We turn now to the question of the generation of real col- 
lineations in one and two dimensions from real infinitesimal 

collineations. We shall first discuss the question in one 
dimension. The real group FRG, contains three types of one- 
parameter subgroups: viz., pG,(A), eG,(AA’) and hG,(AA’), 
which require separate consideration. 

339. The Group pG,(A). The parabolic group pG,(A ) 
contains the identical transformation for which t = 0 and two 

infinitesimal transformations for which t= + 5, where Sisa 
real infinitesimal. Since t,=¢-+t,, we see that every finite 

transformation in pG,(A), for which ¢ is positive, can be 
generated from the positive infinitesimal transformation of 
the group; in like manner every finite transformation in 

pG,(A), for which ¢ is negative, can be generated from the 

negative infinitesimal transformation of the group. This rea- 

soning applies to every real parabolic transformation group of 
one-dimensional projective transformations. 

THEOREM 12. Every real parabolic projective transformation 
in one dimension can be generated from one and only one real in- 
finitesimal transformation. 

340. The Group eG,(AA’). The parameter k of the 
elliptic group eG,(AA’) is of the form k=e*’, where ¢ 
varies from —~ to-+. This group contains the identical 
transformation for which #=0 and two infinitesimal trans- 
formations for which 6= +5. Every finite transformation T 

—19 
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in the group may be generated from either of the infinitesimal 
transformations of the group. Indeed, since e*” isa periodic 
function of period 2x, T may be generated an infinite number 
of times from each infinitesimal transformation of the group. 

THEOREM 13. Every real elliptic projective transformation in 
one dimension can be generated from two distinct infinitesimal 
transformations. 

341. The Group hG,(AA’). The parameter k of the 
hyperbolic group hG,( AA’) is real and varies from — ~ to 
+o, This group contains the identical transformation cor- 
responding to k=7 and two infinitesimal transformations 
corresponding to the values k= 14 where 6 is an infinitesi- 
mal. Since k,=kk,, it follows that every finite transformation 
of the group, for which k is positive and greater than unity, 
can be generated from the infinitesimal transformation 
k=1+56; every transformation, for which k is positive and 
less than one, can be generated from the other infinitesimal 
transformation k= 1—3; the transformation of the group for 
which k is negative can not be generated from either infini- 
tesimal transformation of the group. 
We thus see that the group hG,( AA’) is composed of three 

subdivisions as follows: All transformations for which 
1<k<o form subdivision I, and are generated from 
k=1+6; all for which 0<‘’<1 form subdivision II, and are 
generated from k=1—5; all for which —o <k<0O form 
subdivision III and can not be generated from any real in- 
finitesimal transformation. 

THEOREM 14. Every real hyperbolic projective transformation 
in one dimension, for which / is positive, can be generated from one 
and only one real infinitesimal transformation; no real hyperbolic 
transformation with negative 4 can be generated from areal infini- 
tesimal transformation. 

342. Real Collineations in the Plane. We now take up 
the question of the generation of real finite plane collinea- 
tions from real infinitesimal collineations. We must exam- 
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ine separately the five different types of plane collineations. 
We shall easily dispose of types V, IV and III, but it will 
be necessary to treat types I and II at greater length. 

343. Type V. There are ~‘ real collineations of type V 
which readily fall into ©* one-parameter groups so that each 
of these finite collineations belongs to one and only one such 
subgroup. Hence we need only to discuss the generation of 
the finite collineations in one subgroup, say RH,/(A1), from 
the infinitesimal collineations of the group. The parameter 
of the group RH,'(A1) is t, which varies from — ~ to +, 
hence the structure of RH,'(A1) is precisely the same as that 
of pG,(A). We may therefore apply the results found above 
for pG,(A) directly to RH,'/(Al). The group of elations 
RH,(Al) contains two infinitesimal elations corresponding 
to the two values of t=+ 45; each of these infinitesimal col- 
lineations generates its corresponding subdivision of the 
group. The general statement may now be made as follows: 

THEOREM 15. Each real collineation of type V may be gener- 
ated from one and only one real infinitesimal collineation. 

344. Type IV. There are ~’ real collineations of type IV 
in the plane which fall into ©’ one-parameter subgroups 
RH,(A',1), so that each perspective collineation of this type 
belongs to one and only one such subgroup. An examination 
of one of these subgroups, say RH,(A,/), shows that it is 
identical in structure with the group hG,(AA’). Hence we 
may formulate the results immediately. 

THEOREM 16. Each real collineation of type LV, for which % is 
positive, may be generated from one and only one real infinitesimal 
collineation; no such collineation, for which # is negative, can be 
generated from a real infinitesimal collineation. 

345. Type Ill. There are ~° real collineations of type 
III in the plane which fall into ~* three-parameter groups of 
the kind RG,’(Al) in such a way that every collineation of 
type III belongs to one and only one such group. Each 
group RG,’ (Al) breaks up into ~* one-parameter subgroups 
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RG, (ALS) in such a way that each collineation of type III 
in RG,'’(Al) belongs to one and only one such subgroup. 
Hence each real collineation of type III in the plane belongs 
to one and only one one-parameter group, RG,/’(AlS). The 
group RG,’ (ALS) has exactly the same structure as the group 
pG,(A); consequently we may state our theorem at once. 

THEOREM 17. Each real collineation of type III in the plane 
can be generated from one and only one real infinitesimal collineation. 

346. Type Tl. There are two distinct kinds of real collinea- 
tions of type Iin the plane, viz.: hyperbolic and elliptic, 
article 310. These fall into ©’ two-parameter subgroups of 
RG, :viz., hG,(AA'A”) and eG,(AA’A’’) in such a way 
that each real collineation of type I belongs to one and only 
one of these subgroups. The two cases must be treated sep- 
arately and we take up first the hyperbolic group hG,(AA’A”’). 

347. The Hyperbolic Case. The two-parameter group 
hG,(AA'A”’) has for parameters k and k’ both of which as- 
sume in turn all real values. 

The two-parameter group )G,(AA’A’’) contains an infinite 
number of one-parameter subgroups, and we proceed to de- 
termine these. All transformations inhG,(AA’A’”’) for which 

the two parameters satisfy a relation of the form k’=k’, 
where 7 is a constant, form a one-parameter subgroup ; and 
conversely, in all one-parameter subgroups, & and k’ satisfy a 
relation of this form. There are different subgroups for dif- 
ferent values of 7. Geometrically, article 252, 7 is interpreted 
as the constant cross-ratio of certain four points on the tan- 
gent to a path curve of hG,(AA’A”’),: viz., the point of tan- 
gency T and the points of intersection of the tangent with 
the sides of the invariant triangle. These four points are all 
real for a real hyperbolic group and hence ¢ is also real. 

In order to study the distribution of the ~* collineations of 
hG.,(AA’'A’’) into one-parameter subgroups we resort to a 
geometrical device as follows: Let k and k’ be the rectangu- 
lar coordinates of a point in a plane (not to be confused with 
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the plane of our transformation). It is evident, since / and 

k’ are independent parameters, that there is a point in the 

plane corresponding to every collineation of the group 

hG.(AA’A”). Since all collineations, whose parameters k 

and k’ satisfy the relation k’ = k", form a one-parameter sub- 

group of hG,(AA’A’’), we see that the curve y= 2” corre- 

sponds to this subgroup and the individual points of the curve 

correspond to the individual collineations of the group. If 

we give to r all real values, we have a family of curves which 

corresponds to the system of subgroups of hG,(AA‘A’’). 
From the properties of this system of curves we deduce the 

following results: If 7 is an irrational number, the curve 
y=«" contains no real point for which either coordinate is 
negative ; the curve lies entirely in the first quadrant. If r 
isa rational fraction with even numerator and odd denomi- 
nator, y can not be negative, and the curve lies above the axis 
of x in the first and second quadrants. If r is rational with 
odd numerator and even denominator, the curve lies in the 
first and fourth quadrants. If 7 is rational with odd numera- 
tor and odd denominator, the curve lies in the first and third 
quadrants. 

Every curve passes through the point (1,1), which shows 
that the identical transformation belongs to every subgroup. 
The curves of our family contain every point in the first quad- 
rant, but not every point in the second, third and fourth quad- 
rants. Consequently our two-parameter group 1G,(AA’A”’) 
contains collineations which do not belong to any of its sub- 
groups. Such a collineation has one or both of its cross-ratio 
constants negative, and their values are such that they do not 
satisfy an algebraic equation of the form of k’ =k", where 
m and n are integers. 

The variable parameter of every one-parameter group in 
hG,(AA’A”) isk; and every one-parameter group contains 
two real infinitesimal collineations: viz., when k=1+ 6. 
Each infinitesimal collineation generates its corresponding 
portion of the group. Every collineation in the group 
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hG.(AA’A"’) for which both & and k’ are positive can be gen- 
erated from one and only one infinitesimal collineation of the 
group, while no collineation for which either k or k’ is nega- 
tive can be so generated. 

THEOREM 18. Every real hyperbolic collineation of type I, for 
which # and #’ are both positive, can be generated from one and 
only one real infinitesimal collineation: no such collineation, for 
which either % or & is negative, can be generated froma real infin- 
itesimal collineation. 

348. The Elliptic Case. We turn now to the consideration 
of the real elliptic group eG,(A A’A”’) in which the invariant 
triangle has one real vertex, A, and two conjugate imaginary 
vertices, A’ and A”. It was shown in Art. 312, Chap. III, 
that k and k’ are not independent parameters, but that they 
are conjugate imaginary numbers. Thus the real elliptic 
group eG,(AA’A’’), instead of having two independent para- 
meters k and k’, has only one: viz., k; but this is a com- 
plex number and may assume in turn all possible complex 
values. Consequently the group eG,(AA’A’’) contains a col- 
lineation corresponding to each point on the Argand diagram. 
Therefore the group eG,(AA’A’’) has exactly the same 
structure as the one-dimensional loxodromic group G,(AA’) 
discussed in Art. 27, and we may apply the results of that 
discussion directly to the present case. 

The collineations forming the one-parameter subgroup 
eG,(AA’A”’) correspond on the Argand diagram to the points 
on the logarithmic spirals k = e(¢+*) around the origin. <A 
collineation 7’, corresponding toa point P not on the unit 
circle, belongs to an unlimited number of distinct subgroups 
and may be generated from an unlimited number of distinct 
infinitesimal collineations. If the point P, corresponding to 
T,, lies on the unit circle, T belongs to only one subgroup and 
can be generated from either of two infinitesimal collineations: 
AVA Ge 
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THEOREM 19. Every real elliptic collineation of type I can be 
generated from either two or an unlimited number of real infinitesi- 

mal collineations. 

349. Type II. The group RG,'(AA’l) contains two real 

parameters, k and t, each of which assumes in turn all real 

values. The group contains ~! one-parameter subgroups for 
which k and ¢ satisfy the relation k =a‘, Art. 299, where a is 

a constant. There is one such subgroup for each positive 

value of a. 
In order to study the distribution of the transformations in 

RG,'(AA’1) into subgroups and their generation from infini- 

tesimal transformations, we resort to the same device as in 

type I, and make k and ¢ the rectangular coordinates of a 

point ina plane. The family of curves y=a* represents the 
system of one-parameter subgroups of RG,(AA’l). For 
positive values of a these curves lie in the first and second 
quadrants and completely fill the upper half of the plane. 
There are no continuous curves for negative values of a, and 
hence continuous subgroups of RG,(AA‘l) exist only for 
positive values of a. 
Two particular curves of the family deserve special atten- 

tion. Fora very large value of a, the curve y=a’ differs 
but little from the axis x = 0; hence in the limit when a = 

the line «=0 is acurve of the family; on the other hand 
when a = 1 the curve reduces to the line y=1. In the first 
case « = 0 is the only curve of the family that penetrates into 
the lower half of the plane, and consequently the correspond- 
ing group is the only continuous subgroup of RG,(A A’) con- 
taining collineations with negative values of k. The collinea- 
tions of the group corresponding to a= are of type IV. 
The collineations of the group corresponding to a= 17 are of 
type V. 

Each one-parameter subgroup of RG,(AA’l) contains two 
infinitesimal collineations, one positive and the other nega- 
tive. Every collineation in a subgroup of RG,(AA‘l) may 
be generated from one of its infinitesimal collineations, except 
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the collineations with negative k in the perspective subgroup 
a=o, The collineations properly of type I] in RG,(AA'l) 
for which k is negative do not belong to its continuous sub- 
groups and can not be generated from infinitesimal collinea- 
tions of the group. 

THEOREM 20. Every real collineation of type Il, for which 
k is positive, belongs to one and only one one-parameter group 
RG,( AA’l), and can be generated from one and only one real in- 
finitesimal collineation: no real collineation of type I, for which 
k is negative, can belong toa one-parameter group nor can it be 
generated from a real infinitesimal collineation. 

$5. The General Linear Group, G, (1. )- 

350. In chapter IV we determined all varieties of sub- 
groups of the general projective group G,. Some of these 
groups are of special importance when the invariant figure of 
the group is especially related to the Absolute of the Kuclid- 
ian plane, 7. e., to the line at infinity and the two circular 
points. In the present section we shall study in detail the 

general linear group, G,(/.) and its subgroups: the special 

linear group, G,(/.), or group of Invariant Areas, the group 

of Similarity, G,(...'), and the group of all Motions of a 

rigid body in the Euclidian plane, G, (.,.,’),--:. 

351. Invariant Line at Infinity. The six-parameter 

group of collineations whose equations are in the linear form 

G=ar+by+¢, y,=—a'x bye’, (15) 

is called the general linear group. In the general linear frac- 

tional transformation the line represented by the common 

denominator is transformed into the line at infinity (Art. 
82). In the above form the denominator is a constant and 
represents the line at infinity, which is thus transformed into 

itself. 
Equations (15) contain six constants or parameters. The 

first group property is shown at once by eliminating «, and y, 
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from two transformations of the group, T and 7,, whose 
equations are (15) and (15,): 

e=4,0,+by,+¢,35 Yy.=a,/u,+b/y,+¢,. (15,) 

The resultant is also a linear transformation. The second 
group property is shown by solving equations (1) for x, and 
y,. The inverse of T is also linear and the second group 
property is established. 

THEOREM 21. All linear transformations in two variables form 
a Six-parameter group G,;(/.) whose invariant figure is the line at 

infinity. 

392. Purallel Lines are Transformed into Parallel Lines. 
Since the line at infinity is an invariant line of the group 
G,(l..) every point at infinity remains at infinity and hence 
parallel lines are transformed into parallel lines by every 
transformation of the group. The common direction of the 
system of parallel lines may be altered but the fact of paral- 
lelism is preserved. 

This conclusion may be shown analytically as follows: Let 
the equation of a system of parallel lines be written 

Au, + By, + C=0, (16) 
where A and B are constants and Ca variable parameter. 
Substitute for «, and y, their values in the equations 

v,=ar+byt+e, y,=a'«+b'y+c’, and we get 

x(Aa-+ Ba')+y(Ab+ Bb')+ Ac+ Be’ +C=0. (16) 

Since the coefficients of « and y are constants and only C 
varies we have again a system of parallel lines. 

353. Parabolas are Transformed into Parabolas. All 
conies touching the invariant line at infinity are transformed 
into conics touching the same invariant line; hence the trans- 
formations of the group G,(/.) transform the system of ©‘ 
parabolas of the plane into the same system of parabolas. 
The general equation of a parabola is 

(ax, + Gy,)?+ 29x, + 2fy,+d =0. (9) 
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Substituting the values of «,and y, from equations (15) we get 
[a(ax+by+e)+8(a'e+ b’y+c’)]? + 29 (av+ by+ce)+ 

2f(a'x + b’y+c¢’)+d=0; this may be written in the form 

[(aa + Ca')a+ (ab+ 2b’) y]?+2Ge+2Fy+C=0, (17) 

which is again the equation of a parabola. 

THEOREM 22. Parallel lines are transformed into parallel lines 
and parabolas into parabolas by all collineations of the group @;(/. ). 

354. All Areas are Altered by a Constant Ratio R. One 
of the most important properties of group G,(1~) is that any 
collineation T of the group changes all areas of the plane by 
a constant ratio R. For example, if A represents any area 
of the plane, it is transformed by T into a new area A,, such 
that A, = RA; where F is a function of the parameter of T 
only and independent of the position, shape or size of A. 

To prove* this consider any triangle (ABC) and its corre- 
sponding triangle (A,B,C,). Draw lines through the vertices 
of (ABC) parallel to the opposite sides; three new triangles 
will be thus constructed; draw new lines through these ver- 
tices and so continue until the whole plane is divided into a 
net of equal triangles; do the same for (A,B,C,). The tri- 
angles of the second net evidently correspond to those of the 
first since parallel lines are transformed into parallel lines. 

Consider any area A and the corresponding area A,._ Each 
area is made up of the same number of whole triangles and 
parts of triangles. Hence we have 

A nA+e 

: ee ee (18) 

where A is the area of the triangle ABC and A, that of the 
triangle A,B,C,, and where e is the sum of all the pieces of 
triangles within A and e, the sum of all the pieces of triangles 
within A,. Wecan make the quantities e and e, as small as 

we please by taking the triangle ABC and its corresponding 

*A.Emch, Annals of Mathematics, vol. 10, pp. 2-4. 
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triangle A,B,C, sufficiently small. Hence we have in the 

limit 
A A 
i ae CONS. (18a) 

THEOREM 25. A collineation of the group G,(Z2) alters all 
areas by a constant ratio &. 

355. Analytic Proof of Same Property. Let (a, y), (x, y’) 
and (a’’, y’’) be the vertices of any triangle A. The corre- 
sponding vertices of A, are given by 

vw, =ex +by +c, yy =aa +by+c'; 
xy! = aa! +by!4-¢, yi! =a/x! +bly! +¢'; (19) 

¢)""=aa!l-+-by"!--c , yy! = ala! + bly!’ + c!. 

Forming the determinant which is twice the area of A, we 
have 

|v, Ya 1 ax +by +e ax+bly+e 1 CD @ fe ay) al 

| any! yy’ 1) = \aa’+by/+e a/x’+bd/y’/+c! 1) =| a’ db’ c!|. |a/ y! 1 (20) 

| a!” yi! 1 axl +by!+e a/a!+-bly+e! 1| 00 1 tell cypll il 

Ree Are DAr. 

The ratios of the two areas is therefore D which is the deter- 
minant of the collineation 7. 

356. Types of Collineations in G,(l.). It may be shown 
that the group G,(/.) contains all five types of plane collinea- 
tions. When a collineation T of type I occurs in this group, 
one side of the invariant triangle of T must coincide with the 
line at infinity, /.. A collineation T’ of type II may oc- 
cur in G,(/.) in two different ways; the line / or the line 1’ 
may coincide with /.. Collineations of type III occur in 
G,(l.) when the invariant line of 7” coincides with/l.. A 
perspective collineation S of type IV may occur in G,(l..) in 
either of two ways; the axis / of the collineation may coincide 
with /.., or the vertex A may be on the line at infinity and the 
axis pass through finite space. A collineation S’ of type V 
may occur in either of two ways in G,(/.); the axis may 
coincide with /., or the vertex A may be on /. and some 
line of the pencil through A coincide with 1... 
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357. Value of R, the Ratio of Areas. Since every collinea- 
tion in G,(/~ ) alters all areas in a constant ratio R, it is im-. 
portant to find the value F in terms of the natural parameters - 
of the collineation. Each type of collineation requires sepa- - 
rate treatment. 

Type I. Let us consider a collineation T and its in- 
variant triangle having the side A’A” at infinity. Let PQ, 
Fig. 32, be a tangent to a path-curve C and let it be trans- 
formed into another tangent, P,Q,, to the same path-curve. 

The area APQ is transformed into AP,Q,, and we wish to 
find the ratio of these areas. The cross-ratio along the side 

AA is (Ac? — <p - The cross-ratio along the side 

BiG. 32: 

AVAU Ish — (eA cot) @) — ae, The ratios of the two areas 

are given as follows: 
Area of AP, a AP, . AQ, sin # 

R= lee 
- Area of A P Q - AP. AQ sing 
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= R 
Fic. 33. 

358. Type I. 

A 

In the first case let the line AA’, Fig. 33, 
be the line at infinity and let the triangle PQR be trans- 
formed by 7” into P,Q,R,, Q and R being two points on Al’. 
The one-dimensional transformation along /’ is an Euclidian 
translation (Art. 108), and hence Q,R,= QR. 
ratio of the transformations of the pencil through A is 

ANU CALE EL \i— Ki (0 corprp) 

The cross- 

= ” where p and p, are the per- 
Pp 

c A Pi Qik, Pi 

pendiculars from Pand P, tol. Hence Rk = Maat eo =} 
" 
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In this case R the ratio of areas is equal to k the cross-ratio 
of the transformation of the pencil through A. 

In the second case let the line Al’, Fig. 34, be the line at 
infinity and let the triangle BP@ be transformed into BP,Q,. 

The cross-ratio along BA is k=(Ba QQ) = ae The 

cross-ratio of the pencil through A is also k= A(#~p,p) 
Pi A BP, Q, BQ. Pi , 

=~ Hence we have R= 7 p59 = Ba.» =k. 

Fig. 35. 

359. Type III. In this case the path-curves of the one- 
parameter group G,’( AlS) to which T” belongs are parabolas 
similar and similarly placed; 7. e., coaxial parabolas having 
equal latera recta. Consider the area of the segments of the 
parabola g cut off by tangents to h, Fig. 35. If T” trans- 
forms PQ into P,Q,, then the area cut off from g by PQ is 

transformed into the area cut off by P,Q,. But these areas 

are known to be equal, (Salmon, 396); hence, R = 1. 
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FIG. 36. 

360. Type IV. In the first place let /’ be the line at in- 
finity, and let A be in finite space, Fig. 36. The triangle 

AP@Q is transformed into AP,@,. Along AA”, k= aS : 

along AA’, k = ae Hence we have 

AAPQ) AP;.A Qi siné 

AAPQ  AP.AQsino 
R= 

Poh \ 

Fic. 37. 
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In the second case, let Al’, Fig. 37, be the line at infinity, 
and let the triangle PQR be transformed into P,QR, Q and 
R being two invariant points on /’’. The cross-ratio of the 

pencil through A is k = 7 where p, and p are perpendiculars 

from P, and Poni”. Hence we have R= ~*~ =" =k. 

Fig. 38. 

361. Type V. In the first case, when the line / is the line 
at infinity, the triangle PQR is transformed into P,Q,R,. 
But PP, QQ) and PR, are all parallel;-and PP; —@@) — fiz 
for the one-dimensional transformations along PA, QA, RA 

are all translations of equal length. Hence Rk = oe = 

and all areas are unaltered. 

P Po 

Fic. 39. 

In the second case, Fig. 39, when the point A is at infinity 
and / passes through finite space, the triangle PQR is trans- 
formed into P,QR where Q and R are two invariant points on 
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/. But the line PP, passes through A and is parallel to /. 
Hence the triangles PQR and P,QR are equal in area. 

. R=1, 1. e@., areas are unaltered by S. 

THEOREM 24. The value of 2, the ratio of areas for a colline- 
ation in the group @;(/), isas follows: For type I, R=kk’; for 
type I], R= in the first case, and A= inthe second case: for 
type II], #=7; for tvpe IV, R= #2 in the first case, and 2 =k in 
the second case; for type V, &=/ in both cases. 

362. Five-parameter Subgroups of G,(l.). Every six- 
parameter group G,(l) leaving invariant any line / of the 
plane, breaks up into ~! five-parameter groups of the variety 
G,;(A1) leaving a lineal element Al invariant; it also con- 
tains, Art. 209. one five-parameter subgroup of another type, 
viz.: G;(/),--,, composed of one-parameter subgroups whose 
path-curves are conics having / for common chord of contact. 

Having proved the existence of such a unique subgroup for 
every line 1, we wish to study in particular this subgroup 
when / is the line at infinity. It will be shown that this 
special subgroup of G,(/.) transforms areas into equal areas. 
It is therefore called the group of Invariant Areas. 

363. The Special Linear Group. The general linear group 
is given by the equation 

%,=anr-by--c, y,=a'x+b'y+e’. 

ne 
OOD 

A second collineation of the same group has the determinant 

D,= |G. os . The value of the determinant of the resultant 
of these two collineations is, by Art. 172, D,=DD,. If now 
Dand D, are both equal to unity then D, is also equal to unity. 
The resultant of any two collineations of the general linear 
group whose determinants are both unity is a collineation of 
the same group with determinant also unity. Hence all col- 
lineations of the general linear group whose determinants are 
equal to unity form a subgroup of the general linear group. 

—20 

The determinant of this collineation is D = a’ b/|° 
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This subgroup is called the Special Linear Group and is given 
by the equations 

v=ax+byte, y=au«+b'y+c', 

with the condition |%, 4 == il 

364. Areas are Transformed Into Equal Areas. It was 
_ shown in Art. 355 that a collineation of the general linear 
group alters all areas of the plane in the same ratio. Thus it 
was shown that A, = DA, when A is the original area, A, the 

transformed area, and D the determinant of the collineation. 
In the special linear group D= 1; hence A,= A, 7. e., every 
area is transformed into an equal area. 

THEOREM 25. The Special Linear Group transforms every area 
into an equal area; 2. e., it is the group of Invariant Areas G;(J.)A. 

365. Collineations of Type Tin G,(lxo2)a. It was shown 
in Art. 357 that for a collineation of type I in G,(/. ) the con- 
stant ratio of areasis R=kk'’=k'+r. If this ratio is equal 
to unity, then we must have r=—i1. Butif r= —1 then 
the path-curves of the one-parameter group G,(ABC),__, are 
conics, Art. 254, having AA’ and A A” for common tangents 
and A’A” for chord of contact. The line A’A” is now the line 
at infinity and hence the conics having double contact at A’ 
and A” are concentric conics having the same asymptotes. 
When A’ and A” are real points, the path-curves are concen- 
tric hyperbolas having the same asymptotes. When A’ and 
A” are conjugate imaginary points the path-curves of a one- 
parameter group are similar and concentric ellipses. 

In the case of a hyperbolic one-parameter subgroup of 
G,(l~2) (when A’ and A” are real), we can readily see that 
the areas are transformed into equal areas, for all tangents 
to a hyperbola, Fig. 40, form with the asymptotes triangles of 
equal areas. Likewise all segments of one hyperbola cut off 
by tangents to a similar and concentric hyperbola have equal 
areas (Salmon 396). In the case of an elliptic subgroup, 
where the path-curves are similar and concentric ellipses, 
areas are evidently transformed into equal areas. 
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Fic. 40. 

Since there are ~¢ triangles in the plane having the line at 
infinity for one side, it follows that the group G,(/.)a con- 
tains / one-parameter subgroups of type I, all of whose 
path-curves are conics having double contact on the line at 
infinity. 

366. Collineations of Type III in G,(l.)a. It was proved 
in Art. 359 that a collineation of type III in G,(/.) has the 
constant ratio of areas R=1. Therefore all such collinea- 
tions in G,(l.) transform areas into equal areas and conse- 
quently belong to the subgroup G,(/.)a. 

There are ~‘ collineations of type HI in G,(/.)a, for there 
are «/ linear elements on./ and each lineal element is the in- 
variant figure of ~* collineations T”. These ~‘ collineations 
T” fall into ©* one-parameter subgroups G,’(Al..), ©* for 
each point on/.... The ~* parabolas of the plane can be ar- 
ranged in ~* pencils of similar and coaxial parabolas; each 
of the pencils constitutes the path-curves of one of the ~*one- 
parameter subgroups G,’(Al..). 

367. Collineations of Type Vin G,(l.)a. All collinea- 
tions of type V in G,(/.) transform areas into equal areas, 
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for it was shown in Art. 361 that for thistype R=1. All 
collineations of type V leaving the line at infinity invariant 
form a two-parameter group H,'(/.), Art. 201, and this is 
therefore a subgroup of G;(l.)a. 

THEOREM 26. The group of invariant areas G;(/o)a consists of 
collineations of types I, III, and V; it contains o* one-parameter 
subgroups G;(A6C),-_;; ©% one-parameter subgroups G1//(AlS~) ; 

and o/ one-parameter subgroups 4/;/ (Alo) . 

368. The Group of Similarity, G,(oo’). We shall now 
take up the detailed study of the real four-parameter group 
G,(ow’) whose invariant figure is the line at infinity and the 
two circular points at infinity o and wo’. The group G,( ow’) 
evidently contains «* two-parameter subgroups G,(Aow’), 
where A is any point in the plane forming with w and w’ the 
triangle (Aww’). Each of these two-parameter groups 
G.(Aow’) contains 1 one-parameter subgroups G,(Aww’),. 

Since two of the vertices of the invariant triangle (Awu’) 
are conjugate imaginary points it follows that all the collinea- 
tions of type I in G,(ow’) are elliptic. There can be no real 
collineations of type II in G,(ww’) because for such collinea- 
tions the invariant points A and A’ are always real points and 
hence can not be made to coincide with w and w’. There can 
be no real collineations of type III in G,(ow’) for similar rea- 
sons. 

G,(ww’) contains real collineations of types IV and V; for 
if the line of invariant points of a collineation of type IV or 
V be the line at infinity, the imaginary points w and o’ as well 
as all real points on the line /., are invariant. 

369. Angular Magnitudes are Invariant. <A collineation 
T (ow’) which transforms any point P into P, necessarily trans- 
forms the lines joining P to w and w’ into the lines joining P, 
tow and w’. Thus isotropic* lines are transformed into iso- 
tropic lines; the system of isotropic lines in the plane is in- 
variant under the group G,(ww’). 
Two lines p and p’ meeting in P are transformed by T(ww’) 

*C. A. Scott, Modern Analytic Geometry, Art. 113. 
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into p, and p,’ meeting in P,. Since cross-ratios are unaltered 
by a collineation, the cross-ratio of the pencil P(pp’/oo’) is 
equal to that of P,(p,p,/oo’). But the cross-ratio of the pen- 
cil formed by two intersecting lines p and p’ and the isotropic 
lines through the point of intersection measures the angle be- 
tween p and p’.* Hence the angle between p and p’ is equal 
to the angle between the two corresponding lines p, and p,’. 
This is true for all points of the plane. Therefore all angles 
in the plane are transformed into equal angles; in other words, 
all angular magnitudes are invariant for the group G,(00’). 

Since all angular magnitudes are unaltered by a collinea- 
tion T(oo’), it follows that any figure is transformed into a 
similar figure. Shape is conserved but size is not necessarily 
conserved. The group G,(ww’) is therefore called the Group 
of Similarity. The group G,(o0’) is a subgroup of G,(U.); 
hence every collineation in G,(ww’) alters all areas by a con- 
stant ratio R. But if angular magnitudes are unaltered and 
areas are altered by a constant ratio FR, it follows that all 
linear magnitudes are also altered by a constant ratio R’ 

which is given by R’= NVR. 
THEOREM 27. Every collineation of the group @,(¢’) leaving 

invariant the line at infinity and the two circular points, trans- 
forms angles into equal angles and every figureintoa similar figure 
and alters every linear magnitude by a constant ratio. 

370. The Path-curves of the Group G,(Aow’),. The path- 
curves of a one-parameter group G,(Aow’), require special 
attention because of their remarkable form. We proved in 
Art. 252 that the path-curves of the one-parameter group 
G,(ABC), have the property that the cross-ratio of the pencil 
formed by a tangent to a path-curve at P, and the three lines 
from the point of contact to the invariant points is constant 
and equal to r for all points of the plane. Since Pu and Pw’ 
are the isotropic lines through P, it follows that the angle be- 
tween AP and the tangent to the path-curve at P is constant 
for all points of the plane. The only plane curve for which 

*C. A. Scott, Modern Analytic Geometry, Art. 273, 
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the angle between the radius vector and the tangent at its 
extremity is constant is the logarithmic spiral. Hence the path- 
curves of the one-parameter group G,(Aww’), are logarithmic 
spirals about the point A,; these spirals cut all the lines 
through A at a constant angle. 

It may also be shown from the equations to the path-curves 
of G,( AA’A”), that, when A’ and A” are the circular points 
» and w’, these path-curves become spirals. The equation of 
the path-curves of G,(AA’A”), is, Art. (251), 

CaO cme 

Putting z = 7 the side A’ A” of the invariant triangle is shifted 
to infinity. To make A’ and A” the circular points at infinity, 
we write « —iy for x and «+ 7y for y (or vice versa). The 

above equation then becomes 

etiy=C(“%— wy)’. 

Setting , =a-+ 7b we have 

SCY Cems OO Ceeke Uae 
Also by changing the sign of 7 

x — a Cebdiere , 

Multiplying we get 

a? + y? = C7e*?, 
Setting «+ y’ = 4° we have 

s= Cees, 

which is the polar equation of a family of logarithmic spirals. 

THEOREM 28. The path-curves of a one-parameter group 
G,(ee') whose invariant triangle has two vertices at the circular 
points at infinity are a family of logarithmic spirals about 4. 

371. Collineations of Types IV and V in G,(ow’). The 
group G,(oo’) contains the three-parameter group H,(1.); 
for the ~* perspective collineations S(/.) form a group and 
in the invariant figure of this group is every point on the line 
at infinity, including therefore the two circular points » and 
w’, Within this group H,(/,) is the two-parameter group 
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H,/(l.) of elations; this group of elations is therefore a sub- 
group of G,(ow’). 

372. One-parameter Groups of Dilations. The path-curves 
of a group H,(A,/.) are the pencil of lines through A. Since 
the characteristic cross-ratio of a collineation S of the group 
H,(A,l.) is constant along all lines through A, it follows 
that S produces a dilation of the whole plane, A being the 
center of dilation. All linear magnitudes are altered in the 
constant ratio k and all areas in the constant ratio k*. For 
negative values of k any figure F' and its corresponding figure 
F, are situated symmetrically on opposite sides of A. 

373. The Mixed Group mG,(oo’). Having pointed out 
all varieties of collineations that leave the circular points « 
and o’ separately invariant, we proceed to consider those col- 
lineations which interchange o and wo’. The mixed group 
MG,(oo') is only a special case of emG,(PQ), which group 
was investigated in $3 of this chapter. We thus see that 
emG,(oo’) contains * collineations of type I, «° collinea- 
tions of type II, and ©* involutoric collineations of type IV. 

Let A A’A” be the invariant triangle of a hyperbolic colline- 
ation of type I which interchanges w and w’. Since A’ and A” 
separate © and w’ harmonically, we see that the angle A’A A” 
isaright angle. Hence such a collineation leaves invariant a 
finite point A and two lines through A at right angles to one 
another. Every angle in the plane is unaltered in magnitude 
but reversed in sense by such a collineation, while all areas 
are altered by a constant ratio, which ratio R is always nega- 
tive. The effect of a collineation of this kind is to transform 
every plane figure into a similar but noncongruent figure. 
With AA’ and AA” for axes the collineation T is given by 
v,=kx, y,=ky with the condition k+k’=0. 

Let AA’l’ be the invariant figure of a collineation T’ of 
type II which interchanges w and w’. Since the points A and 
A’ separate o and wo’ harmonically, we see that lines perpen- 
dicular to /’, the finite invariant line of T’, are transformed 
into lines also perpendicular to /’. A line parallel to /’ is 
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transformed into another line also parallel to /’, but at an 
equal distance from / on the other side. Angles are unaltered 
in magnitude but reversed in sense, and linear magnitudes 
are reversed in sense but unaltered in length. The effect of 
such a collineation is to revolve the whole plane through two 
right angles about the line /’ as an axis, and then to slide the 
whole plane along /’. With the origin on / the collineation 
T’ is given by v7, = —x, andy,=y-+t. 

Let t=0 in the above collineation 7’ of type II; 7’ then 
reduces to an involutoric collineation of type IV. The effect 
of such a collineation is to revolve the whole plane through 
two right angles about /’ as an axis. 

THEOREM 29. The mixed group emG,(¢e’) contains, besides 

the continuous group eG@,(¢/), o4 hyperbolic collineations of type 
I, o# collineations of type II, and o? involutoric¢ collineations of type 
IV. All collineations interchanging @ and ©’ transform plane fig- 
ures into similar but non-congruent plane figures. 

374. The Group of Euclidian Motions. The group of 
Euclidian motions in the plane is a subgroup of the group of 
similarity G,(ow’). Every collineation in G,(o’) transforms 
all plane figures into similar and congruent figures and alters 
all linear magnitudes in a constant ratio R; shape is an inva- 
riant of the group G,(ow’), but size is not invariant. 

All collineations in G,(o’) for which R is unity form a 
subgroup of the group of similarity; all such transformations 
are common to the two groups G,(/.),-_, and G,(ow') and 
form a subgroup of each. All collineations of this subgroup 
conserve size as well as shape. Every plane figure is trans- 
formed into an equal and congruent plane figure. But such 
a collineation is evidently brought about by a rigid motion of 
the whole plane into itself. Hence the group of collineations 
of the plane which conserves the size, shape and congruity 
of every plane figure is the group of all Euclidian motions in 
the plane. 

375. The Group of Motions is G,(ow’),-_;. It was shown 

in Art. 370 that the path-curves of the one-parameter group 
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G,(Aow’), are logarithmic spirals, 7 = Ce’, where b is the 
cotangent of the constant angle J between the radius vector 
and the tangent to the curve. When b=0, cot 1 =0 and 
Y=7. In this case the spirals degenerate into concentric 
circles about the point A. R, the ratio of linear magnitude, 
in this case is unity. 

The path-curves of this one-parameter group are concentric 
circles; 7. e., they are conics having double contact at w and 
wo’. The group is therefore evidently G,(Aww’),__, or 
G,(HM). There are ~* such one-parameter groups in the 
plane, one for each point A. When the point A falls on the 
line at infinity, the collineation is no longer of type I but de- 
generates, as we shall see, into a collineation of type V. 

376. Collineations of Type Vin G;(EM). The group of 
similarity was found to contain collineations of types 1, IV 
and V (Art. 368). A collineation belonging to the group of 
similarity is a motion when the ratio of expansion is unity. 
We saw in the last article how the ratio of expansion might 
be unity for a collineation of type I. 

The ratio of expansion of a collineation of type IV in the 
group of similarity is R=k; so thatif R=1, thenalsok=1. 
But k=1 is the identical transformation in the group 
H,(Ol.); hence we see that the group of motions contains 
no collineation of type IV. 

The ratio of expansion for a collineation of type V in the 
group of similarity is R = 1; hence all collineations of type 
V in the group of similarity are also to be found in the group 
of motions. 

The two-parameter group of type V, H,’(l.), is therefore 
a subgroup of the group of motions. This group H,’(I..) is 
common to G,(l.), G;(le),, G,(oo’) and the group of mo- 
tions, Giloo)e-=,. 

377. Motion is Hither a Rotation or u Translation. The 
group of motions contains only collineations of type I and 
type V. These must be examined separately. The path- 
curves of a one-parameter group of motions of type I are con- 
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centric circles about the point A. The collineations of this 
group are therefore rotations of the whole plane about the 
point A. It is evident that all rotations of the plane about a 
fixed point A form a one-parameter group. A rotation about 
A through an angle # combined with another about the same 
point through an angle 6, results in a rotation about the same 
point through an angle 6,=6-+06,. The characteristic cross- 
ratios of the two component collineations are respectively 
e*’ and e*”; the cross-ratio of the resultant is e’” =e: ei = 
e(@+h) , 

The path-curves of a one-parameter group of motions of 
type V are straight lines meeting at A, a point on the line at 
infinity; 7. e., they are parallel lines all in the direction of A. 
The collineations of this one-parameter group are therefore 
translations of the whole plane in the direction of A. It is 
evident that all translations of the plane in a given direction 
form a group; a translation in a given direction through a 
distance t combined with another translation in the same di- 
rection through a distance t,, results in a translation in the 
same direction through the distance t, = t+ t,. 

THEOREM 30. Thegroup of Euclidian motions Gs(¢e’),-_,; con- 

tains only collineations of types I and V; the former are Rotations 
of the whole plane about a point, the latter are Translations of the 
whole plane in a fixed direction. 

378. Subgroups of the Group of Motions. The group of 
motions contains ©’ distinct rotations and ? distinct trans- 
lations. All the rotations about a point form a group of one- 
parameter and there are * such points in the plane; hence 
all the rotations of the plane naturally fall into ©” one-pa- 
rameter subgroups of rotations, one subgroup for each finite 
point in the plane. These one-parameter groups of rotations 
do not combine to form two-parameter groups of rotations, 
for the resultant of two rotations is not always a rotation 
but is sometimes a translation. 

The * translations of the plane form a two-parameter 
subgroup of the group of motions. This is the group H,’(I..). 
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It is evident geometrically that the resultant of any two trans- 
lations is a translation and hence that all translations of the 
plane form a group. A translation of the whole plane from 
O to P followed by a translation from P to P, is equivalent to 
a translation of the whole plane from O to P;. 

The two-parameter group of translations H.’(/..) breaks up 
into oo’ one-parameter subgroups of translations, one for 
each point on the line at infinity, 7. e., one for each direction 
in the plane. 

379. The Mixed Group mG,(EM). We found in Art. 373 

that the transformations in mG,(o.’) which interchange w and 
wo’ are of types I, I], and IV. All of these transformations 
which change areas into equal areas belong to the mixed 
group of Euclidian motions. These we now proceed to ex- 
amine. 

The two characteristic cross-ratios k and k’ of a hyperbolic 
transformation T of type I which interchange w and «’ satisfy 
the condition k-+k’=0; Art. 373. If T leaves all areas in- 

variant in magnitude but reversed in sense, / and k’ must 
satisfy the relation kk’ = —1; Art. 361. From these two con- 

ae k=1 [: Steet Bae ac ditions we have };,__, Or ,_, 3 in either case we see that 

the collineation is no longer of type I but of type IV, 7. e., it 
is a perspective collineation. Thus the mixed group mG,( HM) 
contains no hyperbolic collineations of type I. 

All collineations of type II in emG,(o0’) interchange w and 
w’ and transform all plane areas into equal but non-congruent 
plane areas. Consequently the ~* collineations of type II in- 
terchanging » and w’ belong to the mixed group mG,( HM). 
The effect of such a collineation, Art. 373, is to revolve the 
whole plane through an angle of 180° about some line of the 
plane as an axis and then to slide the whole plane along the 
axis. 

All transformations of type IV in mG, (ww’) evidently trans- 
form areas into equal but non-congruent areas and hence 
belong to the group mG,(HM). The effect of such a trans- 
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formation is to revolve the whole plane through 180° about 
the line of invariant points as an axis. 

THEUREM 31. ‘The mixed group of Euclidian motions contains, 
besides the continuous group e@;( £1), o* collineations of type II 
and <* collineations of type 1V; these collineations interchange « 
and ~ and transform all plane areas into equal but non-congruent 
plane areas. 

Exercises on Chapter 4. 

1. Verify synthetically and analytically the structural for- 
mulas of all perspective groups given in Art. 315. 

2. Show that the group G,’’(AIN) contains H,/(Al) asa 
subgroup. 

3. Verify synthetically and analytically the structural for- 
mulas of all groups of type II, first class, as given in Art. 317. 

4. Verify by both methods the structural formulas of all 
groups of type II, second class, as given in Art. 318. 

5. Verify the structure of all groups of type I, first class, 
as given in Art. 319. 

6. Verify by both methods the structure of all groups of 
type I, second class, as given in Art. 320. 

7. Verify by both methods the structure of all groups of 
type I, third class, as given in Art. 321. 

8. Show that group G,’(A/), contains singular transforma- 
tions of both types III and V; and the group G,(AA’), con- 
tains singular transformations of type III. 

9. Show that groups G,(AA’),, G,(ll’),, G,(Al), (when 
r is rational), each contain singular transformations of 
type II. 

10. Show that the group G,(A),-_, contains © singular 
transformations of type II. 

11. Show that the singular transformations of type II in 



EXERCISES. 317 

G,(AIUS) are the resultants of a system of involutoric per- 
spective collineations with the elations of the subgroup 
HSGAL): 

12. Show that the system of collineations selected from the 
group G,(AA’A”), so as to satisfy the condition k+k'’=0, 
form a continuous system but not a continuous group. 

13. Show that the system of parabolic transformations 
within G,’(A), which correspond on the Argand diagram to 
all points ona straight line through the origin, has both 
group properties and hence forms a subgroup of G,/(A). 

14. Show that there is one such subgroup of G,/(A) for 
each line through the origin; hence show that the real group 
pG,(A) is a subgroup of G,/(A), when A is real. 

15. Show that the system of loxodromic transformations 
within G,(AA’), which correspond on the Argand diagram 
to all points ona logarithmic spiral r=e(¢+*)’ about the 
origin and through the unit point, has both group properties 
and hence forms a subgroup of G,(AA’). 

16. Show that G,(AA’) contains one such subgroup for 
each value of ¢; hence show that eG,(AA’) is a subgroup of 

G,(AA’) when A and A’ are conjugate imaginary points; 
show also that hG,(AA’) is a subgroup of G,(A A’) when A 
and A’ are a pair of real points. 

17. Show that each of the plane collineation groups, 
H, (Al), G,’(AlS), and G,(AA’l),, in which the para- 
meter t assumes in turn all complex values, breaks up into 
oo! continuous subgroups, one for each value of 6 in t=+re"’. 

18. Show that each of the plane collineation groups, H’(A1) 
and G,(AA’A’’),, in which k assumes in turn all complex val- 
ues, breaks up into continuous subgroups, one for each value 
of cin k =e (e+7)6, ; 

19. Show that those hyperbolic transformations in 
hG,(AA’), for which k is negative and which therefore can 
not be generated from either real infinitesimal transforma- 
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tion in hG,( AA’), can be generated from complex infinitesi- 
mal transformations in G,(AA’). 

20. Show that a real collineation hT(AA’A’’) of type I, 
for which k and k’ are both positive, belongs to one and only 
one one-parameter subgroup of hG,(AA’A”). 

21. Find the determinant of the normal form of a collinea- 
tion of type I in G,(l..), and hence show analytically that R, 
the ratio of areas, is kk’. 

22. Find ina similar manner the value of FR for collinea- 
tions of types II, III, IV and V, inG,(l.). 

23. Show analytically that the group of invariant areas is 
composed of collineations of types I, III and V. 

24. Deduce from the equations of the normal form of type 
I the following equations of the Group of Similarity, G,( ow’): 

@=F(k+h)at+t(k—k)ytA—S(k+k)+F(k—k), 

y= —3(k—K e+ i (k+h )y+B-S(k—k’) —F(b+k’). 
25. Deduce from the equations of problem 24 the equations 

of the group H,(/..) and show that this group is a subgroup 
of Gi(@O") ° 

26. Show that H,’(/.) is also a subgroup of G,(o’) and 
deduce its equations from those of problem 24. 

27. Deduce from the equations of problem 24 the following 
equations of a rotation about the point (AB) through an 
angle ): 

v,=«xcosd—ysind+ A—Acos#+Bsine, 

y,=«xsino+ycos#+ B—Bcos#—Asiné. 

28. Prove that the resultant of two rotations, T and T,, 
through angles # and ¢, respectively, about points (AB) and 
(A,B,) respectively, is a rotation about a third point, (A,B,), 
through an angle #, = 6-+¢,, and find the coordinates (A,B,) 
of the new centre of rotation. 
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29. Prove that the resultant of two rotations through 
equal angles in different directions about different points is a 
translation perpendicular to the line joining the two points. 

30. Prove analytically that the resultant of a rotation and 
a translation is a rotation. 

31. Prove analytically that the resultant of two transla- 
tions is a translation. 
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THE KANSAS. UNIVERSITY _ 
SCIENCE BULLETIN. 

Vou. VI, No. 2] JANUARY, 1912, [ymouz, Seains. 
VOL. XVI} NO! 2: 

oa PENNSYLVANIC AMPHIBIA OF THE MAZON 
CREEK, ILLINOIS, SHALES.*” + 

(Contribution from the Zoological Laboratory, No.’ 198.) 

’ BY ROY L. MOODIE. 

Plates 1-14. 

INTRODUCTION. 

HE fossil: bearing nodules from the anes alone Mazon 
me Creek, Grundy county, Illinois, have, ever since their 

. discovery, been very prolific in excellently preserved: 
and: highly interesting forms of both. plants ‘and animals. 
Among the latter there have been examples of nearly all the’ 
groups which one could hope to find in a brackish or fresh: 
water and inland deposit.. These forms range from low down 
in the zodlogical scale to the forms which must have stood in 
an ancestral relation to the reptiles. No true reptiles have 
been discovered in the deposits, although the discovery of 
such a group there would not be surprising in the least, yet 
of the greatest interest. <A single excellently preserved skele- 
ton of a true reptile is known from the Linton Coal of Ohio, 
and has been described by Cope, Williston and the writer.’ 
Two true reptiles are known also from the Carboniferous beds’ 
of Commentry, France, and examples of reptiles are known 
from the Rothliegenden of Saxony and from the Gaskohle of 
Bohemia. The lower portions of these latter deposits are un- 
doubtedly of Upper Carboniferous age. 

The fauna and flora of the Mazon Creek shales have been 
described by many authors. Doctor Eastman, in 1902, pub- 

* Received for publication March, 1911. 

(323) 
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lished a list! of the vertebrates known at that time from these 

shales. This list included twenty-five species of fishes and a 

single species of Amphibia, Amphibamus grandiceps Cope, 

which was all that was known of the higher vertebrates from 

these beds at that time. Since the publication of Eastman’s 

essay the writer has described? an additional species from 

Mazon Creek, Micrerpeton caudatum. This form was shown 

to be an example of the order Branchiosauria. It was the 

first definite evidence of the occurrence of this order of Am- 

phibia in America, or, in fact, in the Western Hemisphere. 

The next year the writer described (Amer. Natl., XLIV, 

June, 1910, p. 367) and figured another branchiosaurian as 

Eumicrerpeton parvum, from these beds; and the following 

year he described (Proc. U. S. Natl. Museum, XL, p. 429-433, 

1911) and figured further remains of the same species and 

described a new microsaurian as Amphibamus thoracatus. 

There have been, thus, up to the present time, four 

species of Amphibia described from the Mazon Creek shales. 

These four species are represented by seven specimens. 

The type of Amphibamus grandiceps Cope was destroyed by 

fire, but there is an excellently preserved specimen of this 

species in the collection of Mr. L. E. Daniels, of La Porte, Ind. 

Other examples of the fossil Amphibia of Mazon Creek which 

have come to the writer’s notice are specimens, representatives 

of the Branchiosauria and the Microsauria, in the collection of 

Mr. R. D. Lacoe, now the property of the U. S. National Mu- 

seum. This small but highly interesting collection has re- 

cently been loaned the writer for study by Mr. Charles W. 

Gilmore. This was the sum total of Mazon Creek Amphibia 

known to the writer until some months ago. In November of 

1909 a collection of nodules containing Amphibia was loaned 

the writer for study through the courtesy of Doctors Eaton 

and Schuchert, of Yale University. This lot consists of ten 

individuals, representing seven genera and eight species, all 

of which, save one, are regarded as unknown and have been 

described as new. This is an immense addition to our knowl- 

edge of the amphibian fauna of the Mazon Creek shales and 

adds much to our knowledge of the diversity of structure dis- 

played by the Amphibia of the Carboniferous. 

The forms described below are entirely unlike any of the 

1. Eastman, C. R., Journ. Geol., vol. 10, p. 535, 1902. 

2. Moodie, Roy L., Journ. Geol., vol. 17, p. 39, 1909. 
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forms occurring elsewhere in the Carboniferous or later ages. 

It has been the writer’s good fortune during the past five 

years to examine all of the specimens of Carboniferous air- 

breathing vertebrates in North America, with the exception 

of Sir William Dawson’s collection at McGill University. The 

European forms, as they have been described from time to 

time, are, unfortunately, known to him only through the lit- 

erature, with the exception of a small collection of Branchio- 

sauria recently received in exchange from Dr..Hermann Cred- 

ner. It is hoped that in the near future this may be supple- 

mented by actual observation, and until that time it can not be 

positively asserted that the forms described below are unlike 

those already known, but, so far as his knowledge goes, the 

writer is confident that they are new to science. The char- 

acters used for generic distinctions are such that even the 

most superficial observations must reveal. They are struc- 

tural ones, and are those which are used by many eminent 

vertebrate paleontologists at the present time. Unfortunately, 

we know so little about the development of the class Amphibia 

that we can not always be sure that our characters are phylo- 

genetic, as they must be to mean anything. So that until some 

idea of phylogeny is obtained, structural characters must be 

used which seem to the describer to be of generic significance. 

The Amphibia so far discovered in the Mazon Creek shales, 

including those described in this paper, are: 

Amphibamus grandiceps Cope, 1865. 

Amphibamus thoracatus Moodie, 1911. 

Micrerpeton caudatum Moodie, 1909. 

Eumicrerpeton parvum Moodie, 1910. 

Mazonerpeton longicaudatum Moodie. 

Mazonerpeton costatum Moodie. 

Cephalerpeton ventriarmatum Moodie. 
Erpetobrachium mazonensis Moodie. 
Spondylerpeton spinatum Moodie. 

Erierpeton branchialis Moodie. 

These ten species are distributed among eight genera, five 

families, and four orders, thus showing the amphibian fauna 

of Mazon Creek to be a diverse one. The arrangement of the 

species into groups is given below. 

e 

SE MAAR We wt i 
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Ciass: AMPHIBITA, LINNE, 1758. 

Subclass: EUAMPHIBIA, Moodie, 1909. 

Order: Branchiosauria, Lydekker, 1889. 

Family: Branchiosauride, Fritsch, 1879. 

Micrerpeton caudatum Moodie. 

Eumicrerpeton parvum Moodie. 

Mazonerpeton longicaudatum Moodie. 

Mazonerpeton costatum Moodie. 

Order: (?) Caudata, Duméril, 1806. 

Family; Cocytinide, Cope, 1875. 

Erierpeton branchialis Moodie. 
Subclass: LEPOSPONDYLIA, Zittel, 1887. 

Order: Microsauria, Dawson, 1863. 

Family: Amphibamide, Cope, 1875. 

Amphibamus grandiceps Cope. 

Amphibamus thoracatus Moodie. 

Cephalerpeton ventriarmatum Moodie. 

Family: Molgophide, Cope, 1875. 

Erpetobrachium mazonensis Moodie. 
Subclass: STEGOCEPHALA, Cope, 1868. 

Order: Temnospondylia, Zittel, 1887. 

Suborder; Embolomeri, Cope, 1885. 

Family: Cricotide, Cope, 1884. 

Spondylerpeton spinatum Moodie. 

_ The discovery of the embolomerous amphibians in the Car- 

boniferous fauna is not new, since the first embolomerous form 

known in North America was described from the deposits on 

Salt Creek, Illinois, as Cricotus heteroclitus, by Cope. Later 

the same or a closely related form was discovered in Texas by 

Cope and Case and in Kansas by Williston. The form de- 

scribed here is, however, much more primitive than any of the 

species of Cricotus. The rachitomous forms of Amphibia are 

known from the Carboniferous of North America and Europe 

through the researches of Fritsch and Case. 

The content of the amphibian fauna of the Mazon Creek 

shales is peculiar on account of the presence of the four species 

of Branchiosauria. Unless Dawson’s Sparodus is an example 

of this group, the forms in the Mazon Creek fauna represent 

the only known occurrence of this order in.North America. 

Dawson was himself doubtful about the identity of the re- 

mains which he referred to Sparodus. Judging from his 

figures, there is a possibility that he may be right, since the 

form of the interclavicle is decidedly branchiosaurian, as we 

know the form of that element among the European species. 

Beside the presence of the Branchiosauria, the Mazon Creek 
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amphibians differ from the Canadian species in the almost 

total absence of any scaly covering such as occurs in Den- 

drerpeton and Hylerpeton, although Micrerpeton has very 

small scales over the body and tail. Furthermore, the Cana- 

dian species are more terrestrial than those from Mazon Creek, 

which, judging from their form, were either entirely aquatic 

or only partially terrestrial. The size of the members of the 

two faunas differs in no great degree. Large and small mem- 

bers are found in both localities. The Joggins: Amphibia are 

hardly well enough known to judge their relationships other 

than those of an ordinal or family rank. These relations a 

be given in another paper. 

The Linton fauna, which is more fully described in another 

paper, is quite unlike the Mazon Creek fauna. This is evident 

by the absence of branchiosaurian forms from the Linton 

deposits and by the presence of the legless Microsauria and 

the Proteid form Cocytinus, which is paralleled’ by Hvierpéton 

in the Mazon Creek fauna. The limbed Microsauria also differ 

in a marked degree, in that the Mazon Creek forms’ havea 

strong tendency toward the Reptilia, as illustrated in the 

Amphibamide, Amphibamus and Ceplhalerpeton. The Linton 

fauna shows a wide divergence of types, illustrating different 

phases of amphibian development, and in the tendency of 

certain groups, such as the families Tuditanide and Macrer- 

petidz, to approach the Stegocephala proper and through them 

certain of the stegocrotaphous reptiles. The Linton fauna is 

distinctive too in the abundant presence of such ‘highly de- 

veloped swimmers as Cstocephalus, Ptyonius, Phlegethontia 

and Ctenerpeton, and as such is interesting in displaying 

parallel development of the same structures in forms which 

are really widely separated in structure. 

The fauna of the Cannelton slates is not very different from 

that of Linton, and the remarks made concerning the relation- 

ship of that fauna to the Mazon Creek fauna will also apply 

with reference to the Cannelton fauna. Outside of these four 

deposits, there are several minor deposits which have fur- 

nished amphibian remains, none of which agreé in any essen- 

tial respect with the Mazon Creek fauna. ‘Attention has al- 

ready been called to the fact of the occurrence of the embolomer- 

ous forms in the Mazon Creek, the Pitcairn, Pa., the Kansas, 

and the Salt Creek, Illinois, faunas. 
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A view of the entire amphibian fauna of the North Ameri- 

can Carboniferous, as we know it at this time, shows us that 

the separate faunas were local, and as such indicate the an- 

cient history of the group at that time. Such a high degree 

of developmtnt and such a wide dispersal of types would 

indicate a long antecedent history. Possibly the Amphibia of 

the Mississippian rocks will yield forms which will connect 

these local faunas; possibly we may have to look to the De- 

vonian for these connections. The early Mississippian and 

Devonian forms are already indicated by footprints, but as 

yet we know nothing of the structure of the creatures which 

made the footprints. 

DESCRIPTIONS OF GENERA AND SPECIES. 

Genus ERIERPETON—New Genus. 

All of the examples of Amphibia loaned the writer by the 

Yale University Museum are capable of identification. One 

of the most unusual forms is represented by a distinct im- 

pression on a weathered ironstone nodule from which all the 

bony matter had become eroded. It is so unusual in form and 

in the characters which it presents that it is deemed worthy 

of description. Since it is totally unlike anything described, 

it must be placed in a new genus, for which the term EL'rierpeton 

is proposed. The name refers to its early appearance. The 

specimen in question is No. 801 (222)5 of Yale Museum. The 

nodule which contains the impression is some three inches 

in long diameter. 

The generic characters are found, first of all, in the presence 

of hyobranchial arches, which indicate its relationship to the 

formerly described Cocytinus gyrinoides Cope, from the Car- 

boniferous of Ohio. The only other known extinct genera 

of Caudata which possess, or at least have preserved, the 

branchial arches are the Jurassic Hylxobatrachus from Bel- 

gium and Lysorophus from the Permian of Texas. The present 

form is widely distinct from both of these genera in the shape 

of the mandible and the form and arrangement of the hyo- 

branchial arches. The new genus finds its closest ally in 

Cocytinus in the family Cocytinidz which possibly belongs in 

the order Caudata and in the suborder Proteida of Cope. 
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Erierpeton branchialis, New Species. 

(Plate 1, fig. 3; plate 2. fig. 1.) 

The amphibian remains which are designated by the above 

name consist of a distinct mandible and some rather indefinite 

body impressions. Three elongate impressions occur between 

the rami of the mandibles, which, I suppose, must represent 

hyoid bones belonging to the branchial arches. The lateral 

elements are paired and the median impression is straight and 

lies between the paired portions of the hyoids. The paired 

portions probably represent the hypohyals, or hypohyals plus 

the ceratohyals, and the unpaired portion the first basi- 

branchial, according to the nomenclature of Wiedersheim 

(Comparative Anatomy of Vertebrates, 1897, p. 86). If the 

impressions have been correctly interpreted, the present speci- 

men is of very great interest since it is the first evidence we 

have of the hyobranchial arches in the Amphibia of Mazon 

Creek, and the second in the Carboniferous of North America. 

Dawson doubtfully identified some elements of the Joggins 

Amphibia as hyoids, but was uncertain as to their position. 

Cope described fully the well-developed hyobranchial apparatus 

of Cocytinus gyrinoides from the Coal Measures of Ohio. 

Among other Paleozoic Amphibia, Williston has described 

branchial arches in the peculiar form Lysorophus tricarinatus 

Cope, from the Permian of Texas. 

The form of the impression of the mandible in the present 

specimen is unlike anything known to the writer among other 

Carboniferous or later Amphibia. The rami are long, slender, 

deep, slightly curved and pointed anteriorly. The anterior 

symphysis was not a complete sutural union, but was occupied 

partly by cartilage or connective tissue. 

There are no definite traces of appendicular structures. 

The traces of the body, plate 2, fig. 1, indicate an elongated, 

rather slender animal, but further than that nothing can be 

said in regard to its structure. 

The occurrence of a typically caudate form in the Carbon- 

iferous is unusual, and complicates still further our under- 

standing of the origin and relationships of the early Amphibia. 
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MEASUREMENTS OF THE TYPE OF ERIERPETON BRANCHIALIS MOoopIr. 

Length of entire impression................... 50 

Length of mandible along median line.......... 10 

Widthvofmandibulariramuss seer eeeee os 9 

lenethwof sbasibranchial sash ect eene 7A 5/53 

Widthiofabastbranchia lease cee eer eee “D 

henoth wofebypoliyally. s.r octane Meniee eee 2.4 

Wadthvotebypoliyalls;.).1,- vj siettiecieetine iene 1.5 

Genus MICRERPETON, Moodie, 1909. 

This genus was established by the writer on a single ex- 

cellently preserved specimen (No. 12,313, University of Chi- 

cago). The genus is readily distinguished from other mem- 

bers of the Branchiosauride by the large size of the orbits, 

the short, heavy limb bones, the slender ilium and the ex- 

panded, elongate and flattened tail. 

Micrerpeton caudatum Moodie, 1909. 

There is but a single species known. It is fully described 

in previous papers. (Journal of Geology, vol. xvii, No. 1, 

pp. 39-51, with seven figures, 1909; Journal of Morphology, 

vol. xix, No. Ay pp. 516-520, with three figures, 1908.) 

Genus EUMICRERPETON, Moodie, 1910. 

Amer. Natl., vol. XLIV, June, 1910, p. 367. 

This genus is based on well-preserved remains of three in- 

dividuals from the Mazon Creek shales. One of the speci- 

mens represents, apparently, an adult, and the others are im- 

mature. The manner of the impressions resembles in a marked 

degree those described by Thevenin from the Commentry beds 

of France (plate 14). The nodules which inclose the remains 

measure, respectively, two and one-quarter and two and one- 

half inches in long diameter. 

The generic characters are found in the very broad posterior 

table of the skull, with its short longitudinal length, the re- 

duction of the tympanic notch and the short length of the 

body. The body length of Humicrerpeton is as 2 to 4, while 

that of Micrerpeton is as 2 to 5, and that of Branchiosaurus 

fayoli is as 2 to 414. The entire impression of the branchio- 

saurians from Saxony are not preserved, so that comparative 

measurements are not possible. Other generic characters are 

found in the sharp supratemporal angle of the skull, and it is 

to be distinguished from Micrerpeton especially by the short, 

stumpy limb bones, Its distinctions from the genera of Euro- 
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pean Branchiosauria are the same as those which distinguish 
it from Branchiosaurus, to which it is closely allied. The nar- 
row, elongate eye, placed close to the edge of the skull, is a 
character not observed hitherto in the Branchiosauria. It re- 
calls the condition described by Credner for the young forms 

of Branchiosaurus amblystomus Cred? 

EHumicrerpeton parvum Moodie, 1910. 

(Plate 3, figs. 3 and 4; plate 4; plate 5, fig. 1; plate 6, figs. 1 and 2.) 

The specific characters are found in the anatomical details. 

The impression of the outline of the entire body is preserved 

in both animals, and in both are found impressions and molds 

of the alimentary tract which in the younger animal are re- 

markably complete and instructive. 

The impression of the larger animal, which is probably an 

adult, presents the following elements: the entire skull; both 

humeri; impressions of posterior and anterior ventral arma- 

ture; portions of the alimentary canal; one femur; portions of 

a fibula and tibia; and the entire impression of the tail, on 

which, as in Micrerpeton caudatum Moodie, there occur two 

definite dark lines, one beginning at the tip of the tail and run- 

ning obliquely along the tail to where the impression is broken 

at the anal region; the other beginning at a distance of four 

and one-half millimeters from the tip and running almost 

parallel with the median line. These two lines undoubtedly 

represent the lateral line system. 

The skull is especially noted for its shortness and the great 

posterior width, as well as for the almost entire absence of the 

tympanic notch. The pineal foramen is located on a line with 

the posterior border of the orbits. The eyes themselves are 

narrow and acuminate at each end, with a pronounced con- 

vexity inward and a flattening outward. They are located on 

the very border of the skull, but relatively further posterior 

than in Micrerpeton.. No sclerotic plates are evident. The 

median suture can be indistinctly observed running the entire 

length of the skull. The sutures bounding the outside of the 

frontals and the squamosals are partially evident but not sat- 

isfactorily preserved. The mandible is represented by a mold 

which in a wax impression shows short, stumpy teeth. 

Posterior to the skull, at a distance of one millimeter, there 

are two sharp impressions, which may represent the anterior 

3. Zeitschrift d. Deutsch. Geol. Gesellschaft, 1886, Th. VI, Taf. XVI, fig. 1, 
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edges of the interclavicle, or they may be branchial elements. 

They are distinctly curved, however, and probably represent 

portions of the interclavicle. A wax impression does not show 

a discrete structure, but the boundaries of some larger ele- 

ment. No other remains of the pectoral girdle can be dis- 

cerned. The humeri are short and relatively thick.. Wax im- 

pressions show them to have had truncate or slightly concave 

ends, thus indicating the absence or slight development of 

endochondrium. No other elements of the arm are preserved. 

The ventral armature is preserved in two small patches, 

and these show the chevron-shaped rods to have been very 

fine—much more delicate than in Micrerpeton. 

The body impression is very interesting, both as showing 

the form of the body and because in it are preserved the im- 

pressions of the larger portion of the alimentary canal. The 

form of the body can best be discerned by reference to the 

figures. (Plate 3, figs. 3, 4; plate 6, figs. 1, 2.) 

The portions of the alimentary canal preserved consist of 

the greater portion of the stomach, three coils or loops of the 

small intestine, the rectum, and a pit which undoubtedly repre- 

sents the anal opening. The anus is found at a distance of 

16 mm. from the tip of the tail, and is somewhat removed 

_from the body portion, as in modern salamanders. On each 

side of the posterior end of the rectum there occurs a pair of 

enlargements, which probably represent the oviducts at their 

posterior extremity. 
The tail impression is more acuminate than in Micrerpeton, 

but shows the same structures as that form, 7.e., the lateral 

lines, which have already been mentioned. Micrerpeton was a 

more rapid swimmer than the present form, on account of 

the greater development of the tail. The impression of an 

elongate femur and the heads of the tibia and fibula of the 

left side are preserved. 

The second specimen of the species (No. 802, Yale Museum) 

shows much the same characters as the specimen already de- 

scribed, except that there are preserved impressions of small, 

blunt teeth on the mandible. The two humeri and the femur 

of the left side are preserved, and the interclavicle is repre- 

sented by an identical impression as in the first described 

specimen. The tail impression, although similar in form, does 

not exhibit so much of the structure of the lateral lines. The 
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present specimen is considered as more immature than the 

former, on account of its smaller size. There are no positive 

evidences in either specimen of branchial arches. 

The matter of especial interest in connection with the second 

specimen is the remarkably perfect preservation of the ali- 

mentary canal. It is entire except for the very anterior end 

of the cesophagus. The posterior portion of the cesophagus, 

which measures three and one-half millimeters, is clearly pre- 

served. Its anterior end is thrown around posteriorly, and 

indicates that this end was loosened after death and became 

displaced before preservation. The length preserved possibly 

represents the entire cesophagus. The cesophagus is con- 

stricted before it enters the stomach, which shows the usual 

curvature found in modern salamanders. The stomach meas- 

ures six millimeters in length by two in greatest breadth. It 

consists of a single enlargement, as in the modern Ambystoma 

punctatum. The stomach enlarges somewhat toward the 

pyloric end, and then very gradually constricts to the pyloris. 

Three diameters of the small intestine can be discerned. The 

most anterior one, corresponding with the duodenum, is seg- 

mented, as though the intestine were filled with food substance. 

The remainder of the intestine, corresponding to the ileum, 

is looped in the form of two figures “8,” which are superim- 

posed, with the upper portions of the “8” at right angles to 

each other. The rectum is clearly discernible, though its lower 

end is somewhat obscured by having the lower portion of the 

upper loop of the intestine lying over it. The anus lies at a 

distance of one and one-half millimeters posterior to the line 

from the upper end of the femur, and is quite well back on 

the tail, as in modern salamanders. In this specimen also 

occur two oval bodies, which may be identified as the lower 

ends of the oviducts; thus indicating, in all probability, that 

the animal was a female. 

A dissection of several species of modern urodeles has re- 

sulted in the discovery that the adult condition of the ali- 

mentary canal of all species dissected—Ambystoma punctatum, 

Necturus maculosus, Diemyctylus torosus, etc.—is much more 

complex than that exhibited by the specimen under discussion. 

A very near approach to the condition found in Humicrerpeton 

parvum is found in an immature branchiate individual of 

Diemyctylus torosus, 56 mm. in length, from a fresh-water 
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pond on Mount Constitution, on Orcas Island, Puget Sound, 
Washington. 

The similarity of intestinal structure is of considerable im- 
portance to our understanding of the relationship existing 
between the Carboniferous Branchiosauria and the modern 
Caudata. This fact only confirms other arguments, offered 
in another place, concerning their immediate relationship. 
(American Naturalist, vol. xliv, June, 1910.) 

The branchiosaurian affinities of the present species are 
almost too evident to need discussion. The entire structure 

is essentially similar to that of other genera of the order. 

MEASUREMENTS OF EUMICRERPETON PARVUM MOopig. 

Specimen No. 803, (222) Yale University Museum. 

mm. 

Mengtheofeanimalern. a ccteracve ae steerer oe 37.5 

Lengths ofiskulllia:)..- tis. Sih aios deere eee eae 4.5 

Posterior width of skull at table.............. 6 

Ihoneuidiametersolveye nics crsjesieio eee eee eee al fs) 

Transverse diameter of the eye...............-. 65 

lengthwofolertshumerusS. acy oe eee 125 

henge thwoteremun: secre ss Geis ee ot eee oe 1.75 

Width across base of tail impression.........:. 3.5 

Wengthy of tailfrom jbase toi ytips 2! te... oe 17 

Number of ventral armature rods in 1 mm..... 10 

Measurements of second specimen, No. 802, (471) Yale University 

Museum. 

mm 
ength ot animalltvan sciences ieee 30 

mengtheof skullysayoncn saints steiner s Conia ee 4 

Posterior widbh (of skullt see. see eee ents oe 5 

length oficesophaguse. sacarieicscmicw see cites 3:5 

Gengthiofsstomachty- -y-tearn-tartet tence oe 6 

Wiidtheofgstomachy sacs prsoetcicereoiien eee ecks 1.33 

Estimated length of intestine.................. 18 

Width across base of tail impression........... 2.5 

ihengthiofatailtfrom' baseitotipencceiecneceeeeee 7 

Eumicrerpeton parvum Moodie (an additional specimen). 

(Plate 5, fig. 1.) 

After the above had been written the writer received from 

Mr. C. W. Gilmore, of the U. S. National Museum, an addi- 

tional specimen of this species. It is No. 4400 of the U. S. 

National Museum. The additional specimen serves to sub- 

stantiate the above-described genus and species, and shows 
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more clearly characters which are distinct from Micrerpeton, 
the genus to which the present form is most nearly related. 

The present specimen is almost as perfectly preserved. as 
was the specimen of Micrerpeton caudatum Moodie. When 
the nodule containing the fossil was received the tail was em- 

bedded in matrix, but by careful use of chisel and hammer it 

was possible to lay bare the whole tail, the tip of which ends 

on the very edge of the nodule. This was at once perceived 

to be precisely similar to that of the above-described specimens. 

The skull structure, the intermediate position of the pineal 

foramen, the epiotic notch and the shape of the skull are so 

exactly similar to those of Huwmicrerpeton parvum that the 

specimen was unhesitatingly referred to that species. 

Most interestingly, too, the present specimen has the ali- 

mentary canal preserved almost as perfectly as in the other 

two specimens; so that the three specimens of this species 

now known show the alimentary canal. The present speci- 

men is, however, much more developed than the other two, if 

we may judge from the relative sizes. There is not the slight- 

est trace of branchie in any of the specimens. The matrix 

does not preserve the skeletal elements as well as does the 

hard dolomite from Saxony, in which Doctor Credner found 

such excellently preserved branchie. 

The present specimen is nearly half again as long as the 

smallest of the above-described specimens, and the skull is 

proportionately longer and wider. There is preserved also an 

impression of the anterior edge of both clavicles, as has been 

described for the Yale specimens; no other portion of the 

pectoral girdle is preserved. The right humerus is imper- 

fectly preserved, as is also the right femur and tibia; other 

than these the fossil is merely an impression. 

The skull is so nearly like what has been described for the 

Yale specimens that additional description is unnecessary. 

The pineal foramen is quite large, and lies on a line which 

cuts the orbits into equal longitudinal parts. The interorbital 

space is about equal to the long diameter of the orbit, as in 

the Yale specimens. Traces of sclerotic plates are observed 

in the left orbit, but they are quite imperfect. 

The alimentary canal is unlike that of the Yale specimens, 

in that the INTESTINE is longer and much more convoluted. It 

lies in five longitudinal folds and ends in an enlarged cloaca, 
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near which there are impressions of two glands, or they may be 

the posterior ends of the oviducts, as was suggested for the 

Yale specimens. Like the Yale specimens, the cesophagus is 

displaced and partially obscured. The creatures undoubtedly 

fed on small plants and animals, much as do our recent sala- 

manders. The alimentary tract is preserved fully extended. 

MEASUREMENTS OF ADDITIONAL SPECIMEN OF EUMICRERPETON PARVUM 

MOoopie. 

(Cat. No. 4400, U. S. N. M.) mm. 

enethvotrentireanimallerretpeieislaeiccy teeter terse 45 

Iaa¥euie Oe illo gennennse cence daceasoudbe Eos 6 
Widthxot sskoall ss scsrayaislere ivan setousveke) ste oreieleeraretors 9 
Transverse diameter of orbit.................. 1.50 

Long idiametersofiorbite meets cyervetereteracteelisiater 2.25 

Interonbitaliispaces crite tiotererseteteteh ieee tee 2.50 

Diameter of pineal foramen................... .50 

Length of body from back of skull to pelvis..... 22 

Greatest swidtheot, DOGYn.ccireteielelteters relievers 9 

enoth ero fecal ncn clcers te coteiclsterccte clelctetererom ents 16 

Waadthwobetalltat base: er cciectcrsversierets ce eleierenet=ierae 5 

Men othwofsbumerus|s. cysts: icicle cle leeiellole eitrereie 3 

en GH mOLeLCMNUT yr arvetoperctsishevetelcrciousetsaetetteietete erctete 2.50 

Wiengthvof tibia, (fibula?) \aace-crem ee aersei 175 
Ienethy of, stomachs. - siete <istc-s a) cPele sk els isle lo lssae/ s,s 7 

Wadthtiol stoma chiara cs crcieireracrtetersererrsts 3 

Length of intestine (estimated)................ 56 

Width  ofsintestine sai cieretevsrspeversicretetsicie (a evetersversy> 1 

Genus MAZONERPETON, new genus. 

It was very gratifying to discover among the remains loaned 

the writer by the Yale Museum other specimens exhibiting 

characters of the Branchiosauria, for our knowledge of this 

order of Amphibia is as yet very incomplete in North America. 

The specimen represents by far the largest of the group dis- 

covered on this continent. It is more than twice as long as 

the specimen of Hwmicrerpeton parvum and fully one-third 

longer than Micrerpeton caudatum. It is, however, distinctly 

a branchiosaurian. The ordinal characters are discovered in 

the heavy, straight ribs, attached to the transverse process of 

the centrum; in the low degree of development of the ver- 

tebree; in the structure of the skull and the ventral armature, 

and in the degree of ossification of the limb bones. 

It may be generically separated from other known Branchio- 

sauria found in North America by the great length of the dor- 

sal region, and by the elongate tail with its well-developed 
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caudal ribs. It is not so readily separable from the Branchio- 

sauria of Europe. It is most closely related to Branchiosaurus 

amblystomus Credner of the Permian and Carboniferous of 

Saxony. From this genus, however, Mazonerpeton may be 

distinguished by the reduction of the posterior tympanic 

notch, the broad nature of the scapula, the elongate inter- 

clavicle and the slender ilium in the present form. The num- 

ber of dorsal vertebre is identical in the two genera. 

The genus is so closely allied to Branchiosaurus of Europe 

that the two species here described must be located in the 
family Branchiosauride. 

Mazonerpeton longicaudatum new species. 
(Plate 3, figs. 1 and 2; plate 7, fig. 3; plate 10.) 

The remains on which the above species is based consist of 
the following elements: an incomplete skull, nearly the entire 
vertebral column, consisting of cervical, dorsal, sacral and 
caudal vertebre, 36 in number; several ribs preserved on 

each side of the vertebral column, a portion of the ventral 
armature, the scapule, a clavicle, the interclavicle, both hu- 
meri, the radius and ulna of one side and the ulna of the other, 
portions of both hands, the ilium of the right side, both 
femora, and a partial impression of the left tibia. 

The skull is unfortunately very poorly preserved. Enough 
remains, however, to determine the essential characters. The 
skull bones, unlike any other American branchiosaurian, have 
an ornamentation consisting of sharp pits and elevations, 
which in places have a quincuncial arrangement and in others 
take the form of definite lines of pits or tubercles similar to 
the condition found in many of the Microsauria. The orbits 
are large and are situated back of the median transverse line 
of the skull. They are almost circular in form and contain 
six elongated sclerotic plates very closely arranged around 
the borders of the right orbit. The plates are twice as long as 
wide. The interorbital width is one and one-fourth as great 
as the transverse diameter of the orbit. 

Not many of the sutures of the skull are discernible. Por- 
tions of the frontals, the nasals, the prefrontals, the parietals 
and the supratemporals can be identified. Their arrangement 
is shown in figure 3, plate 7. There is a decided posterior 

table to the skull, with a truncate posterior border. The tym- 
2—Univ. Sci. Bull., Vol. VI, No. 2. 
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panic notch is shallow, with its outer border not so well pro- 

tected as in Branchiosaurus. 

The cervical vertebre are incomplete, but their number was 

four or five, as in Micrerpeton. The structure of the dorsal 

vertebre is also uncertain, although the shape can be dis- 

cerned. The vertebre are short and thick, very unlike the 

long, cylindrical vertebre of Cephalerpeton. The heavy trans- 

verse process is quite evident on the best preserved vertebre. 

This process recalls that described by Credner for the Saxony 

Branchiosauria. Several of the vertebre show the attach- 

ment of the ribs to this process. The ribs of the caudal region 

recall very strongly those of Branchiosaurus. They are quite 

heavy in the anterior caudal region and then diminish rather 

rapidly to the point where the tail is broken and lost. 

The ventral armature is represented by a patch of chevron 

rods twenty-one millimeters in length. The rods take a very 

peculiar form. They are short, crescentic bundles of fine rods, 

hair-like in appearance. In one of the bundles I count five 

smaller rods. The bundles are arranged in rows similar to 

the pattern so characteristic of the Carboniferous Amphibia, 

as described elsewhere. The patch of ventral armature pre- 

served belongs to the abdominal region, so nothing can be 

told of the gular and thoracic rods. A single row of the 

crescentic bundles measures 11 mm. 

Both scapulez are preserved in their entire form. They are 

quite different from those of any other genera. They resemble 

.a broad crescent with a posterior concavity and an anterior 

protuberance. The articular surface of both scapule is ob- 

scured. Vascular foramina occur near the base of both scapule. 

There are three of them in the right element, arranged in the 

form of an isosceles triangle. The morphology of these three 

foramina is uncertain. They have never before been ob- 

served among the Carboniferous Amphibia, and, so far as I 

am aware, they are entirely unknown among the higher ver- 

tebrates. 
The temnospondylous Amphibia of the Carboniferous and 

Permian possess, in the codssified scapula-coracoid, three fo- 

ramina, very similar to the present ones, but they are confined 

to the coracoidal region, and in the Branchiosauria the cora- 

coid, as identified by Credner, is a free element, although I 

have never been sure with regard to its identity among Ameri- 

can forms. Williston, in Trematops, has called these foram- 

ina the glenoid, supraglenoid and supracoracoid foramina 
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(Journ. Geol., xvii, No.7). These are not, however, to be cor- 
related with the three foramina above mentioned, since in the 
Temnospondylia the foramina belong with the coracoid and 
not with the scapula. The condition of the Temnospondylia 
occurs in the bony fishes, Xiphactinus audax Leidy; and an 
analogous condition obtains in the reptiles, as in the mosasaurs 
and dinosaurs, where the separate coracoid is pierced by fo- 
ramina. Doctor Williston informs me that the foramina are 
also found among the Cotylosauria, where the condition is not 
far different from what it is in Eryops. 

Near the outer end of the right scapula there is a large 
fragment preserved which, I think, must be the misplaced 
clavicle. It is obscurely triangular, or, more exactly, spatu- 
late. The interclavicle is represented by fragments only. It 
seems to have had a narrow form. 

The humeri recall those of Micrerpeton. They are somewhat 
elongate and apparently cylindrical in their normal condition, 
though somewhat flattened in the fossil. The shaft is con- 
siderably constricted at the middle, and the ends are ex- 
panded, in which expansion the lower end exceeds. The ends 
are abruptly truncate, indicating a small amount of en- 
dochondral ossification or its entire absence. 

The mesopodial elements, unlike what has been described 
for Cephalerpeton, are quite dissimilar in form, recalling the 
condition in Mesosaurus brasiliensis McGregor. The larger 
element I take to be the ulna. It has the lower end greatly 
expanded and the shaft is curved outward. It resembles very 
much a reptilian ulna. 

The radius is much smaller than the ulna, lacks the lower 
expansion, and is shorter by one millimeter. Its ends are 
abruptly truncate. 

The carpus is represented merely by a blank space. There 
are no evidences of impressions of cartilage in the sandstone. 
The hand of the left side contains four digits. There 
are two phalanges preserved in the first digit, including the 

sharp-pointed terminal phalanx. The second digit has only 

the metacarpal. The third has the metacarpal and the first 

phalanx, which does not differ in form, but only in size, from 

the metacarpal. The fourth digit contains only the meta- 

carpal. No definite evidence of more than four digits has ever 

been given for the hand of the Branchiosauria. Of the right 

hand there are portions of three digits preserved, including 
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three metacarpals and one phalanx. In structure they are 

not different from those of the right hand. 

The ilium of the left side is preserved, apparently entire. It 

is elongate and cylindrical. Its upper end lies adjoining the 

twenty-eighth vertebra. 

The head of the femur lies close to the lower end of the 

ilium, so that that element must have been suspended in the 

flesh much as in the modern salamanders. It could not have 

been of much use in support. The form of the femur is not 

unlike that described for the humerus, save that its lower 

end is smaller than the upper, while in the humerus both 

extremities are alike. A portion of the right femur is pre- 

served extending in an opposite direction to the left. No por- 

tions of the leg or foot are preserved. 

MEASUREMENTS OF THE TYPE OF MAZONERPETON LONGICAUDATUM MOODIE. 
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The type is specimen No. 795 (1234), with obverse, of the Yale 

University Museum. Collected at Mazon Creek, Grundy county, Illinois. 

Mazonerpeton costatum new species. 

(Plate 2, fig. 3; plate 8, fig. 4; plate 9, fig. 2; plate 10.) 

The remains on which the present species is based are in- 

closed in a much-fractured nodule. The parts of the animal 

which have been identified are as follows: A part of the skull 

and left mandible, two clavicles, a humerus, impressions of 

several vertebre, a portion of the dorsal region of the body, 

with several ribs, two portions of the caudal region, with 

several ribs, and some unidentified fragments. 

The animal, from the shape and form of the ribs, is un- 

doubtedly a representative of the Branchiosauria, since short, 

heavy, straight ribs have not yet been found to be associated 

with other than branchiosaurian structures. Its association 

in the same genus with Mazonerpeton longicaudatum is held 

to be correct, on account of the resemblance in structure of the 

pectoral elements, the form of the humerus, and the length of 

the tail. The present species is about one-half larger than 

Mazonerpeton longicaudatum, and the animal which repre- 

sents the species perhaps attained a length of four and one- 

half inches, while the length attained by the type of M. longi- 

caudatum was not more than three inches. The tail of the 

present species is very long and slender, more elongate than in 

any other described branchiosaurian. 

The part of the skull preserved is very unsatisfactory, and, 

aside from the fact that it seems to represent the under side 

of the left half of the skull, little can be said. Portions of 

three sutures can be observed, but what sutures they are is 

undetermined. The left mandible lies crushed on the edge of 

the skull and partially obscures what little there is of that 

structure. The slightly curved impression, from which the 

bone has been either broken or weathered, measures thirteen 

millimeters in length by three in posterior diameter by one in 

anterior diameter. These measurements show the element to 

have been slender and pointed anteriorly. 

Very little accurate information can be derived from the 

study of the vertebral column of the specimen. The dorsal 

vertebral formula can not be made out, since only a portion of 

the length of that region is preserved, and only a few rather 

indefinite impressions can be discerned. These impressions 



342 KANSAS UNIVERSITY SCIENCE BULLETIN. 

show the vertebrze to be short and higher than in most 

Branchiosauria. 

The caudal series is represented by two sections. One of 

these sections is apparently from near the base of the tail, 

judging from the size of the caudal ribs preserved. The other 

section is from near the tip of the tail, and it shows the con- 

stituents to have been long and slender. Ribs are apparently 

absent on this section. The position of the two caudal sections 

shows that when the animal died it was coiled up much like a 

snake, so that in the fractured nodule three sections of the 

body are preserved. The tail was probably half as long again 

as the body. 

The ribs throughout the body are short, heavy and straight, 

with, in the dorsal series, a lateral and a distal expansion, 

which is taken as a distinctive specific character. Judging 

from imperfect impressions in the dorsal series, the ribs were 

attached to a transverse process of the centrum, thus agree- 

ing with other branchiosaurians in this respect. The ribs 

show a progressive decrease in length from the cervical region 

to the point of their disappearance on the tail. 

The pectoral girdle is represented by two elements, one of 

which is certainly the right clavicle, and the other is possibly 

the left clavicle, though its form is somewhat distorted by 

pressure. Both elements are in the form of an elongate spat- 

ula, with the dorsal surface greatly concave and the inner end 

acuminate. 

The right humerus is imperfectly preserved, though the im- 

pression allows one to gain an exact knowledge of its form. 

It lies under the right clavicle. Its ends are truncate with a 

contracted shaft and expanded extremities. The bone was ap- 

parently hollow. 
In another nodule (No. 804, Yale Museum) there is a single 

bone preserved, which resembles to a great extent a rib of the 

present species, although somewhat larger, and it has been 

provisionally identified as such. The element is very slightly 

curved, but it shows the expanded head of this species. (Plate 

Pa, 306%, hp) 
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MEASUREMENTS OF THE TYPE OF MAZONERPETON COSTATUM MoopIRE. 
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The type is No. 800 (777) of the Yale University Museum. 

Collected at Mazon Creek, Grundy county, Illinois. 

MEASUREMENTS OF SPECIMEN No. 804 (332). 
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Amphibamus grandiceps Cope, 1865. 
(Plate 1, figs. 1 and 2; plate 5, fig. 3; plate 7, fig. 1; plates 11, 12, 13.) 

The collection of Carboniferous Amphibia loaned the writer 

for study by the Yale Museum contains an unusually perfect 

example of Amphibamus grandiceps Cope. The skull is nearly 

complete, although the sutures are indistinct. The following 

parts have been identified in the specimen: the greater part 

of the vertebral column, ventral armature, ribs, portions of 

the pectoral girdle, the pelvic girdle, and all four limbs, with 

the hands and feet in an unusually perfect condition, all very 

clearly and distinctly shown on a nodule from the Mazon 

Cheek shales of Illinois. The specimen was collected near 

Morris, Illinois, in 1870. 

The writer (1909) published a restoration of this species, 

in which he gave to the vertebral column twenty-six verte- 

bree, the exact number being at that time uncertain. Professor 

Cope (1865) in his original description gave the number as 

thirteen between the interscapular region and the sacrum. 

Hay (1900) thought the number was less than twenty. The 

present specimen shows that there were twenty-two in the 

presacral region, not including the sacral vertebra; thus show- 

ing that in two cases too few vertebre and in the third case 

too many vertebree were assigned to the vertebral column. 
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The author’s published restoration gave too great a length of 
tail. The present specimen shows only ten cadual vertebre, 
the most anterior of which are provided with short ribs. 

One of the most interesting features of the present speci- 
-men of Amphibamus grandiceps Cope is the preservation 

of a small patch of skin, evidently from the back. It lies off 

to one side, near the head, as though the skin had been loosened 

and floated away from the body or was moved in some manner. 

The remnant measures 5mm. in length by 3mm. in width. 

The fragment shows the skin to have been made up of tuber- 

culated scales, four of which occur in the length of one milli- 

meter. The scales are somewhat hexagonal, almost rounded, 

and were relatively quite thick. They lie in a close mosaic. 

The cranial structure presents no new features. There are 

evidences of twenty small, oblong, sclerotic plates preserved in 

the right orbit. These form about two-thirds of the circum- 

ference of the iris, so that twenty-nine or thirty was probably 

the correct number of these plates. Their position near the 

center of the orbital space shows clearly that they were 

sclerotic plates, and not palpebral scales, as Professor Cope 

thought they might be from his study of the type. The obverse 

of the specimen shows that the skull bones were pitted, es- 

pecially in the nasal region, as Hay has described for the speci- 

men in the possession of Mr. Daniels. The sutures are very 

indistinct and uncertain and can not be described. They are 

well known, however, in other specimens. 

The present specimen adds to our knowledge of the ventral 

scutelle, as is shown in figure 1, plate 7. The plates of 

the throat, chest and belly have different directions. The 

arrangement of the plates on the throat and chest is almost 

exactly the reverse of what Credner has described for 

Branchiosaurus amblystomus Cred. On the throat, in the 

present form, the chevron points anteriorly, and it is the 

anterior prolongation of the belly scutes with the postero- 

lateral projection of the gular plates which forms the chest 

and arm scutellation. The belly chevrons point anteriorly, as 

in the species from Saxony. The rods formed by the scutes 

are straight, and not curved as in Branchiosaurus. The en- 

tire ventral armature preserved is misplaced to the left of 

the animal, and only the anterior portion is preserved, con- 

taining a length of 18mm. There are three scutes to the 

millimeter. 
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Nothing new can be ascertained of the structure of the 

pectoral girdle. Portions of the scapule, clavicles and inter- 

clavicle are represented, and perhaps the coracoid is indicated 

by a fragment. 

The specimen in hand completes in a very satisfactory 

manner our knowledge of the structure of the pelvis. The 

relations, form and structure of the ilium, ischium and pubis 

are now known quite certainly. The form of the ilium as 

shown in previous restorations was slightly inaccurate. It 

was made a little too long and too curved. It is, instead, 

rather short and nearly straight, with the ends expanded. 

Heretofore nothing was known about the ischium, but the 

present example shows very clearly the form of that element 

on both sides of the vertebral column. Its form is almost 

identical with that of Paleohatteria longicaudata Credner, from 

the Rothliegenden of Saxony. They are apparently approxi- 

mate in the median line, though this character is somewhat 

obscured by the impressions of the caudal vertebre. Its 

relation with the ilium, other than that it was posterior to it, 

is uncertain. All three of the pelvic elements were undoubt- 

edly hung loosely in the flesh of the animal, as in modern 

salamanders, since none of the elements present any marked 

articular surfaces. 

The structure of the sacral vertebra and the. sacral ribs 

still remains to be determined. There seems to have been 

but a single pair of sacral ribs, but the specimen is too obscured 

to shed much light on that point. 

Nothing new is added to our knowledge of the arm. The 

number of phalanges can not be ascertained. Two of the 

digits are preserved entire, and there is nothing in their 

structure to contradict the number given in the restoration 

which is herewith republished. Each hand has a single digit 

of four segments preserved. They undoubtedly represent the 

third digit in each case. 

The elements of the leg and foot are as they are given in 

the restoration. The right foot is preserved almost entire, 

and the digits have the formula 2-2-3-4-3. The distal phalanges 

of the third and fourth digits are lost. There are five digits 

in the foot. 

The fifth anterior dorsal vertebra has a pair of long, curved 

ribs attached intercentrally. The ribs have the same bicipital 
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appearance as observed in Mr. Daniels’ specimen. They are 

present throughout the dorsal series, apparently missing from 

the lumbar region, and appearing again in the caudal region. 

How much of this is due to accident is hard to determine. 

The structure of the vertebre can be partially observed in 

the specimen. The neural spine was a long, low crest, which 

ran the entire length of the centrum, with a median elevation, 

so that on lateral view the spine would be triangular in form. 

The body of the centrum is expanded laterally into a dia- 

pophysis which projects anteriorly. In the posterior region 

of the dorsal series the mold of the interior of the vertebra 

shows that the notochord was largely persistent and that the 

osseous portion of the vertebra was but a thin shell. 

The structure of the zygapophyses can not be determined. 

That they were dorsal in position is, however, evident from 

several vertebre. The points of these structures project 

laterally. There is a notch between the anterior zygapophysis 

and the roof of the neural canal. 

The restoration of the skeleton of this species, given on 

plate 12, is a summary of existing knowledge of the skeletal 

anatomy of the genus. Much remains to be determined, such 

as the arrangement of the scutes of the ventral armature, the 

anatomy of the pectoral girdle, and the more exact knowledge 

of the feet and vertebre. The restoration gives approximately 

the form of the body and the condition of the skeleton as we 

know it at present. 
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MEASUREMENTS OF THE SPECIMEN OF AMPHIBAMUS GRANDICEPS COPE. 
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The specimen, with obverse, is No. 794 (1234) of the Yale 

Museum. 
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Amphibamus thoracatus Moodie, 1911. 
(Plate 5, fig. 2.) 

The chief diagnostic characters which will at once distin- 

guish the species are: the elongate arm, the large inter- 

clavicle, the shape of the vertebra, and the triangular skull. 

The portions of the animal which are preserved are: the 

impression of the skull with one orbit, the right humerus and 

radius (ulna ?), the interclavicle, the left clavicle, a single 

vertebral centrum with portions of others, and traces of the 

scutelle. These remains are so intermingled with the remains 

of plants that it has been quite difficult to distinguish bone 

impression from that of plants. This, however, has been 

done by whitening the fossils with ammonium chloride, when 

the texture of the fossils serves to distinguish the one from 
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the other. Parts of the plants have been converted into and 

destroyed by galena and kaolin, as have also parts of the bones, 

so that the task has been doubly difficult. There can be no 

doubt, however, that the observations recorded below are 

correct. The position of the arm in relation to the pectoral 

girdle and the position of the girdle in relation to the skull 

impression first called attention to the possible presence of a 

fossil amphibian. 

There is little to be said of the skull. It is merely an 

impression in the nodule. It is triangular in form with the 

snout an acute angle. The angle is, however, exaggerated 

by the compression to which the fossil has been subjected. 

The right side of the skull lies over a portion of some plant. 

The animal is preserved on its back, so that this gives a good 

opportunity for the study of the pectoral girdle, which is 

partially preserved. The interclavicle is very large, and from 

that character the species has been given its name (thoracatus 

—armed with a breast plate). The interclavicle is an ex- 

aggerated “T’’ with the stem very short. Its anterior margin 

is curved and ends is a rather sharp, elongate point. The 

posterior spine is quite short and sharp-pointed, having a 

length of four millimeters. The interclavicle recalls, in a 

measure, the same element of Branchiosawrus, although it is 

much more expanded anteriorly and has a shorter spine. In 

these respects it resembles more nearly a reptilian element. 

The bone is quite smooth. 

The clavicle is of the simple triangular form so character- 

istic of the Microsauria. It is somewhat displaced backward 

and its inner margin is slightly obscured. 

The humerus is elongate, apparently cylindrical, and has 

expanded ends. It resembles closely the humerus of Amphib- 

amus grandiceps, although its proportions are much greater 

than in that species. Its length is almost equal to the length 

of the skull, while in A. grandiceps the length of the humerus 

is only one-half that of the skull. 

The radius (ulna ?) resembles in its general proportions 

those of the humerus. It is a more slender, lighter bone. The 

impression of the other bone of the fore arm is obscured. 

A portion of a single vertebral centrum is preserved. It 

is from the posterior part of the dorsal series. The centrum 

is apparently amphiccelous. Its height is about one-half 

greater than its length. The neural spine is obscured. 
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The species Amphibamus thoracatus Moodie has been de- 

seribed in the Proceedings of the U. S. National Museum, 

volume 40, page 431, figure 2, 1911. 

MEASUREMENTS OF THE TYPE OF AMPHIBAMUS THORACATUS MOODIE. 
(Cat. No. 4306, U. S. N. M.) 

mm. 

Length of entire specimen as preserved.......... 60 

Kenothyoreskullmimpressiomheysmiy1iersaleleiele lal 18 

Greatest width of skull impression.............. 15.5 

Long diameter of right orbit..................-- 4 

Transverse diameter of right orbit.............. 3 

Transverse width of interclavicle............... 14 

Long diameter of interclavicle.................- fii 

iLoinee Ghemiaae Or GENMOMs cosoboonropenazoccace 9 

Greatest transverse diameter................... 3 

ILGMYSUN GE ITHACA, poco ogancnooUOOSU Ee coMoGaST 10 

Greatest diameter of humerus.................. 4 

heastidiameter OL AUMeLUS cnc) \.-)-)- lei ele rod 1D 

Ibemedn Gre ieKehing (iN Y)) sc ouocopeoccouscgscon 11 

Length of vertebral centrum................... 2 

Wiadthyof vertebral) centrum... cle. sect ie\er 3 

Genus CEPHALERPETON, new genus. 

This genus is founded on remains of an incomplete in- 

dividual of a relatively large microsaurian from the Mazon 

Creek shales. The genus is most immediately related to the 

family Amphibamidee, of which two species are known. The 

present form differs from these species in many respects, 

notably in size. The skull in the present genus is nearly as 

long as half the entire body of Amphibamus grandiceps, in- 

clusive of the tail. Other structural differences are the aniso- 

dont teeth, the large size and more median position of the 

orbits, and the absence of the posterior tympanic notch in 

Cephalerpeton. The form of the skull recalls that of Melan- 

erpeton and Pelosaurus of Europe, but they are both bran- 

chiosaurians, while the present form, from the structure of the 

vertebree and the long, curved ribs, is an undoubted micro- 

saurian. Nothing like it occurs in the Kilkenny, Ireland, 

fauna described by Huxley, and it is totally different in struc- 

ture from any of the Linton or Cannelton genera, and its like 

is not known among the forms from the continent of Europe. 

It is most nearly approached in certain respects by the various 

species of Erpetosaurus, but from this genus it can be readily 

distinguished by the smooth skull bones, the absence of a 

posterior table to the skull, and the presence of a highly de- 
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veloped ventral armature. The interorbital width is less than 

the transverse diameter of the orbit. 

The generic characters are found in the broad skull, the 

anisodont teeth, the median position of the orbits, the absence 

of a tympanic notch or posterior table to the skull, the presence 

of sclerotic plates, the great length of the fore limb and the 

well-developed ventral armature. 

Cephalerpeton ventriarmatum new species. 
(Plate 1, fig. 4; plate 7, fig. 2.) 

The remains on which the present discussion is based con- 

sist of an almost entire skull, twenty-six consecutive ver- 

tebrze, both fore limbs, twenty ribs preserved on the right side 

of the vertebral column, and a portion of the ventral armature. 

The skull is very broad posteriorly, its width being one- 

third greater than its length, with due allowance for crushing. 

A pineal foramen is not preserved. The sutures bounding the 

premaxillz, the maxille, the nasals, the prefrontals, the fron- 

tals, a portion of the parietals, the squamosal, the supratem- 

poral, the quadratojugal and the quadrate (?) are fairly well 

preserved. The arrangement of these elements can be dis- 

cerned by reference to figure 2, plate 7. The prefrontals are 

unusually large and are triangular in shape. The supratem- 

poral is also quite large. The epiotics and the supraoccipitals 

are not preserved. The surface of the skull bones is smooth 

and there is nowhere an indication of sculpture. 

Portions of four sclerotic plates are preserved in the right 

orbit. These measure one-half by three-quarters millimeters. 

The orbits are large and the interorbital space is less than the 

transverse diameter of the orbit. Thirteen teeth are pre- 

served on the left maxilla. The teeth are apparently pleuro- 

dont. They are short, sharply pointed, smooth and unequal. 

The first two left maxillary teeth from the anterior end are 

short. Then follows a tooth which is one-third longer than 

these two. The fourth tooth is somewhat shorter than the 

third. The fifth and sixth are still shorter and are practically 

equal. The seventh, eighth and ninth are all large. The 

ninth is the largest and the diameter of the base is greater 

than the third. The last four teeth are practically equal in 

size, though somewhat larger than the first two. 

The right mandible is preserved almost entire, though so 

badly eroded that little can be said of its structure. Im- 

pressions of twelve teeth are present on the mandible, and al! 
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are apparently equal. The cotylus seems to have been far 

posterior and an angle of the mandible projected slightly back 

of the skull. 

There remain only a few indefinite impressions of the 

cervical vertebre. The union of the skull with the vertebral 

column is obscured and lost. Impressions of the dorsal ver- 

tebrze are well preserved. Wax molds made from these im- 

pressions show the structure of the dorsal vertebrz sur- 

prisingly well. The vertebre are long and cylindrical, with 

the median portions slightly constricted by a deep pit on each 

side of the low neural ridge, which takes the form observed 

in Thyrsidium, Molgophis, Phlegethontia, Dolichosoma and 

other genera. The vertebre are strongly amphiccelous and 

the notochord was probably persistent. The sides of the ver- 

tebree are smooth. 

The ribs are all intercentral in position, agreeing in this 

respect with all other Carboniferous Microsauria so far 

studied. The anterior ribs are very broad near the base and 

recall the broadly expanded ribs described by Schwarz for 

Scincosaurus, Ptyonius, Thyrsidium and other genera. Pos- 

teriorly the ribs become slender and cylindrical. They are all 

rather long and distinctly curved, with probably a cartila- 

ginous tip. 

There is preserved a single element of the right side of the 

pectoral girdle. This is, I think, the coracoid, an element 

which has hitherto escaped observation among the American 

Microsauria. It is long, and spatulate at both ends. Its 

median portion was apparently almost cylindrical. Its form 

is not unlike that described by Credner for the coracoid of 

Branchiosaurus, save that the lower end of the branchiosau- 

rian coracoid is acuminate. In the present genus it is spatu- 

late. Its relations with other elements of the pectoral girdle 

have never been satisfactorily determined. 

The fore limbs are both partially preserved. The humerus 

of the right side is complete. It is greatly elongate for a 

microsaurian. The form of the element is not unlike that of 

a lizard. The lower end of the bone is spatulate. Endo- 

chondrium seems to have been well developed. Very little dif- 

ference can be seen between the forms of the arm bones which 

represent the radius and ulna. They are both elongate, with 

constricted median portion and expanded truncate ends. The 
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carpus is unossified and the cartilage has left no impression 

on the stone. 

The right hand has two metacarpals preserved, which are 

fully one-half as long as the radius and ulna. They are sepa- 

rated some little distance from the ends of these elements. 

This may be due to post-mortem shifting, though the carpus 

was undoubtedly broad. On the left side are preserved a por- 

tion of the humerus, the radius and the ulna, with three meta- 

carpals lying next to the vertebral column. The carpal space 

is not so large on the left as on the right side. The ventral 

armature is well preserved in a narrow patch about one inch 

in length. The chevron-shaped rods are quite large, there 

being two of them in one millimeter. 

The type specimen is No. 796 of Yale University Museum. 

Collected in 1871, at Mazon Creek, Illinois. 

MEASUREMENTS OF THE TYPE OF CEPHALERPETON VENTRIARMATUM Moopis. 

mm. 

Pntines lene thwotet Ossie eerily erie tl 98 

Wenethoresklligey rere ei elect keenee a 22 

Widthieacross) base rOLeSKanl eran ieruttsteiettle tere rtier 28 

long diameter of the eye...........:.....--.---- 10.5 

Transverse diameter of the eye.............----- 8 

Ibearerfordeynel SEXES 5 s50nonnodgagunosvanosoOauSoDGs 4 

Iberayeidey se Tab -5ococcconccgsosadceoo0dadue 26 

Depth of mandible at the coronoidal region........ 3.5 

WYSHAN Gre Claniehays onoooscocoocodsuccdeaoacocbodr 2 

Leneth of a long tooth ~.-.---..-....--- 32. eee 2 

Diameter of long tooth at base...........-.--.-.-- a) 

Length of vertebral column preserved...........-- 64 

Length of a centrum...........-------------++s- 3 

Median width) of Centruni: jj. le ite iterate elit 1.5 

IGG Gs Tle G S5cecna0dbocncoeooessdcnouLGUEsSe 6.5 

Wiviekin Ge alo Gin beSOssonncoocoeuoboonecnSopcooor .33 

Tength Of Coracoid! 7y-(o. ee ier iets oe]-p-)-sol-lone stole 8 

Width of coracoid at anterior end............---- 2.5 

Length of humerus .......-.+--2-- ese ese ee eee eee 18 

Wad bhimofeasheatterstrcteie cin eiertieteietletieitetelartet- ir il 1 

Distal width of humerus...............-----«---= 4 

Length of radius or ulma..............--+--+++-- 10.5 

Width across proximal ends of ulna and radius.... 3 

Length of carpal space..........--++sseseeeeeeees 5 

Length of metacarpal ............--.+-+-22e0s- 6 

Length of ventral armature preserved.........--- 24 

Number of rods in a length of 5 mm.............- 10 
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Genus ERPETOBRACHIUM, new genus. 

The remains on which the discussion of the present genus 

is based are contained in a rounded nodule, with obverse, from 

the Mazon Creek shales, some three and one-half inches in 

diameter. The matrix is the usual reddish ironstone of the 

nodules contained in these beds, and the bones have been 

replaced by kaolin. The parts preserved are the scapula, 

clavicle, portion of the coracoid, the humerus, the ulna and 

radius, all of the right side of the body. 

The generic characters are apparent in the greatly elon- 

gated fore limb, in the exceptionally broad scapula, the long 

radius and ulna, which almost equal the humerus in length 

—a character hitherto unknown among Carboniferous Am- 

phibia. ; 

Erpetobrachium mazonensis new species. 
(Plate 2, fig. 2; plate 8, fig. 3.) 

The scapula of the present form is exceptional in its shape. 

It resembles an asymmetrical pyramid, the anterior side of 

the lower edge of the bone being contracted so that the anterior 

edge is arcuate. Its top is very thin, and possibly terminated 

in a broad cartilage. The lower end is thick and heavy, and 

the articular surface is apparently well formed, though some- 

what obscured. 

The element identified as clavicle is lying on its edge and 

has the proportions of the clavicle of Mazonerpeton costatum. 

The exterior end is somewhat rounded and small. A portion 

of another element, which I suppose to represent the coracoid, 

lies alongside the humerus. Its form is quite obscured. 

The humerus has a remarkably well-formed head. Its 

perfection of formation corresponds well with that of the 

higher reptiles. Its surface can even be divided into an an- 

terior and posterior articulation. It projects posteriorly for 

the distance of one millimeter from the surface of the shaft. 

The shaft immediately below the head is somewhat flattened 

and has an ovoid section. Further on it becomes more flat- 

tened, a part of which is probably due to pressure during 

fossilization. The distal end is somewhat obscured. 

The elements of the fore arm are both preserved, and ar 

approximately equal in size. They are remarkable in tha 

they exceed or at least equal the humerus in length, althougl 

they are not so heavy as that element. They are greatly 

3—Univ. Sci. Bull, Vol. VI, No. 2. 
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elongate and slender, with the middle of the shaft only 

moderately contracted. The articular surfaces are well 

formed, and both bones were hollow, as was also, apparently, 

the humerus. The ulna is taken to be represented by the 

most posterior of the two elements, though the relations of the 

elements may have been reversed. 

The base of the left wing of an orthopterous insect, possibly 

allied to Paolia gurleyi Scudder, lies between the radius and 

the ulna. The nodule also contains impressions of plants, a 

portion of a frond of a Newropteris, and the impression of 

one of the Cordaites. Lying next the radius is a slender, elon- 

gate element, which may be a rib or a portion of a metacarpal. 

If a rib it indicates that the animal belongs among the Bran- 

chiosauria. The fragment is only one-half as long as the 

radius and is entirely too obscure to base any conclusions upon. 

The other characters of the specimen point quite strongly to 

its microsaurian affinities. 

The structure of the articular surfaces of the limb bones 

alone would indicate the microsaurian relationship of Hrpeto- 

brachium. It may be provisionally associated in the family 

Molgophide with such forms as Molgophis brevicostatus Cope, 

Molgophis (Pleuroptyx) clavatus Cope, and Molgophis macru- 

rus Cope, from the Coal Measures of Linton, Ohio. 

MEASUREMENTS OF THE TYPE OF ERPETOBRACHIUM MAZONENSIS MOODIE 

mm, 

engthotescapulak rela ctevstertencta casio leven toe ekerercd-iovers 14 

Distal! wwadthyy -92.o<:<e)s wyseeiw ooo case deo etsiereteyers eperasiats poke 6 

Proximaleearmecergrepeisel onl cic ietsneloucrekoresceiteletene reer ste 3 

Ibyenvnnay Gorden (2) soanosgconacusqsuoogcoconeD 24 

OGG OF INPIMERUEs oagso0a0 Coo oonadDOUDOOOSOCEO 25 

UA Oe Whis Gs ponotoonosoaonoosoosDouoosDUNSS 24 

iBvoparaellayeoisdh ooncgougpoodpo ocopduedanoUmOd0dcK 4 

Diameter othershattay-emiecieeteleicelerrarrielcrerercheratar= 2 

DistalliwadGhipemerroe ee cio ercieleieiotectalsver-tencteteiorore torr 3 

Ib Sayeaner OL? TEU, ooo gacnoconooADDooSaDUOCOOnO SAG 25 

Eroximalcwadthiereiciarrtsysicsisioler ite ieierel-loteloleieleietoia = 4 

DrametbersoLathesshachareprretecristeieiteleterietetereiecekt=t= 3 

Wiaidthrorsdistaluend cetereceie ates leteloreisletetieceincreveroret 4 

The type specimen is 799 (222) of Yale University Museum. 

Collected at Mazon Creek, Grundy county, Illinois. 
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Genus SPONDYLERPETON, new genus. 

The specimen on which the genus is founded consists of 

nine imperfect vertebrz, from the caudal region, inclosed in 

a brown ironstone nodule from the Mazon Creek shales. 

There have been, up to the present, but two Carboniferous 

genera of the embolomerous Stegocephala described. These 

are Cricotus from Illinois, Kansas and Texas, and Diplospon- 

dylus from Bohemia. Four, possibly five, species have been 

assigned to Cricotus and a single species to Diplospondylus 

(Fritsch, Fauna der Gaskohle, Bd. 2, Tafin 50, 52, 53). It is 

with considerable interest that the writer is able to add yet 

another form to the list of known Embolomeri by the descrip- 

tion of the largest form of the Mazon Creek amphibian fauna. 

The present form exceeds Diplospondylus by twice its size and 

is about two-thirds the size of Cricotus heteroclitus Cope. 

It differs in several important characters from the two 

genera above mentioned, but is for the present to be located 

in the same family, the Cricotidee of the suborder Embolomeri 

and the order Temnospondylia. 

The present form is distinct generically from any form 

which have been described. The generic characters are found 

in the form of the vertebral centrum and in the enlarged inter- 

centra. The present vertebree are twice as high as wide, 

differing thus from Cricotus, in which the centra are practi- 

cally circular. A character which is of great importance is 

the large size of the intercentrum, which almost equals the 

pleurocentrum in size. It is similar to the pleurocentrum in 

structure, except for the attached neurocentrum and chevron. 

The present form differs from Diplospondylus in the greater 

length of the intercentrum and pleurocentrum, in the greater 

size, in the larger proportions of the neurocentrum and the 

greater proportionate size of the intercentra. 

Spondylerpeton spinatum new species. 
(Plate 8, figs. 1 and 2; plate 9, fig. 1.) 

The species is very imperfectly known. Sufficient is present, 

however, to show its wide generic differences from other forms 

of the Cricotoide. These characters are of a phylogenetic 

nature, and indicate the more primitive nature of the present 

form, as we would expect from its geological position. The 

sutures separating the four vertebral elements are clearly 
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apparent. The pleurocentral-neurocentral suture is apparent 

in four vertebree. 

There is but a single pleurocentrum preserved complete. 

This shows the form of the attached neurocentrum and chev- 

ron, which corresponds to the hypocentrum pleurale, according 

to Fritsch. These structures are shown in the drawing, figure 

1, plate 9. The pleurocentrum is flattened laterally, with a 

rather large canal for the notochord. Its sides are marked 

with four longitudinal grooves. Surfaces for the attachment 

of ribs are not present, and for this reason, as well as the 

presence of chevrons, the vertebre are supposed to be caudals. 

As such, they represent an animal of some three or four feet 

in length. It was the giant of the Mazon Creek Amphibia. 

Attached to the upper side of the pleurocentrum by a sutural 

union occurs the neurocentrum. The neural arch is quite large 

and is oval in outline, although somewhat constricted at the 

tip. The spine of the neurocentrum is rather long and broad 

at its base, measuring 12 mm. across the anterior zygapophy- 

sis. The nerocentrum is laterally flattened and ends in 

a rather acute and somewhat rugose point. It was probably 

tipped with cartilage. The anterior zygapophysis occurs well 

down on the neurocentrum; its lower edge being five milli- 

meters from the suture separating the pleurocentrum and the 

neurocentrum. The posterior zygapophysis occurs quite high 

up on the neurocentrum, and lies at a distance of 15 mm. from 

the pleuro-neurocentral suture, thus indicating an extreme 

posterior inclination of the neural spine. The posterior 

zygapophysis of the best-preserved vertebra is separated from 

its mate, the anterior zygapophysis, on the next succeeding 

vertebra, by a space of five millimeters. 

The ventral surface of the pleurocentrum bears a structure 

which is without doubt a chevron, although the character of 

the opening can not be determined. It is elongated and is 

united by a broad base to the pleurocentrum. Its union is by 

a clearly defined suture, which is apparent on three vertebre. 

The condition represented by the specimen represents almost 

exactly the condition figured by Cope for the caudal region 

. of Cricotus crassidiscus Cope’. 

The intercentrum of the present form is fully as large as 

the pleurocentrum. The significance of this has already been 

1. Cope, E. D., 1890. Trans. Amer. Phil. Soc., vol. xvi, p. 246. 
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mentioned. There is no difference, except for the attached 

neurocentrum and chevron, in the form of the intercentrum 

and the pleurocentrum. Its body is pierced by the large 

notochordal canal. 

The condition of the vertebral structures represented by 

the above-described form is so essentially similar to that of 

Cricotus, which has been fully described by Cope, that nothing 

new can be added to the phylogenetic relations of the separate 

pieces of the vertebral column. It is remarkable that such a 

type should be found so low in the geological scale, but it is 

not unexpected, since we must, without doubt, look to the 

early Devonian or late Silurian for the earliest types of the 

Amphibia, which are yet unknown, although they have left 

their footprints in the rocks of the Devonian and Mississippian 

epochs of this country and a single skeleton in the Subcar- 

boniferous of Scotland. That our knowledge of the amphibian 

fauna of the Carboniferous is woefully incomplete is attested 

by the fact that nearly every specimen collected represents 

a type distinct from any hitherto known. Such is eminently 

true of the collection which has just been described. The 

characters on which the genera and species are based are 

apparently ones of value, for they have stood the test of time 

in other groups. 

MEASUREMENTS OF THE TYPE OF SPONDYLERPETON SPINATUM MOODIE. 
(No. 793 (26) and obverse, Yale University Museum.) 

mm. 

LENG UN OE AVA peaouoaeondouo sade poo onooae 60 

jhengthuot pleurocentrunis sys sp cvsii- iets ete) =) 1 = iLL ai55 

Height of pleurocentrum to base of neurocentrum, 20 
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Width of neurocentrum at base................. 9 
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Width across posterior zygapophysis............ 10 
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Width of notochordal opening.................. 5 

Height of notochordal opening.................. 4.5 

Hershtrot meuralicanelrererrcenrerreiie ckraslstcloisoieas?= 12 

Greatest width of neural canal.................. 6 
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KRAMERIA CANESCENS GRAY. 

BY CHARLES M. STERLING. 

(Plates 15-22.) 

RAMERIA CANESCENS inhabits the arid regions of 

southwestern North America. It occurs on the mesa 

and low hills as scattered individuals; rarely are several 

of them growing together in groups. The species was re- 

ported by Doctor Merriam, in his account of the Death Valley 

expedition, as common in the dry parts of the valleys of the 

Muddy and Virgin rivers in southern Nevada. Dr. J. M. 

Coulter speaks of it, in his Manual of Phanerogams and 

Pteridophytes of Western Texas, as common in southern and 

western Texas; and it is said to be particularly abundant along 

the Rio Grande, where the natives use an infusion of the bark 

of the roots to dye leather brownish red. 

Part of the material for this investigation was collected on 

Tumamoc Hill, Tucson, Ariz., in July, 1908, by Mr. L. M. 

Peace; and in October, 1909, The Desert Botanical Labora- 

tory, through the kindness of Doctor MacDougal, furnished 

additional material for the study of the roots. 

The irregular flowers of Krameria have made its classifica- 

tion somewhat uncertain. It has often been included in the 

Polygale, but its close relationship to Cassia indicates that 

it should be included in the Leguminosz or Czesalpinaceze. 

Chodat has placed it in a separate family, the Krameriaceex, 

which includes but the single genus Krameria, embracing 

thirteen species, growing in the warmer parts of North Amer- 

ica, and in South America as far south as Chile. 

(363) 
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Krameria canescens is a low shrub, which attains a height of 

about 50 cm. The hard, woody stems are usually much 

branched. The branches may spring from the primitive stem 

or the bases of other branches which have died down. (Fig. 2, 

plate I.) During seasons of excessive drouth the stems may 

be without leaves, but under favorable conditions they are pro- 

vided with small, narrow leaves. The specimens used for this 

investigation, collected in the rainy season of 1908, show the 

stem and branches well supplied with leaves. (Fig. 1, plate I.) 

Both young stems and leaves are covered by a dense coating of 

closely appressed trichomes. Many of the branches have been 

modified as spines, thus reducing the surface for evaporation. 

The root attains a very great length and thickness in compari- 

son to the low growth of the shrub. This condition corre- 

sponds well with the dry climate and scant water supply of the 

earth in its habitat. The thick main root produces many sec- 

ondary roots, which have but few branches. 

The resemblance of Krameria canescens to the South Ameri- 

can species of Kramevia, yielding the official drug, makes it 

worthy of a somewhat detailed investigation. 

A comparison of the tissues of Krameria canescens with 

those of the official South American species shows its close rela- 

tionship to the species found growing in the northern part of 

South America and on the adjacent islands. This relationship 

is also shown by the structure of the flowers in which Krameria 

canescens and those species confined to the northern parts or 

South America have four stamens and three fully developed 

petals, while the one species, Krameria triandra, growing 

farther south, has three stamens and two fully developed petals. 

THE STEM. 

The exceedingly hard, woody stem of Krameria canescens, 

although not presenting any anomalous structures, has several 

interesting characteristics. The young stems are protected by 

a cutinized epidermis, which apparently remains functional for 

a period of three to five yars, and is then replaced by cork. A 

primary cortex and pericycle, not sharply differentiated, sur- 

round the vascular bundles, which form a hollow cylinder en- 

closing the medulla. (Fig. 3, plate II.) 

The epidermis, consisting of a single layer of nearly isodia- 

metric cells, 24 microns in radial diameter, with a cuticle 3 

microns in thickness, is in no way unusual (e, fig. 3, plate II). 
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But the dense covering of thick-walled trichomes on its sur- 

face provide an excellent means of protection against evapora- 

_ tion. The trichomes are one-celled, with walls strongly cutin- 

ized on the lower portions, and are but weakly, or not at all, 

cutinized on the upper portions. They vary in length from 

150 to 600 microns and average 850 on a sq. mm. (h, fig. 16, 

plate IV). 

Stomata, which stand at right angles to the long axis of the 

stem and lie in the same plane with the epidermal cells, appear 

to be without any of the special protective devices found in 

desert plants, and are protected only by the numerous closely 

appressed trichomes (s, fig. 16, plate IV). The stomata are 

uniformly distributed and average 98 on a sq. mm. The cells 

of the epidermis contain chloroplasts and tannin and have a 

brownish-red color. 

The primary cortex and pericycle are not sharply differen- 

tiated, but in the region of the line d, fig. 3, plate II, there are 

numerous parenchyma cells filled with starch. The location of 

these cells just outside of a zone of tissue containing many bast 

fibers would indicate that they form the inner boundary of the 

primary cortex. The primary cortex is made up of a compact 

palisade and isodiametric or radially elongated parenchyma 

cells (fig. 15, plate IV). The palisade seldom contains more 

than one row of cells, which are closely fitted together, and 

have relatively small intercellular spaces between them. Radi- 

ally, they measure 30 to 48 mm. in diameter and contain an 

average of 120 chloroplasts (cl, fig. 17, plate 1V). The chloro- 

plasts are biconvex and disc-shaped, 4 to 5 microns in diameter 

and 1 to 1.75 microns in thickness. The rest of the primary 

cortex is made up on thin-walled parenchyma cells, most of 

which contain chloroplasts, although many are almost com- 

pletely filled by large rosette-aggregate crystals of calcium 

oxalate, while others filled with starch grains are not uncom- 
mon. Radially they measure from 25 to 45 microns. 

Surrounded by the primary cortex is a pericycle consisting 

of thin-walled parenchyma cells, and angular, rather strongly 

lignified bast fibers (fig. 6, plate Il). The long, slender bast 

fibers occur either singly or in groups, and by means of their 

long, tapering ends are spliced together, forming a tissue well 

suited for strengthening. They have a few very small straight 

pits. In length they vary from 850 to 2050 microns and in 
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width from 12 to 18 microns. The parenchyma cells of the 

pericycle are similar in form and structure to those of the pri- 

mary cortex. For the most part they contain starch, but in a 

few may be found chloroplasts, and in many crystals of cal-— 

cium oxalate. In the palisade and all of the parenchyma cells 

of both primary cortex and pericycle there are large quantities 

of tannin, and all have a brownish-red color. 

The narrow vascular bundles are collateral, and are sep- 

arated by narrow medullary rays, one ce}l in width. 

The phloém is composed of undivided mother cells of sieve 

tubes and companion cells and thin-walled parenchyma, inter- 

spersed with comparatively thick-walled, lignified bast fibers 

(fig. 10, plate III). The bast fibers are similar in structure 

and arrangement to those of the pericycle, but a greater pro- 

portion of them occur singly, and the groups are smaller. The 

vertically elongated parenchyma cells contain starch, amor- 

phous proteids, and crystals of calcium oxalate (fig. 11, plate 

III). Sieve tubes with well-developed sieve plates were not 

found, but the stems are well supplied with undivided mother 

cells, which are filled with granular proteid matter, and to- 

gether with the parenchyma contain tannin in considerable 

quantities (n, fig. 11, plate III).. 

The elements making up the xylem are fiber tracheids, water 

tubes, and few wood parenchyma cells. The most conspicuous 

_of these is furnished by the fiber tracheids, which are thick- 

walled, strongly lignified and compactly arranged, thus leaving 

very small intercellular spaces. They are cylindrical, and have 

long, tapering ends, which overlap and are interwoven to make 

the wood exceedingly strong (fig. 12, plate III). They vary in 

length from 350 to 1100 microns and 10 to 14 microns in 

width. Although the thick-walled tracheids are perforated by 

numerous bordered pores, and are thus well adapted for water 

conduction, the numerous water tubes are apparently suffi- 

cient to perform that function and leave the tracheids to serve 

rather the function of water storage. (See fig. 8, plate III.) 

In a stem 4.21 mm. in diameter, the tracheids comprise an 

area of 5.9 sq. mm., which is equal to 78 per cent of the xylem 

or 19.7 per cent of the whole stem. The small cavities of the 

tracheids have a total area of 0.7 sq. mm., which is equal to 

8.75 per cent of the xylem or 3.5 per cent of the whole stem. 

The tracheal elements are composed of water tubes having 

spiral and reticulate thickenings and those having bordered 
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pits. Next to the medulla, and formed in the protoxylem, lie 

the small spiral tubes, while adjacent to them are the some- 

what larger reticulate tubes (fig. 9, plate III). But through- 

out all of the rest of the xylem only tubes with bordered pits 

are to be found. They have lignified walls 1.5 to 3 microns in 

thickness, and average about 30 microns in diameter. Although 

they occupy a much smaller area of the xylem than the tra- 

cheids, the water tubes have relatively much greater water- 

carrying capacity, the total, for the stem given above, being 

14.5 per cent of the xylem or 6 per cent of the whole stem. 

The tissues of the xylem are not distributed in such a man- 

ner as accurately to indicate the periods of growth. However, 

as the larger water tubes are in rather loosely formed rows, 

concentrically arranged, and frequently accompanied by rows 

of wood parenchyma, they appear to form the boundary lines 

of the periods of growth. The wood parenchyma cells are de- 

veloped prior to the larger water tubes, thus indicating that the 

wood parenchyma cells are formed at the end of one growing 

season and the larger water tubes at the beginning of the 

season following. The vertically elongated cells contain many 

circular straight pits (figs. 22 and 23, plate V) ; and as they are 

abundantly supplied with starch, they furnish additional evi- 

dence that the wood parenchyma is formed at the end of the 

season’s growth for the storage of reserve materials. 

Separating the vascular bundles are the numerous narrow 

medullary rays, usually consisting of a single row of cells. In 

the xylem portion the walls are relatively thin, lignified in the 

older part only, and contain numerous straight, circular pits. 

They are from three to six cells in height, and vertically elon- 

gated (figs. 20 and 21, plate V). Frequently the tracheids 

crowd in upon the medullary ray cells and cause a thickening 

of their tangential walls (fig. 5, plate Il). The cells of the 

phloém portions have cellulose walls, and as the outer ones are 

tangentially stretched the rays become wedge-shaped. In all 

parts the cells are well supplied with starch—a fact which, 

taken in connection with their structure, indicates that their 

chief function is that of storage. 

At the center of the stem, surrounded by the vascular 

bundles, is a rather large medulla. The cells have lignified, 

pitted walls. Those composing the central part are nearly 

isodiametric (fig. 25, plate V), while the marginal cells are 

somewhat narrower and vertically elongated (fig. 9, plate II). 
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All of these cells are well adapted for storage, and many are 

packed with well-formed starch grains while others contain 

large crystals of calcium oxalate. Tannin is abundant 

throughout the medulla. 

THE ROOT. 

In making this investigation, roots young enough to show 

primary structures were not obtainable, and as in all speci- 

mens the main root was too large to section and illustrate as 

a whole, it was necessary to select secondary roots for study. 

These, however, were found to have their tissues in structure 

and drrangement almost identical with those of the main root. 

In transverse section, a root shows a broad bark surrounding 

a circular xylem (fig. 4, plate II). 

The brownish-red cork is developed in regular radial rows, 

and becomes scaly and dark brown on the exterior (figs. 30 

and 35, plate VI). Lying between the phloém and phellogen 

is a broad zone of parenchyma cells interspersed with bast 

fibers (fig. 4, plate II). These fibers are similar to those of 

the stem, but differ in being shorter, slightly broader, and 

more irregular in form. They vary from 8 to 20 microns in 

breadth and from 400 to 1050 microns in length. 

The medullary rays and wood parenchyma of the root re- 

semble in every way the corresponding tissues of the stem; but 

in the root the cells are uniformly larger. 

The phloém corresponds in structure to that of the stems 

(fig. 30, plate VI). However, there is a difference in the dis- 

tribution of the bast fibers. In the phloém of the root the 

fibers occur in larger groups than in the zone of parenchyma 

adjacent (fig. 30, plate VI), while in the stem the larger groups 

of fibers are found outside the phloém in the pericycle. In the 

thin-walled parenchyma cells throughout the bark there are 

large quantities of starch, and crystals of calcium oxalate. 

The cells have a yellowish-red color, and in all of them tannin 

is abundant. 

The elements composing the root xylem are the same as 

those found in the stem. The fiber tracheids, varying in 

length from 200 to 600 microns, are shorter and more irregular 

in form than are the stem tracheids (figs. 32, 33 and 34, plate 

VI). Frequently the root trahceids have blunt or irregularly 

shaped ends (fig. 32, plate VI). The most striking difference 
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between the stem and root is found in the conspicuously large 

and numerous water tubes of the root xylem (fig. 30, plate VI). 

Excepting the tubes of the protoxylem, all of the water tubes 

in roots have bordered pores, which are oblong and lie horizon- 

tally in the thick, lignified walls (fig. 31, plate VI). The water 

tubes vary from 12 to 65 microns in diameter, and have walls 

from 1.5 to 3 microns in thickness. In a root 4.84mm. in diameter 

the area of water-tube cavity amounts to 31 per cent of the 

xylem or 6.8 per cent of the whole root. The total area of 

tracheid cavity amounts to 6.7 per cent of the xylem or 1.3 per 

cent of the whole root. Combining these amounts gives a 

total for both water tubes and tracheids of 37.7 per cent of the 

xylem, or 8.1 per cent of the whole root, devoted to the carry- 

ing and storage of water. Comparing this data with that given 

above for a stem 4.21 mm. in diameter, and having a total 

capacity for both water tubes and tracheids amounting to 

25.25 per cent of the xylem, or 8.75 per cent of the whole stem, 

shows that as a whole the stem has the greater capacity for 

holding water. 

THE LEAF. 

The small, narrow, simple leaves are developed in seasons 

favorable for growth, but in seasons of excessive drought they 

may be entirely wanting. They are bifacial and have the 

stomata standing longitudinally at right angles to their long 

axes (figs. 39 and 40, plate VIII). The stomata, averaging 95 

on a square millimeter, lie in the same plane with the cells of 

the epidermis (fig. 42, plate VIII). 

The epidermis, closely resembling that of the stems, bears 

numerous unicellular trichomes, which give to the leaves a fine 

silky appearance (fig. 47, plate VIII). The trichomes are 

usually bent near the base, so that they lie close to the surface 

and make a thick covering over the entire leaf surface. They 

vary in length from 150 to 600 microns, and, like the trichomes 

of the stem, are thick-walled and have the lower portions 

cutinized, while the upper portions are but weakly, or not at 

all, cutinized. Although the trichomes on the leaves are very 

numerous, averaging 450 to 500 on a square millimeter, the 

number is exceeded by the stems, which bear an average of 850 

on a square millimeter. ; 

Lying beneath the epidermis, and extending around the en- 
2—Univ. Sci. Bull., Vol. VI, No. 3. 
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tire leaf, is the palisade tissue, usually consisting of a single 

layer of cells (fig. 38, plate VII). The cells well supplied with 

chloroplasts are cylindrical in tangential section, and lie rela- 

tively close together (fig. 41, plate VIII). The rest of the 

mesophyll is made up of parenchyma cells, which, lying close 

together, thus give but little intercellular space in the leaves 

(fig. 38, plate VII). No regularly arranged border paren- 

chyma surrounds the vascular bundles. 

The very conspicuous water-carrying system is composed 

entirely of tracheids, which for the most part have bordered 

pores (fig. 28, plate V); but in the basal portion of the mid- 

vein spiral tracheids may be found (fig. 46, plate VIII). The 

ultimate ends of the veins are composed of large groups of 

nearly isodiametric tracheids with numerous bordered pores 

(fig. 27, plate V, and figs. 44 and 45, plate VIII). The enor- 

mous number of tracheids furnish adequate capacity for the 

storage of a large water supply in the leaf. Interspersed with 

the tracheids are many thin-walled parenchyma cells (fig. 28, 

plate V, and fig. 43, plate VIII). 

The phloém consists of undivided mother cells, cambiform 

cells, and parenchyma (fig. 29, plate V). All of these cells 

have walls of cellulose and are filled with granular proteid 

matter. The phloém occupies but a relatively small portion of 

the bundles, and in no case were well-formed sieve tubes found. 

THE CHLOROPLASTS. 

Chloroplasts are present in both leaves and stems. In leaves 

they occur in the epidermis, palisade, and nearly all of the 

parenchyma of the mesophyll, while in stems they occur in the 

epidermis, palisade and greater part of the primary cortex, 

and even in the outer part of the pericycle. Numerically they 

are about equally distributed in the corresponding tissues of 

stem and leaf, an average of 128 being present in a leaf pali- 

sade cell and about 50 in a parenchyma cell of the stem. In 

form they are circular and biconvex, varying from 4 to 5 

microns in diameter and 1.25 to 1.75 microns in thickness. 

STARCH. 

Both stems and roots are provided with an abundant supply 

of starch. The spherical, oblong or ovoid grains are simple, 

or 2, 3, 4 and 5 compound. In the stem they are located prin- 

cipally in the pericycle, medullary rays, and medulla, but they 
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may also be found in a few of the parenchyma cells of the pri- 

mary cortex and in the phloém and wood parenchyma. They 

vary in size from 4 to 18 microns (fig. 49, plate VIII). Although 

the root starch closely resembles that of the stem in form and 

structure, the grains are uniformly larger and more oblong in 

shape (fig. 48, plate VIII). They range in size from 10 to 40 

microns and are very abundant in the parenchyma of all parts 

of the bark, medullary rays, and wood. 

CRYSTALS. 

Crystals of calcium oxalate are present in all parts of the 

plant. They are monoclinic prisms, or rosette-aggregate in form, 

and vary in size from 2 to 40 microns in diameter. Aggregate 

crystals 10 to 30 microns in diameter are abundant in the 

leaf parenchyma, while the small monoclinic prisms, 2 to 10 

mm. in diameter, are relatively few in number (0, fig. 51, 

plate VIII). In the stem, rosette-aggregates occur commonly 

in the parenchyma of the primary cortex and medulla (a, figs. 

51 and 52, plate VIII), while in the phloém they are seldom 

found, but monoclinic prisms are very abundant (fig. 53, 

plate VIII). The stem crystals are slightly larger than those 

of the leaf, and in the root they are considerably larger than 

in any other part of the plant. In the parenchyma cells of the 

outer root bark large aggregate crystals are found in consider- 

able numbers, and in inner parenchyma, especially those cells 

adjacent to the bast fibers, are densely packed with monoclinic 

prisms (fig. 50, plate VIII). 

All parts of the plant are well supplied with tannin, and it is 

especially abundant in the bark of both roots and stems. Ex- 

cepting the conducting cells of the xylem and phloém, all parts 

of the plant are intensely colored, from a reddish brown in the 

outer cork to a yellowish red in the inner parenchyma of the 

bark. The color is very persistent, and in order to make a 

detailed study of the tissues it was necessary to decolorize the 

material. This could be accomplished only by long bleaching 

of leaves and root and stem sections in aqueous solution of 

potassium hydrate and chloral hydrate. 
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EVIDENCE OF PLEISTOCENE CRUSTAL MOVEMENTS 
IN THE MISSISSIPPI VALLEY. 

BY J. E. TODD. 

T has been thought worth while to call attention to the facts 

bearing on this subject which have been brought out by a 

recent study of glacial deposits in Kansas. The more 

novel facts are (a) the strong westerly trend of glacial move- 

ments during the Kansan epoch, and (b) the high altitude at- 

tained on the west compared with corresponding levels farther 

east. 

First. The westerly trend is shown (a) by the fact that the 

ice lobe did not reach to the Kansas river in Douglas county, at 

least not so as to affect its channel, while from near Lecomp- 

ton to Wamego there is abundant evidence of its filling the pre- 

glacial channel and pushing south of it several miles, especially 

in Shawnee and Wabaunsee counties. The Kansas river was 

dammed southwest of Wamego, so that its level stood 200 feet 

above the present stream. This is shown by a boulder-lined 

outlet connecting with another valley southeast. Similarly a 

lake was formed in Mission creek valley, west of Topeka, from 

which boulder-marked channels lead over into the Wakarusa 

valley on the south. 

(b) This is shown also by glacial striz, especially those of 

higher levels, which record the main movements of the ice sheet. 

There are also others, particularly those at lower levels, which 

conform to the direction of the valleys in which they are found, 

(376) 
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as though formed when the ice sheet was thin and weak. The 
general movement is shown by the following table of strize 

Locality, observer, reference. Direction. 

Near Omaha, es or eight feet above the river................ S759 Wis 
C White—Geol. Ia., vol. I, p. 95. 

Near mouth fe LA LRAT AS OR cep RRGEN EA ION Ola ete, ela Ao Toe S. 20° W. 
Meek—Final Rept. Neb., p. 92. 

T'wo ailess es at of Pacific Junction, Lowe so hooSusoCeanODH Oras S. 12° and 14° W. 
. Udden—Geol. Ia., vol. 13, p. 177. 

Three mee aa OLeeaciic. Junction Lowe peweciieiciieee aeierre S. 25°, 29° and 34° W. 
J. A. Udden—Geol. Ia., vol. 13, p..177. 

Three miles east by north from Tabor, Iowa.................. SW. 
J, A. Udden—Geol. Ia., vol. 13, p. 177. 

One-haliomileisouthiof Hinton lowa seen cee ine one S. 7° and 50° W. 
A. Udden—Geol. Ia., vol. 13, p. 177. 

One mile ea of Macedoniay Nowa: cuusspseutepsser ares, se ere . S. 2° W. and S. 10° E- 
. Udden—Geol. Ia., vol. 11, p. 269. 

Three to fows ioe south of Pacific Arbioese, Woeis ones goceeeac $. 9°, 40° E. 
. Todd—Bull. U. S. G. S. 158, p. 69. 

South of Sia eee Neb., 40 Bs Ciel Cp oh lds & oo oc Giclee clea aia S.SW. 
J. E. Todd—Bull. U. 8. G. S. 158, p. 69. 0 

Bennett Neb a cherokee eee relict er acne te ener e ee OI Sane Fan rat ree en et ioe AO OU OS SENT 
J. E. Todd—Bull. U. S. G. S. 158, p. 69. 

Weeping: Water. Neb:sor tutes iuvatecsyct ae tcepenad hens ate Clee Relay sPecataas SO CMW ign atlolncei ys 
BE. H. Barbour—Neb. Geol. Surv., vol. 1, p. 169. 

One mile north of St. Joseph, Mo., 125 ft. above river.......... S. 26° W. 
J. E. Todd—Geol. Rept. Mo., vol. 10, p. 121. 

One mile northeast of Kansas City, 130 ft. above river......... Si hos tee, PANO Ge 
J. E. Todd—Geol. Rept. Mo., vol. 10, p. 121. 

Bast part Mansas ity el O Olt seis ciel ciereyeicde ecter cis ekerei tel etevedeyens er ALCL SS oy OSL 
J. E&. Todd—Geol. Rept. Mo., vol. 10, p. 122. 

Seneca ean maricensn teckel ieee eetetaieet ania teri ten ci tettatasencker ne icterate §. 21° 24° W. 
L. C. Wooster—Amer. Geologist, vol. 10, p. 131. 

(c) The ice sheet entering Kansas was from the Des Moines 

valley rather than from the James and Missouri valleys. This 

is shown clearly by the distribution of red quartzite boulders, 

for they are found very abundantly on the extreme western 

edge of the ice lobe. If the ice had come down the Dakota- 

Missouri valley they would have been distributed only to the 

eastern half of it, and therefore would have been far east of 

the marginal effects of the ice, for the original ledges extend 

only a short distance into South Dakota. 

Moreover, the red boulders frequently abound in white and 

red pebbles, such as are not known to occur in the quartzite 

ledges of South Dakota, but are found farther east in Cotton- 

wood and Rock counties, Minnesota, where the original de- 

posits were nearer the old Archzan shore on the northeast, 

which furnished the material. There seems no doubt, there- 

fore, that the ice of Kansas in the Kansan epoch passed through 

the upper part of the main Des Moines river valley. 

This conclusion discounts strongly an oft-used map of North 

America, professing to show the ice streams at the maximum 

extent of the ice, and we may the more easily admit its inac- 
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curacy when we know the impossibility of a slender ice lobe 

maintaining itself for 500 miles from Dakota to Kansas along 

the edge of a dry and probably warm region like the great 

plains, doubtless traversed then as now by southwest winds. 

Second. Another significant fact is that the ice overrode 

points now over 1500 feet A. T. This was true in northern Pot- 

tawatomie county, about Blaine and Wheaton, Kan., where the 

preglacial surface rises to that height. The surface of drift 

deposits lies at that altitude at Summerfield in Marshall county, 

Kansas, and along the divide northward past Virginia and 

other points in northern Gage county, Nebraska. 

This fact should also be contrasted with the fact that the 

highest points of the limit of the ice on the east side of the 

same lobe in northeastern Iowa is only about 1200 feet A. T. 

in Winneshiek, Allamakee and Dubuque counties. It should 

also be compared with the fact that southeastern Iowa now lies 

only 750 feet A. T., or only half the height in Kansas. 

Taking the altitudes as we now find them, we can not see 

why, if the ice sheet reached 1500 feet in Pottawatomie 

county, Kansas, it should not have pushed over the 1300-foot 

levels in northeastern Iowa and scores of miles farther into the 

Wisconsin driftless area, and well across Illinois southeast, 

in which direction there was an open field and lower levels. 

We may reason it thus: Taking a point in northern Kossuth 

county, lowa, as a common point of passage for all points south 

from Kansas to Illinois, then taking Blaine, Kan., 1500 feet 

A. T., and assuming an average slope for the surface of ice of 

25 feet per mile, we should find the top of the ice sheet over 

northern Kossuth county to be over 9000 feet A. T. If a similar 

slope prevailed also southeast to West Union, Iowa, the ice 

would have reached 5275, or 4000 feet above the height of the 

present surface there, and in a southeast direction the slope 

would have carried it beyond Bloomington, Ill. This is also 

far beyond the observed limit in that direction. 

Mr. J. E. Carman, in the Illinois Geological Survey Bulletin 

13, represents the limit of the Kansan till reaching nearly to 

Savannah, Ill., and a little beyond Fulton, Ill.; and Leverett, 

in the U. S. G. S. Monograph XXXVIII, places the margin 

through Hancock and Adams counties, and crossing the Mis- 

sissippi river near Hannibal, Mo. With the slope assumed and 
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the surface as now, the ice should have gone 70 miles farther 

in that direction. 

Now, if ice may be used roughly in this way as a level, as 

seems reasonable, it affords evidence that since the Kansan 

epoch there has been a sinking of the Mississippi region, or a 

rise of the Kansan, or both. That the first is in a measure true 

seems attested by the fact that the trough of the Mississippi 

from St. Paul to Quincy, Ill., is 100 to 150 feet deeper than is 

demanded by the level of the present stream. Professor Calvin 

called attention to this fact in his paper in the Proceedings of 

the Iowa Academy of Sciences, volume 14, page 213. Bedrock 

is from 150 to 220 feet below low water when the depth ade- 

quate for the present stream is only 50 or 60 feet. 

Another evidence of the same movement is found in the 

strong easterly trend of the Iowan ice sheet in eastern Iowa 

as compared with that of the Kansan there. 

This, however, is not enough to fully explain the facts. That 

there has also been a rise of the Kansan side seems probable, 

not locally, but in the general westward elevation of the plains. 

Formerly, when the deposits of the plains were thought to be 

of lacustrine origin, it was common to speak of the Pleistocene 

elevation of the Rocky Mountains. The Fluviatile theory has 

relieved the necessity for that view; but may there not have 

been some movement of that sort? 

An argument in favor of this is found in the fact that quite 

generally along the Kansas streams and the Missouri river 

in this latitude there is abundant evidence that the drainage 

was 85 to 100 feet higher than now. The preglacial channel of 

the Kansas river at Manhattan was about 100 feet higher than 

that of the present channel. It was a little lower at Topeka, 

while at Lawrence a terrace of later date is well developed, 

with numerous boulders at the bottom of alluvium, and its 

top 80 to 100 feet above the present stream. Glacial striz 

around Kansas City are not found below 125 feet above the 

Missouri, although there are numerous ones above that level. 

At Weston, Mo., a cobblestone stratum twenty feet thick, con- 

taining red quartzite and granite boulders, is found about 150 

feet above the present level. (See Missouri Geological Survey, 

vol. 10, p. 146.) This terrace, due to the recent cutting down 

of the Missouri river, has been ascribed to the lowering of the 

channel into the Ozark limestones in central Missouri, but 
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quite as plausibly it may be ascribed to a Post-Kansan eleva- 

tion of the region. It need hardly be stated that along the 

Missouri through the Carboniferous rocks, bedrock is rarely 

more than 50 or 60 feet below low water. In some shaly por- 

tions and in the soft Cretaceous sands and clays of the north it 

is 100 to 125 feet below. 

We can conclude, therefore, that the crust was raised at 

least 100 feet in Kansas, and depressed 100 feet in eastern Iowa 

and Wisconsin, or a total relative movement of 200 to 600 feet 

of eastern subsidence since the time of the Kansan ice sheet. 

May not the less easterly movement of the ice of that time be 

further accounted for by a more rapid rise of the underlying 

rock surface on the east and the southeast? May not the south- 

westerly trend of the low ledges traversing the eastern part of 

Kansas, with the corresponding direction of the tributaries of 

eastern streams, have had an appreciable effect, favoring the 

westerly movement of the ice in that region? May not the 

greater heating of the western half of the ice lobe, whether 

from the maximum daily water temperature coming in the 

afternoon (see Science, new series, vol. 14, pp. 749-1901), or 

from the warm southwesterly winds, have rendered the west 

half of the ice sheet more active, and so increased its westerly 

movement. 

LAWRENCE, KAN., December 21, 1910. 
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THE ACTION OF SALT SOLUTIONS ON STRIPS OF 

THE FROG’S. INTESTINE. 

BY GRACE RUSSELL. 

(Plate 23.) 

(From the Physiological Laboratory of the University of Kansas.) 

N this paper are briefly described the effects of salt solu- 

tions of various concentrations upon the smooth muscle 

fibers, especially the longitudinal, in the intestine of 

the frog. 

The effect of salt solutions upon smooth muscle fibers has 

been studied by many investigators, but the works of McGill,! 

Mathison,” Meigs,’ Stiles, Langley,> Menis* and Row’ I be- 

lieve correspond more closely to my problem than do the 

works of others that I read. 
The method employed was very simple. After the spring 

frog was pithed, the abdomen was opened, and pieces about 

one centimeter long were removed from the intestines as 
required. The segment was flushed with Ringer’s solution and 
attached to a writing lever at one end, properly weighted to 

secure tonicity of the intestinal strip, and suspended in a glass 

cylinder, into which the. solutions to be tested were carefully 
placed. The lower end of the segment was attached to a smali 
siphon tube, which drained the fluid. 

In each case a.record was first secured with the strip in 

McGill, C., 1910, Quarterly Journal of Experimental Physiology, vol. III, No. 3. 

Mathison, G. C., 1911, Journal of Physiology, vol. XLII. 
Meigs, E. B., American Journal of Physiology, vol. XXII, 1908. 
Stiles, P. G., 1903, American Journal of Physiology, vol. VIII, No. 4, p. 269. 
Langley, 1911, Journal of Physiology, vol. XLII, Proceedings, p. XXIV, 
Menis, 1911, Journal of Physiology, vol. XLII, p. 326. 
Row, R., 1904, Journal of Physiology, vol. XXX. 
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isotonic Ringer solution. This was then siphoned off and re- 

placed by the special salt which was to be studied. In no case 

was the same strip used twice. It was interesting to note that 

strips from some frogs when suspended showed peristaltic 

action, while those from.others did not. But as soon as the 

salts were added the peristaltic movements either decreased 

or ceased. The period of action of each solution was limited 

to about eight minutes and was followed in each instance by 

an isotonic Ringer solution. I did not attempt to determine 

whether the observed effect of the salt was upon the muscle, 

contractile tissue or nerve sells or nerve endings. 

After many trials an isotonic indifferent Ringer solution 

was secured, in which the moist strip neither relaxed nor con- 

tracted, but continued its peristaltic movements. The follow- 

ing solutions were then employed in the experiments: the 

influence of, first, slight alkalinity; second, slight acidity of 

Ringer solutions; third, NaCl in strengths from m/32 to m/8; 

fourth, KCl from m/64 to m/8; fifth, CaCl, from m/64 to m/8; 

sixth, MgSO, from m/32 to m/8; seventh, BaCl, from m/64 

to m/8. Also, the influence of tap water and double-distilled 

water were determined. 

I might state at once that tap water caused a marked con- 

traction, possibly due to the large percentage of calcium, while 

double-distilled water had an opposite effect, namely, that of 

relaxation, probably due to the extraction of salts from the 

tissues. This corresponds with Meigs’ and McGill’s results 

on smooth muscles from the stomach of the frog with hypo- 

tonic solutions. 

The accompanying plate illustrates characteristic curves 

from the different solutions and their most pronounced effects. 

A neutral Ringer solution was made .04 per cent alkaline by 

adding Na.Co, to it. In this solution the peristalsis ceased at 

once, and the contraction reached its height within a half 

minute. Though the per cent of alkalinity was small, the 

effect was quite marked, producing contractions in each case. 

In a .04 per cent acid Ringer solution, made so by adding 

HCl, peristalsis ceased at once, and within a half minute 

reached its limit of relaxation; relaxing seldom to the same 

extent as the alkaline Ringer contracted. An m/64 to m/32 

NaCl produces a prolonged relaxation, whereas an m/32, and 

in some cases m/8 NaCl, proved indifferent. 
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In an m/32 and m/16 KCI solution the contraction of the 

specimen was immediate and rapid and continued for about 

four minutes, when it gradually relaxed. But it never re- 

turned to normal. In m/64 KCl it was often indifferent, anc 

in m/32 KCl slight relaxation took place. An m/8 KCl 

strength proved toxic. 

It is interesting to note that in CaCl, solutions, after peri- 

stalsis ceased the contractions usually began at once, lasting 

from one to five minutes, and then in most cases the strip 

gradually returned to its original length. This tendency of 

contraction and then returning to its original length was most 

pronounced in m/32 solutions. The above results with NaCl, 

KCl and CaCl, agree with those obtained by Stiles. 

In MgSO, solutions, ranging from m/8 to m/32, intestinal 

strips relaxed, but relaxation was often more pronounced in 

an m/32 solution. Magnus in one of his papers states that 

BaCl, was a strong stimulus to the intestines and always 

causes a contraction. My results corroborate his statement, 

as is shown by the curves. The specimens did not reach their 

original length after the first contraction, and in each case the 

contractions were very pronounced. 

This work was pursued under the guidance of Dr. I. H. 

Hyde, to whom I am under great obligations for help and 

advice. ; 

The general conclusion drawn from the study of the above 

experiments is that the contraction of the intestinal strip of 

the frog is produced by solutions of BaCl, from m/64 to m/8; 

KCl from m/32 to m/16; CaCl, from m/64 to m/8 and alkaline 

Ringer solutions; while acid Ringer, NaCl from m/32 to m/8 

and MgSO, from m/32 to m/8, cause relaxation. These results 

are probably due to the action of the solution on the longi- 

tudinal muscle fibers in the frog’s intestine. 
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ON A COMPARISON OF THREE SKULLS: CASTOR- 

OIDES OHIOENSIS, CASTOROIDES KANSENSIS, AND 

CASTOR. 
BY H. T. MARTIN. 

(Plates 24-27.) 

(Contribution from the Zodlogical Laboratory, No. 199.) 

INCE the first discovery of Castoroides ohioensis and its 

S description, in 1838, by Foster, there has been approxi- 

mately twenty specimens, mostly fragmentary, reported 

from as many different localities. Out of this number it is 

interesting to note that only one, that from Dallas, Tex., was 

found west of the Mississippi valley. This, coupled with 

the fact that the Boicourt specimen figured in this paper is a 

new addition to the Pleistocene of Kansas, adds much to the 

value of the specimen. 

Through the courtesy of the secretary of the Smithsonian 

Institute, the writer has been allowed the privilege of figuring 

and comparing with our Kansas specimen a nearly complete 

skull of Castoroides ohioensis. So perfect is this specimen that 

only a small portion of both the malar arches is all that is 

missing. The skull is beautifully preserved, with the denti- 

tion absolutely perfect. The double posterior nares, well 

shown, is formed by the pterygoides being laterally compressed 

at about their middle, until they meet, thus forming two ori- 

fices instead of one, as in all other rodents. The superior fossa, 

pyriform in shape, the lower and smaller one triangular. (See 

plate 25, fig. A, at a-a.) 

It is unfortunate that so little is known of the history re- 

lating to the discovery of the beautiful skull which the writer 

(389) 
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has been very kindly allowed to figure along with the Kansas 

specimen. The only data that seems to be attached to the 

specimen is that it was discovered in Lenawee county, Michi- 

gan, and presented several years ago to the Smithsonian In- 

stitute by Doctor Kost, and now constitutes No. 1634 of the 

Smithsonian collection. 

Of the two skulls figured in this paper, the Smithsonian 

specimen from Lenawee county, Michigan, is by far the more 

complete. This and the skull described by Hall and Wyman, 

and known as the Clyde skull, are the two most perfect speci- 

mens known. The specimen found at Boicourt, Kan., although 

imperfect, still retains enough of the elements of the skull to 

warrant the restoration shown on plate 24, figure 8. 

After a careful comparison between the Lenawee specimen, 

and with descriptions of other specimens, several differences 

occur in the first-mentioned skull which can scarcely be at- 

tributed to either age, sex or individual morphological dif- 

ferences. These variations, in the writer’s estimation, should 

be considered enough of a specific character to determine it a 

different species from C. ohioensis; hence the name C. kan- 

sensis is proposed. 

As a comparison, the well-known skull of Castor fiber has 

been used. 

HISTORY OF THE BOICOURT SPECIMEN. 

The skull figured on plate 26, figure B, was donated to the 

University of Kansas Museum about a year ago by Dr. J. R. Mc- 

Leland, of Pleasanton, Kan. All that can be gathered relating 

to the history of the specimen is that about twelve years ago, 

while sinking coal shaft No. 2, three and a half miles south- 

west of Biocourt, Linn county, Kansas, in the valley of the 

Marais des Cygnes, a miner, Mr. W. J. Thirwell, came across 

the skull at a depth of thirty-four feet, in a layer of sedi- 

mentary material of a bluish color, which overlay a deposit of 

sandy conglomerate. At the time of the find the large incisor 

was complete, and other parts of the skull were present. For 

several years this fine specimen was kept in a cigar store, ina 

case along with the cigar boxes, unnoticed by anyone, until a 

year or two ago Doctor McLeland recognized in it a fossil 

form, secured it, and presented it to the University. 

In the vicinity of Boicourt, and for several miles above and 

below, the river Marais des Cygnes has cut down to an average 
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depth of from thirty to forty feet, and in many places the 

Bethany Falls limestone is exposed in considerable areas at 

the bottom of the river. About two and a half miles below 

where the specimen was exhumed, and just below the bridge 

that crosses the Marais des Cygnes at Trading Post, a small 

deposit of bones was found several years ago by Mr. Amos 

Tubbs, of Trading Post. This small collection the writer ex- 

amined a year ago, and recognized in it teeth of elephant, 

horse, camel, together with limb bones and a tusk of an ele- 

phant, all belonging clearly to the Pleistocene. At the point 

where the bones were found, the river has cut clear down to the 

Bethany Falls limestone. Directly above the limestone occurs 

a layer of conglomerate about eighteen inches thick, above this 

a like thickness of bluish-gray silty deposit in which the bones 

were found. The depth at which these were discovered and 

the material in which they appeared tallies well with the data 

at hand concerning the Castoroides skull, so that it will not 

be unreasonable to suppose that at one time the layer in which 

the skull was found was once the old river bed, or the bottom 

of some body of water adjacent to the river. The fact that the 

bones found at Trading Post were in the same deposit and at 

about the same depth clearly indicates that Castoroides was 

contemporary with these forms. 

To those unacquainted with the geology in the vicinity of 

Trading Post it may be well briefly to enumerate the layers as 

they occur where Mr. Tubbs’ bone bed was exposed: 

From the general level of the valley: 

Six feet of black loam. 

Twelve feet marly clay. 

Twelve feet blue and yellow marl, verging into shale. 

Eighteen inches of bluish silt in which the bones were found. 

Eighteen inches conglomerate lying on the heavy Bethany Falls 
limestone. 

The conglomerate beds and the blue silty material occur only 

in isolated patches of a few feet in length; that in which the 

bones were found was probably twenty-five feet in length. 

THE SKULL. 

The typically rodent-like skull more closely resembles that 

of Castor fiber than of any other of the rodent family, yet in 

many respects close analogies are found to that of the Biza- 

cacha (Lagostomus trichodactulus), a living form found on 
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the high pampas of South America. In tooth structure it more 

closely resembles this form than any other of the rodent family 

I have been able to examine, while the long diastema between 

the incisors and the molars, and rapid divergence of the molar 

series posteriorly and the general form of the basioccipital 

region also appear more Bizacacha-like. Although the molar 

teeth of these two forms look very similar on their grinding 

surface, there is quite a difference in their conformation. Those 

of the Bizacacha are made up of two lamine of dentine and 

enamel in molars 1, 2, and 3, the fourth and last having three 

layers. The enamel does not form a true cylinder around the 

dentine, but only reaches part way around, there being no 

enamel wall on the posterior portion of the segments. In 

Castoroides each tooth has one more layer, a tooth being made 

up of tube-like sections composed of enamel and dentine, 

pressed nearly flat and fastened together with a layer of ce- 

ment. 

The dorsal surface of the skull is almost flat, broadening out 

posteriorly, and in the region of the lamboidal ridge is rela- 

tively more broad and massive than in Castor. 

The narrowest part of the skull occurs just behind the 

cephalic ends of the parietals, instead of across the frontals 

as in Castor. Across the frontonasal sutures it presents a more 

massive appearance, and from here it tapers slightly to the 

tip of the nasals, which end rather abruptly and rounding. 

The facial portion of the maxilla composes a larger part of the 

zygomatic arch than does that element in Castor, and forms 

the major part of the front wall of the orbit. In consequence 

of this, the malar does not reach nearly so far forward, and 

has no contact with the lachrymal, while the contrary exists 

in Castor, where the front portion of the malar forms half of 

the anterior wall of the orbit. The squamosal extends further 

forward and commences higher up on the cranial portion than 

it does in Castor, and occupies about two-fifths the entire 

length of the skull, while the nasals are relatively more broad 

than long. The long and narrow parietal ridge rises sharply 

from the flat parietals to a height of ten millimeters. The in- 

terparietal is a relatively small element, almost unobservable, 

fitted wedge-like between the posterior ends of the parietals. 

The parietals themselves are long and very narrow, scarcely 

exceeding in width that of a full-grown beaver. The infra- 

orbital foramen is located higher up the face than in Castor. 
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The diastema between the molar series and the massive in- 

cisor tooth differs much comparatively in the Lenawee and 

Boicourt specimens. In the former it measures 110 mm., in 

the latter 140 mm., and is, proportionately to the size of the 

skull, much longer. 

A comparison of the large incisors of the two specimens re- 

veals quite a difference in the markings of the outer enamel 

covering. In the Boicourt specimen the flutings are very 

narrow, and, counted from the anterior inner angle round to 

the posterior sinus, there are twenty-four. Correspondingly, 

the Lenawee skull shows only eighteen, while two of the fluted 

groovings on the anterior face of the teeth are exceedingly 

wide, the widest being 8 mm. from ridge to ridge, and widens 

out materially as it nears the extremity of the tooth. 

In Castor the cutting edge of the incisors is worn nearly 

straight across, with slightly more wear on the outer edges, 

but in the Castoroides quite the reverse occurs, the teeth being 

worn thin and sharp at their junction on the medial line, and 

gradually get thicker and more heavy laterally, the two teeth 

thus forming a very efficient gouge. 

A lateral view of Castoroides, when compared with Castor, 

shows quite a difference in contour of the dorsal part of the 

skull. In Castor the crest from supraoccipital to nasals shows 

quite a convexity, the highest part of which occurs at the 

junction of the parietals and frontals on the median line, and 

more strongly convexed at the caudal end of the nasals than 

at any other point, with the parietal ridge scarcely notice- 

able. In Castoroides the parietal and saggital ridge is very 

conspicuous, and is elevated 10 mm. above the parietals. From 

the supraoccipital ridge to the frontonasal suture on the 

median line it is nearly level; forward from here to the tips of 

the nasals it has a gentle slope. The malar is wider, thicker 

and more rounded than in Castor, with the lower portion 

gently converging inward. The cephalic edge, from the 

superior malomaxillary suture downwards, has a slightly 

more acute angle than has Castor. In Castor the malar on its 

outer face is nearly flat its whole depth from top to bottom. 

The squamosal is relatively much larger than in Castor, and 

extends higher up the sides of the cranium, thereby decreas- 

ing the width of the parietals. The infraorbital foramen in 
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Castoroides, compared with Castor, is decidedly larger, a third 

deeper than wide, and occupies a more dorsal position pro- 

portionally, having a long, deep fossa extending cephalad and 

dorsad, which is wider and shallower anteriorly. In Cas- 

toroides the superior portion of the maxilla in the orbito- 

sphenoidal region is smoother, and does not have the excres- 

cences caused by the roots of the molars as in Castor. With 

the exception of a few of the foramina of Castoroides, all obtain 

a proportional enlargement over Castor. One very noticeable 

exception is the smal] size of the external auditory meatus. 

In this there is but a slight difference in the actual size be- 

tween the two, and is not nearly as large as that organ in 

Bizacacha. The tympanic bulle in Castoroides are very small, 

and but little inflated, while the basioccipital is compara- 

tively much broader and shorter. The double posterior nares, 

and the peculiarly constructed pterygoides, that have at- 

tracted the attention of all who have made a study of Cas- 

toroides, are beautifully shown in the Lenawee specimen be- 

longing to the Smithsonian Institute. (See plate 25, fig. A, 

at a-b.) The mastoid in Castoroides is an exceedingly stout 

and massive bone, compared with Castor; the outer edge of 

this bone and the sternomastoid are deeply scored and pitted 

for heavy muscular attachment. The glenoid fosse in Cas- 

toroides are shallow and broad, and would allow a more lateral 

motion of the lower jaws than would those of Castor. At the 

base of the auditory bulle, and in front of the mastoid of 

Castoroides, occurs a deep and rough pit for muscular attach- 

ment that is not found in Castor. 

On plate 27, figure B, a lateral view of the Boicourt speci- 

men is given. The large broken incisor is withdrawn from 

its socket and the thin inner wall removed, showing the depth 

of the socket, which reaches back to the roots of the first 

molar, a thin partition only separating the pulpy root of the 

incisor from that of the molar. Just above, at b and ¢, are 

seen the frontal and nasal sinuses. A portion of the inner 

wall of the maxilla has been removed to show the last molar 

(d) as it lies in its alveolus, while at e is shown the brain 

cavity. 
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In Castoroides kansensis. 

The basie occipital shows no sutural contact with the basic 

sphenoid, but is firmly codssified with that element, and while 

the conical projections mentioned by Wyman exist, they are 

situated more caudally and closer to the occipital condyle than 

in either the Lenawee specimen or that described by Wyman 

from Clyde. 

The pterygoid, or wall between the internal pterygoid fossa 

and the inferior entrance to the posterior nares, rises imme- 

diately from the projection mentioned by Wyman, but at a 

point much farther back than in his specimen or that from 

Lenawee; consequently the pterygoids would be proportionally 

much longer transversely, while just behind and above the 

foramen rotundum two eavities, one above the other, occur, 

extending forward and upward, with the evidences of having 

a thin septum between the outer and inner walls of the inter- 

nal pterygoid fossa. 
Probably one of the most striking features of Castoroides 

is its enormous incisor teeth, which appear much out of pro- 

portion to the size of the molar teeth and skull. 

The principal differences observed between the Lenawee 

and the Boicourt skulls, then, are: The proportionally larger 

incisors, with narrower grooves and greater number; the rela- 

tively longer diastema between the incisors and molars; the 

difference in the pattern of the folds in the last molar, and its 

comparative smallness; the difference in frontonasal region; 

comparatively longer nasals; and deep, rough pittings of the 

parietals. 
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MEASUREMENTS OF THE TWO SKULLS. 

Lenawee county, Boicourt, 
Michigan, skull. Linn county, skull. 

mm. mm. 

Greatest length irom tip of nasals to occipital condyle. . . 270 Boor 
INasals spreatesh Meno tie erly etc alketetet one retela(elaieer tate rebels 93 110 
Nasals, greatest width... c e 3 53 62 
Hrontalss jpreatest lengths ci. «<= mle» sleleleinl=|*lelete i == <t=)= 84 pao 
Frontals, width at postorbito-frontal suture........... 84 
Parietal jlengthese -ierocate tee. rae ee oc istatccrabecorecotens 133 SAS 5 
Parietal, width at point opposite squamosal 53 61 
Wii bis, IGREIN OF FGMCUs oCouccoodogononeoseooueosoS 68 76 
Grinding surface of first molar, length....... . ee 17 20 
Grinding surfaces of first molar, width....... 2 myals 16 19 
Grinding surface of last molar....................-- 20 20 
Incisor, lateral diameter at level of alveolus.........-.- 24 28 
Incisor, transverse diameter 21 25 
Occiput, transverse diameter 149 
Occiput, vertical diameter................ 67 Anas 33 
Depth of skull, level of molars to frontal boss 110 120 
Length of diastema between incisor and first molar... .. 110 140 
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IF TEEN years ago Wilcox (’95) published a paper on the 

KF spermatogenesis of Melanoplus femur-rubrum, or Calop- 

terus femur-rubrum, as the genus was then called. It is 

generally.conceded that many of his interpretations are incor- 

rect, but up to the present time his work stands as the only 

description of this species. Since it is my purpose to examine 

the chromosome complexes of as many genera of Melanoplus 

as possible, it seemed advisable to give emphasis to the dis- 

cussion of this particular one. 

Of the some dozen species that I have examined, femu2'- 

rubrum is perhaps the least favorable for study. The stage in 

which the chromosomes separate well are very short, and 

counts are difficult. This may explain some of the errors that 

Wilcox made. 

MATERIAL AND METHODS. 

The grasshoppers were collected in September, 1910, on the 

south campus of the University of Kansas. This is not the 

best time for collecting, as the germ cells are nearing the end 

of their activity, but all stages can be found from spermato- 

gonia to spermatozoa. Wilcox’s material was collected also in 

the fall. I have used Flemming’s and Bouin’s fluids for pre- 

serving, and both gave good results. Heidenhain’s iron-hema- 

toxylin was the chief stain, but Flemming’s tricolor was also 

tried. 

(399) 
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DESCRIPTION. 

Melanoplus femur-rubrum. 

Spermatogonia. 

It was somewhat difficult to find clear spermatagonial plates, 

as the chromosomes crowd very closely at this phase, and the 

bent form of the rodlike chromosomes seldom lie in one plane. 

Their general arrangement is radial, one end of the rod point- 

ing toward the center of the cell. Figure 5 is an unusually 

fortunate cut, which shows the radial arrangement very well. 

Many of the chromosomes are in cross sections, though two 

or three pairs of small spherical ones occur rather constantly 

through the later generations. The chromosomes can be paired 

fairly accurately in such a view as figure 5. 

Going back to an earlier stage in the development of such a 

cell, we find the chromatin in the form of a slender spireme, 

radiating from a black mass lying close to the nuclear mem- 

brane. (Fig. 2, pl. 28.) This body is probably the accessory 

chromosome. The spireme is irregular, giving a beaded ap- 

pearance. I take figure 3 to represent the next stage. It lies 

in an adjoining cyst. The thread has thickened, segmented 

across, and shows a longitudinal split. At figure 4 is shown a 

still further condensation of chromatin. Chromosomes are 

now formed which look vacuolated, and one is distinctly sepa- 

rated from the others by a membrane. Such an isolation of 

the accessory is typical of Brachystola and other genera. The 

metaphase, viewed from the side of the spindle, looks some- 

what like a second spermatocyte, but here, of course, the 

chromosomes are more numerous and crowded, and the 

spindles smaller. An equatorial plate has been described at 

the beginning of this section. It shows twenty-three chromo- 

somes when all are present, and in many of the cells it is not 

difficult to identify the chromosomes of spermatognia and 

spermatocytes. 

Oédgonia and Female Somatic Cells. 

A study of developing o6gonia was made in the hope of 

getting clearer plates than in the male, but the cells are very 

small when division takes place. After division rapid growth 

occurs, in which the chromatin forms a fine spireme, much 

beaded in appearance. (Fig. 12.) The nucleus grows as 

well as the cytoplasm, the fine chromatin threads expanding 
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into broad, faintly staining bands. (Fig. 13.) Finally the 

chromatin forms faint rings (figure 14), and the o6gonia have 

all the appearance of cells in prophase, but instead of con- 

tinuing division, now there follows a long rest and further 

growth stage, in which the nucleus takes the typical germinal- 

vesicle form, and the cytoplasm fills with yolk. 

Many dividing somatic cells are to be found around the 

growing eggs in the follicular tissue. Numerous attempts to 

count the chromosomes were made, and the greatest number 

found was twenty-two. I take this to be incorrect, however, as 

counts on other female cells have given twenty-four. In 

Stenobotherus (McClung 11) there are twenty-two chromo- 

somes in the female, but two of these are multiples. I have 

not been able to identify any multiple in femur-rubrum. 

Wilcox says, on page 9 (795): “I could not determine how 

many divisions the spermatogonia undergo. The chromosomes 

in the prophases are twelve in number, twenty-four at the 

equator of the spindle, during metakinesis. The individual 

chromosomes are rod shape, or often elongate spindle shape. 

In metakinesis they show ordinarily the well-known V-shaped 

figures, and are connected with each other in pairs by means 

of linin fibers.” Whether this writer had confused second 

spermatocyte and spermatogonia I do not know. At any rate, 

his count for spermatogonia is incorrect. And it.is even more 

peculiar that he considered the divided twelve as twenty-four 

chromosomes instead of two newly formed cells, each with 

twelve chromosomes. : 

Spermatocytes. 

The early spermatocytes show faintly staining nuclei, with 

chromatin scattered in loose threads of varying lengths. ‘The 

threads seem irregular in diameter, giving the effect of a 

greater amassing of granules at certain points. (Fig. 16.) 

The threads assume more definite outlines later and become 

finer. They still have the beaded appearance, and at one time 

form a bouquet stage, all looping out of a darkly staining 

chromatin mass at the periphery of the nucleus. (Fig. 17.) 

The beaded appearance is seen just before the spireme breaks 

up (figs. 19, 20), and even in the early chromosomes this 

appearance is retained. Wilcox believed that four of these 

nodules are grouped together to form the tetrad, and thet what 

we know as the tetrad is made up of four chromosomes. He 
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believes the first spermatocyte division effects the separation 

of two of the chromosomes from the other two of the original 

quadrivalent group. And in the second division the remaining 

chromosomes that have hung together in pairs are parted. 

I believe his whole error has come about through the beaded 

appearance of the spireme. It is true that there are distinct 

nodules in this thread, and that in the formation of the chro- 

mosomes one sees often four knots to a single thread, but one 

sees many more sometimes. Instead of considering them in- 

dividual chromosomes, we must believe that they are mere ir- 

regularities in the amassing of granules during spireme 

formation. 

We get some cells which show a very clear case of a con- 

tinuous spireme. (Fig. 18.) The chromosomes in the early 

prophases are in the form of rings and crescents. The very 

early rings show sometimes the longitudinal split, but it is 

seldom. The first tendency in the condensing of the chromo- 

somes is to form rings, thus in figure 2, plate 29 many are seen. 

When they begin to arrange for division we see fewer, usually 

from two to three. Some are crosses, and even in the prophase 

have begun dividing. (Fig. 3.) There are twelve chromo- 

somes, then, in the first spermatocytes, formed, as I believe, 

by the union of the pairs of spermatogonial chromosomes; one 

of these is the accessory and is unpaired. (Fig. 16.) This 

special chromosome moves toward the pole ahead of the others 

undivided (figs. 1, 2, 4, pl. 30), and in equatorial plate is seen 

always in a different plane from the rest. The remaining eleven 

divide longitudinally (figs. 1, 2, 3, 4), so that the number 

of chromosomes distributed to the daughter cells is eleven and 

twelve respectively. We see the two sets of plates, then, in 

the second spermatocytes. (Figs. 6,7.) By means of a cross 

division of these chromosomes the eleven diads are separated. 

The accessory divides longitudinally. Thus we see that half 

the spermatids have eleven chromosomes plus the accessory 

(fig. 6), and half have the eleven and no accessory (fig. 7). 

Spermatids. 

While the chromatin amasses at the poles of the new sper- 

matids (fig. 11), the cytoplasm of the cells grows rapidly. The 

nuclear mass breaks up into a beaded appearance once more 

(fig. 12) and the cytoplasm begins to condense. There follows 
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an unequal growth of nucleus and cytoplasm now, the nucleus 

gaining on the cytoplasm, as seen in figures 13, 14, 15. At 

the same time the chromatin moves to the nuclear boundary, 

where it forms a darkly staining band. The cytoplasm begins 

to elongate at one side of the nucleus until a condition seen in 

figure 17 is reached. The remainder of the marked meta- 

morphosis of the cell consists of a condensing of material un- 

til a small, elongated nuclear head remains, and a long vibra- 

tile fiber. (Fig. 25.) 

Melanoplus differentialis. 

A glance at plate 31 will show that differentialis follows very 

closely the description for femur-rubrum. There are from one 

to two and occasionally three rings seen in an equatorial plate 

of the first spermatocyte, and there is a tendency for most of 

the larger chromosomes to form rings in the prophase. Thus 

we may see three or four rings at one time. Differentialis is 

the most favorable material of the Melanoplus group thus 

far investigated. The chromosomes are a little larger than 

femur-rubrum and have the advantage of not crowding so 

much. 
Melanoplus atlanis. 

Figures 1 to 12, plate 32, show spermatocyte divisions in 

M. atlanis. A comparison of this species with the two pre- 

ceding shows that the chromosomes are more irregular in 

form, but as to general behavior, numbers, etc., are the same. 

Melanoplus packardii. 

Plate 32, figures 13 to 24, show a few of the stages of divi- 

sion in M. packardii. The chromosomes of this group are smaller 

than any of the preceding, but in general behavior and form 

are similar. 

SUMMARY AND DISCUSSION. 

In the four species of Melanoplus set forth in this paper we 

find a close similarity in form and behavior of the chromo- 

somes in the different generations, and an identity in number 

throughout. That is to say, twenty-three spermatogonial 

chromosomes and twelve spermatocyte. The counts in the fe- 

male cells did not give more than twenty-two, but there is 

much room for doubt, owing to crowded plates. The results 

of this paper tally with those on Melanoplus bivitatus Say 

(08). 
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Femur-rubrum and atlanis are so similar in body form that 

they are easily mistaken for each other. Size, coloring and 

shape are alike, the distinction lying in the podical plates only. 

The chromosome complexes of the two species are, however, 

not as similar as those of femwur-rubrum and differentialis. 

Between the two latter is a marked difference in body size, yet 

the chromosomes are the same in size and shape. There is no 

size difference in the chromosomes of M. femur-rubrum and 

M. atlanis, but the form of atlanis chromosomes is more ir- 

regular. 

On the whole, the close resemblance between the complexes 

of the five species examined supports the belief that there is 

correlation between chromosomes and body characters. 
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EXPLANATION OF PLATES. 

All drawings made with a 12 ocular, one-twelfth oil immersion obj. 

and Abbe camera lucida; reproduced at a magnification of about 2000 

diameters. Drawings are arranged in the order of their development as 

nearly as possible, beginning with spermatocytes and ending with 

spermatogonia. Figures 1-65, plates 28, 29, 30, represent Melanoplus 

femur-rubrum; plate 31, Melanoplus differentialis; and plate 32, figures 

1-12, Melanoplus atlanis, figures 13-24, Melanoplus packardit. 

2—Univ. Sci. Bull., Vol. VI, No. 7. 
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EXPLANATION OF PLATES. 

PLATE 1. 

Fig. 1—The nodule containing the remains of Amphibamus grandi- 

ceps Cope. X1. (No. 1234, Yale Museum.) 

Fic. 2.—The opposite half of the same nodule. X 1. 

Fic. 3.—EFrierpeton branchialis Moodie. X 1. (No. 801, Yale Museum.) 

Fic. 4.—Cephalerpeton ventriarmatum Moodie. X1. (No. 796, Yale 

Museum.) 



PLATE, 1: 







PLATE 2. 

Fic. 1—Drawing of the specimen of Hrierpeton branchialis Moodie. 

X38. 6, basibranchial; d, body impressions; h, hypohyal; m, mandible. 

Fic. 2—The arm skeleton of Erpetobrachium mazonensis Moodie. 

X 2. cl, clavicle; h, humerus; 7, radius; s, scapula; wu, ulna. 

Fic. 3.—Rib of Mazonerpeton costatum Moodie. X 4. (Yale Museum.) 



PLATE 2. 







PLATE 3. 

Fics. 1 AND 2.—The halves of the nodule containing the skeleton of 

Mazonerpeton longicaudatum Moodie. X1. (No. 795, Yale Museum.) 

Fic. 3.—The larger specimen of Humicrerpeton parvum Moodie. X 1. 

(No. 808, Yale Museum.) Shows impressions of intestines. 

Fic. 4.—The smaller specimen of Humicrerpeton parvum Moodie. X 1. 

(No. 802, Yale Museum.) Shows mold of intestines. 
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PLATE 4. 

An ideal restoration of Ewmicrerpeton parvum Moodie in surroundings 

of Carboniferous plants as they are preserved in the nodules from Mazon 

Creek, where they are associated with the Amphibia. The size of the 

animal in life was from an inch and a half to two inches in length. 
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PLATE 5. 

Fic. 1—Drawing of the third specimen of Humicrerpeton parvum 

Moodie. X4. (No. 4400, United States National Museum.) a, anus; 

f, femur; h, humerus; 2, interclavicle (?) clavicle; in, intestine; m, man- 

dible; 0, orbit; s, stomach; ¢, tibia and fibula. 

Fic. 2.—Drawing of the skeleton of Amphibamus thoracatus Moodie. 

X2. (No. 4306, United States National Museum.) , clavicle; h, 

humerus; 7, interclavicle; 0, orbit; 7, radius; v, vertebra. 

Fic. 3.—Cope’s drawing of the type specimen of Amphibamus grandi- 

ceps Cope. X1ca. (Geol. Survey Illinois, vol. 2, pl. 32.) 
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PLATH# 6. 

Fics. 1 AND 2.—Drawings of the Yale specimens of Humicrerpeton 

parvum Moodie. (X4% and 4.) a, anus; d, dorsal lateral line; f, 

femur; h, humerus; in, intestine; 1, liver impression; m, median lateral 

line of the tail; 0, orbit; p, parietal; r, radius; s, stomach; wu, ulna. 
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PLATE 7. 

Fic. 1.—Drawing of the skeleton of Amphibamus grandiceps Cope, 

in Yale Museum. (X1%4.) C, carpus; cl, clavicle; er, caudal ribs; cv, 

caudal vertebre; f, femur; h, humerus; k, a piece of skin; il, ilium; 

0, orbit; 7, radius; ri, ribs; s, scapula; sc, sclerotic plates of the eye; 

u, ulna; vs, ventral scutelle; t, tibia; T, tarsus. 

Fig. 2—Drawing of the skeletal remains of Cephalerpeton ven- 

triarmatum Moodie. X %. Lines to the right of the skeleton represent 

boundary of the nodule. a, prefrontal; cl, clavicle; d, dentary; h, 

humerus; f, frontal; j, jugal; m, maxilla; 0, orbit; p, phalanges; pa, 

parietal; pr, postorbital; 7, radius; s, sclerotic plates; u, ulna; vs. ventral 

scutelle. 

Fic. 3—Drawing of the skeleton of Mazonerpeton longicaudatum 

Moodie. X2. C, carpus; cl, clavicle; cv, caudal vertebre; f, femur; 

h, humerus; 7, radius; ri, rib; s, scapula; sc, sclerotic plates; vs, ventral 

scutelle; u, ulna. 
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PLATE 8. 

Figs. 1 AND 2.—The two halves of the nodule containing the vertebrz 

of Spondylerpeton spinatum Moodie. X1. (No. 793, Yale Museum.) 

Fic. 3—The arm elements of Hrpetobrachium mazonensis Moodie. 

X1. (No. 799, Yale Museum.) h, humerus; 7, radius; s, scapula; w, ulna. 

Fig. 4.—The skeleton of Mazonerpeton costatum Moodie. X1. (No. 
800, Yale Museum.) 
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Fic. 1.—Drawing of the vertebral remains of Spondylerpeton spinatum 

Moodie. X1. h, chevron; 7, intercentrum; n, neural spine (neuro- 

centrum) ; p, pleurocentrum. 

Fic. 2.—The skeletal remains of Mazonerpeton costatum Moodie. X 2. 

ac, anterior caudal; ch, chevron; cl, clavicle; cv, caudal vertebre; f, 

femur; h, humerus; m, mandible; 7, ribs; v, vertebra; sk, skull. 
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PLATE 10. 

Ideal restoration of Mazonerpeton crawling on calamite stems and 

about to feed on an Acanthotelson. Drawn from the fossils. 
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PLATE 11. 

Photographs of the two halves of the nodule containing the remains 

of Amphibamus grandiceps Cope, in the possession of Mr. L. E. Daniels, 

of Rolling Prairie, Ind. This specimen shows the form of the body and a 

large part of the skeletal structure. The orbits are blackened with the 

pigmentum nigrum of the iris. 
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PLATE 12. 

Restoration of the skeleton of Amphibamus grandiceps Cope, on the 

basis of the Yale specimen, the specimen in Mr. Daniels’ possession, and 

Cope’s drawing of the type. The outline of the body is restored from 

the specimen in the possession of Mr. Daniels, as may be seen by referring 

to plate 11. Ca, capus; Cl, clavicle; E, epiotic plate; Fe, femur; F%, 

fibula; F, frontal; Hu, humerus; Jc, interclavicle; Jl, ilium; Js, ischium; 

J, jugal; L, lachrymal; M, maxilla; N, nasal; O, orbit; P, parietal; 

Pf, postfrontal; Po, postorbital; Pr, prefrontal; Px, premaxilla; Pu, 

pubis; Qj, quadratojugal; R, radius; So, supraoccipital plate; Sq, spua- 

mosal; s7, sacral rib; St, supratemporal (squamosal) (paraquadrate) ; 

Sc, scapula; Ta, tarsus; Ti, tibia. 
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PLATE 13. 

Restoration of Amphibamus grandiceps Cope as it probably appeared 

in life. 
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PLATE 14. 

Branchiosauria from the Upper Carboniferous (Commentry beds) of 

France. 

Fics. 1, 2, 3, 8 AND 9.—Branchiosaurus (Protriton) fayoli Thevenin. 

Specimens showing the external form of the body and portions of the 

skeleton. 

Fic. 4.—An enlarged view of the ventral scutelle of Branchiosaurus 

fayoli Thevenin. X15. 

Fic. 5.—The entire form of the ventral scutelle of the same species. 

Fic. 6.—A specimen of Branchiosaurus fayoli Thevenin, showing 

sclerotic plates and external branchiw. X 2. 

Fic. 7.—A complete specimen of Branchiosaurus (Protriton) petrole: 

Gaudry, showing external branchiz. From the Lower Permian of Autun. 

X1. All figures after Thevenin. 
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PLATE 1 -/\ 
Fic. 1.—Flowering branch of Krameria canescens. xX %. 

Fig. 2——Root showing knotty crown and numerous secondary 

roots. xX %. 
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PLATE II, =/© 
Fic. 3.—Cross section of stem, showing one year’s growth: e, epi- 

dermis, with the cuticle represented by the outer black circle; p, palisade; 

y, thin-walled parenchyma of primary cortex; n, pericycle; d, endodermis, 

a, bast fibers; 0, phloém; x, xylem; 7, medullary ray; m, medulla.  X 78. 

Fic. 4.—Cross section of secondary root: s, brown scaly cork; g, cork, 

the cells filled with reddish-brown coloring matter; v, phellogen; 1, thin- 

walled parcenchyma; f, phloém; w, xylem; u, cambium. x 10. 

Fic. 5.—Small portion of stem: c, cambium; t, tracheids; 7, medullary 

ray. xX 475. 

Fic. 6.—Bast fibers, and parenchyma of the pericycle of stem. » 325. 

Fic. 7.—Tracheid from stem. X 325. 
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PLATE) UL « 
Fic. 8.—Cross section of a small portion of a stem 4.6 mm. in diameter: 

e, epidermis, the cuticle represented by the black outer band; x, palisade; 

q, thin-walled parenchyma of primary cortex; y, pericycle; c, cambium; 

w, water tubes; m, medullary rays; bast fibers are shown in the phloém 

and pericycle by black dots. » 65. 

Fic. 9.—Longitudinal radial section of stem: w, spiral water tube; 

l, reticulate water tube; f, medulla. » 288. 

Fig. 10.—Portion of phloém: 5b, bast fibers; r, medullary rays. X 325. 

Fic. 11.—Longitudinal radial section of stem phloém: 6, bast fiber; 

n, undivided mother cells. » 325. 

Fic. 12.—Stem tracheids. » 288. 

Fic. 13.—Stem bast fiber. x 90. 

Fic. 14.—Tangential section of stem cork. x 325, 
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PLATE IV. = 
Fig. 15.—Portion of stem: ft, trichomes; e, epidermis; y, palisade; 

bf, bast fibers. » 325. 

Fic. 16.—Surface view of stem epidermis: s, stoma; h, scar of tri- 

chome. 175. q 

Fic. 17.—Cross section of stem, one year old, showing longitudinal sec- 

tion of a stoma: st, p, palisade; cl, chloroplasts; g, guard cell; 7, air 

chamber; the cuticle is shaded black.  » 475. 

Fic. 18.—Longitudinal section of stem, showing cross section of a 

stoma. 475. 

Fic. 19.—Longitudinal radial section of stem cambium: c, cambiform 

cell of the phloém. x 325. 
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PUATE, Ve> 

Fic. 20.—Longitudinal radial section of stem medullary ray. > 475. 

Fic. 21.—Longitudinal tangential section of stem medullary ray. 

x 475. 
Fic. 22.—Longitudinal tangential section of stem wood parenchyma. 

x 475. 
Fic. 23.—Cross section of stem tracheids; and wood parenchyma, w. 

b eu Gy 

Fic. 24.—Cross section of a small portion of a root; p, phloém; e, 
cambium; m, medullary ray; «, xylem. » 325. 

Pig. 25.—Pith from cross section of one-year-old stem. X 3825. 

Fic. 26.—Longitudinal section of a stem water tube. x 288. 

Fic. 27.—Surface view of a small portion of a water tube. x 288. 

Fic. 28.—Tracheids and parenchyma cells from a leaf cut longi- 

tudinally through the broad diameter. > 475. 

Fic. 29.—Cambiform cells from the phloém of a leaf, cut longi- 

tudinally through the narrow diameter. x 325. 
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PLATE YI. 2 26 
Fic. 30.—Cross section of a secondary root; d, brown scaly cork; 

c, cork, the cells colored reddish brown; k, phellogen; g, cambium; the 

bast fibers are shown by black dots and the water tubes by circles. » 41. 

Fic. 31—Cross section of xylem of root; wt, water tube; t, tracheid; 

mr, medullary ray. x 375. ‘ 

Figs. 32, 33, 34.—Tracheids from root. x 288. 

Fig. 35.—Cross section of a portion of a root; 0, cork; m, phellogen; 

y, thin-walled parenchyma. x 325. 

Fic. 36.—Bast fiber from root. x 180. 
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Fig. 37.—A bleached leaf, showing the venation. x 22. 

Fig. 38.—Cross section of a leaf. x 120, 
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PLATE VIIJ.:22 

Fic. 39.—Surface view of leaf epidermis, upper surface: s, stoma; 

h, scar of trichome. 175. 

Fic. 40.—Surface view of leaf epidermis, under surface: s, stoma; 

h, sear of trichome. X 175. 
Fic. 41.—Surface view of leaf palisade. » 325. 

Fic. 42.—Cross section of a stoma, from a leaf cut longitudinally 

through the narrow diameter.  » 475. 

Fic. 43.—Cross section of the midvein of a leaf: ph, phloém; tra- 

cheids shown by stippling. x 325. 

Fic. 44.—Storage tracheids, from the ultimate ends of the veins of a 

leaf cut longitudinally through the narrow diameter. » 275. 

Fic. 45.—Storage tracheids from the ultimate end of a vein of a leaf 

eut longitudinally through the broad diameter. x 475. 

Fig. 46.—Spiral tracheid from a leaf. Xx 475. 

Fic. 47.—Trichomes from a leaf. x 175. 

Fic. 48.—Starch grains from the thin-walled parenchyma of a root. 
1325: 5 

Fic. 49.—Starech grains from the pith, medullary rays, pericycle, 

and primary cortex of a stem. » 325. 

Fig. 50.—Calcium oxalate crystals from the bark of a root. x 325. 

Fig. 51—Calcium oxalate crystals: a, from the cortex of stem; b, 

from a leaf. X 325. 

Fic. 52.—Calcium oxalate crystals from the pith of a stem. X 325. 

Fic. 53.—Crystals of calcium oxalate from the phloém of a stem. 

x 325. 
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EXPLANATION OF PLATE. 

PLATE 23. 

Characteristic curves of m/32 solutions. Curve approaches abscissa 

in relaxation. 

a, Abscissa line. 

d, Effect of neutral Ringer. 

, Neutral Ringer withdrawn. 

, Receptacle empty. 

c, Salt solution added. 

t, Time curve in 1/2 minutes. 

i 

iss) 

Time and curves are reduced 1/5. 
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PLATE 24. 

Fic. A.—Dorsal view of the skull found in Lenawee county, Mich- 

igan. (No. 1634, Smithsonian collection, National Museum, Washington.) 

The dovetailed recess at the posterior end of the nasals is well shown, 

on the median line, to receive the blunt wedge-shaped portion of the 

frontal bone. Note the difference between this part and the nasals of 

the Kansas specimen. 

Fic. B.—Dorsal view of the Boicourt, Linn county, Kansas, skull, 

showing the heavy scoring of the parietals for ligamentary and muscular 

attachment. Heavy line work denotes restored portions. 
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PLATE 25. 

Fic. A.—Palatine view of the Lenawee skull, showing the double pos- 

terior nares, a-a, and the thin, laterally compressed pterygoid blades. 

Line work represents restored portions of the zygomatic arch. 

Fic. B.—Palatine view of the Boicourt skull, with incisor removed. 
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PLATES 26, 27. 

Fic. A.—Lateral view of the Lenawee skull. 

Fic. B.—Photograph of the Boicourt skull, showing the large incisor, a, 

withdrawn from its socket to show the full depth of the cavity; ¢ is the 

frontal sinus, d the inner wall removed to show the last molar, e the very 
small brain cavity. 



PLATES 26, 27. 
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PLATE 28. 

Melanoplus femur-rubrum. 

Fic. 1.—Resting spermatogonium. 

Fic. 2.—Spireme stage of spermatogonium, with loops of chromatin 

arising from homogeneous mass of chromatin at nuclean membrane. 

Fic. 3.—Further spireme stage, with tendency to longitudinal split. 

Fic. 4.—Vesicular stage in late prophase of spermatogonium. Here 

the accessory is separated from others. Chromosomes are sometimes 

vacuolated. - 

Fic. 5.—Spermatogonium, showing the full number of chromosomes 

in equatorial plate. 

Fic. 6.—Somatic cell from follicular epithelium, showing but twenty- 

two chromosomes. 

Fics. 7 to 11.—Spermatogonia, showing size and arrangement of 

chromosomes: Figs. 7 and 8, equatorial plates; 9, metaphase; 10, ana- 

phase; 11, telophase. 

Fies. 12, 13, 14.—Odgonia in early development: Figure 14, the fol- 

licular cells are forming around the young egg; the chromatin is loosely 

arranged in a ring. 

Fics. 15, 16.—Early resting phase of first spermatocyte. 

Figs. 17, 18.—Spireme stages in first spermatocyte. 

Fies. 19, 20-—Spireme has a distinctly beaded appearance. 
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PLATE 29. 
Melanoplus femur-rubrum. 

Fic. 1—First spermatocyte, showing the centrosome in the cytoplasm. 

Fic. 2.—Early first spermatocyte, showing the chromatin in large, 

loose rings. 

Figs. 3 to 9.—Prophases of first spermatocytes, with the ring forma- 

tions and crosses. 

Fic. 9.—The full number of 12 chromosomes are seen here in prophase. 

Fics. 10 to 13.—Polar views of first spermatocyte, showing full num- 

ber of twelve chromosomes and the tendency toward ring formation. 

Fics. 14 to 18.—Metaphases of firsts. 

Fie. 19.—Anaphase of the first division. 

Fic. 20.—Early telophase of first spermatocyte. 
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PLATE 30. 

Melanoplus femur-rubrum. 

Fics. 1 to 4—Metaphase of first division; accessory further toward 
one pole than the other; arrangement of chromosomes in spindle well 

shown here; the early ones lying parallel with equatorial plate, and the 

later ones at right angles. : 

Fics. 5, 6—Metaphases of the second spermatocyte, showing twelve 

chromosomes. 

Fics. 7, 8.—Metaphases of second showing eleven chromosomes. 

Fics. 9, 10.—Show the early anaphase of second. 

Fig. 11.—Late telophase of second spermatocyte. 

Fic. 12.—Later stage still of the telophase of the second spermatocyte. 

Fic. 13.—Very early spermatid. 

Figs. 14, 15, 17—Metamorphosis of spermatids. 

Figs. 18, 19, 20.—Dwarfed spermatocytes first and second. 

Figs. 21, 22, 28, 24, 25—Spermatids in order of development. 
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PLATE 31. 

Melanoplus differentialis. 

Fics. 1 to 4.—Spermatogonia, with full number of twenty-three chro- 

mosomes seen in equatorial plate. 

Figs. 5 to 14.—First spermatocytes seen in equatorial plate; rings 

vary from one to two. 

Fies. 15, 19, 20, 21, 25, 26—Side view of chromosomes and spindle. 

Fics. 22, 23.—Equatorial plates, with second spermatocyte from the 

same mother cell. One shows the eleven chromosomes while the other 

shows twelve. 

Fic. 24.—Equatorial plate of second spermatocytes, showing twelve 

chromosomes. 
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Fics. 

PLATE 32. 

M. atlanis. 

1 to 12.Stages in spermatogenesis of atlanis: Fig. 1, sper- 

matocyte in late anaphase; figs. 2, 3, 4, prophases of first division; figs. 5, 

6, 7, 8, 9, lateral view of spindle; figs. 10, 11, 12, equatorial view of 

chromosomes. 

FIGs. 

FIGs. 

FIGs. 

FIGs. 

FIGs. 

mosomes. 

M. packardii. 

13 to 24.—Stages in spermatogenesis of packardii. 

13, 14-—Prophase of first spermatocyte. 

15, 16, 17, 20, 21.—Metaphase of first spermatocyte. 

18, 19.—Anaphase of first spermatocyte. 

22, 23.—Metaphases of second spermatocyte, with eleven chro- 

Fic. 24.—Metaphases of second spermatocyte, with twelve chromo- 

somes. 
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